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In the context of sequential estimation of radio range-based indoor
position tracking, Bayesian smoothing framework is promising as
involving past, present and future observations. The performance and
practicability of a smoothing method greatly depend on how many and
how future observations are incorporated. Aiming at Real-time Locating
Systems (RTLS), we propose to implement smoothing on Sequential
Monte Carlo (SMC) methods, including four popular Bayesian smoothing
methods and a novel one time-step Smoothed Filtering (SF) algorithm.
The smoothing algorithms are evaluated through Two Dimensional (2D)
position tracking on a real-world indoor test-bed. We present results
that the proposed SF improves tracking performance requiring very
limited computation and memory, which is applicable for real-time
indoor position tracking. Moreover, the one time-step smoothing form is
validated to mitigate ranging errors and smooth positioning trajectories.

Introduction: Real-time and continuous positioning of wireless systems
is the key issue of indoor location-aware service, emergency response
and robotics, etc. However, in radio range-based positioning, either the
ranging that sensors measure or the motion of a target is usually difficult to
model accurately. Bayesian smoothing methods are promising to combat
imprecise and scarce measurement problems, as involving not only the past
and present observations (z1:t) at the current time (t) but also the future
ones (zt:T , t < T ) a few time ahead.

Research have proposed a class of smoothing algorithms in a recursive
Bayesian framework, i.e., the Gaussian Rauch-Tung-Striebel (RTS)
smoother [1], the Forward Filtering Backward Smoothing (FFBSm) [2]
and the Two-Filter Smoother (TFS) [3, 4]. However, they are either
computation costly or require to predefine samples. Alternative Monte
Carlo methods, Sequential Monte Carlo (SMC, also known as particle
filter) methods [6], provide a particle-based state propagation [7, 5].

This paper focuses on a real-time state smoothing based on the
observations up to one time-step after the present, defined as one time-
step smoothing (p(xt|z1:t+1)). In order to improve the forward particle
propagation, we propose a smoothed filtering algorithm in a SMC method
(Generic Particle Filter (GPF)), namely smoothed filtering (SF). Instead
of deriving the posterior from the prediction density, SF recursively
propagates the posterior from the smoothing density. We also implement
four popular smoothing solutions in GPF: Forward Filtering Backward
Smoothing (FFBSm), Forward Filtering Backward Simulation (FFBSi),
Two-filter Smoothing (TFS) and Fast Two-filter Smoothing (TFSfast).
The aforementioned smoothing algorithms are evaluated over our indoor
tracking test-bed with Time-of-Flight (TOF) ranging. Experimental results
validate the improvements in accuracy and smoothness of the one-time step
smoothing framework on real-world position tracking.

One time-step smoothing: Indoor radio range-based positioning system
observes severe measurement noise or failures [8], due to system noise,
multi-path effect, Non-Line-Of-Sight (NLOS) propagations, unknown
wireless interference, etc. From a Bayesian perspective of sequential
position estimation, filtering represents the posterior (p(xt|z1:t)) of the
state given the observations up to the current time; smoothing corresponds
to the density (p(xt|z1:T )) based on the observations up to some later time
(T , t < T ). To recur the state recursion, it essentially applies a Hidden
Markov Model (HMM) of order one.

The smoothing methods can obviously provide better approximations
of the state probability if the future observations are enough. However, the
smoothing recursion (p(xt|z1:T )) involves the observations many time-
steps ahead (t� T ), it can be computation, storage, and time consuming.
To deal with the problem, it is preferable to form the smoothing density
from a few time-steps of observations. Aiming at real-time tracking, we
propose the smoothing density of the one time-step SMC with

T = t+ 1 . (1)

The one time-step smoothing, that compute the sequence of conditional
density, is defined as

p(xt|z1:t+1) . (2)

Current methods of particle smoothing

We apply four popular Bayesian smoothing algorithms of one time-step
recursion in GPF as following.

Forward Filtering Backward Smoothing (FFBSm)

The smoothing density of FFBSm is deduced from a forward-backward
expression, with the one time-step form as

p(xt|z1:t+1) = p(xt|z1:t)

∫
p(xt+1|z1:t+1)p(xt+1|xt)∫
p(xt+1|xt)p(xt|z1:t) dxt

dxt+1 . (3)

The filtering density (p(xt+1|z1:t+1)) in (3) can be computed by your
favorite forward filter, as we use the GPF method [9].

Forward Filtering Backward Simulation (FFBSi)

In order to remedy the high computation of FFBSm in (3), FFBSi [10]
defines the smoothing density as

p(xt|xt+1, z1:t) =
p(xt|z1:t+1)p(xt+1|xt)

p(xt+1|z1:t)
. (4)

Instead re-weighting particles as FFBSm, FFBSi samples from the
backward smoothing density

x̃t ∼ p(xt|zt+1) . (5)

Two Filter Smoothing (TFS)

TFS [11] is a well-established alternative to FFBSm, which obtains
the smoothing density from two independent filters (the forward and the
backward filters). The one time-step TFS is formulated as

p(xt|z1:t+1)∝ p(xt|z1:t)︸ ︷︷ ︸
Forward filter

∫
p(zt+1|xt+1)p(xt+1|xt) dxt+1︸ ︷︷ ︸

Backward filter

. (6)

Fast Two-filter Smoothing (TFSfast)

Differing from the conventional TFS, TFSfast [12] draws new particles
from the empirical density and approximates the smoothing density by

p(xt|z1:t+1)∝ p(xt|z1:t)p(zt+1|xt)

∝ p(xt|z1:t)

∫
p(x̃t+1|zt+1)p(x̃t+1|xt)

λt+1(x̃t+1)
dx̃t+1 . (7)

with λt+1(xt+1) being the artificial prior.

