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Abstract In view of the exceptional ability of curvature in connecting missing edges and structures, we
propose novel sparse reconstruction models via the Euler’s elastica energy. Especially, we firstly extend
the Euler’s elastica regularity into the nonlocal formulation to fully take the advantages of the pattern
redundancy and structural similarity in image data. Due to its non-convexity, non-smoothness and non-
linearity, we regard both local and nonlocal elastica functional as the weighted total variation for a good
trade-off between the runtime complexity and performance. The splitting techniques and alternating di-
rection method of multipliers (ADMM) are used to achieve efficient algorithms, the convergence of which
is also discussed under certain assumptions. The weighting function occurred in our model can be well
estimated according to the local approach. Numerical experiments demonstrate that our nonlocal elastica
model achieves the state-of-the-art reconstruction results for different sampling patterns and sampling
ratios, especially when the sampling rate is extremely low.

Keywords Euler’s elastica · nonlocal regularization · sparse reconstruction · ADMM

1 Introduction

The Euler’s elastica was first introduced to computer vision by Mumford [36] as a prior curve model,
where “elastica” means the shape of the ideal thin elastic rod on a plane. Observing the importance
of level lines for image representation, Masnou et al. [34,1] proposed the variational formulation of the
Euler’s elastica by measuring the total length and total curvature of a planar curve C as follows

E(C) =

∫
C
(a+ bκ2(s))ds, (1)

where a, b > 0 are two parameters, and κ is the curvature of C at position s. Thus, the Euler’s elastica of
an image u : Ω → R, Ω ⊂ R2 being an open bounded subset of R2 with Lipschitz continuous boundary,
becomes

E(u) =

∫
Ω

(
a+ bκ2

)
|∇u|dx, (2)
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where κ is the curvature of the level lines of u defined as

κ(u) := ∇ · ∇u
|∇u|

.

Owing to the strong priors for the continuity of edges, the Euler’s elastica (2) is originally introduced
as the regularization for image inpainting [11,50], which is used to interpolate the true image from the
observed data with a missing or damaged portion. The Euler’s elastica regularized variational model for
image inpainting is then formulated as follows

min
u

λ

2

∫
Ω\D

(u− u0)2dx+

∫
Ω

(a+ bκ2)|∇u|dx, (3)

where D ⊂ Ω denotes the missing region, u0 is the available part in Ω\D and λ is a positive parameter to
balance the regularization term and the fidelity term. It is well-known that the reconstructed image from
the total variation (TV) based models [34] suffers from the staircasing effect such that piecewise constant
solutions are favored instead of piecewise smooth ones. One main advantage of the Euler’s elastica energy
is that it gives more natural appearance by minimizing the total curvature as well as lengths of the level
lines, which can overcome the staircasing effect. Due to the great success in image inpainting, the Euler’s
elastica has been applied to other image processing tasks, such as segmentation [54,16,5,26], segmentation
with depth [18,53], illusory contour [35,28] and denoising [43,15], etc.

Indeed, the inpainting problem also exists in medical imaging. The well-known compressed sensing
MRI (CS-MRI) deals with data interpolation in the k-space [42]. The CS-MRI methods enable to recon-
struct high quality MR images based on the partial Fourier measurements, which can reduce the scanning
time and avoid the motion artifacts happening in traditional scanning. Lustig, Donoho and Pauly [32,33]
exploited the sparsity of MR images in certain transform domains, i.e., the spatial finite differences and
their wavelet coefficients, and employed the L1 minimization to realize such sparsity

min
u

λ

2

∫
Ω

(Ku− g)2dx+ α

∫
Ω

|Wu|dx+ β

∫
Ω

|∇u|dx, (4)

where the operator K ∈ CM×N with the sample size M being extremely small compared to the image
size N (i.e., M � N), W is an orthogonal wavelet transform, g is the observed k-space data and α, β
are two positive parameters.

