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Abstract In this manuscript, by using Belyi maps and dessin d’enfants, we
construct some concrete examples of Strebel differentials with four double
poles of residues 1, 1, 1, 1 on the Riemann sphere. We also prove that they have
either two double zeroes or four simple zeroes. In particular, we show that they
have two double zeroes if and only if their poles are coaxial, under which we
find their explicit expressions. On the other hand, for those differentials with
four non-coaxial poles and whose metric ribbon graphs have edges of rational
lengths, we characterize them optimally in terms of Belyi maps in the sense
that the Belyi maps used here have minimal degree, and work out the explicit
expressions of the five simplest ones among them. As an application, we could
give some explicit cone spherical metrics on the Riemann sphere.
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1 Introduction

Let X be a compact Riemann surface, and let ΩX denote its cotangent bun-
dle. Then a (meromorphic) quadratic differential q is a (meromorphic) global
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section of the line bundle Ω⊗2X . Let Crit(q) denote the set of zeroes and poles
of q. Then q is holomorphic and nowhere vanishing on X \ Crit(q). The re-
striction of q on X \ Crit(q) defines a conformal flat metric, which is called
q-metric. With respect to this metric, a curve γ is called a horizontal geodesic
if q > 0 along γ. More precisely, in a coordinate chart {U, z} of X \ Crit(q),
if q has form fU (z)dz2, then the corresponding q-metric is |fU (z)|dzdz̄ and
the horizontal geodesic γ(t) satisfies fU (γ(t))γ′(t)2 > 0. A maximal horizontal
geodesic is called a horizontal trajectory. In general, a horizontal trajectory of
q may be a closed curve (closed), or bounded by points in Crit(q) (critical), or
neither (recurrent).

A quadratic differential q with at most double poles is called Jenkins-Strebel
if the union of all non-closed horizontal trajectories and Crit(q) is compact and
of measure zero, or equivalently, q has no recurrent trajectories. Such differen-
tials are first investigated by Jenkins [4] to solve an extremal problem. Later,
K. Strebel proves many astonishing results about these quadratic differentials
in his famous book [11]. One of the most important existence theorems is
about a special class of Jenkins-Strebel differentials, which are called Strebel
differentials (see Sect. 2 for more details). Arbarello and Cornalba [1] give a
directly proof of the existence and uniqueness of Strebel differentials. However,
except these general pure existence theorems, it seems that seldom have peo-
ple talked about how to construct Strebel differentials, not to mention explicit
expressions of such differentials.

In contrast to few explicit constructions of Strebel differentials[12], there
are many applications of Strebel differentials in mathematics, such as study-
ing Teichmüller theory and the moduli space of pointed compact Riemann
surfaces[6,7]. Furthermore, Kontsevich[5,13] uses the cell decomposition in-
duced by Strebel differentials to prove Witten’s conjecture.

A cone spherical metric is a conformal metric on a compact Riemann sur-
face with constant Gaussian curvature +1 and isolated conical singularities.
In [10], we have shown that all periods of Strebel differentials are real. By
using this fact, we give a canonical construction of cone spherical metrics by
Strebel differentials. In more detail, suppose a1, a2, · · · , an are the residues of
a Strebel differential q at p1, p2, · · · , pn and m1,m2, · · · ,ml are the multiplic-
ities of the zeroes z1, z2, · · · , zl of q. Then the corresponding cone spherical
metric represents the divisor

D =

n∑
i=1

(ai − 1)pi +

l∑
j=1

mj

2
zj ,

which is equivalent to that the metric has cone angle 2πai at pi and cone
angle π(mj+2) at zj , respectively. Hence in order to obtain some explicit cone
spherical metrics, we only need to construct some concrete Strebel differentials.

Note that if q is a Strebel differential on P1 and f : X → P1 is a branched
covering such that the critical values of f are in {critical trajectories of q}∪Crit(q),
then f∗(q) is also a Strebel differential on X. Therefore, it is significant to ob-
tain some explicit examples of Strebel differentials on P1. On the other hand,
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Mulase and Penkava give a construction of a Riemann surface X and a Strebel
differential by a metric ribbon graph in [8]. In particular, if the metric ribbon
graph has rational ratios of the lengths, then the corresponding Strebel differ-
ential is a pullback by some Belyi map f : X → P1 of the differential

q0 = − 1

4π2

dz2

z(z − 1)2
.

However, even if X = P1, we could not obtain the expressions of Strebel
differentials by following their process. The purpose of this manuscript is to
present an improvement of that result on P1 for a special case. That is, we
will give the explicit expressions of Belyi maps and show that the Belyi maps
have minimal degrees.

We focus in this manuscript on the construction of Strebel differentials with
4 double poles and residue vector (1, 1, 1, 1) on P1. Let q be a meromorphic
quadratic differential on the Riemann sphere with 4 double poles at 0, 1, λ,∞
and residue vector (1, 1, 1, 1). Then we can express q as

q = qλ, µ = − dz
2

4π2

(
1

z2
+

1

(z − 1)2
+

1

(z − λ)2
+

µ− 2z

z(z − 1)(z − λ)

)
, (1)

where µ ∈ C is a free complex parameter.

Theorem 1 Suppose that q is a Strebel differential with form (1) on P1. Then
q has either two double zeroes or four simple zeroes. Moreover, the Strebel
differential q has two double zeroes if and only if λ ∈ R\{0, 1} and

µ = µ(λ) =

2λ+ 2, λ < 0;
2− 2λ, 0 < λ < 1;
2λ− 2, λ > 1.