Proposed Smoothed Filtering (SF)

The aforementioned smoothing methods formulate the smoothing
density (p(xt|z1:t+1)) from the current (p(xt|z1:t)) and future
(p(xt+1|z1:t+1)) posterior. The shortcoming is that the smoothing density
influences only the backward density rather than the forward probability
propagation.

Since FFBSm and TFS have not incorporated the smoothing density
into the state recursion, we propose to propagate the posterior from the
smoothing density, namely, Smoothed Filtering (SF) as

p(xt+1|z1:t+1) =

∫
p(xt|z1:t+1)p(xt+1|xt, z1:t+1) dxt . (8)

Form a Markov process of order one, one gets that

p(xt+1|xt, z1:t+1)
Markov

= p(xt+1|xt, zt+1)

=
p(xt+1, zt+1|xt)

p(zt+1|xt)

=
p(zt+1|xt+1xt)p(xt+1|xt)

p(zt+1|xt)

=
p(zt+1|xt+1)p(xt+1|xt)

p(zt+1|xt)

=
p(zt+1|xt+1)p(xt+1|xt)∫

p(zt+1|xt+1)p(xt+1|xt) dxt+1
. (9)
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The factor p(xt+1|xt, z1:t+1) can be derived by (9). In the condition of the
low velocity of our robot (averagely 0.5 m/s), we take the approximation
p(zt+1|xt+1)≈ p(zt+1|xt) leading to

p(xt+1|xt, z1:t+1)≈ p(xt+1|xt) . (10)

Similar to the TFS, the smoothing density of SF is

p(xt|z1:t+1)∝ p(xt|z1:t)p(zt+1|xt) . (11)

Results and analysis: The aforementioned smoothing algorithms are
implemented in an indoor tracking test-bed as introduced in the work [13],
which consists of a robot and a network of Nanotron NanoPAN sensors
with TOF ranging. The experiment is carried out in a typical indoor
scenarios, the halls and classrooms with a mobile trajectory over 50 meters.

Quantitative results

The competing algorithms are performed on the one-step smoothing
frame, taking the same initialization, particle size of GPF (Np = 49),
Gaussian measurement model, Gaussian random motion model and
residual resampling strategy. The quantitative results of 6000 positioning
executions in the experiment are listed in Table .

Table 1: Comparison of the one time-step smoothing on SMC, with the
positioning results of the indoor experiment

Algorithms MEANp/meter RMSEp/meter MAXp/meter Runtime/s
GPF 1.62 1.88 5.71 22

FFBSm 1.58 1.84 5.69 365
FFBSi 1.62 1.89 6.22 29
TFS 1.52 1.75 5.87 751

TFSfast 1.61 1.86 5.95 114
SF 1.47 1.67 4.70 30

Table demonstrates that FFBSi and TFSfast almost make no
improvements on GPF. We consider that the empirical sampling of FFBSi
and TFSfast might introduce extra variance that cancels out the smoothing
effect. The FFBSm and TFS obtain small improvements. It is explained
that FFBSm and TFS only influences the backward density rather than the
posterior; thus, the sample divergence of the forward probability recursion
remains unaltered. The proposed SF observes the lowest values of the
MEANp, RMSEp, and MAXp; this is a consequence that the probability
propagation is derived from the smoothing density instead of the prediction
density. Furthermore, the complexity of the above smoothing algorithms is
O(Np)2, while the runtime indicates the efficiency of SF. Therefore, the
one time-step smoothing form can be effective if the smoothing density
can be used to refine the forward state propagation.

Positioning behavior

Estimated trajectory
True trajectory
Anchor

Fig. 1 Positioning behavior of SF (one time-step) over a mobile trajectory on
the building floor plan with classrooms and halls: The connected dots denotes
the ground truth of the mobile trajectory; the scatter plot ’+’ is the estimations;
’4’ for the anchors.

Figure 1 depicts the estimated trajectory of the smoothing algorithms
on the floor plan, which indicates that SF achieves a smoothness behavior.
It causes large divergence to the true trajectory at some test sites, where
are the NLOS scenarios in our indoor environment. The results present
that the proposed one time-step smoothing SF is applicable for real-time
indoor position tracking.

Conclusion: To deal with nonlinearity and non-Gaussianity of indoor
range-based position tracking, five smoothing algorithms are applied to
the SMC implementation. Aware of the real-time constraint, we focus
on the smoothing frame in one time-step form. By validation in a real-
world indoor tracking experiment, it is summarized that the one time-step
smoothing is of high relevance for both reducing the state uncertainty and
smoothing the representation in real-time tracking. The FFBSm, TFS and
their variations are not effective in one time-step recursion, by reason that
the smoothing density is not propagated into the forward state propagation.
The SF achieves notable improvements, as deriving the posterior from the
smoothing density. Since SF requires no other assumptions, offline training
or high complexity, it is practical for indoor range-based tracking.
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