In order to improve the reconstruction quality, different regularization techniques have been explored
for CS-MRI. Guo and Yin [23] proposed an edge guided compressed sensing reconstruction approach by
exploiting weighted total variation (TV) and wavelet transform as the regularization, where the edge
detectors were used to improve the edge recovery. Zhang et al. [51] used the nonlocal (NL) TV as the
regularization term for sparse reconstruction. Huang and Yang [27] proposed a variational model based on
the wavelet sparsity and periodic NLTV regularization. Qu et al. [39] proposed a patch-based directional
wavelets to reconstruct images from undersampled k-space data, which used a parameter to indicate
the geometric direction of each patch. Later the authors designed the patch-based nonlocal operator
to model the sparse representation of similar image patches in [40]. Compton et al. [14] developed a
hybrid regularization model based on TV and framelets for MRI reconstruction when the k-space data is
undersampled. Considering that real-life images are not piecewise constant and detail information may be
lost using TV based methods. High order regularization techniques have also been explored for CS-MRI.
Knoll et al. [29] used the second-order total generalized variation (TGV) [7] as the regularity for piecewise
smooth MRI reconstruction. Guo et al. [22] proposed a new regularization scheme by integrating second-
order TGV and shearlet transform for better recovery of the edges and fine details in images. Besides,
other efficient denoising techniques and priors as well as deep convolution neural network (CNN) have
been also introduced for CS-MRI. For instance, Ravishankar and Bresler [41] presented a framework
for simultaneously learning the dictionary and reconstructing the image from highly undersampled k-
space data. Panić et al. [38] proposed a CS-MRI reconstruction algorithm by making use of a Markov
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random field prior model for spatial clustering of subband data. Eksioglu [17] developed a reconstruction
algorithm using a decoupled iterations alternating over a denoising step realized by blocking matching
3D (BM3D) image model and a reconstruction step through an optimization formulation. Hammernik
et al. [25] introduced an efficient trainable formulation for CS-MRI, which implemented a variational
network to learn a complete reconstruction procedure. Yan et al. [48] reformulated an ADMM algorithm
for CS-MRI into a deep CNN by learning the parameters end-to-end in the training phase. Yang et al.
[47] proposed a conditional generative adversarial networks-based model for CS-MRI.

In this paper, we make two main contributions for sparse reconstruction. The first contribution is
to investigate the application of the Euler’s elastica energy for CS-MRI. We show the power of Euler’s
elastica regularization in connecting the missing level sets into smooth curves. More importantly, our
second contribution is to define the curvature with nonlocal operators and minimize the following
nonlocal elastica model to exploit the similarity between patches in the same image

min
u

λ

2

∫
Ω

(Ku− g)2dx+

∫
Ω

(a+ bκ2
NL)|∇NLu|dx, (5)

where both curvature and TV are defined by nonlocal operators. The proposed nonlocal elastica model
can not only preserve the texture structure but also keep the spatial dependency of images. Along with
the preprocessing data to compute the weight function, it is proved that the nonlocal extension of Euler’s
elastica provides an effective mechanism for the inverse problems. The numerical experiments on CS-
MRI reconstruction demonstrate that the proposed nonlocal elastica regularization is superior to both
the Euler’s elastica and NLTV, regardless of low or high sampling rates.

The outline of the rest of the paper is as follows. In Sect. 2, we propose the Euler’s elastica model
for sparse reconstruction and discuss the numerical algorithms for minimizing the associated Euler’s
elastica functionals. Section 3 reviews the nonlocal methods and then extend the Euler’s elastica model
into the nonlocal formulation. An efficient ADMM based algorithm is also presented with a theoretical
convergence analysis. Numerical experiments on synthetic and real image data are conducted in Sect. 4,
where we compare the results against the state-of-the-art methods from the literature. We conclude the
paper with remarks in Sect. 5.

2 Sparse reconstruction via Euler’s elastica model

Motivated by the success of the Euler’s elastica for image inpainting problem, we firstly utilize it as the
regularization for the CS-MRI, which can be regarded as a k-space inpainting task. That is, we propose
the following high-order variational model

min
u

λ

2

∫
Ω

(Ku− g)2dx+

∫
Ω

(a+ bκ2)|∇u|dx. (6)

The minimization of (6) is numerically challenging due to the high non-smoothness, non-convexity and
nonlinearity of the curvature term in the functional. Focused on the sparse reconstruction problem (6),
we review three main numerical algorithms for Euler’s elastica model as follows.

The CKS method The first numerical attempt to directly solve the Euler’s elastica model was given
by Chan, Kang and Shen in [11] based on the calculus of variation and the steepest descent which is
derived for (6) as follows

∂tu(x, t) = ∇ · V + λK∗(Ku− g). (7)

In (7), the vector field V is called the flux of the elastica energy,

V = (a+ bκ2)
∇u
|∇u|

− 2b

|∇u|3
∇⊥u∇(κ|∇u|)∇⊥u.

