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Abstract

As a powerful tool for machine learning on the graph, network embedding,

which projects nodes into low-dimensional spaces, has a variety of applications

on complex networks. Most current methods and models are not suitable for bi-

partite networks, which have two different types of nodes and there are no links

between nodes of the same type. Furthermore, the only existing methods for bi-

partite network embedding ignore the internal mechanism and highly nonlinear

structures of links. Therefore, in this paper, we propose a new deep learning

method to learn the node embedding for bipartite networks based on the widely

used autoencoder framework. Moreover, we carefully devise a node-level triplet

including two types of nodes to assign the embedding by integrating the local

and global structures. Meanwhile, we apply the variational autoencoder (VAE),

a deep generation model with natural advantages in data generation and recon-

struction, to enhance the node embedding for the highly nonlinear relationships

between nodes and complex features. Experiments on some widely used datasets

show the effectiveness of the proposed model and corresponding algorithm com-

pared with some baseline network (and bipartite) embedding techniques.
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1. Introduction

Network embedding (NE), which aims to learn the latent representation of

nodes that can be used for a variety of tasks such as link prediction, community

detection and node classification in complex networks [1], has recently become a

popular research problem based on the neural network and deep learning [2, 3].5

In particular, NE is typically denoted as a pairwise proximity function that

represents each node as a feature vector based on the proximity, the node content

or the label of the network. Based on the diversity of notations, motivations,

and conceptual models, many different types of methods have been proposed

for homogeneous NE [4], such as matrix factorization-based approaches [5, 6],10

random walk-based approaches [7, 8] and graph convolutional approaches [9, 10].

A large number of methods and models for homogeneous NE have been

developed and have shown good performance and effectiveness in certain tasks

on many networks. However, these methods cannot be well applied to the

bipartite network, which usually consists of two types of nodes and the links exist15

only between different types, such as the user-item networks in recommender

systems [11, 12] and author-venues networks in DBLP [13]. There are two

primary reasons why these methods fail. Firstly, in the homogeneous NE, the

node embedding is learned all based on a hypothesis that the representations

of two nodes should be similar or closer if there is a direct link between them20

and vice versa, which is not valid in the bipartite network. Existing links in the

bipartite network are usually called distinct relations, which depict the similarity

between two types of nodes, and the proximity among nodes of the same type is

called implicit relation, though there are no direct links in the network we have

observed. Secondly, the internal characteristics and mechanisms of the bipartite25

network have not been preserved, such as the power-law degree distribution of

nodes based on random walk-based methods, which has been elaborated in [14].

As far as we know, a class of NE methods can be used for bipartite networks,

i.e., methods of embedding heterogeneous information networks (HINs), which
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usually have more than one type of nodes and links, so the bipartite network30

can be as a special case. A typical type of method of NE for HINs is based on

meta-path, such as Metapath2Vec++ [15], which formalizes meta-path-based

random walks to construct the heterogeneous neighborhood of a node and then

leverages a heterogeneous skip-gram model to learn the node embeddings of

HIN. However, these methods have two limitations: (1) the difference between35

the distinct and implicit relationships with different link semantics in bipartite

networks is not considered; (2) the imbalance problem, i.e., the numbers of

two types of nodes in the bipartite network are usually unequal, or even quite

different when applying the methods of NE for HINs, and the similarity between

different types of nodes has a larger proportion, resulting in worse embeddings40

for applications.

In addition to traditional methods like singular value decomposition (SVD)

and matrix decomposition, which usually have high computational complexity,

BiNE [14] has been recently proposed for NE of the bipartite network. In BiNE,

an optimization framework is proposed that learns the embedding of nodes based45

on a well-designed random walk and accounts for both the explicit and implicit

relations. However, this method still faces two shortcomings: (1) the highly

nonlinear relationships from the embeddings to links that are ubiquitous in

complex networks are neglected; (2) there are many parameters that need to be

adjusted, which weakens the representation result and limits its application.50

Fortunately, a widely used framework, autoencoder (AE), designed to model

the nonlinear relationships of data [16, 17], has been developed to the NE, such

as SDNE [18], which is a semi-supervised deep learning model capable of captur-

ing the highly nonlinear structure with multiple layers of nonlinear functions.

Furthermore, the SDNE preserves the local network structure by exploiting55

the first-order and second-order proximity. However, compared with the AE,

the variational autoencoder (VAE) [19] has been successfully applied to image

modeling and recommender systems. It is also extended to NE in homogeneous

networks, such as DVNE [20] and the deep generative model by exploiting the

VAE [21], analogously, these methods have the same shortcomings as the meth-60
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ods previously used for the NE in homogeneous networks. Considering these

NE methods based on the AE and VAE, it is necessary to design a new repre-

sentation learning method for bipartite network which can model its intrinsic

statistical properties.

