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Abstract

The curvature regularities have received growing atten-
tion with the advantage of providing strong priors in the
continuity of edges in image processing applications. How-
ever, owing to the non-convex and non-smooth properties of
the high-order regularizer, the numerical solution becomes
challenging in real-time tasks. In this paper, we propose
a novel curvature regularity, the total curvature (TC), by
minimizing the normal curvatures along different direction-
s. We estimate the normal curvatures discretely in the lo-
cal neighborhood according to differential geometry theo-
ry. The resulting curvature regularity can be regarded as
a re-weighted total variation (TV) minimization problem,
which can be efficiently solved by the alternating direction
method of multipliers (ADMM) based algorithm. By com-
paring with TV and Euler’s elastica energy, we demonstrate
the effectiveness and superiority of the total curvature reg-
ularity for various image processing applications.

1. Introduction
Curves and surfaces are important geometric elements

in image analysis. As basic measurements of curves, both

length and curvatures are natural regularities, which have

been widely used in various image processing problems [15,

12, 13, 10]. For example, curvature is a natural regularizer

for thin structures [8] and can preserve contrast and corners

for image denoising [22].

Let u : Ω → R be an image defined on a domain Ω ⊂ R
2

with Lipschitz continuous boundary, and u(x) denote the

intensity of the gray level at point x ∈ Ω. Assume that u is

smooth, then the level set

γλ = {x ∈ Ω | u(x) = λ}
is a smooth 1D manifold. Although images are rarely s-

mooth functions, we can assume they are in certain func-

tional space, e.g., L2(Ω). Then the point-wise values are
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Figure 1. Total curvature is an ideal regularity for image inpaint-

ing, where the red regions represent inpainting domains. The pa-

rameters in our model (9) are set as λ = 5 and α = 0.5.

not so crucial as they are a set of zero measure. Suppose

that the curve length is used as the geometric measurement,

we then have

E[γλ] =

∫
γλ

ds.

When integrating all level curves of an image u, it gives

exactly the Rudin-Osher-Fatemi TV model [14]

E[u] =

∫ +∞

−∞

∫
γλ

|∇u|dσds =
∫
Ω

|∇u|dx,

with ds and dσ denoting the arclength of the level sets and

their gradient flows. Considering the curvature curve mod-

el, the resulting image model becomes

E[u] =

∫
Ω

φ(κ)|∇u|dx, (1)

where φ(κ) is some suitable functions of the curvature, e.g.,

φ(κ) =

⎧⎨⎩
1 + α|κ|, Total Absolute Curvature,√
1 + α|κ|2, Total Roto-translation Variation,

1 + α|κ|2, Total Squared Curvature,



with α being a positive constant. For a 2D curve, the curva-

ture of the level lines is defined as

κ = κ(x) := ∇ ·
( ∇u

|∇u|
)
.

Such curvature energy was originally studied by Euler in

modeling the shape of a torsion-free thin rod, and was intro-

duced into computer vision by Mumford in [11]. Since then,

numerous studies have been carried out to introduce Euler’s

elastica into various image processing tasks. For example,

Masnou and Morel [9] proposed the regularity energy with

φ(κ) = 1+ |κ|p (p ≥ 1) for disoccluding noiseless images.

Euler’s elastica energy allows for the automatic handling of

topologically complex inpainting domains, which can over-

come the shortage of TV regularization in inpainting of in-

complete images with large-scale missing domains. Figure

1 shows three images of simple shapes with their inpaint-

ing domains and the solutions of minimizing TV, Euler’s

elastica energy and our curvature regularity, respectively.

From perceptual experiments, it is known that human visu-

al system tends to complete partially occluded boundaries

following a principle of good continuation. As can be seen,

the Euler’s elastica model gives obvious better restoration

results than TV model, such that TV gives the shortest con-

nection between the two T-junction points by straight lines

and Euler’s elastica tends to connect the T-junctions points

with smoother edges. Due to the great success of Euler’s

elastica in image inpainting, it has been applied to other

image processing applications such as denoising [18], seg-

mentation [24], illusory contour [7] and segmentation with

depth [23].

However, because of the nonquadratic high-order elasti-

ca term, the numerical minimization of the Euler’s elastica-

based energies are very challenging. The first numerical

attempt to directly solve the Euler’s elastica model was

given by Shen, Kang and Chan in [17] based on the cal-

culus of variation and the steepest descent method. Fast

algorithms have been developed based on augmented La-

grangian method in [18, 19, 3]. Approximated convex en-

velope of the elastica energy was proposed and solved by

the primal-dual algorithm in [6]. The curvature depending

variational energies including Euler’s elastica were present-

ed using a convex functional in the roto-translation space

and solved by the primal-dual scheme in [2].