Due to the restricted CFL condition, the convergence of the above gradient scheme requires a very small
time step size, which can be accelerated using the optimal gradient method developed by Nesterov [37].
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The THC method Thanks to the operator splitting and alternating direction methods, Tai, Hahn and
Chung proposed a fast algorithm for Euler’s elastica minimization problems in [43]. More specifically, by
introducing the new variables p, n and m, the minimization (6) is rewritten as the following constrained
optimization problem

min
u,p,m,n

λ

2

∫
Ω

(Ku− g)2dx+

∫
Ω

(
a+ b(∇ · n

)2
)|p|dx

s.t., p = ∇u, |p| = m · p, n = m, |m| ≤ 1.

(8)

Based on the augmented Lagrangian method, the constrained optimization problem can be reformulated
as the Lagrangian functional

LTHC(u, p,m, n;Λ1, Λ2, Λ3) =
λ

2

∫
Ω

(Ku− g)2dx+

∫
Ω

(
a+ b(∇ · n

)2)|p|dx+

∫
Ω

Λ1(p−∇u)dx

+
r1

2

∫
Ω

(p−∇u)2dx+

∫
Ω

Λ2(|p| −m · p)dx+
r2

2

∫
Ω

(|p| −m · p)dx

+

∫
Ω

Λ3(m− n)dx+
r3

2

∫
Ω

(m− n)2dx+ δR(m),

where Λ1, Λ2, Λ3 are Lagrange multipliers, r1, r2, r3 are positive penalty parameters, and δR(·) denotes a
characteristic function on R. Although all variables can be solved by either fast Fourier Transform (FFT)
or closed-form solution, it is not easy to choose the three model parameters and four penalty parameters
and the convergence rate is also slow in practice.

The κTV method Letting φ(κ) =
(
a + bκ2

)
, Bae, Shi and Tai [4] treated φ(κ) as the weight for total

variation and updated φ(κ) iteratively, which makes graph cuts applicable for solving the Euler’s elastica
denoising model. Yashtini and Kang [50] rewrote the Euler’s elastica model for image inpainting as a
weighted TV model in exactly the same way and called it the κTV model, such that many fast solvers
can be used for the numerical implementation such as Chambolle’s dual method [9], primal-dual method
[10], splitting Bregman method [21], and augmented Lagrangian method [46].

More specifically, by introducing an auxiliary variable p, the following constrained minimization prob-
lem is considered with κ being assumed known in advance

min
u,p

λ

2

∫
Ω

(Ku− g)2dx+

∫
Ω

φ(κ)|p|dx

s.t., p = ∇u.
(9)

By applying the augmented Lagrangian method, we achieve the following saddle-point problem

min
u,p

max
Λ
LκTV(u, p;Λ) :=

λ

2

∫
Ω

(Ku− g)2dx+

∫
Ω

φ(κ)|p|dx+

∫
Ω

Λ(p−∇u)dx+
r

2

∫
Ω

(p−∇u)2dx,

where Λ is a Lagrange multiplier and r is a positive parameter. Although the ground truth of φ(κ) is
unknown for general inverse problems such as sparse reconstruction, it can be approximated using either
the observed data or the most recent solution of u generated by the iterative scheme similar to [4,50]. We
sketch the proximal ADMM for the above saddle-point problem as Algorithm 1, where a proximal term
is introduced in the u-subproblem to guarantee the convergence of algorithm in theory.

There is the following theoretical guarantee for the convergence of the κTV method. We omit the
detailed proof since it is almost the same as Theorem 3 in [50].
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Algorithm 1: The κTV method

1: Initialize: u0 = 0, p0 = 0, Λ0 = 0, k = 0, ε, ς, nIter;
2: While k < nIter and ‖uk+1 − uk‖22 < ε‖uk‖22
3: Solve uk+1 from

uk+1 = arg min
u

λ

2

∫
Ω

(Ku− g)2dx+
r

2

∫
Ω

(
∇u− pk −

Λk

r

)2
dx+

γ

2

∫
Ω

(u− uk)2dx, (10)

which is solved by fast Fourier transform (FFT).
4: Update φ(κk+1) from

φ(κk+1) = a+ b

(
∇ ·

∇uk+1

|∇uk+1|ς

)2

with |∇uk+1|ς = max{ς, |∇uk+1|}, (11)

here, ς > 0 is used to avoid the denominator vanishing.
5: Solve pk+1 from

pk+1 = arg min
p

∫
Ω
φ(κk+1)|p|dx+

r

2

∫
Ω

(
p−∇uk+1 +

Λk

r

)2
dx, (12)

which is solved by shrinkage operator.
6: Update Λk+1 from

Λk+1 = Λk + r(pk+1 −∇uk+1). (13)

7: end while

Theorem 1 Let {(uk, pk;Λk)}k∈N be the sequence generated by the Algorithm 1 and (ū, p̄; Λ̄) be a point
satisfying the first-order optimality conditions.