To address these challenges, in this paper, we propose a new deep learning65

method called BiVAE, to learn the embedding for bipartite networks based on

the widely used autoencoder framework. In particular, we develop VAE to en-

hance the node embedding for the highly nonlinear relationships between nodes

and complex features. To fill in the gap of VAE and NE for bipartite networks,

we carefully devise the triplet of node-level including the two types of nodes70

to assign the embeddings by integrating the local and global structure, for one

node with the only type of itself in the triple. We use a generic VAE framework

to represent and reconstruct the global structure of the node. For the other

two nodes with the same type, we design a unified VAE framework for param-

eter sharing. We also propose a mechanism to preserve the local structure via75

the distinct relations of the bipartite networks. Compared with the previous NE

methods, our proposed method is well designed based on the inherent properties

of bipartite networks. It can effectively deal the links between different types

of nodes, and model the intrinsic similarity between nodes of the same type

although no links are observed. In summary, the contributions of this paper80

can be summarized as follows:

• We propose BiVAE, a deep learning framework based on the variational

autoencoder for network embedding of bipartite networks, which could

model the highly nonlinear relations effectively and integrate the global

and local structural features of the network solidly.85

• A triplet consisting of two nodes of the same type and one node of another

type, is proposed to enhance the node embedding of bipartite networks

based on inherent characteristics.

• Experiments on some widely used datasets show that the effectiveness of
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the proposed model and corresponding algorithm compared to some state-90

of-the-art homogeneous and bipartite network embedding techniques.

The rest of the paper is organized as follows. In section 2, we discuss the

existing works related to this paper. In section 3, we briefly introduce the

bipartite network and its embedding. The proposed model BiVAE is presented

in section 4. In section 5, we implement our proposed method in experiments95

and show the comparisons with the baseline approaches. Section 6 concludes

the paper and highlights future work.

2. Related Work

Complex network analysis has a variety of applications in different fields [22].

Community detection, link prediction and identifying influential nodes in com-100

plex networks are important and difficult tasks [23][24]. Network embedding,

projecting the topology structure into a lower dimensional continuous space, is

an effective dimension reduction [25] framework on complex networks and has

devoted to different network tasks. In this paper, we focus on the representation

learning of bipartite networks based on deep learning. So here we introduce the105

popular network embedding methods as follows.

Homogeneous network. Most of the previous embedding methods and

models were designed only for homogeneous networks with only one type of

nodes and edges [26]. These methods usually have two goals, i.e., reconstruc-

tion and inference, so the network structure and its properties should be pre-110

served [1]. As mentioned above, the commonly used models can be divided

into matrix factorization-based, random walk-based, and graph neural network

(GNN)-based methods [27]. Laplacian eigenmaps and non-negative matrix fac-

torization are commonly used in network embedding based on the low-rank

approximation [5], however, these methods usually have high computational115

complexity. The core idea of the random walk-based methods is similar to the

classic Word2Vector, in which a word (one node in the network) embedding

vector should be able to reconstruct the vectors of its neighborhoods defined
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by a co-occurrence rate in the documents [28, 29]. DeepWalk [7] and Node2Vec

[8] are representative methods that use different random walk strategies. As120

discussed in the introduction, the intrinsic challenge of network embedding is

to find a mapping function from the original network to the embedding space,

which is usually high nonlinear, so the methods based on GNNs show competi-

tive and preferable performance. Some representative methods, such as SDNE

[18], SDAE [30], and SiNE [31], have been proposed and applied to various tasks.125

Heterogeneous information network (HIN). Due to the heterogeneity

of nodes and edges in the HIN, the most important step is to get the proximity

of the same and different types of nodes in HINs. Currently, heterogeneous

network representation learning can be divided into three types: random walk-

based methods, network decomposition methods and deep learning methods.130

Random walk-based methods usually use meta-paths [32], a composite relation

connecting two objects, to capture the structure and rich semantic information.

Metapath2vec [15] first uses meta-paths to guide random walks over a HIN, and

then feeds the walk sequence to a SkipGram model [28] to obtain node embed-

dings. HIN2Vec [33] cannot only learn the representation of nodes but also the135

vector representation of meta-paths. In addition, JUST [34] uses random walks

with JUmp and STay strategies that do not involve capturing node embeddings

of any meta-path. The network decomposition methods usually decompose het-

erogeneous networks into several simple networks, perform representation learn-

ing on these networks, respectively, and finally integrate these representations.140

PTE [35] decomposes the heterogeneous network into three bipartite networks,

and perform representation learning on the decomposed subnetworks based on

the skip-gram model.