Other curvature-based models include minimizing the

mean curvature [22] and Gaussian curvature [20] for image

processing tasks. Such curvature regularities can well pre-

serve the geometric properties such as keeping corners of

objects and grayscale intensity contrasts of images. How-

ever, similar to Euler’s elastica energies, either high-order

Partial Differential Equations (PDEs) are required to deal

with or splitting strategies are employed to solve the high-

order nonlinear minimization problems. Goldluecke and

(a) Mask image (b) Euler’s elastica (c) Total curvature

Figure 2. Total curvature regularity works well on image segmen-

tation of elongated structures. The parameters in our model (9) are

set as λ = 200 and α = 0.1.

Cremers [4] introduced the Menger-Melnikov curvature of

the Radon measure, which was reformulated as weighted

TV minimization with the weight function containing cur-

vature information estimated from the observed image data.

In [5, 21], efficient curvature filters were developed using

the pixel-local analytical solutions to approximate the mean

curvature and Gaussian curvature by enumerating the lin-

ear and developable surfaces in a 3× 3 pixel neighborhood.

However, the curvatures were roughly approximated by cer-

tain distances without rigorous definitions.

In this work, we introduce the total curvature regulari-

ty, which minimizes curvature functions of all the normal

curvatures. In contrast to the classical curvature-based vari-

ational models, such as Euler’s elastica and mean curvature

models requiring the images at least twice differentiable,

our approach estimates the normal curvatures in the dis-

crete setting. By estimating the curvature separately, we

can regard the curvature energy as a re-weighted TV min-

imization, where the weight function is updated iterative-

ly to capture the curvature information accurately. As a

consequence, the efficient and stable ADMM-based numer-

ical scheme can be applied to solve the proposed total cur-

vature regularized minimization problem. Compared with

state-of-the-art variational models, the proposed method has

three advantages as follows.

1) We introduce the concept of total curvature, which is

the �1 norm of the normal curvatures along different

directions over each point of the isolines. The nov-

el curvature regularity can achieve better results than

Euler’s elastica for different image processing tasks.

As shown, minimizing the total normal curvature can

ideally recover the corners and edges of images with

large-scale missing domains (see Figure 1) and accu-

rately segment the objects with elongated structures

(see Figure 2).

2) The normal curvatures are estimated point-wise in the

discrete setting without requiring to solve any high-

order PDE. Compared to the ADMM algorithm for the

Euler’s elastica model in [18], our ADMM based al-

gorithm introduces only one artificial variable (three

artificial variables in [18]), such that less computation-

al costs are required in each iteration. The resulting

numerical algorithm is of high efficiency, which saves



half of the CPU time consumed by the Euler’s elastica

model for image inpainting problems.

3) Our model is flexible to adapt with different function-

types of curvature without affecting the way of the op-

erator splitting and the associated ADMM-based algo-

rithm.

We implement the total curvature regularity on image de-

noising, segmentation and inpainting problems. By com-

paring with the TV and Euler’s elastica based approaches,

the results demonstrate that the total curvature is a suitable

regularizer for different image processing tasks.

2. Discrete Total Curvature

2.1. Normal curvatures

Let S : r = r(x, y) be a regular surface in R
3, O ∈ S

be a point and t ∈ TO be a tangent vector with TO denoting

the tangent plane at point O. The normal curvature of S at

O in the direction t characterizes the derivation of the sur-

face at point O along the direction t from its tangent plane.

Simultaneously, the normal curvature at O in direction t is

also the normal curvature of arclength parameterized curve

γ(s) ∈ S with γ(0) = O and γ′(0) = t, which is inde-

pendent of the choice of γ. The normal curvature can be

expressed as the amount of the curvature of γ in the direc-

tion of the surface normal N

κn = γ′′ ·N =
II

I
, (2)

which can be also expressed as the quotient of the second

fundamental form II and the first fundamental form I of the

surface. Thus, the normal curvature corresponding to di-

rection t can be estimated using I and II according to (2)

over each point on the surface. It is well-known that the

first fundamental form can be approximated using the ar-

clength, while there is the following result for the second

fundamental form.

Proposition 2.1. Suppose S: r = r(x, y) is a regular para-
metric surface, O(x0, y0) is an arbitrary point on S, then
the second fundamental form at point O can be estimated
by

II ≈ 2d, (3)

where d denotes the projection distance of its neighboring
point H(x0 +Δx, y0 +Δy) to the tangent plane of O.

Proof. The projection distance of point H(x0 + Δx, y0 +
Δy) to the tangent plane can be defined as follows

d(Δx,Δy) = (r(x0 +Δx, y0 +Δy)− r(x0, y0)) ·N .

Figure 3. The 3-D grid mesh.