In this case, the metric ribbon graph of qλ, µ(λ) for any λ ∈ R\{0, 1} can be

realized by some λ0 ∈ [ 12 , 1) (see Fig. 1).

1
2
− s

1
2

+ s

1
2

+ s

1
2
− s

where s =
arcsin(2λ0−1)

π
.

Fig. 1: The corresponding metric ribbon graphs if λ0 ∈ [ 12 , 1).

As a consequence, suppose the residues of the Strebel differential q are all
equal. Then q has 4 simple zeroes if and only if λ ∈ C \ R, i.e., the double poles
of q are non-coaxial. Unfortunately, we have not yet obtained all the explicit
expressions of q in this general case. Denote by q ∼ q′ if two differentials q and
q′ coincide up to a non-zero complex constant multiple. Then we have
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Theorem 2 Let q be a Strebel differential on P1 with four simple zeroes and
residue vector (1, 1, 1, 1). Then the metric ribbon graph of q coincides with the
graph in Figure 2.

a

a

b

b

c

c

Fig. 2: Metric ribbon graphs with residues (1, 1, 1, 1) and 4 simple zeroes.

where a, b, c > 0 and a+ b+ c = 1. Suppose that a, b, c ∈ Q>0 and a+ b+ c =
1. Then there exists a Belyi map f such that f∗(q0) ∼ q and f could be
decomposed to be f = g ◦ x2 with another Belyi map g. Furthermore, if d is
the minimal positive integer such that da, db and dc are all integers, then

min {deg f | f is a Belyi map and f∗(q0) ∼ q} =

{
2d if 2 | d,
4d if 2 - d,

and we obtain the explicit expressions of Belyi maps and Strebel differentials
when (a, b, c) equals one of the following five triples:(

1

2
,

1

4
,

1

4

)
,

(
1

3
,

1

3
,

1

3

)
,

(
1

3
,

1

6
,

1

2

)
,

(
1

3
,

1

2
,

1

6

)
,

(
2

3
,

1

6
,

1

6

)
,

which exhaust all the possibilities such that the Belyi maps have minimal de-
grees equal to either 8 or 12.

In [9], Mulase and Penkava conjectured that if there exists a Strebel differential
q on X such that all lengths of critical trajectories of q are algebraic but not ra-
tional under q-metric, then the pointed Riemann surface

(
X, (p1, p2, · · · , pn)

)
could not be defined over Q. The examples of Strebel differentials we construct
provide more evidence for this conjecture. As an application on cone spherical
metrics, we have

Corollary 1 The moduli space of cone spherical metrics with four conical
singularities of angles 3π, 3π, 3π, 3π on P1 has a subspace homeomorphic to the
quotient space of the triangle region {(a, b, c) ∈ R3 | a, b, c > 0, a+ b+ c = 1}
by the group Z/3Z generated by the cyclic transformation (a, b, c) 7→ (b, c, a).

The organization of this manuscript is as follows. In Section 2, for the
convenience of readers, we recall in detail the existence theorem of Strebel
differentials and the correspondence between Strebel differentials and metric
ribbon graphs. As an application, we give the proof of Corollary 1. The proof
of Theorem 1 occupies the whole of Section 3. We prove Theorem 2 in Section
4.
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2 Preliminaries

In this section, we will recall some basic results about Strebel differentials,
such as the existence theorem/definition given by K. Strebel, Harer’s one-to-
one correspondence between pointed compact Riemann surfaces with Strebel
differentials and metric ribbon graphs. For more details, one can see [8].

Theorem 3 ([11, Theorem 23.5]) Let X be a compact Riemann surface of
genus g with n marked points p1, p2, · · · , pn, and a1, · · · , an ∈ R>0. If 2−2g−
n < 0, then there exists a unique quadratic differential q ∈ H0

(
X,Ω⊗2X (2p1 +

2p2 + · · ·+ 2pn)
)

such that

1. pi is a double pole with residue ai of q for i = 1, 2, · · · , n.
2. The union of all non-closed trajectories is a set of measure zero.
3. Every closed trajectory is a circle around some pi.

Then the quadratic differential q is called a Strebel differential, and (a1, · · · , an)
is called the residue vector of q. In [11], K. Strebel also proved that the closure
of any recurrent trajectory is a subset of X of positive measure. Hence, the
second condition in Theorem 3 is equivalent to say q has no recurrent trajec-
tories. If {U, z} is a local coordinate around pi with z(pi) = 0, then the local
expression of q on U is (

−a
2
i

z2
+
bi
z

+ hi(z)

)
dz2

4π2
,

where hi(z) is a holomorphic function on U . By the third condition, we know
that, for each pi, the union of all closed trajectories around pi is an open
punctured disc and pi is the center of the disc.

At a zero of multiplicity m of q, there are m + 2 half critical trajectories
emanating from the zero. Moreover, the critical graph constituted by critical
trajectories and the zeroes of q is connected. Each edge of the critical graph
has a length measured by the q-metric. Hence we obtain a connected metric
graph Γ drawn on X, which is called a metric ribbon graph. Moreover, the
cell decomposition of X induced by Γ has n discs. The number n is called the
number of boundary components of Γ . Note that, at any vertex v of Γ , the
orientation of X induces a cyclic ordering of the half edges incident to v. As
an example, a metric ribbon graph on P1 = C ∪ {∞} is essentially the same
thing as a planar metric graph with natural cyclic ordering at each vertex.