In recent years, some work has begun to use deep learning to model het-

erogeneous network data. SHINE [36] utilizes multiple deep autoencoders to145

extract highly nonlinear user representations from the sentiment network, so-

cial network and profile network, respectively. The three user representations

are then fused together through a specific aggregation function to obtain the

final node representation. As a novel and powerful graph representation learn-
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ing method, GNN has shown excellent performance in network analysis, which150

has aroused wide research interest. HAN [37] leverages node-level attention and

semantic-level attention to learn the importance of nodes and meta-paths in a

hierarchical manner, respectively, which enables the learned node embeddings

to better capture the complex structure and rich semantic information.

Bipartite network. As a typical type of heterogeneous information net-155

works, the bipartite networks also have a variety of applications, such as for

recommendation systems. To the best of our knowledge, BiNE [14] and BiNE-

IEI [38] are the only embedding methods for the bipartite network at present.

The former learns the node representations for bipartite networks by purpose-

fully performing biased random walks, which can capture the implicit relations160

of the networks, and the later models the nonlinear generation mechanism of

links via the autoencoder and decoder models.

3. Problem and Definitions

In this section, we introduce the bipartite network and its embedding, as a

preliminary introduction to the proposed model later.165

We reiterate that there are two types of nodes in the bipartite network,

and the links only exist between different types of nodes. Therefore, we de-

fine a bipartite network as G = (U, V,E), where U = {u1, u2, · · · , un} and

V = {v1, v2, · · · , vm} represent node sets of both two types, respectively, E =

{e1, e2, · · · , el} denotes the edge set. Here n = |U |, m = |V | and l = |E| de-170

note the number of nodes of different types and the links of G, respectively,

A = {ai}ni=1 ∈ Rn×m is the adjacency matrix of G and ai = {aij}mj=1, where

aij > 0 indicates that there exists a link between nodes ui and vj , and otherwise

aij = 0. Bipartite network embedding aims to find a function that converts each

node of both two types of the network into a low-dimensional representation as175

a vector.

Before introducing the framework of our model, we first describe some nota-

tions used in this paper as Table 1, and furthermore, we give formal definitions
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Table 1: Terms and notations.

Symbol Definition
G = (U, V,E) A bipartite network
U , V The set of nodes of two types in G
E ⊆ U × V The set of links in G
n, m, l The number of two type nodes and links
x = {xi} The i-th column of A
y = {yj} The j-th row of A
K The number of layers in BiVAE model

Wk, Ŵk The k-th layer weight matrices

bk, b̂k The k-th layer biases
λ1, λ2 The balanced parameters
zi, zj The embedding vectors of nodes ui and vj

related to our model as follows.

Definition 1 (The Set of Valid Triplets). Let M = D∪S denote the set180

of all valid triplets, where D = {(i, j, k)|∀vi ∈ V,∀uj , uk ∈ U, aij > 0, aik = 0}

and S = {(i, j, k)|∀ui ∈ U,∀vj , vk ∈ V, aij > 0, aik = 0}. Each triplet of M is

composed of two types of nodes, in which node i is the neighbor of node j but

not the neighbor of node k .

Definition 2 (Local Network Structure). For any pair of nodes (ui, vj),185

if they are linked by an observed edge, there exists local structure between them

and can be defined as: {aij |aij > 0,∀ui ∈ U,∀vj ∈ V }, which are usually

described by the similarity between directly connected nodes.

Definition 3 (Global Network Structure). The global network structure

between nodes can be described by the similarity of their neighborhood structures.190

For any node ui ∈ U , the set of its neighbors is formulated as Nbui
= {vj |{aij >

0}mj=1}. Similarly, the neighbors of any node vj ∈ V is defined as: Nbvj =

{ui|{aij > 0}ni=1}. The global structure between any pair of nodes (ui, vj) is

determined by the similarity of Nbui
and Nbvj . If none of the nodes linked with

both ui and vj, there is no global structure between them.195

Definition 4 (First Order Structure). For each node ui ∈ U or vj ∈ V ,

we denote its neighbors as the First Order Structure of the node.
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Definition 5 (Second Order Structure). For the node ui, its neighbors is

denoted as the set Nbui
, for each node vj ∈ Nbui

, we set a new set U ′i = ∪Nbvj
including the node ui, then, for each uk ∈ U ′i , we set V ′l = ∪Nbuk

, so we could200

denote the Second Order Structure of node ui as V ′l /Nbui
. For each node in V ,

it has a similar definition.

4. Proposed Model
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Figure 1: The framework of the proposed BiVAE. For a given bipartite network, V and
U represent sets of the two types of nodes, case 1 and case 2 are the set of triplets as we
have denoted. x and y represent vector representations of the two nodes of type V and U ,
respectively. For each triplet i, j, k, we take the VAE to encode the corresponding nodes and
design the parameter sharing for the decoding process on nodes with the same types.