By Taylor’s formula we have

r(x0 +Δx, y0 +Δy)− r(x0, y0)

= (rxΔx+ ryΔy) +
1

2
[rxx(Δx)2 + 2rxyΔxΔy

+ ryy(Δy)2] + o((Δx)2 + (Δy)2),

and

lim
(Δx)2+(Δy)2→0

o((Δx)2 + (Δy)2)

(Δx)2 + (Δy)2
= 0.

Owing to rx ·N = ry ·N = 0, it follows that

d(Δx,Δy) =
1

2
[L(Δx)2 + 2MΔxΔy +N(Δy)2]

+ o((Δx)2 + (Δy)2),

where L = rxx · N , M = rxy · N , N = ryy · N , and

L(Δx)2 + 2MΔxΔy + N(Δy)2 is the exact second fun-
damental form. Thus, when

√
(Δx)2 + (Δy)2 → 0, we

have

II ≈ 2d(Δx,Δy),

which completes the proof.

2.2. Calculation of normal curvatures

By considering the image surface or graph in R
3 char-

acterized with z = ui,j , (i, j) ∈ Ω, the image minimiza-

tion problems are then transferred to the corresponding sur-

face minimization problems. Without loss of generality,

we represent a gray image as a m × n matrix and the grid

Ω = {(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤ n}. Similar to Euler’s e-

lastica energies, we use the staggered grid in the x−y plane.

As shown in Figure 3, the •-nodes, 	-nodes and �-nodes

represent the original points, half points and middle points,

respectively. The intensity values on 	-nodes are estimat-

ed as the mean of its two neighboring •-nodes, while on

�-nodes are estimated as the mean of the four surrounding

•-nodes.
The tangent planes can be defined by either the triangles

or rectangles, where we use the triangle representation for
the ease of computation. Then, every tangent plane defines



Figure 4. Calculate the normal curvature on image surface, the

gray triangle in which represents a tangent plane of center point

O.

a normal curvature. Figure 4 illustrates an example of the
tangent plane at point O, which is denoted as TXY Z . Given
the 3D coordinates of X , Y and Z, the normal vector N
of TXY Z can be decided by the cross product of the vector−−→
XY and

−−→
XZ as follows

N =
−−→
XY ×−−→

XZ = (2ui,j−ui,j−1−ui,j+1, ui,j−1−ui,j+1, 2).

According to Proposition 2.1, we use the half point H(i −
1
2 , j, ui− 1

2 ,j
) to estimate the projection distance d to the tan-

gent plane TXY Z as

d =
−−→
PH ·N (4)

=
2ui,j − ui,j−1 − ui,j+1

2
√

(2ui−1,j − ui,j−1 − ui,j+1)2+(ui,j−1 − ui,j+1)2+4
.

On the other hand, the arclength ÔH can be approximated

in the following way

ds = ÔH ≈

√
(ui− 1

2 ,j
− ui,j)2 + h2, (5)

where ui− 1
2 ,j

can be estimated as the mean of its two neigh-

boring points ui−1,j and ui,j , and h is grid size fixed as the

same in both x-axis and the y-axis. Therefore, the normal

curvature of point O in direction
−−→
OH can be expressed as

κn ≈
2d

ds2
. (6)

2.3. Discrete total curvature

From surface perspective, when the directional vector

changes, there are many (perhaps infinitely many) normal

curvatures. In our formulation, we estimate the point-wise

normal curvatures in a 3×3 local window. Figure 5 displays

the eight triangle planes (i.e., T1-T8) located physically n-

earest to the center point O, which are used to approximate

the tangent planes in different directions. Note that the eight

directions are chosen pairwise centrosymmetric to avoid the

grid bias. The tangent planes can be divided into two cat-

egories such that T1-T4 use the half points and T5-T8 use

the middle points to compute the projections. One example

(a) Tangent planes

(b) T2 (c) T8

Figure 5. The eight tangent planes of the center point in a 3 × 3
local window and the representatives of the two different kinds of

projections.

of each type (i.e., T2 and T8) are also illustrated in Figure 5,

where 	 and � points are used to compute the projections,

respectively.

Given the pairwise neighboring point and tangent plane,

we can compute the discrete normal curvatures accordingly.