λK∗(Ku− g) + divΛ = 0,

φ(κ)∂|p|+ Λ 3 0, where φ(κ) = a+ b
(
∇ · ∇u|∇u|

)2
,

p−∇u = 0.

(14)

For any τk ∈ ∂|pk|, we define

Θk =
〈(
φ(κk)− φ(κ̄)

)
τk, pk − p̄

〉
, ∀k ∈ N. (15)

Assume there exists a solution to problem (9) and Θk is always nonnegative for any k. Then the sequence
{(uk, pk;Λk)}k∈N converges to a limit point that satisfies the first-order optimality conditions (14).

Proof The proof follows the idea of Theorem 3 in [50]. It should be mentioned that there are two differences
between the one in [50] and ours. First, we introduce one artificial variable while Theorem 3 in [50] used
two artificial variables for solving the inpainting problem. Second, the operator K represents a subsampled
Fourier transform while it is a selection operator for the inpainting model. Indeed, it does not affect the
proof of convergence because K is semi-definite in both cases. ut

Remark 1 We simply let γ = 0 in the numerical experiments and observe that the Θk is always nonneg-
ative numerically as shown in Fig. 7.

3 Nonlocal elastica model

3.1 Nonlocal approaches

It is well-known that TV minimization favors piecewise constant solutions, which regards the image
details such as textures and repetitive structures as noises in denoising processing. Motivated by the
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pioneer work [49,44], Buades, Coll and Morel [8] proposed the nonlocal means filter, which introduced
the patch distance to use the value at point y for denoising x if the weighted average of pixels of the
patch centered at y is similar to the local patch centered at x. Later, Gilboa and Osher [20] embedded
the nonlocal means into the variational formulation, which facilitates the applications of the nonlocal
regularity for general inverse problems such as image segmentation [19] and reconstruction [51].

Nonlocal operators In order to define the nonlocal elastica, we follow the variational formulation of
nonlocal operators in [20]. Let w(x, y) : Ω×Ω→ R+ be a weight function for x, y ∈ Ω, which is nonnegative
and symmetric. The nonlocal gradient ∇wu : Ω → Ω × Ω is defined as the vector for all pairs of pixels
x, y ∈ Ω

∇wu(x, y) = (u(y)− u(x))
√
w(x, y).

Let p1, p2 be the nonlocal vectors such that pi : Ω × Ω → R for i = 1, 2. The inner product between p1

and p2 is defined as

〈p1, p2〉 =

∫
Ω

p1(x, y)p2(x, y)dy.

Accordingly, we can define the norm of a nonlocal vector p : Ω× Ω→ R at point x ∈ Ω as

|p|(x) =

√∫
Ω

p(x, y)2dy.

Due to the following joint relation between the nonlocal gradient and divergence for u : Ω → R and
p : Ω× Ω→ R

〈∇wu, p〉 = −〈u,divwp〉,

the nonlocal divergence operator can be given as

divwp(x) =

∫
Ω

(p(x, y)− p(y, x))
√
w(x, y)dy.

Furthermore, the graph Laplacian is defined using the gradient and divergence operator as follows

∆wu(x) =
1

2
divw(∇wu(x)) =

∫
Ω

(u(y)− u(x))w(x, y)dy,

where the factor 1
2 is used to get the standard Laplacian definition. It is easy to check that the nonlocal

Laplacian operator is self-adjoint and negative semi-definite as the local Laplacian operator.

Another important issue of the nonlocal methods is how to define the weight function between pixels,
which is used to measure the similarity of image features between any two pixels x ∈ Ω and y ∈ Ω.
Similarly to [8], we estimate the weight function as follows

w(x, y) = exp

−
∑

z∈q(o)
Ga(z)

∣∣f(x+ z)− f(y + z)
∣∣2

2h2

 , (16)

where Ga is the Gaussian kernel with standard deviation a, z is the pixel in q(o), a squared patch centered
in origin and h is the filtering parameter.
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NonLocal TV Gilboa and Osher [20] proposed the image denoising model using the nonlocal TV norm,
which recovers the noisy image based on the L1 norm of nonlocal gradient

min
u

λ

2

∫
Ω

(u− f)2dx+

∫
Ω

|∇wu|dx. (17)

Similarly to the classical TV model, i.e., the ROF model, different numerical algorithms have been applied
to solve the NLTV minimization problem. For instance, Gilboa and Osher extended the Chambolle’s dual
algorithm for the NLTV, which is much faster than the direct steepest descent scheme. Zhang et al. [51]
developed the split Bregman algorithm for the NLTV based sparse reconstruction model.