Given a metric ribbon graph Γ , Mulase and Penkava [8, Theorem 5.1]
proved that there exists a Riemann surface X and a Strebel differential q on
it such that Γ coincides with the critical graph of q. Therefore, there exists a
correspondence between Riemann surfaces with Strebel differentials and met-
ric ribbon graphs. Furthermore, Harer [3] proved that this correspondence is
actually an orbifold isomorphism

Mg,n × Rn>0 →
∐
Γ

Re(Γ )
>0

Aut∂(Γ )
,

(X, (p1, p2, · · · , pn))× (a1, a2, · · · , an) 7→ Γ.

(2)
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where Mg,n is the moduli space of compact Riemann surfaces of genus g with
n marked ordered points, Γ runs over all ribbon graphs with degree of each
vertex ≥ 3 and with n boundary components, e(Γ ) is the number of edges of
Γ , and Aut∂(Γ ) is the automorphism group of the ribbon graph Γ . Then by
combining the correspondence (2) and Theorem 2, we could give the proof of
Corollary 1.

Proof (Proof of Corollary 1) Let S denote the set of all Strebel differentials
on P1 with expressions (1) and 4 simple zeroes. For any q ∈ S, by the con-
struction in [10], we could obtain a cone spherical metric representing the

divisor D =
∑4
j=1

1
2zj , i.e., the metric has singular angles 3π, 3π, 3π, 3π at

z1, z2, z3, z4. Suppose Strebel differentials q1, q2 ∈ S have the same zero points.
Then q1 = q2 by the expression (1). Hence, we always obtain different spher-
ical metrics from distinct Strebel differentials in S. By the correspondence
(2), There exists a bijective correspondence between S and {(a, b, c) ∈ R3

>0 |
a+b+c = 1}/Aut∂(Γ ), where Γ is the underlying ribbon graph in Fig. 2. Note
that the automorphism group of Γ is Z/3Z(see [8, Definition 1.8]). Hence, we
are done. ut

It is well known that compact Riemann surfaces are essentially the same
things as nonsingular complex algebraic curves. There is an extraordinarily
beautiful theory which was launched by Grothendieck to determine when an
algebraic curve is defined over the field Q of algebraic numbers.

Theorem 4 ([2, Theorem 3.1]) Let X be a compact Riemann surface. Then
X is defined over Q if and only if there exists a non-constant holomorphic map
f : X → P1 with at most three critical values.

By taking a Möbius transformation, we could assume that the critical values
of f are contained in the set {0, 1,∞}. Such a map f is called a Belyi map
on X. A dessin d’enfant (or child’s drawing) D on X is the inverse image
of the line segment [0, 1] ⊂ P1 by a Belyi map f : X → P1. If we assign
black colour to the vertices in f−1(0) and white to those in f−1(1), then D
is a bicoloured graph embedded in X and vertices connected by an edge have
different colours. In fact, D is a connected bicoloured graph and there exists a
one-to-one correspondence between Belyi maps and dessins d’enfants on X(see
[2, Chapter 4]).

3 Strebel differentials with two double zeroes

In this section, we give all expressions of Strebel differentials whose zero par-
titions are 4 = 2 + 2(i.e. 2 double zeroes) and residue vectors (1, 1, 1, 1).

The strategy of our construction is to study the holomorphic map f from
P1 to P1 of degree 4 such that f∗q0 has 4 double poles. Firstly, we prove that
the zero partition of f∗q0 can only be 2 + 2 or 1 + 1 + 1 + 1(i.e. 4 simple
zeroes). Secondly, we give the expression of Strebel differential for λ = 1

2
by writing down f with only 2 critical values. Thirdly, through the research
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of the branched covering f with 3 critical values and the critical graph of
f∗q0, we work out all expressions of Strebel differentials if λ ∈ ( 1

2 , 1). Then
by considering Möbius transformations z 7→ 1 − z and z 7→ 1

z , we obtain all
expressions of Strebel differentials for λ ∈ R\{0, 1}. At last, we show that
these differentials are all the Strebel differentials with residue vector (1, 1, 1, 1)
and 2 double zeroes by investigating the corresponding metric ribbon graphs.

Suppose that q1 and q2 have exactly 4 double poles at (p1, p2, p3, p4) with
the same residue vector and no other poles. Then they have the same leading

coefficient (i.e. the coefficient of dz2

z2 ) at pi. Hence q1 − q2 has at most simple

poles at pi(i = 1, 2, 3, 4) and no other poles on P1. On the other hand, we
know that dimCH

0
(
P1, Ω⊗2P1 (p1+ · · ·+p4)

)
= dimCH

0
(
P1,O1

P
)

= 1. Therefore
the meromorphic quadratic differentials which have exactly 4 double poles at
(p1, · · · , p4) = (0, 1, λ,∞) with residue vector (1, 1, 1, 1) have the form of

q = −
dz2

4π2

(
1

z2
+

1

(z − 1)2
+

1

(z − λ)2
+

µ− 2z

z(z − 1)(z − λ)

)
= −

dz2

4π2

z4 + (µ− 2(λ+ 1))z3 + (2(λ2 + λ+ 1)− µ(λ+ 1))z2 + (λµ− 2λ(λ+ 1))z + λ2

z2(z − 1)2(z − λ)2
,

where µ ∈ C is a parameter.

For the zero partition of the quadratic differential q with residue vector
(1, 1, 1, 1) on the Riemann sphere, we have the following property:

Lemma 1 Let q be a quadratic differential on P1 with 4 double poles and
residue vector (1, 1, 1, 1). Then the zero partition of q is either 4 = 2 + 2 or
4 = 1 + 1 + 1 + 1, i.e. q has 2 double zeroes or 4 simple zeroes.