More precisely speaking, we calculate the distances d�, � =
1, . . . , 8, of (i, j, ui,j) corresponding to the eight tangent

planes using (4), which are given as

d1=
2ui,j − ui,j−1 − ui,j+1

2
√

(2ui−1,j − ui,j−1 − ui,j+1)2+(ui,j−1 − ui,j+1)2+4
;

d2=
ui,j−1 + ui,j+1 − 2ui,j

2
√

(2ui+1,j − ui,j−1 − ui,j+1)2+(ui,j+1 − ui,j−1)2+4
;

d3=
ui−1,j + ui+1,j − 2ui,j

2
√

(ui+1,j − ui−1,j)2+(ui−1,j + ui+1,j − 2ui,j−1)2+4
;

d4=
2ui,j − ui−1,j − ui+1,j

2
√

(ui−1,j − ui+1,j)2+(ui−1,j + ui+1,j − 2ui,j+1)2+4
;

d5=
ui−1,j−1 + ui−1,j+1 + ui+1,j−1 − ui,j − ui−1,j − ui,j−1

2
√

(ui+1,j−1 − ui−1,j−1)2+(ui−1,j+1 − ui−1,j−1)2+4
;

d6=
ui,j + ui+1,j + ui,j+1 − ui+1,j+1 − ui−1,j+1 − ui+1,j−1

2
√

(ui−1,j+1 − ui+1,j+1)2+(ui+1,j−1 − ui+1,j+1)2+4
;

d7=
ui,j + ui−1,j + ui,j+1 − ui−1,j−1 − ui+1,j+1 − ui−1,j+1

2
√

(ui−1,j+1 − ui+1,j+1)2+(ui−1,j−1 − ui−1,j+1)2+4
;

d8=
ui−1,j−1 + ui+1,j+1 + ui+1,j−1 − ui,j − ui+1,j − ui,j−1

2
√

(ui+1,j−1 − ui−1,j−1)2+(ui+1,j+1 − ui+1,j−1)2+4
.

Then, we compute the arclengths of the central point

(i, j, ui,j) to its neighboring points (i.e., half points or mid-

dle points), which are defined as the square root of the

quadratic sum of the intensity differences and the grid size

between two points according to (5). As a result, the eight

normal curvatures can be calculated using (6) over each

point, which gives

κ� ≈

{
2d�

(u�
� −ui,j)2+h2 , � = 1, 2, 3, 4,

2d�

(u�
� −ui,j)2+2h2

, � = 5, 6, 7, 8,
(7)



with u�
� and u�

� being the intensity of the half points and

middle points as shown in Figure 3.

It is well-known the maximum and minimum curvature

(i.e. principal curvatures) among all the normal curvatures

can completely determine all the normal curvatures in the-

ory. However, only limited numbers of normal curvatures

(i.e. eight in total) are enumerated over a local window in

our formulation. Thus, we introduce the discrete total cur-

vature as a geometric measurement of the image function

over each point x ∈ Ω, which minimizes the following �1

norm of all normal curvatures along different directions

κ(x) =

∫ 2π

0

|κn(θ)|dθ ≈
8∑

�=1

|κ�|. (8)

3. Numerical Algorithm
With the discrete total curvature (8), we can formulate

the curvature-based energy as the following minimization

problem

min
u

∫
Ω

φ(κ)|∇u|dx+ λD(u, f). (9)

Note that we regard the total curvature as curvature of the

level sets in (9) for the ease of computation. Here, the data

fidelity term D(·, ·) measures the distance between the un-

known u and the observed data f , which varies according

to different image processing tasks such as

D(u, f) =

⎧⎨⎩
1
2‖u− f‖2, for denoising;
〈u, f1 − f2〉, for segmentation;
1
2‖u− f‖2Ω\X , for inpainting;

(10)

with X ⊂ Ω denoting domain to be inpainted for inpaiting

problem and f1, f2 being nonnegative potential functions

for segmentation problem.

We introduce an auxiliary variable v and rewrite the o-

riginal unconstrained optimization problem (9) into the fol-

lowing equivalent constrained minimization

min
u,v

∫
Ω

φ(κ)|v|dx+ λD(u, f)

s.t. v = ∇u.

(11)

The associated augmented Lagrangian functional can be de-

fined as follows

L(u,v;Λ) =

∫
Ω

φ(κ)|v|dx+ λD(u, f)

+ < Λ,v −∇u > +
μ

2
‖v −∇u‖2,

where Λ represents the Lagrange multiplier, and μ is a pos-

itive penalty parameter. We iteratively and alternatively

solve the u- and v-subproblem until reaching the terminat-

ing condition. The ADMM-based algorithm is described in

Algorithm 1.

Algorithm 1: ADMM for Model (9)

1: Input: Given image f , model parameters λ, α and μ,

maximum iteration Tmax, and stopping threshold ε.

2: Initialize: u0 = f , v0 = 0, Λ0 = 0.