Although the nonlocal methods show superior performance in texture and structure repeated image
processing tasks, the restoration results lack spatial dependency due to the point-to-point estimation.
Indeed, natural images are usually high structured as their pixels exhibit strong spatial dependency. In
Fig. 1, we apply the Euler’s elastica model, NLTV and nonlocal Euler’s elastica (NLEE) model to the
‘Cameraman’ image corrupted by additive Gaussian noise of mean 0 and standard variance 0.1. The
mean squared error of the NLTV is smaller (i.e., high PSNR) than the Euler’s elastica, but it lacks
spatial smoothness. Higher SSIM indicates that the high-order regularization can preserve better spatial
correlation. Obviously, the nonlocal elastica regularization is shown to be able to remove noises as well as
preserve the structure similarity. Thus, we introduce the nonlocal curvature and minimize the nonlocal
elastica energy for sparse reconstruction problems in forthcoming subsection.

(a) 20.00dB/0.3286 (b) 26.87dB/0.7904 (c) 27.34dB/0.7311 (d) 27.77dB/0.8024

Fig. 1 The test for denoising. From left to right: noise image, THC, NLTV and NLEE, where ·/· denotes the value of
PSNR and SSIM, respectively

3.2 Nonlocal elastica model for sparse reconstruction

Computing the weights The weight function for image denoising can be precomputed and fixed since
most similarity information is available in the noisy image. It is difficult to obtain a good estimation of the
weight function for image inpainting and reconstruction because a large quantity of information is missing
and the given data even lie in the transformed domain. So far, various methods have been proposed to
estimate the weight function. Arias et al. [2] regarded the weight function as unknown and re-estimated
it from the current image estimate. Later, the authors [3] proposed a block based cost functional by
introducing an entropy regularization to adaptively estimate the weight function. Yang and Jacob [52]
used the majorize-minimize framework to develop a two-step alternating scheme, which is to perform the
classical H1-NL algorithm followed by the re-estimation of the weights from the current image estimation.

It is straightforward to use similar strategies to update the weight function according to the latest es-
timation for our nonlocal elastica model. However, the nonlocal approaches usually converge slowly with
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the updated weights (e.g., [51]), which greatly increases the computational burden. Both the imaging
problem and high-order regularization in our case require fast numerical solvers. Thus, we use a two-
stage method by using the reconstructed data of the κTV model (6) as an initial image guess to compute
the weights for nonlocal elastica model up front. Similar technique has been used in [31], which used the
Filtered Back Projection (FBP) image to compute the weights for the NLTV-based tomographic recon-
struction. In what follows, we use fixed weights in the nonlocal elastica model for sparse reconstruction
problem, which can not only improve the computation and storage efficiency but also provide reconstruc-
tion results with high quality. The numerical comparison on the nonlocal elastica model with updated
and fixed weight function is conducted in the Sect. 4.3, which demonstrates the two-stage framework
works well for different sampling patterns.

Nonlocal elastica Per the previous discussion, we reformulate the Euler’s elastica model (6) into the
following nonlocal version

min
u

λ

2

∫
Ω

(Ku− g)2dx+

∫
Ω

(
a+ b

(
divw

( ∇wu
|∇wu|

))2
)
|∇wu|dx. (18)

Obviously, it requires to solve a fourth-order Partial Differential Equation (PDE) by using the gradient
descent, which is extremely time consuming for such a nonlocal model. Inspired by the κTV method, we
regard the nonlocal elastica model (18) as a re-weighted NLTV model, called the NLκTV model, such
that

min
u

λ

2

∫
Ω

(Ku− g)2dx+

∫
Ω

φ(κw)|∇wu|dx, (19)

where φ(κw) = a+ bκ2
w with κw being the nonlocal curvature, i.e., κw = divw

( ∇wu
|∇wu|

)
. Similarly, we use

the ADMM to solve the minimization problem by introducing an auxiliary variable v, and rewrite (19)
into the following constrained minimization problem

min
u,v

λ

2

∫
Ω

(Kv − g)2dx+

∫
Ω

φ(κw)|∇wu|dx

s.t., u = v.