Proof In order to investigate the multiplicities of zeroes of q, we only need
to consider the numerator of the expression of q. The discriminant of the
polynomial

z4 + (µ− 2(λ+ 1))z3 + (2(λ2 + λ+ 1)− µ(λ+ 1))z2 + (λµ− 2λ(λ+ 1))z + λ2 (3)

is

λ2(λ− 1)2(µ− 2 + 2λ)2(µ− 2− 2λ)2(µ+ 2− 2λ)2.

Hence, q has a multiple zero if and only if µ = 2(1− λ), 2(1 + λ) or 2(λ− 1).
For these three cases, the corresponding expressions of (3) are (z2−2λz+λ)2,
(z2−λ)2 or (z2−2z+λ)2 respectively. As a result, q has either 4 simple zeroes
or 2 double zeroes. ut

Therefore, if q is a Strebel differential on the Riemann sphere with 4 double
poles and residue vector (1, 1, 1, 1), then the zero partition of q can only be
4 = 2 + 2 or 4 = 1 + 1 + 1 + 1. For these two partitions, we could determine
their ribbon graphs:

Lemma 2 Suppose q is a Strebel differential with residue vector (1, 1, 1, 1). If
the zero partition of q is 4 = 2 + 2, then its ribbon graph looks like Fig. 3.
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Fig. 3: Ribbon graph for the partition 4 = 2 + 2.

If the zero partition of q is 4 = 1 + 1 + 1 + 1, then its ribbon graph is shown
in Fig. 4.

Fig. 4: Ribbon graph for the partition 4 = 1 + 1 + 1 + 1.

Proof For the first case, let Γ be the metric ribbon graph of q. Suppose there
exists a loop l in Γ . Then the Riemann sphere is divided into 2 regions by l. Let
D be the one of the 2 regions containing no vertex of Γ . Since the total length
of the boundary of each boundary component of Γ is 1, we conclude that
there is no other loop in the interior of D, which means that D is a boundary
component of Γ and the length of l is 1. Then the length of boundaries of
the other boundary component besides D touched by l is greater than 1,
contradiction! Hence, Γ is a planar graph with 2 vertices and no loop. The
only possible graph is Fig. 3 since the degree of each vertex is 4.

For the second case, we also show that there is no loop in Γ . Otherwise,
note that we can assume D contains at most one vertex of Γ . If there is no
vertex in D, the argument is the same as the first case. Suppose there is a
vertex v in D. Then there is a small loop in D incident to v with the length
of 1, contradiction! Then Γ can only be the graph in Fig. 4 and the graph in
Fig. 5.

Fig. 5: A fake ribbon graph.
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However, for Fig. 5, it can not be a metric ribbon graph such that the
corresponding Strebel differential has residue vector (1, 1, 1, 1). ut

Now, we give a simple meromorphic quadratic differential which plays the
role of a building block in the following construction (see [8], Example 4.4).

Example 1 Consider the following meromorphic quadratic differential on P1

q′0 =
1

4π2

dz2

z(1− z)
.

It has simple poles at 0 and 1, and a double pole at ∞. By solving differential
equations, we know that the line segment [0, 1] is a critical horizontal trajectory
of length 1/2. The space P1 minus [0, 1] and ∞ is covered by a collection of
closed horizontal trajectories which are confocal ellipses

z = a cos θ + 1/2 +
√
−1 b sin θ,

where a and b are positive constants that satisfy a2 = b2 + 1/4. The length of
each closed horizontal trajectory is 1 (denoted by dotted curves in Fig. 6).

x

y

Fig. 6: Horizontal trajectories of q′0.

Let φ(z) = z
z−1 and q0 = φ∗(q′0) = − 1

4π2
dz2

z(z−1)2 . Then q0 has simple poles

at 0,∞, and a double pole at 1 with residue 1. Note that for any compact
Riemann surface X and a holomorphic map f : X → P1, f∗(q0) has only
finite critical trajectories and no recurrent trajectories since f is proper. From
now on, we fix the compact Riemann surface X = P1 and denote by x the
coordinate of the domain space P1 and z that of the target space P1.

By Theorem 3, we know that, for any given λ ∈ C\{0, 1}, the value of µ in
(1) is unique if q is Strebel. In order to obtain the value µ(λ) for some λ, let
us consider f : P1 → P1 be a branched covering such that f∗(q0) has 4 double
poles with residue vector (1, 1, 1, 1) and no simple poles on P1, then

– deg f = 4;
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– 1 is not a critical value of f ;
– the local ramification degrees > 1 over 0 and ∞.

By the Riemann-Hurwitz formula, the total branching order ν(f) = 6. We
consider the following two cases:

Case 1 (The expression of the Strebel differential for λ = 1
2)

If the local ramification degrees over 0 and ∞ are both 4, we can assume that
f(0) = 0, f(∞) = ∞ and f has the form of cx4, c ∈ C∗. For simplicity, let
f(x) = x4, then

f∗(q0) = −dx
2

4π2

16x2

(x2 + 1)2(x2 − 1)2
,

and its critical graph is shown in Fig. 7.

∞0

1
2

1
2

1
2

1
2

Fig. 7: Metric critical graph of f∗(q0).

Since f∗(q0) has only 4 critical trajectories and its critical graph is con-
nected, it is a Strebel differential on P1. Consider the Möbius transformation

ϕ(x) = 1−(1−i)x
−1+(1+i)x , then

ϕ∗f∗q0 = −dx
2

4π2

x4 − 2x3 + 2x2 − x+ 1/4

x2(x− 1)2(x− 1/2)2
,

which is a Strebel differential with four double poles at (0, 1, 1/2,∞) and
residue vector (1, 1, 1, 1).