3: while (not converged and k ≤ Tmax) do

(i) Compute uk+1 from:

uk+1 =argmin
u

{
λD(u, f) (12)

− < Λk,∇u− vk > +
μ

2

∥∥∇u− vk
∥∥2};

(ii) Compute κ according to (8) using the latest esti-

mation uk+1 and take it into φ(κ);

(iii) Compute vk+1 from:

vk+1 =argmin
v

{∫
Ω

φ(κ)|v|dx (13)

+ < Λk,v −∇uk+1 > +
μ

2

∥∥v −∇uk+1
∥∥2};

(iv) Update Λk+1 from:

Λk+1 = Λk + μ(vk+1 −∇uk+1); (14)

(v) Check convergence condition:

‖uk+1 − uk‖1 ≤ ε‖uk‖1.
4: end while

3.1. Sub-minimization w.r.t. u

Since all data fidelity terms in (10) are smooth, the first-

order optimality condition of (12) can be expressed as the

following linear equation

λ∇D(uk+1, f) + μ∇∗(∇uk+1 − vk − Λk

μ
) = 0, (15)

with

∇D(u, f) =

⎧⎨⎩ u− f, for denoising;
f1 − f2, for segmentation;
uΩ\X − fΩ\X , for inpainting.

Thus, the solution of the u-subproblem can be denoted as

uk+1 =

⎧⎨⎩
(
λf +∇∗(μvk +Λk)

)
/(λI − μΔ);(

f2 − f1 +∇∗(μvk +Λk)
)
/(λI − μΔ);(

λX(x)f +∇∗(μvk +Λk)
)
/(λX(x)− μΔ);

where I denotes the identity matrix, λX(x) = λ · 1Ω\X(x)
with 1Ω\X : Ω → {0, 1} being the characteristic function

of the region outside the inpainting domain. The above lin-

ear systems can be efficiently solved by either Fast Fourier

Transform (FFTs) or iterative scheme such as Gauss-Seidel

method.



Table 1. The PSNR of noise removal on grayscale and color images for TV, Euler’s elastica (EE) and our model using total absolute

curvature (TAC), total roto-translational variation (TRV) and total squared curvature (TSC), respectively.

Noise level σ = 20 σ = 30 σ = 40
Images TV EE TAC TRV TSC TV EE TAC TRV TSC TV EE TAC TRV TSC

Boat 27.82 28.52 29.09 28.95 28.72 26.24 26.80 27.22 27.19 27.01 25.04 25.66 26.15 26.18 25.92

Cameraman 27.50 28.21 29.07 29.04 28.88 26.05 26.64 27.13 27.11 26.88 24.21 25.15 25.81 25.63 25.62

Couple 27.15 28.06 28.55 28.49 28.24 25.92 26.35 26.78 26.76 26.58 24.81 25.30 25.69 25.58 25.43

Hill 27.92 28.64 29.17 29.12 28.86 26.45 27.09 27.50 27.47 27.29 25.84 26.26 26.64 26.61 26.46

House 29.62 30.34 30.95 30.98 30.68 27.91 28.54 29.06 29.03 28.84 26.73 27.52 28.13 27.89 27.76

Lena 29.17 30.07 30.68 30.72 30.42 28.00 28.46 28.81 28.83 28.62 27.02 27.41 27.88 27.84 27.63

Man 28.19 28.71 29.25 29.23 29.03 26.70 27.18 27.55 27.50 27.36 25.77 26.16 26.57 26.60 26.37

Montage 28.90 29.80 30.40 30.30 30.14 26.63 27.47 27.93 27.85 27.76 24.58 25.55 26.23 26.08 25.98

Peppers 27.54 28.36 29.06 28.94 28.79 25.52 26.24 26.84 26.72 26.65 24.46 24.91 25.38 25.30 25.16

Mean 28.20 28.97 29.58 29.53 29.31 26.60 27.20 27.64 27.61 27.44 25.38 25.99 26.50 26.41 26.26

HouseRGB 29.19 29.87 30.52 30.48 30.31 27.35 28.03 28.67 28.55 28.41 26.38 27.04 27.54 27.47 27.33

LenaRGB 29.05 29.81 30.42 30.31 30.23 27.63 28.17 28.68 28.72 28.50 26.81 27.35 27.80 27.76 27.61

PeppersRGB 28.71 29.68 30.18 30.15 29.98 27.23 28.05 28.54 28.46 28.33 26.42 27.03 27.50 27.53 27.35

PlaneRGB 29.41 30.36 30.88 30.77 30.68 27.54 28.16 28.77 28.73 28.57 26.58 27.00 27.60 27.57 27.45

Mean 29.09 29.93 30.50 30.43 30.30 27.44 28.10 28.67 28.61 28.46 26.55 27.11 27.61 27.58 27.44
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Figure 6. The image surfaces of the clean images, denoising im-

ages obtained by TV, Euler’s elastica and our TC model. The P-

SNR and SSIM of recovery images for different models: First row:

(b) 35.45/0.9404; (c) 36.52/0.9515; (d) 37.81/0.9635; Second row:

(b) 33.84/0.9216; (c) 35.02/0.9484; (d) 36.06/0.9548.