(20)

Analogously, we reformulate the constrained minimization as a saddle-point problem using the augmented
Lagrangian method such that

min
u,v

max
Λ1

LNLκTV(u, v;Λ1) :=
λ

2

∫
Ω

(Kv − g)2dx+

∫
Ω

φ(κw)|∇wu|dx+

∫
Ω

Λ1(u− v)dx+
r1

2

∫
Ω

(u− v)2dx,

with Λ1 being an associated Lagrange multiplier, and r1 being a positive parameter. The alternating
minimization algorithm is described as Algorithm 2.

We are now left with the minimization problem of the variable v and u corresponding to the recon-
struction problem and the nonlocal denoising problem, respectively. We detail the solutions as follows.

The sub-minimization w.r.t. v For v-subproblem, we consider the following minimization problem

min
v

λ

2

∫
Ω

(Kv − g)2dx−
∫

Ω

Λk1vdx+
r1

2

∫
Ω

(v − uk)2dx+
γ

2

∫
Ω

(v − vk)2dx,

where the proximal term is introduced to guarantee the convergence. The first-order optimality condition
of the above minimization gives us a linear problem, i.e.,(

λK∗K + (r1 + γ)I
)
v = λK∗g + r1u

k + γvk + Λk1 , (21)
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Algorithm 2: The two-stage NLκTV method
Input: g, ε, ς, nIter.
Output: u.
/* First-stage */

1 κTV reconstruction: Implement Algorithm 1 to estimate the reconstructed image denoted as uκTV ;
/* Second-stage */

2 u0 ← uκTV; v0 ← u0;

3 Compute the weight function: Calculate the nonlocal weight function according to (16) based on the uκTV ;
4 for k = 0 to nIter − 1 do
5 vk+1 ← arg min

v
LNLκTV(uk, v;Λk1); /* solve the reconstruction problem */

6 uk+1 ← arg min
u
LNLκTV(u, vk+1;Λk1); /* solve the nonlocal denosing problem */

7 φ(κk+1
w )← a+ b

(
divw

( ∇wu
k+1

|∇wuk+1|ς

))2
with |∇wuk+1|ς = max{ς, |∇wuk+1|};

8 /* let ς > 0 to avoid the denominator vanishing */

9 Λk+1
1 ← Λk1 + r1(uk+1 − vk+1);

10 if ‖uk+1 − uk‖22 < ε‖uk‖22 then
11 break;
12 end

13 end

where I denotes the identity operator and K∗ denotes the conjugate transpose operator of K. For CS-
MRI, K represents the subsampled Fourier transform, which is defined as K = PF with P ∈ RM×N
being a selection matrix and F being a 2D matrix representing 2D discrete Fourier transform. The vector
K∗g is zero-filling-based reconstructed image for the observed Fourier data g. Because F ∗F = I, the
left-hand side operator of (21) can be diagonalized by the discrete Fourier transform F such as

F
(
λK∗K + (r1 + γ)I

)
F ∗ = λPTP + (r1 + γ)I.

Thus, there is the following closed-form solution to the variable v based on the discrete Fourier transform

vk+1 = F ∗
((
λPT g + F

(
r1u

k + γvk + Λk1
))/(

λPTP + (r1 + γ)I
))
, (22)

the denominator of which can be precomputed at the beginning of the algorithm and used repeatedly
during the iteration process.

The sub-minimization w.r.t. u The concrete form of the u-sub problem is given as follows

min
u

∫
Ω

φ(κkw)|∇wu|dx+

∫
Ω

Λk1udx+
r1

2

∫
Ω

(u− vk+1)2dx, (23)

which is somehow difficult to solve due to the non-differentiability of the TV semi-norm. Thus, we use
the operator splitting technique to decouple the non-differentiable term and the squared L2-norm term.
By introducing another variable p, we can rewrite the minimization problem into the following equivalent
form

min
u,p

∫
Ω

φ(κkw)|p|dx+
r1

2

∫
Ω

(
u−

(
vk+1 − Λk1

r1

))2

dx

s.t., p = ∇wu.

Likewise, the following augmented Lagrangian functional is considered

LNL(u, p;Λ2) :=

∫
Ω

φ(κkw)|p|dx+
r1

2

∫
Ω

(
u−

(
vk+1 − Λk1

r1

))2

dx+

∫
Ω

Λ2(p−∇wu)dx+
r2

2

∫
Ω

(p−∇wu)2dx,
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Algorithm 3: The ADMM for solving the minimization u-subproblem

1: Initialize: uk+1,0 = uk, pk+1,0 = pk, Λk+1,0
2 = Λk2 ;