In this section, we present our proposed model named BiVAE, as shown in

Fig. 1. In detail, we propose a deep architecture consisting of three parallel deep205

VAEs that capture the highly nonlinear structure of the bipartite network and
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embed nodes as Gaussian distributions to capture the uncertainty [39]. In order

to preserve the global structure of the network, we reconstruct the neighborhood

structure of each node by VAEs. Furthermore, we notice the similarity between

neighbor nodes is larger than that between non-neighbor nodes. Therefore, we210

define a set of all valid triplets to preserve the local structure of the network

while enhancing the effect of network embedding.

In the following subsections, we will describe the details of our model imple-

mentation and the loss functions. Because three parallel deep VAEs only differ

in their inputs, we will focus on illustrating the detailed process when taking x215

as the input data. The same process is applied for the other two deep VAEs

when taking y as the input data.

4.1. Encoder

Given the adjacency matrix A, the high-dimensional vector representations

of any node vi of type V and uj of type U are formalized as xi and yj (the input

data) separately, in which xi represents the i-th column of A and yj represents

the j-th row of A. For a deep VAE, given the input data xi, the output hik of

node i for the k-th layer is shown as follows:

hi1 = f1(W1xi + b1) (1)

hik = f1(Wkh
i
k−1 + bk), k = 2, · · · ,K (2)

where f1 is the tanh function of each layer. In the last layer of the encoder, we

obtain the mean vector µi and the standard deviation vector σi of the input

data distribution, which can be formulated as follows:

µi = Wµhik + bµ (3)

σi = f2((Wσhik + bσ)/2) + 1 (4)

where Wµ and Wσ are the weight matrices, bµ and bσ are the bias vectors, and

f2 is the exponential linear unit function [40]. We use f2((Wσhik + bσ)/2) + 1
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to ensure that σi is positive definite. Furthermore, we apply the reparame-

terization trick to reparameterize variable zi. The computing process can be

presented as follows:

zi = µi + σi ∗ εi, εi ∼ N (0, I) (5)

where the value εi is sampled form N (0, I) and zi ∈ Rd.

4.2. Decoder220

Reversely, the calculation processes in each decoder layer are as follows:

ĥiK = f1(ŴK+1zi + b̂K+1) (6)

ĥik = f1( ˆWk+1ĥ
i
k+1 + b̂k+1), k = K − 1, · · · , 2 (7)

x̂i = f1(Ŵ1ĥ1 + b̂1) (8)

where x̂i is the reconstructed data of xi.

During the encoding and decoding process, we reconstruct the neighborhood

structure of node i and preserve the global structure. In order to enhance the

embedding effect, we introduce the constraint of triplets.

We need to emphasize that, although it seems that the technique used in225

our paper seems similar to that of DVNE [20], it is fundamentally different

from DVNE. In summary, the differences lie in three aspects. First, we are

dealing with a very different issue. DVNE mainly considers the classic complex

network, and makes full use of the statistical characteristics of that. However,

our work mainly considers the bipartite network. According to the BiNE [14],230

the bipartite network has some very different statistical characteristics, such as

it does not obey the power-law of degree distribution. Second, although we

all use the VAE framework, we have fully considered the characteristics (the

bipartite network, which usually consists of two types of nodes and the links

exist only between different types) of the binary network. Third, although we235

all use Local Structure and Global Structure in our technique, but they mean
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different meanings, and we fully consider the characteristics of the bipartite

network.

4.3. Loss Functions

We try to develop effective loss functions to learn deeply learned feature and240

improve the embedding effect.

4.3.1. Triplet Constraint

Directly connected nodes are closer than that whose links do not exist. We

define a set of all triplets M to restrain the relations between nodes. Mean-

while, we use the 2th Wasserstein distance to measure the similarity between

the distribution of two nodes, which can speed up the calculation process and

preserve the transitivity of similarity [20], and the formula is shown as:

W
′

2(pi,pj)
2 =W

′

2(N (µi,Σi),N (µj ,Σj))
2

=‖(µi − µj)‖22 + ‖(Σ1/2
i −Σ

1/2
j )‖

2

F
(9)

where W
′

2 denotes the 2th Wasserstein distance, pi = N (µi,Σi) is the low di-

mensional Gaussian distribution of node i. We focus on the diagonal covariance

matrices, and thus ΣiΣj = ΣjΣi and Σi = σ2
i I.245

The relationships between two types of nodes under the constraint of triplets

should satisfy the following inequality:

W
′

2(pi,pj) < W
′

2(pi,pk), ∀(i, j, k) ∈M (10)

The effect of network embedding can be enhanced under the constraint of

triplets.
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4.3.2. Loss Function of the Local Structure

Given a triplet (i, j, k) ∈ M , the loss function of the local structure can be

formulated as:

Llocal =
∑

(i,j,k)∈M

[
E

′

ij

2
+ exp(−E

′

ik)
]

(11)