Case 2 (The expressions of Strebel differentials for λ ∈ ( 1
2 , 1))

If the local ramification degrees over 0 and ∞ are (2, 2) and 4 respectively, we
can assume f(x) = 1

c2x
2(x − 1)2 with c ∈ C∗. Then the double poles of f∗q0

are located at

1 +
√

1 + 4c

2
,

1−
√

1 + 4c

2
,

1 +
√

1− 4c

2
,

1−
√

1− 4c

2
.

Taking a Möbius transformation

ϕ(x) =
x− 1+

√
1+4c
2

x− 1+
√
1−4c
2

·
1−
√
1+4c
2 − 1+

√
1−4c
2

1−
√
1+4c
2 − 1+

√
1+4c
2

,
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we have

ϕ

(
1−
√

1− 4c

2

)
=

1 +
√

1− 16c2

2
√

1− 16c2
,

i.e. the Möbius transformation ϕ sends the location of four double poles to
(0, 1,∞, λ).

λ =
1 +
√

1− 16c2

2
√

1− 16c2
,

c2 =
λ(λ− 1)

4(2λ− 1)2
.

A routine computation gives rise to f ′(x) = 2
c2x(x − 1)(2x − 1). Thus the

ramification points of f are 0, 1, 12 ,∞ and

f(0) = f(1) = 0,

f(∞) =∞,

f

(
1

2

)
=

1

16c2
.

Hence, for any c2 6= 1
16 , f∗q0 has 4 double poles with residue vector (1, 1, 1, 1)

and 2 double zeroes at 1
2 ,∞. If f( 1

2 ) = 1
16c2 ∈ (−∞, 0), the horizontal trajec-

tories of f∗q0 are the graph in Fig. 8. (In the rest of this manuscript, we always
denote by dotted curves the closed horizontal trajectories and solid curves the
critical horizontal trajectories. The same type dots are mapped to the same
point by f .)

∞ 1
2

0

1

Fig. 8: Horizontal trajectories of Strebel differentials with 2 double zeroes

Therefore, f∗q0 is a Strebel differential if c2 < 0. In what follows, we assume
that c2 < 0, i.e. λ ∈ ( 1

2 , 1), then

f∗q0 = −dx
2

4π2

4c2(2x− 1)2

(x2 − x− c)2(x2 − x+ c)2
.
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The inverse transformation of ϕ(x) is

ϕ−1(x) =
2(1 +

√
1− 4c)x−

(
1 +
√

1 + 4c+
√

1− 4c+
√

1−4c
1+4c

)
2x− (1 +

√
1−4c
1+4c )

· 1

2

=
1 +
√

1− 4c

2
−

4c√
1+4c

2x−
(

1 +
√

1−4c
1+4c

) .

By a direct calculation, we have

(ϕ−1)∗f∗q0 = −dx
2

4π2

(
x− 1

2 (1 +
√

1−4c
1+4c )

)2 (
x− 1

2 (1 +
√

1+4c
1−4c )

)2
x2(x− 1)2

(
x− 1+

√
1−16c2

2
√
1−16c2

)2 .

Therefore

λ =
1 +
√

1− 16c2

2
√

1− 16c2
∈ (1/2, 1),

µ(λ) = 2− 2λ.

Proof (Proof of Theorem 1) By Cases 1 and 2, we know all expressions of
Strebel differentials when λ ∈ [ 12 , 1). In order to obtain all the expressions
of Strebel differentials for R\{0, 1}, we consider the Möbius transformation
x 7→ 1− x, then q becomes to

−dx
2

4π2

(
1

x2
+

1

(x− 1)2
+

1

(x− (1− λ))2
+

2− µ(λ)− 2x

x(x− 1)(x− (1− λ))

)
.

Hence µ(1−λ) = 2−µ(λ). By considering x 7→ 1/x, we get µ(1/λ) = µ(λ)/λ.
To sum up all results, the quadratic differential

q = −dx
2

4π2

(
1

x2
+

1

(x− 1)2
+

1

(x− λ)2
+

µ− 2x

x(x− 1)(x− λ)

)

is a Strebel differential if µ and λ satisfy the relation shown by Fig. 9.
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λ

µ

-3 -2 -1 1 2 3

-2

-1

1

2

0

2λ − 2

2λ + 2

Fig. 9: The relation between µ and λ when q is Strebel.

Now consider λ ∈ [ 12 , 1), then µ(λ) = 2− 2λ and the length of the arc from
0 (or 1) to 1

2 in Fig. 8 is∣∣∣∣∣
∫ f( 1

2 )

f(0)

√
q0

∣∣∣∣∣ =

∣∣∣∣∣
∫ 1

16c2

0

√
q0

∣∣∣∣∣
=

∣∣∣∣∣
∫ 1

1−16c2

0

√
q′0

∣∣∣∣∣
=

1

2π

∫ (2λ−1)2

0

dz√
z(1− z)

=
1

π

∫ arcsin(2λ−1)

0

dθ (z = sin2 θ)

=
arcsin(2λ− 1)

π
,

which means that we obtain all the metric ribbon graphs as in Fig. 8. Since the
metric ribbon graphs of Strebel differentials with 2 double zeroes and residue
vector (1, 1, 1, 1) are exhausted by Fig. 8, we complete our proof by Lemma 2
and Harer’s correspondence. ut

4 Strebel differentials with four simple zeroes

Let q be a Strebel differential with residue vector (1, 1, 1, 1) and 4 simple zeroes
on the Riemann sphere. Then its ribbon graph Γ has 4 boundary components
and 4 vertices of degrees 3. The graph Γ can only be Fig. 4 by Lemma 2.
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In the rest of this section, we give the proof of the remaining part of
Theorem 2. In Proposition 1, we prove that f factors through another Belyi
map of degree 1

2 deg f , and then show that f has minimal degree in Proposition
2. We also give 5 explicit examples by our construction at the end of this
section.