3.2. Sub-minimization w.r.t. v

The minimization problem w.r.t. v becomes straightfor-

ward, which has the unique minimizer using the shrinkage

operator [1]

vk+1 = shrinkage

(
∇uk+1 − Λk

μ
,
φ(κ(uk+1))

μ

)
(16)

with the shrinkage operator being defined as

shrinkage(a, b) = max{|a| − b, 0} ◦ a

|a| ,

and ◦ being the element-wise multiplication.

4. Numerical Experiments
In this section, comprehensive experiments on image de-

noising, segmentation and inpainting are conducted to ver-

ify the efficiency and superiority of our total curvature reg-

ularity. The experimental images are composed of different

edges and texture structures as well as homogenous region-

s. To setup the experimental comparison as fair as possible,

the parameters of the comparative methods are selected as

suggested in the corresponding papers. All numerical ex-

periments are performed utilizing Matlab R2016a on a ma-

chine with 3.40GHz Intel(R) Core(TM) i7-6700 CPU and

32GB RAM.

4.1. Parameters discussing

There are three tunable parameters in our Algorithm 1,

i.e., λ, α, μ. The most important one is the regularization

parameter λ, which is used to balance the contribution be-

tween the data fidelity and curvature regularity. The smaller

the λ is, the smoother the reconstruction is. The positive

parameter α can balance the influence between the curva-

ture and arclength, which should be chosen appropriately

to smooth the homogenous regions as well as preserve the

image details. The penalty parameter μ controls the con-

vergent speed and stability of the proposed algorithm. We

notice that large μ reduces both efficiency of the algorithm

and restoration quality, while too small μ can not guaran-

tee the stability of proposed algorithm. The specific values

of λ, α and μ are provided in each experiment. Besides,

we choose h = 1 throughout the experiments for the best

balance between the smoothness and fine details.

4.2. Image denoising

In the first place, we evaluate the proposed curvature reg-

ularized model on two smooth images, which are degrad-

ed by Gaussian noise with zero mean and the standard de-

viation σ = 10. We compare the denoising performance

with the TV-based model [14] and the Euler’s elastica mod-

el [18]. The experience-dependent parameters for our ap-

proach are set as λ = 1.0, μ = 20, α = 5, Tmax = 300 and

ε = 2 × 10−5. Figure 6 displays the image surfaces plot-

ted using the clean images and the restored images from

the TV, Euler’s elastica and our TC model. It is shown that

our approach preserves the jumps and sharp corners better

than the Euler’s elastica model, while gives much smoother



(a) Noisy images (b) TV (c) Euler’s elastica (d) TC

Figure 7. Segmentation for noisy images. (a) Noisy image (‘Di-

mond’ [128× 128] and ‘Square’ [228× 202]); (b)-(d) segmenta-

tions of TV, Euler’s elastica and our TC model, respectively. The

parameters of the TC model are set as λ = 1, α = 0.1.

Table 2. Evaluation results of noisy image segmentation for TV,

Euler’s elastica and TC model in Figure 7.

Images Index TV Euler’s Elastica TC

Dimond

Precision 0.9732 0.9701 0.9831
Recall 0.9804 0.9866 0.9921

JS 0.9547 0.9575 0.9755
CPU 3.26 5.54 3.30

Square

Precision 0.9954 0.9954 0.9977
Recall 0.9860 0.9961 0.9980

JS 0.9915 0.9916 0.9957
CPU 5.40 13.49 9.40

results than the TV model.

We further evaluate the denoising performance on both

grayscale and color images, which are downloaded from the

BM3D website1. Three types of curvature functions, i.e.,

TAC, TRV and TSC, are evaluated on the images corrupted

by Gaussian noise with zero mean and the standard devi-

ation σ = {20, 30, 40}. We fix the parameters μ = 30,

Tmax = 300, ε = 5 × 10−5, λ = {0.6, 0.4, 0.3} for

σ = {20, 30, 40}, respectively. And α = {5, 30, 2.5} are

used in TAC, TRV and TSC models to balance the effect of

curvature and arclength in minimizing the curvature energy.

The algorithm parameters of TV and Euler’s elastica model-

s are well selected as recommended in their original papers.

Table 1 details the values of PSNR obtained by our propos-

als and the competing methods, where our models always

achieve higher PSNR than the other two models, especially

the TAC gaining the overall 1dB and 0.5dB improvements

of PSNR compared to the TV model and Euler’s elastica

model, respectively.