The method is based on the energy between two nodes [39], and we denote

the energy between node i and node j as E
′

ij and E
′

ij = W
′

2(pi,pj).250

4.3.3. Loss Function of the Global Structure

Given a triplet (i, j, k) ∈ M , the loss function of the global structure is

represented as follows:

Lglobal =
∑

(i,j,k)∈D

(‖(xi − x̂i)� gi‖22 + ‖(yj − ŷj)� zj‖22

+‖(yk − ŷk)� zk‖22) +
∑

(i,j,k)∈S

(‖(yi − ŷi)� zi‖22

+‖(xj − x̂j)� gj‖22 + ‖(xk − x̂k)� gk‖22) (12)

where � denotes the Hadamard product. Given a triplet (i, j, k) of D, gi =

{cij}nj=1, zj = {cji}mi=1 and zk = {cki}mi=1.

In order to alleviate the sparsity problem of networks, we introduce the

hyper-parameter β to impose more penalties on the reconstruction error of non-255

zero elements than that of zero elements. For any node vi of type V and uj of

type U , if vi and uj are not connected cij = 1, otherwise cij = β > 1.

4.3.4. Joint Loss Function

We incorporate the loss functions of the global and local structures of our

proposed model into a joint objective function, which is defined as follows:260

L = Llocal + λ1Lglobal + λ2Lreg (13)
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where Lreg is the regularization term to prevent overfitting, which is shown as

follows:

Lreg =

K∑
k=1

(‖Wk‖2F + ‖Ŵk‖
2

F + ‖bk‖22 + ‖b̂k‖
2

2)

+‖Wµ‖2F + ‖Wσ‖2F + ‖ŴK+1‖
2

F + ‖bµ‖22

+‖bσ‖22 + ‖b̂K+1‖
2

2 (14)

4.4. Training Algorithm of BiVAE

The entire learning procedure of BiVAE is presented in Algorithm 1. To

be specific, Line 1 initializes all weight matrices and bias vectors; Line 2 uses

negative sampling to construct the set of triplets M = D∪S; Line 3−9 learn the

embeddings and the gradient is calculated using back-propagation and Adadelta265

algorithm.

Here we give the procedure of constructing the set of triplets in detail. For

a node ui of type U , we randomly sample two nodes vj and vk of type V , where

vj ∈ Nbui and vk /∈ Nbui . Thus we can obtain the set of triplets D. Reversely,

given a node vi of type V , we can construct the corresponding triplet using the270

same negative sampling method and obtain the set of triplets S.

It is worth noting that, compared with the VAE framework, our algorithm

has the same computational complexity as that for optimizing the VAE on

networks. Although we need to consider all the nodes with different types,

the bipartite network is usually much more sparse for that there are no links275

between nodes with the same type. Considering the optimization mechanism of

our model, it is based on the negative sampling and stochastic gradient descent,

our algorithm does not increase the computational complexity. Furthermore,

as we know, the BiNE [14] takes the random walk mechanism and usually has

higher computational complexity than the AE and VAE framework.280
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Algorithm 1 Training algorithm of BiVAE

Input: Adjacency matrix of the bipartite network A, the set of all valid triplets
M , the parameters β, λ1 and λ2
Output: Network embeddings Z = {zi}n+mi=1 and parameters W =

{W1, · · · ,WK ,Wµ,Wσ}, b = {b1, · · · ,bK ,bµ,bσ}, Ŵ = {Ŵ1, · · · ,ŴK+1},
and b̂ = {b̂1, · · · , b̂K+1}
1: Initialize the parameters: θ = {W,Ŵ,b, b̂}
2: Construct the set of triplets M via negative sampling
3: for each triplet (i, j, k) ∈M do
4: Feed the vector representations of each node in the triplet into encoders,

obtain σ = {σi,σj ,σk} and µ = {µi,µj ,µk}
5: Sample εi, εj , and εk from three Gaussian distributions, respectively
6: Calculate zi, zj and zk w.r.t. Eq. 5
7: Decode the latent representations zi, zj and zk to obtain the reconstruc-

tion data
8: Based on Eq. 13 update θ
9: Until convergence

10: end for
11: Obtain the network embeddings Z

5. Experiments and Analysis

In this section, we introduce some datasets and baselines that are used in

our paper, and then we give experimental results on different network tasks.