Proposition 1 Let f(x) : P1 → P1 be a Belyi map satisfying

– f∗q0 is a Strebel differential;
– f∗q0 has exactly 4 simple zeroes;
– f∗q0 has exactly 4 double poles with the same residues.

Then there exists a Belyi map g(x) so that f = g ◦ x2.

Proof By the conditions of f∗q0, we know that the skeleton of the ribbon
graph of f∗q0 is Fig. 4. Since the residues of f∗q0 are equal to each other, i.e.,
the local ramification degrees over 1 of f are the same to each other. As a
result, deg f = 4d for some positive integer d ≥ 2. Note that the ribbon graph
of f∗q0 has exactly 4 vertices of degree 3. Hence there are exactly 4 points
of local ramification degree 3 in f−1(0) ∪ f−1(∞), and the other points have
local ramification degree 2. Then the branching type over 0,∞, 1 of f has only
two possible cases for d ≥ 3 (one case for d = 2)

� (34, 22d−6), 22d, d4;
� (32, 22d−3), (32, 22d−3), d4.

For the first case1, the vertices of degree 3 in the dessin (we modify the defi-
nition of dessin to the inverse image of segment [−∞, 0] in this argument) of
f have the same colour since they are all contained in f−1(0). We can draw
the dessin as in Fig. 10 if the points in the interior of edges are omitted.

a

a′

b

b′

c′

c

∗

∗

Fig. 10: Dessins for the first case.

In order to guarantee the residues of f∗q0 are equal to each other, the edges
a(b, c) and a′(b′, c′, respectively) must be with the same coloured points(black

1 The data means that the local ramification degrees over 0,∞ and 1 are
(3, 3, 3, 3, 2, · · · , 2︸ ︷︷ ︸

2d−6

), (2, · · · , 2︸ ︷︷ ︸
2d

) and (d, d, d, d) respectively. The meaning of the second one

is similar.
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or white). Assume that the colour of the middle point on the edge a is ∗. Then
the dessin of f is a pullback by x2 of the dessin shown in Fig. 11.

∗

∗
c b

Fig. 11: The initial dessin to pull back.

For the second case, the proof is similar and Example 4 is an explicit
construction. ut

Proposition 2 Suppose q is the Strebel differential corresponding to the met-
ric ribbon graph as in Fig. 2. Let

Fq = {f : P1 → P1 | f∗q0 = c · q for some nonzero complex number c}.

For any given 3 positive rational numbers a, b, c satisfying a+b+c = 1, let d be
the minimal positive integer so that da, db, dc ∈ Z. Then GCD(da, db, dc) = 1
and

– if 2 | d, then min
f∈Fq

deg f = 2d;

– if 2 - d, then min
f∈Fq

deg f = 4d.

Proof If GCD(da, db, dc) = k > 1, then k|(da + db + dc) = d. Let d′ = d
k , we

have d′a, d′b, d′c ∈ Z. Contradiction!

For the first case, there must be two odd numbers in (da, db, dc) since
GCD(da, db, dc) = 1 and da + db + dc = d(even). Without loss of generality,
we assume db and dc are odd and da is even. We can draw a dessin as in Fig.
12.
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da segments

d
a

s
e
g
m

e
n
t
s

db
se

gm
en

ts

db
segm

ents

dc
segm

en
ts

dc
se
gm

en
ts

Fig. 12: The minimal dessin if d is even.

The degree of the corresponding Belyi map f is 2d and f ∈ Fq. Suppose
there exists g ∈ Fq such that deg g = 2d′ < 2d, then each edge of dessin
associated to g has d′a(d′b or d′c) segments i.e. d′a, d′b, d′c ∈ Z. Which has a
contradiction with the minimality of d.

For the second one, the possible parity of (da, db, dc) is (even, even, odd)
or (odd, odd, odd). Similarly, consider the dessin d’enfant as in Fig. 13.

2da segments

2
d
a

s
e
g
m

e
n
t
s

2d
b

se
gm

en
ts

2db
segm

ents
2dc

segm
en

ts

2d
c
se
gm

en
ts

Fig. 13: The minimal dessin if d is odd.

Then the Belyi map f associated to this dessin has degree 4d and f ∈ Fq.
Since there does not exist bicolour triangle such that the parity of the number
of segments on 3 edges is (even, even, odd) or (odd, odd, odd), deg f is minimal.

ut

At the very end of this section, we give some examples by our own method.

Example 2 Consider the dessin d’enfant in Fig. 14 (which can be viewed as a
metric ribbon graph with (a, b, c) = ( 1

2 ,
1
4 ,

1
4 )),
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Fig. 14: A dessin corresponds to a Belyi map of degree 8.

The corresponding Belyi map is

f(x) = − 1

212
(x− 1)2(9x2 + 14x+ 9)3

x3(x+ 1)2
,

and the local ramification degrees over 0, 1,∞ are (2, 3, 3), (2, 2, 2, 2) and (2, 3, 3)
respectively. The points in f−1(1) satisfy the following equation

27x4 + 36x3 + 2x2 + 36x+ 27 = 0,

whose roots are

x1 = −1

3

(
4√
3

+ 1 + 2

√
2

3
(
√

3− 1)

)
, x2 = −1

3

(
4√
3

+ 1− 2

√
2

3
(
√

3− 1)

)
,

x3 =
1

3

(
4√
3
− 1 + 2i

√
2

3
(
√

3 + 1)

)
, x4 =

1

3

(
4√
3
− 1− 2i

√
2

3
(
√

3 + 1)

)
.