4.3. Image segmentation

We further apply our total curvature regularity to the

figure-ground segmentation tasks, which aim to separate

foreground objects from the background. The potential

function f1 and f2 in (10) are determined by

f1 = (f − c1)
2 and f2 = (f − c2)

2,

1https://www.cs.tut.fi/˜foi/GCF-BM3D/

(a) Mask images (b) Euler’s elastica (c) TC

Figure 8. Supervised segmentation for natural images. (a) Mask

images with pixels marked as foreground (red) and background

(blue); (b) Segmentation of Euler’s elastica; (c) Segmentation of

our TC model. The parameters of the TC model are set as λ = 1,

α = 0.1.

where c1 and c2 denote the means of foreground and back-

ground, and are dynamically updated in the scheme. Figure

7 shows two experimental results of unsupervised segmen-

tation, where both images are corrupted by serious white

Gaussian white noises. Compared to TV and Euler’s elas-

tica energy [24], our TC model gives the results with vi-

sually smoother boundaries, which are also convinced by

the values of precision, recall and Jaccard similarity (JS)

in Table 2. Besides, much CPU time can be saved by ex-

plicitly estimating the curvatures in each iteration. For su-

pervised image segmentation, we select three representative

color images from the Berkeley segmentation dataset2. Fig-

ure 8 (b) and (c) display the segmentation results of Euler’s

elastica and our total curvature regularity using the same

mask information as provided in Figure 8 (a), which demon-

strate our total curvature model can provide more meaning-

ful segmentation results with accurate boundaries for the

elephants, tiger and bear, respectively.

4.4. Image inpainting

Last but not least, we demonstrate some examples of our

TC model on image inpainting problems. Similar to Figure

1, we compare the results with both TV-based inpainting

model [16] and Euler’s elastica-based inpainting model [19]

using the same termination conditions Tmax = 500 and ε =
1× 10−4.

2https://www2.eecs.berkeley.edu/Research/
Projects/CS/vision/bsds/



(a) Mask images (b) TV (c) Euler’s elastica (d) TC

Figure 10. The inpainting results of different real images (‘Golf’ [268× 360] and ‘Zoo’ [197× 313]) by TV, Euler’s elastica and our TC

model. The parameters are set as: (b) TV: λ = 5; (c) Euler’s elastica: λ = 2× 103 and α = 10; (d) TC: λ = 10 and α = 20.

(a) Mask images (b) TV (c) Euler’s elastica (d) TC

Figure 9. The inpainting results of different color images (‘Har-

monic’ [315×357] and ‘Turtle’ [318×500]) by TV, Euler’s elas-

tica and our TC model. The parameters of the TC model are set as

λ = 5, and α = 0.5.

In Figure 9, we present two convincing examples ob-

tained by the TV, Euler’s elastica and our TC model on color

image inpainting problems. The results of the TV inpaint-

ing present the piecewise constant values inside the inpaint-

ing domain, which are visually unnatural as displayed in

Figure 9 (b). On the other hand, the Euler’s elastica and

our total curvature can connect the large gaps as well as

protect image structures owing to the minimization of the

curvature; see Figure 9 (c) and (d). Moreover, it is clearly

shown that our TC model gives the visually best inpainting

results, which well recovers the inpainting domain and p-

reserves fine details. Also, Table 3 records the evaluations

of the inpainting results in terms of PSNR, SSIM and CPU

time, which verifies the efficiency and superiority of our to-

tal curvature model by providing significantly higher PSNR

and SSIM and saving half of the CPU time consumed by

the Euler’s elastica model.

Moreover, we validate the performance of our TC model

on real image inpainting applications. Our target is to fill

in the red boxes labelled region in Figure 10 (a). The in-

painting results of the TV, Euler’s elastica and our TC mod-

Table 3. The PSNR, SSIM and CPU time of image inpainting ex-

periments for TV, Euler’s elastica and our TC model.

Images Index TV Euler’s Elastica TC

Harmonic
PSNR 35.92 37.35 38.73
SSIM 0.9826 0.9895 0.9978
CPU 12.49 68.75 32.35

Turtle
PSNR 37.09 38.27 39.65
SSIM 0.9724 0.9818 0.9935
CPU 40.38 175.10 96.13

Golf CPU 11.63 61.25 30.05

Zoo CPU 9.94 42.66 20.96

el are displayed in Figure 10 (b), (c) and (d), respectively.

The results evidence that the curvature regularities are im-

portant as otherwise the regions are filled in with mostly

homogeneous intensity values. By comparing with the t-

wo curvature-based models, it is shown that our TC model

gives better visual results, which well integrates with the

surroundings. Besides, the computational time is signifi-

cantly reduced using the discrete curvature regularization

as demonstrated in Table 3.

5. Conclusion

In this work, we introduced the total curvature regulari-

ty for image processing applications, which can ideally p-

reserve the geometric features by minimizing the �1 norm

of the normal curvatures in different directions. Instead of

solving any high-order PDE, we estimated the discrete nor-

mal curvatures in a local neighborhood, which can be com-

puted efficiently relying on the differential geometry theory.