2: for ` = 0 to nInner − 1 do
3: Solve uk+1,`+1 from

uk+1,`+1 = arg min
u

r1

2

∫
Ω

(
u−

(
vk+1 −

Λk1
r1

))2
dx+

r2

2

∫
Ω

(
∇wu−

(
pk,` +

Λk,`2

r2

))2
dx; (24)

4: Solve pk+1,`+1 from

pk+1,`+1 = arg min
p

∫
Ω
φ(κkw)|p|dx+

r2

2

∫
Ω

(
p−

(
∇wuk+1,`+1 −

Λk,`2

r2

))2

dx; (25)

5: Update Λk+1,`+1
2 from

Λk+1,`+1
2 = Λk+1,`

2 + r2(pk+1,`+1 −∇wuk+1,`+1);

6: end
7: Return: uk+1 = uk+1,nInner, pk+1 = pk+1,nInner, Λk+1

2 = Λk+1,nInner
2 .

which can be efficiently solved by the ADMM-based algorithm; see Algorithm 3.
Now, we are going to discuss the solutions to the sub-minimization problem w.r.t. u and p, both of

which can be efficiently solved as follows. For (24), the first-order optimality condition gives the following
linear equation (

r1I − r2∆w

)
u = r1v

k+` + Λk1 − divw(r2p
k+1,` + Λk+1,`

2 ). (26)

Since the graph Laplacian ∆w is negative semidefinite, r1I − r2∆w is diagonally dominant for the given
nonlocal weight function w. Thus, we can compute u using the Gauss-Seidel algorithm similar to [51].

For (25), there is the closed-form solution based on the shrinkage operator, which gives

pk+1,`+1 = shrink

(
∇wuk+1,`+1 − Λk+1,`

2

r2
,
φ(κkw)

r2

)
, (27)

where shrink(v1, v2) = v1
|v1| ◦max{|v1|− v2, 0} with the convention

(
0
|0| = 0

)
and ◦ being the element-wise

multiplication.

3.3 Convergence analysis

The convergence analysis of the proximal ADMM in [50] can be utilized to emerge a similar result for
our NLκTV method. Since φ(κkw) in (23) corresponds to a constant matrix, the convergence of the sub-
minimization problem w.r.t. u follows directly from the classic ADMM such as [21,46]. Then, under the
assumption that a solution of (20) exits, we can state the convergence result for Algorithm 2 as follows.

Theorem 2 Let {(vk, uk;Λk1)}k∈N be the sequence generated by Algorithm 2 and (v̄, ū; Λ̄1) be a point
satisfying the first-order optimality conditions,

λK∗(Kv − g)− Λ1 = 0,

−φ(κw)divwτ + Λ1 = 0, where τ ∈ ∂∇wu|∇wu| and φ(κw) = a+ b
(

divw
( ∇wu
|∇wu|

))2

,

u− v = 0.

(28)

For simplicity, we denote ∂|∇wu| := ∂∇wu|∇wu|. If for any τk ∈ ∂|∇wuk| and τ̄ ∈ ∂|∇wū| the quantity

Θkw =
〈(
φ(κkw)− φ(κ̄w)

)
τk,∇wuk −∇wū

〉
, ∀k ∈ N, (29)

is nonnegative, we have
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(1) The successive errors vk+1 − vk → 0, uk+1 − uk → 0, vk+1 − uk → 0 and Λk+1
1 − Λk1 → 0 as k → 0.

(2) The sequence (uk, vk;Λk1) converges to a limit point that satisfies the first-order optimality conditions
of (28).

Proof (1) Let vke = vk − v̄, uke = uk − ū and Λk1e = Λk1 − Λ̄1. It follows from the optimality conditions of
v, u, Λ1 subproblem 

λK∗(Kvk+1 − g) + r1(vk+1 − vk) + γ(vk+1 − vk)− Λk1 = 0,
r1(uk+1 − vk+1)− φ(κk+1

w )divwτ
k+1 + Λk1 = 0,

Λk+1
1 = Λk1 + r1(uk+1 − vk+1).

(30)

In addition, we can express (30) in terms of the error differences ve, ue and Λ1e as
(λK∗K + r1)vk+1

e + γ(vk+1
e − vke ) = r1u

k
e + Λk1e,

r1u
k+1
e − (φ(κk+1

w )divwτ
k+1 − φ(κ̄w)divw τ̄) + Λk1e = r1v

k+1
e ,

Λk+1
1e = Λk1e + r1(uk+1

e − vk+1
e ).