The pullback of q0 by f is

f∗q0 = +
dx2

4π2

4096x(9x2 + 14x+ 9)

(27x4 + 36x3 + 2x2 + 36x+ 27)2
.

Then

q1 = +
dx2

4π2

1024x(9x2 + 14x+ 9)

(27x4 + 36x3 + 2x2 + 36x+ 27)2

is a Strebel differential with 4 simple zeroes and 4 double poles with residue
vector (1, 1, 1, 1). Consider the Möbius transformation x 7→ x−x2

x−x3
· x1−x3

x1−x2
, then

q1 becomes to

−
dx2

4π2
·
x4 − (2 +

√
2i)x3 − ( 1

2
− 3
√
2

2
i)x2 + ( 3

2
− 3
√

2i)x− 23
8

+ 5
√
2

4
i

x2(x− 1)2(x− ( 1
2

+ 5
√
2

4
i))2

.

Hence, λ = 1
2 + 5

√
2

4 i and µ(λ) = 1 + 3
√
2

2 i.
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Example 3 Let us consider a Belyi map f(x) corresponding to the dessin in
Fig. 15

f(x)

1 + f(x)
= −64x3(x3 − 1)3

(8x3 + 1)3
.

The local ramification degrees of f(x) over 1, 0,∞ are (3, 3, 3, 3), (3, 3, 3, 3) and
(2, 2, 2, 2, 2, 2) respectively.

Fig. 15: A dessin corresponds to a Belyi map of degree 12.

Similarly, we could get a Strebel differential

−dx
2

4π2
·
x4 − (2− 2√

3
i)x3 + (1−

√
3i)x2 + 4i√

3
x− ( 1

2 +
√
3
2 i)

x2(x− 1)2(x− ( 1
2 −

√
3
2 i))

2
.

Hence µ( 1
2 −

√
3
2 i) = 1 −

√
3
3 i. In fact, we have a simpler way to figure out

µ( 1
2 −

√
3
2 i). Note that 1 − λ = 1/λ if λ = 1

2 −
√
3
2 i. Then 2 − µ(λ) = µ(λ)

λ ,

which implies µ(λ) = 1−
√
3
3 i.

Example 4 If deg f = 12 and 1
32 · f

∗q0 has 4 simple zeroes and 4 double poles
with residue vector (1, 1, 1, 1), the local ramification degrees over 0,∞, 1 can
also be (32, 23), (32, 23), 34 respectively. The only possible dessins d’enfants of
f
f−1 are shown in Fig. 16.

Γ1 Γ2 Γ3

Fig. 16: The possible ribbon graphs of f∗q0.

They can also be viewed as metric ribbon graphs with (a, b, c) = (1
3 ,

1
6 ,

1
2 ),

( 1
3 ,

1
2 ,

1
6 ), ( 2

3 ,
1
6 ,

1
6 ) respectively. In order to write down an explicit Belyi map



Constructing Strebel differentials via Belyi maps on the Riemann sphere 19

with the above branching type, by Proposition 1, we only need to construct a
Belyi map g(x) of degree 6 with branching type

(
(1, 2, 3), (1, 2, 3), (3, 3)

)
. Up

to a scalar factor, g(x) has the form of

g(x) =
x3(x− a1)(x− a2)2

(x− a3)(x− a4)2
,

and f(x) = g(a3x+a1x+1 ) ◦ x2 = g ◦ a3x
2+a1

x2+1 up to scale. The derivative of g(x) is

g′(x) =
x2(x− a2)

(x− a3)2(x− a4)3
· h(x),

where

h(x) =3x4 − (2a1 + a2 + 4a3 + 5a4)x3 + (3a1a3 + 2a2a3 + 4a1a4 + 3a2a4 + 6a3a4)x2

− (a1a2a3 + 2a1a2a4 + 5a1a3a4 + 4a2a3a4)x+ 3a1a2a3a4.

Since h(x) has 2 double zeroes, we may assume that h(x) = 3(x−1)2(x−a5)2

and g(1) = g(a5). By comparing the coefficients of h(x), we find that a5
satisfies the following equation

t6 + 6t5 + 15t4 + 36t3 + 15t2 + 6t+ 1 = 0,

and we have

a1 = −1

2
(1 + 10a5 + 35a25 + 15a35 + 6a45 + a55),

a2 =
1

4
(7 + 16a5 + 35a25 + 15a35 + 6a45 + a55),

a3 =
1

16
(21 + 45a5 + 166a25 + 70a35 + 29a45 + 5a55),

a4 =
1

20
(3a5 − 61a25 − 25a35 − 11a45 − 2a55).

Claim: The polynomial P (t) = t6 + 6t5 + 15t4 + 36t3 + 15t2 + 6t+ 1 ∈ Q[t]
is irreducible.

Proof Note that P (t) = t6 + 6t5 + 15t4 + 36t3 + 15t2 + 6t+ 1 = (t+ 1)6 + 16t3.
Hence

P (t) = (t+ 1)6 = (t2 + 1)(t4 + 1) in F2[t],

P (t) = t6 + 1 = (t2 + 1)3 = (t2 + 1)(t4 + 2t2 + 1) in F3[t].