Then, we solved the resulting curvature-based minimization

problem using the ADMM algorithm, the two subproblems

of which can be efficiently computed through the closed-

form solutions. Numerical experiments on image denois-

ing, segmentation and inpainting demonstrated the efficien-

cy and effectiveness of the proposed curvature regularity.



References
[1] Amir Beck and Marc Teboulle. A fast iterative

shrinkage-thresholding algorithm for linear inverse

problems. SIAM Journal on Imaging Sciences,

2(1):183–202, 2009.

[2] Antonin Chambolle and Thomas Pock. Total roto-

translational variation. Numerische Mathematik,

142(3):611–666, 2019.

[3] Liang-Jian Deng, Roland Glowinski, and Xue-Cheng

Tai. A new operator splitting method for the Euler

elastica model for image smoothing. SIAM Journal
on Imaging Sciences, 12(2):1190–1230, 2019.

[4] Bastian Goldluecke and Daniel Cremers. Introducing

total curvature for image processing. In Proceedings
of the IEEE International Conference on Computer Vi-
sion, pages 1267–1274, 2011.

[5] Yuanhao Gong and Ivo F Sbalzarini. Curvature filters

efficiently reduce certain variational energies. IEEE
Transactions on Image Processing, 26(4):1786–1798,

2017.

[6] Stefan Heber, Rene Ranftl, and Thomas Pock. Ap-

proximate envelope minimization for curvature regu-

larity. In Proceedings of the Springer European Con-
ference on Computer Vision, pages 283–292, 2012.

[7] Sung Ha Kang, Wei Zhu, and Jackie Shen. Illusory

shapes via corner fusion. SIAM Journal on Imaging
Sciences, 7(4):1907–1936, 2014.

[8] Dmitrii Marin, Yuchen Zhong, Maria Drangova, and

Yuri Boykov. Thin structure estimation with curva-

ture regularization. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, pages 397–

405, 2015.

[9] Simon Masnou and J-M Morel. Level lines based dis-

occlusion. In Proceedings of the IEEE Internation-
al Conference on Image Processing, pages 259–263,

1998.

[10] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi,

Jonathan Uesato, and Pascal Frossard. Robustness via

curvature regularization, and vice versa. In Proceed-
ings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 9078–9086, 2019.

[11] David Mumford. Elastica and computer vision. In

Proceedings of the Springer Algebraic Geometry and
Its Applications, pages 491–506. 1994.

[12] Carl Olsson and Yuri Boykov. Curvature-based regu-

larization for surface approximation. In Proceedings
of the IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 1576–1583, 2012.

[13] Carl Olsson, Johannes Ulén, Yuri Boykov, and

Vladimir Kolmogorov. Partial enumeration and cur-

vature regularization. In Proceedings of the IEEE

International Conference on Computer Vision, pages

2936–2943, 2013.

[14] Leonid I Rudin, Stanley Osher, and Emad Fatemi.

Nonlinear total variation based noise removal algo-

rithms. Physica D: Nonlinear Phenomena, 60(1-

4):259–268, 1992.

[15] Thomas Schoenemann, Fredrik Kahl, and Daniel Cre-

mers. Curvature regularity for region-based image

segmentation and inpainting: A linear programming

relaxation. In Proceedings of the IEEE International
Conference on Computer Vision, pages 17–23, 2009.

[16] Jianhong Shen and Tony F Chan. Mathematical mod-

els for local nontexture inpaintings. SIAM Journal on
Applied Mathematics, 62(3):1019–1043, 2002.

[17] Jianhong Shen, Sung Ha Kang, and Tony F Chan. Eu-

ler’s elastica and curvature-based inpainting. SIAM
Journal on Applied Mathematics, 63(2):564–592,

2003.

[18] Xue-Cheng Tai, Jooyoung Hahn, and Ginmo Jason

Chung. A fast algorithm for Euler’s elastica model

using augmented lagrangian method. SIAM Journal
on Imaging Sciences, 4(1):313–344, 2011.

[19] Maryam Yashtini and Sung Ha Kang. A fast relaxed

normal two split method and an effective weighted TV

approach for Euler’s elastica image inpainting. SIAM
Journal on Imaging Sciences, 9(4):1552–1581, 2016.

[20] AR Yezzi. Modified curvature motion for image s-

moothing and enhancement. IEEE Transactions on
Image Processing, 7(3):345–352, 1998.

[21] Hui Yin, Yuanhao Gong, and Guoping Qiu. Side win-

dow filtering. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages

8758–8766, 2019.

[22] Wei Zhu and Tony Chan. Image denoising using mean

curvature of image surface. SIAM Journal on Imaging
Sciences, 5(1):1–32, 2012.

[23] Wei Zhu, Tony Chan, and Selim Esedoḡlu. Segmenta-
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