5.1. Datasets

In order to evaluate the effectiveness of our proposed framework, we use three285

benchmark datasets: DBLP1, VisualizeUs2, Wikipedia3, Movielens4 and Wiki-

books5. The bipartite network constructed from DBLP dataset is the publish

bipartite network, where the links mean the publishing relations between the

authors and the venues. The VisualizeUs contains the bipartite picture tagging

network, where the links denote the tagging relations between pictures and tags.290

The network of Wikipedia contains the edit relationships between authors and

1http://dblp.uni-trier.de/xml
2http://konect.uni-koblenz.de/networks/pics ti
3http://konect.uni-koblenz.de/networks/wikipedia link en
4http://konect.uni-koblenz.de/networks/movielens-100k rating
5http://konect.uni-koblenz.de/networks/edit-frwikibooks
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pages. This Movielens network consists of 100, 000 user–movie ratings, an edge

between a user and a movie represents a rating of the movie by the user. The

Wikibooks is a bipartite edit network of the French Wikipedia, it contains users

and pages from the French Wikipedia, connected by edit events and each edge295

represents an edit. We summarize the statistics of these datasets in Table 2.

Table 2: Statistics of the datasets. The | U |, | V |, | E | and Density are denoted as the
number of left nodes, right nodes, edges, and its density of each bipartite network

Metric DBLP VisualizeUs Wikipedia Movielens Wikibooks
| U | 6001 6009 15000 943 2884
| V | 1308 3355 3214 1682 27732
| E | 29256 38780 172426 100000 67613

Density 0.4% 0.2% 0.4% 6.30% 0.08%

5.2. Baselines

In terms of link prediction tasks and recommendation tasks, we compare

BiVAE with the following three categories of methods for evaluations:

(1) For the evaluations of link prediction tasks, we use our previous proposed300

methods [41], including Common Neighbors (CN), Jaccard’s Index (JC),

Adamic Adar (AA), and Preferential Attachment (PA), which are based on

the topological structure in bipartite networks.

(2) We compare our algorithm for the Top-N item recommendation tasks with

the following methods:305

• BPR [42]: Bayesian Personalized Ranking (BPR) is a pairwise ranking

approach which is widely used for item recommendation tasks.

• RankALS [43]: It is a method for personalized ranking by minimizing

a ranking objective function rather than the conventional prediction

mean squared error.310

• FISM [44]: It is an item-based method for top-N recommendation

tasks and learns the item-item similarity matrices, which can alleviate

the sparsity of the datasets.
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(3) Compared to BiVAE, the following methods are based on network embed-

ding and can be applied to the link prediction and recommendation tasks.315

• DeepWalk [7]: It can learn the representations of nodes by performing

the truncated random walks.

• LINE [45]: This method is designed to preserve the first-order and

second-order similarities when the nodes of networks are embedded

into the low-dimensional space.320

• Node2vec [8]: This method designs a biased random walk strategy

to generate the corpus of node sequences.

• Metapath2vec++ [15]: This is a heterogeneous network embedding

method by performing the meta-path-guided random walk.

• BiNE [14]: This is a bipartite network embedding method that can325

model the explicit and implicit relations.

5.3. Parameter Settings

We use an encoder and a decoder with a single hidden layer. The dimension

of each layer is 512 − 128 − 512. Besides, the parameter β of reconstruction

error for non-zero elements is set to 5. The balanced hyper-parameters of the330

overall loss function is set to λ1 = 20 and λ2 = 0.02, respectively. The gradient

is calculated using back-propagation and the parameters are optimized using

Adadelta. In addition, the parameters for all the baselines are tuned to be

optimal for the model mentioned in their own papers.

Furthermore, to analyze the influence of sampling mechanism in the algo-335

rithm of our model on different tasks[46, 47], we design a new sample method

instead of the random sampling on the non-links of the network when training

the model. In detail, it samples the non-links from the Second Order structure

of each node based on our Definitions 4 and 5. We set this as another version

of our model BiVAE, called BiVAE+local ns. We also give its results on340

different tasks.
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Table 3: Link prediction on DBLP and Wikipedia.

Performance(%)
DBLP Wiki-pedia

AUC-ROC AUC-PR AUC-ROC AUC-PR

CN 82.85 N/A 86.85 90.68
JC 81.05 N/A 63.90 73.04
AA 82.70 N/A 87.37 91.12
PA 81.05 N/A 90.71 93.37

DeepWalk 66.94 71.51 89.71 91.20
LINE 69.36 73.64 91.62 93.28

Node2vec 63.24 67.69 89.93 91.23
Metapath 71.61 66.78 89.56 91.72

BiNE 84.48 86.21 92.91 94.45
BiVAE 85.70 86.23 95.22 95.83

BiVAE+local ns 85.72 86.39 95.08 95.36

5.4. Link Prediction

In this task, we take each node pair without edges as a negative instance,

while the link is treated as a positive instance. For DBLP, Wikipedia, Movie-

lens and Wikibooks datasets, we randomly sample 60% of the instances as the345

training samples and use the left instances as the test samples. After the train-

ing, we can obtain the vector representations of the nodes, and concatenate the

representations of two nodes in networks to obtain the vector representation of

an edge. Then, the representation of edges are treated as features and we take

whether a node pair has an edge as the ground truth. We use the area under350

the ROC curve (AUC-ROC) and the Precision-Recall curve (AUC-PR) as the

evaluation metrics [14]. The results of the link prediction tasks are shown in

Table 3. Note that the symbol “N/A” in Table 3 indicates that the result of the

link prediction task cannot be computed, which is due to some baselines cannot

be applied to large-scale networks. From the results, the main observations and355

analysis are as follows:

• Tables 3 and 4 show that the BiVAE and BiVAE+local ns outperform all

baselines based on the network topological structure in all the datasets.