Suppose that P (t) is reducible in Z[t]. Since t2 + 1 is irreducible in F3[t], we
have a polynomial factorization P (t) = P1(t)P2(t) in Z[t], where degP1(t) =
2,degP2(t) = 4. Hence, we can assume that

P1(t) = t2 + 6c0t+ 1,

P2(t) = t4 + 6d0t
3 + (2 + 6d1)t2 + 6d2t+ 1.
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The coefficients of t and t5 of P1(t)P2(t) are 6(c0 + d2) and 6(c0 + d0) re-
spectively, which imply that d0 = d2 and c0 + d0 = 1. The coefficient of t2 is
3 + 6d1 + 36c0d0 = 15, therefore c0d0 = 0 and d1 = 2. The only two possible
factors are

case 1

P1(t) = t2 + 6t+ 1

P2(t) = t4 + 14t2 + 1

case 2

P1(t) = t2 + 1

P2(t) = t4 + 6t3 + 14t2 + 6t+ 1

However, both are impossible to satisfy P (t) = P1(t)P2(t). By Gauss lemma,
we know that P (t) in irreducible in Q[t]. ut

As a consequence of this claim, we know that a1, a2, a3, a4, a5, 0, 1 are pairwise
distinct. In order to obtain the concrete expression of f(x), we only need to
solve the equation P (t) = 0. Luckily, P (t) is solvable by radicals.

(t+ 1)6 = −16t3 =⇒ (t+ 1)2 = e
iπ
3 + 2iπ

3 ·k2
4
3 t(k = 0, 1, 2).

We get the roots:

1

2

(
−2 + 21/3 + 21/3

√
3i±

√
−4 + (2− 21/3 − 21/3

√
3i)2

)
,

− 1− 21/3 ± 21/3
√

1 + 22/3,

1

2

(
−2 + 21/3 − 21/3

√
3i±

√
−4 + (2− 21/3 + 21/3

√
3i)2

)
.

By the construction we know that if (a1, a2, a3, a4, a5) is a solution of g(x),
then (a1a5 ,

a2
a5
, a3a5 ,

a4
a5
, 1
a5

) is also a solution of g(x) and these two Belyi maps are
equivalent under Möbius transformations. Hence, we only need to consider

t0 =
1

2

(
−2 + 21/3 + 21/3

√
3i−

√
−4 + (2− 21/3 − 21/3

√
3i)2

)
,

t1 = −1− 21/3 − 21/3
√

1 + 22/3,

t2 =
1

2

(
−2 + 21/3 − 21/3

√
3i−

√
−4 + (2− 21/3 + 21/3

√
3i)2

)
.

As before, we can figure out exact values of λ and µ. For example, the expres-
sion of λ corresponding to t1 is2i+ 211/12

√
5×21/6

√
2+21/3(2+22/3)+2

(
11+7×21/3+7×22/3+5

√
2(2+21/3)

)
21/6(−18+6×21/3+5×22/3)+

√
2+21/3(−10−2×21/3+9×22/3)

2

−2i+ 211/12

√
5×21/6

√
2+21/3(2+22/3)+2

(
11+7×21/3+7×22/3+5

√
2(2+21/3)

)
21/6(−18+6×21/3+5×22/3)+

√
2+21/3(−10−2×21/3+9×22/3)

2
,
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which is too complicated. Here we give the approximate values of λ and µ
corresponding to each tk (k = 0, 1, 2):

λ0 = 1.3157− 1.5429i, µ0 = 1.6586− 1.87049i;

λ1 = 0.9726 + 0.2324i, µ1 = 0.3689 + 0.04346i;

λ2 = 1.3157 + 1.5429i, µ2 = 1.6586 + 1.87049i.

Now we want to give the correspondence between λi and the ribbon graphs in
Fig. 16. At first, we note that the branching type of g(x) is

(
(1, 2, 3), (1, 2, 3), (3, 3)

)
.

Up to colour exchange and isomorphism there are 3 possible dessins of g(x)
(see Fig. 17).

D1 D2 D3

Fig. 17: The possible dessins of g(x).

By definition, the ribbon graph of f∗q0 is the inverse image of [−∞, 0]( i.e.
the negative real axis ) by f(x) and the dessin of g(x) is the inverse image
of segment [0, 1] by g. In order to obtain the ribbon graphs corresponding
to dessins of g(x). We need to construct ”dual graph” of these dessins. For
example, the gray graph in Fig. 18 is the dual dessin corresponding to D2.

Fig. 18: Construction a new dessin from the old one D2.

Hence, the ribbon graph corresponding to D2 can be constructed as in Fig.
19.
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b
z

a

c

x

y c

y
bz′

x

c′

a
z

b′

y′pull back by t2

Fig. 19: The ribbon graph associated to dessin D2.

By a similar procedure, we could construct ribbon graphs corresponding
to the other two dessins D1 and D3. In summary, we have

D1 ↔ Γ1

D2 ↔ Γ2

D3 ↔ Γ3.

We first observe that the ribbon graph Γ1 is the image of the ribbon graph
Γ2 by the complex conjugation z 7→ z, an orientation reversing homeomor-
phism. On the other hand, the equation (t + 1)2 = −2

4
3 t is fixed by complex

conjugation. Hence, the corresponding ribbon graph of (λ1, µ1) is Γ3. By di-
rectly computing the inverse image of the segment [0, 1] by g, we know that
the corresponding dessin of (λ0, µ0) is D1. Therefore

(λ0, µ0)↔ Γ1

(λ1, µ1)↔ Γ3

(λ2, µ2)↔ Γ2.

By the above examples and Propositions 1 and 2, we complete the proof of
Theorem 2.
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