This is because these baselines only consider the local or global network

structure.360
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Table 4: Link prediction on Movielens and Wikibooks.

Performance(%)
Movielens Wikibooks

AUC-ROC AUC-PR AUC-ROC AUC-PR

CN 50.00 56.00 50.30 54.80
JC 50.20 56.30 50.20 54.80
AA 50.10 56.10 50.10 54.90
PA 50.30 56.30 50.10 54.90

DeepWalk 76.31 77.34 58.18 61.37
LINE 76.14 77.33 58.27 61.66

Node2vec 76.3 77.45 57.87 61.19
Metapath 81.67 81.65 68.53 71.68

BiNE 83.17 84.39 61.05 63.49
BiVAE 85.47 86.01 69.56 73.13

BiVAE+local ns 85.34 86.03 69.66 73.85

• All the methods based on the Network Embedding usually have better

performance based on the AUC-ROC and AUC-PR on all the datasets.

• The performance of DeepWalk, LINE, and Node2vec methods designed

for homogeneous networks are generally worse than the BiNe, BiVAE and

BiVAE+local ns. This is because our method and the BiNE can model365

the special properties of bipartite networks.

• The performance of Metapath2vec++ is worse than BiNE and BiVAE on

both datasets in both matrices. This implies that the methods tailored

for bipartite networks perform much better. In addition, compared to the

BiNE, although the improvement is a little tiny, the BiVAE outperforms370

better, which may due to BiVAE can model the relations of nodes by the

set of all valid triplets and capture the uncertainty of nodes in bipartite

networks. Additionally, the computational complexity of BiVAE is lower

than that of BiNE.

• Compared with the BiVAE and BiVAE+local ns, the former has better375

performance on the Wiki-pedia and Movielens, and the BiVAE+local ns

has achieved excellent results on the DBLP and Wikibooks. So we have

reason to believe that the different sampling mechanisms do influence the
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Table 5: Top-10 recommendation on VisualizeUs, DBLP, and Wikipedia.

Performance(%)
Visua-lizeUs DBLP Wiki-pedia

F1@10 MAP@10 F1@10 MAP@10 F1@10 MAP@10

BPR 6.22 5.51 8.95 13.55 14.12 17.20
RankALS 2.72 1.50 7.62 7.52 9.70 14.05

FISM 10.25 8.86 9.81 7.38 16.03 16.74
DeepWalk 5.82 4.28 8.50 19.71 2.28 1.20

LINE 9.62 7.81 8.99 9.62 5.52 14.93
Node2vec 6.73 6.25 8.54 19.44 3.83 2.59
Metapath 5.92 5.35 8.65 19.06 2.05 1.26

BiNE 13.63 16.46 11.79 20.62 13.67 19.66
BiVAE 21.94 43.75 25.76 42.62 25.75 52.84

BiVAE+local ns 17.48 31.79 20.32 32.26 25.27 48.95

Table 6: Top-10 recommendation on Movielens and Wikibooks.

Performance(%)
Movielens Wikibooks

F1@10 MAP@10 F1@10 MAP@10

BPR 4.26 3.90 0.95 0.64
RankALS 1.10 2.40 1.22 3.36

FISM 2.15 3.36 1.02 0.76
DeepWalk 1.89 0.39 0.06 0.01

LINE 2.41 0.54 0.10 0.01
Node2vec 2.05 0.44 0.07 0.01
Metapath 2.68 0.63 1.39 3.77

BiNE 11.90 3.88 1.81 1.32
BiVAE 12.75 4.05 5.91 9.24

BiVAE+local ns 12.29 3.95 4.94 9.06

results of the model, and how to design more effective and efficient sam-

pling strategies is a more challenging issue.380

5.5. Recommendation

The recommendation is an important application of network embedding,

which can reflect the ability of node representations. For each dataset, 60% of

the links are randomly sampled for training, and the rest links are used as test

samples. We use the inner product of two different types of nodes to evaluate385

the preference between them and select Top-10 items with larger scores for

the recommendation. Table 5 shows the results of recommendations on three

datasets by using two metrics, i.e., F1@10 and MAP@10 [14], the 6 gives the

corresponding results on datasets of the Movielens and Wikibooks. The main

observations from the results are summarized as follows.390
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• As shown in Tables 5 and 6, it is obvious that BiVAE and BiVAE+local ns

outperform all baselines on the five datasets in both matrices. This demon-

strates the effectiveness of our proposed method on item recommendation

tasks, and the improvement in this result is very significant.

• Among all the comparison methods, the BiNE achieve the best perfor-395

mance on these networks, other methods have yielded better results on

only one or more datasets.

• Our method is superior to DeepWalk, LINE and Node2vec, which are the

three state-of-the-art homogeneous network embedding methods. This

indicates that although these homogeneous network embedding methods400

can be applied to bipartite networks, they consider neither the importance

of the types of nodes nor the relations between the two types of nodes.

• The methods based on heterogeneous networks perform worse than our

method significantly. This is because: (1) Metapath2vec++ is not optimal

for bipartite networks composed of two types of nodes; (2) Although BiNE405

is tailored for bipartite networks, it does not take into account using the

triplets to constrain the relations between nodes and cannot model the

uncertainty of nodes in bipartite networks.

• Compared with the BiVAE, the BiVAE+local ns has competitive results

on all the datasets and metrics, this means that the random sampling410

mechanism is more conducive to the proposed method.

5.6. Parameters Sensitivity

In this subsection, we investigate the influence of the embedding dimension

d and two hyper-parameters λ1 and β. We report AUC-ROC and AUC-PR on

the Wikipedia dataset to analyze the link prediction tasks as shown in Fig. 2,415

Figure 2(a) shows how the embedding dimension affects the performance.

The experimental performance first increases and then remains stable when d

reaches a certain value. This implies that when the embedding dimension is
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too large, our framework cannot embed more useful information due to the

introduction of some noises.420

The hyper-parameter λ1 is a balanced parameter, which denotes the weight

of the global structure. From Fig. 2(b), we observe that the performance first

increases and then decreases when λ1 = 20. This demonstrates that preserving

the global structure is essential to our framework. Especially, when λ1 ap-

proaches 0, our model degenerates to consider only the local structures of the425

network, when λ1 is big enough, the global term plays a larger role. From this

figure, it is easy to know that our model performs better when we consider the

both terms with a good tradeoff.

Figure 2(c) shows how the hyper-parameter β affects the performance, where

β is the weight that imposes on the non-zero elements. The best performance430

is obtained when β = 5, while the performance decreases when β is too large.
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Figure 2: Parameter w.r.t. dimension d, hyper-parameters λ1 and β

5.7. Visualization

We show the visualization in this subsection, which is another important

application for network embedding. Because of the lack of ground truth in our

datasets mentioned earlier, we visualize the node representations of a subset435

of Aminer dataset6 by using the visualization tool t-SNE [48]. We construct

a heterogeneous collaboration network from a subset of Aminer dataset, which

6https://www.aminer.cn/data
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consists of 981 authors and 28 venues. What’s more, these nodes are from the

research fields of theoretical computer science and computer science databases

& information systems. A link represents the relationship between an author440

and a venue. Besides, we take the research field in which the author publishes

the most papers as the ground truth of the author.

(a) DeepWalk (b) Node2vec (c) LINE

(d) Metapath2vec++ (e) BiNE (f) BiVAE

Figure 3: Visualization of authors in the subset of Aminer.

The visualization results are shown in Fig. 3. We use different colors to

represent the author’s research fields, where blue dots represent the research

field of theoretical computer science and red dots represent the research field445

of computer science databases & information systems. From Fig. 3, we ob-

serve that our method can clearly separate two types of nodes when compared

with DeepWalk, Node2vec, metapath2vec++ and BiNE, whose two types of

nodes are mixed together. Although LINE can better separate the two types of

nodes, it’s obviously not good enough compared with BiVAE. The observations450

demonstrate the superiority of our method in this task.
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6. Discussions and Conclusions

In this paper, we propose a deep learning framework BiVAE, which uses the

set of triplets to restrain the relations between two different types of nodes to

enhance the effect of node embedding in bipartite networks. The variational455

autoencoder framework can capture the uncertainty of nodes. Besides, BiVAE

can preserve the local and global structures while establishing highly nonlinear

relations. Further more, we define the Second Order Structure of the bipartite

network and propose another new sample mechanism for the training algorithm.

In comparison with several state-of-the-art baselines, experiments on dif-460

ferent tasks validate the superiority of our proposed framework. On the link

prediction task, the BiVAE and BiVAE+local ns not only have obvious improve-

ment on the classic link prediction models and homogeneous network embedding

methods, but also have some performance advantages with lower computational

complexity. On the recommendation task, our method has been a significant465

performance improvement than all the baselines including the BiNE.

There are still some problems to be studied in the future. How to set the

balance parameters automatically in the objective function? How to construct

a more effective and efficient negative sampling mechanism to improve the per-

formance of the model? Besides, it is possible to integrate external information470

for the bipartite network embedding, which will be our next work.
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