By taking the inner product of the above equations respectively with vk+1
e , uk+1

e and Λk1e, we have
r1‖vk+1

e ‖2 + λ‖vk+1
e ‖2K + γ〈vk+1

e − vke , vk+1
e 〉 = 〈Λk1e, vk+1

e 〉+ r1〈uke , vk+1
e 〉,

r1‖uk+1
e ‖2 − 〈φ(κk+1

w )divwτ
k+1 − φ(κ̄w)divw τ̄ , u

k+1
e 〉+ 〈Λk1e, uk+1

e 〉 = r1〈vk+1
e , uk+1

e 〉,
〈Λk+1

1e − Λk1e, Λk1e〉 = r1〈uk+1
e − vk+1

e , Λk1e〉,

with ‖v‖2K = 〈Kv,Kv〉. Then, applying 〈q − q′, q〉 = 1
2 (‖q‖2 + ‖q − q′‖2 − ‖q′‖2) to the above equations

yeilds
r1+γ

2 ‖v
k+1
e ‖2 + λ‖vk+1

e ‖2K + γ
2 ‖v

k+1 − vk‖2 + r1
2 ‖v

k+1
e − uke‖2 = γ

2 ‖v
k
e‖2 + r1

2 ‖u
k
e‖2 + 〈Λk1e, vk+1

e 〉,
r1
2 ‖u

k+1
e ‖2 − 〈φ(κk+1

w )divwτ
k+1 − φ(κ̄w)divw τ̄ , u

k+1
e 〉+ r1

2 ‖u
k+1
e − vk+1

e ‖2 + 〈Λk1e, uk+1
e 〉 = r1

2 ‖v
k+1
e ‖2,

1
2r1
‖Λk+1

1e ‖2 = 1
2r1
‖Λk1e‖2 + r1

2 ‖u
k+1
e − vk+1

e ‖2 + 〈uk+1
e − vk+1

e , Λk1e〉.
(31)

Denote

ek :=
r1

2
‖uke‖2 +

γ

2
‖vke‖2 +

1

2r1
‖Λk1e‖2.

Then, summing of the equations in (31), we obtain

ek+1 +
r1

2
‖vk+1
e − uke‖2 +

γ

2
‖vk+1 − vk‖2 + λ‖vk+1

e ‖2K − 〈φ(κk+1
w )divwτ

k+1 − φ(κ̄w)divw τ̄ , u
k+1
e 〉 = ek,

where ‖vk+1
e ‖2K ≥ 0 and −〈φ(κk+1

w )divwτ
k+1−φ(κ̄w)divw τ̄ , u

k+1
e 〉 = 〈φ(κk+1

w )τk+1−φ(κ̄w)τ̄ ,∇wuk+1
e 〉 =

Θk+1
w + φ(κ̄)〈τk+1

e ,∇wuk+1
e 〉. Referring to Lemma 3.3 in [13], the term 〈τk+1

e ,∇wuk+1
e 〉 ≥ 0 for any

τk ∈ ∂|∇wuk| and τ̄ ∈ ∂|∇wū|. Based on the assumption on Θkw ≥ 0 for all k, hence −〈φ(κk+1
w )divwτ

k+1−
φ(κ̄w)divw τ̄ , u

k+1
e 〉 ≥ 0. By dropping the two nonnegtive terms, we have

ek+1 +
r1

2
‖vk+1
e − uke‖2 +

γ

2
‖vk+1 − vk‖2 ≤ ek. (32)

Then {ek}k∈N is a monotone decreasing sequence. Therefore, by further summing (32) from k = 0 to ∞,
it implies that

r1

2

∞∑
k=0

‖vk+1
e − uke‖2 +

γ

2

∞∑
k=0

‖vk+1 − vk‖2 ≤
∞∑
k=0

ek − ek+1 <∞.
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Thus, there is vk+1− vk → 0 and vk+1−uk → 0 as k →∞. Besides, by applying Minkowski’s inequality,
we also obtain lim

k→∞
‖uk+1 − uk‖ ≤ lim

k→∞

(
‖uk+1

e − vk+2
e ‖+ ‖vk+2 − vk+1‖+ ‖vk+1

e − uke‖
)

= 0,

lim
k→∞

‖Λk+1
1 − Λk1‖ ≤ lim

k→∞

(
r1‖uk+1

e − vk+2
e ‖+ r1‖vk+2

e − vk+1
e ‖

)
= 0.

That is, uk+1 − uk → 0 and Λk+1
1 − Λk1 → 0 as k →∞.

(2) We showed the error {ek}k∈N is a monotone decreasing sequence in R+ for any point (v̄, ū; Λ̄1).
Thus, the sequence {(vk, uk;Λk1)}k is uniformly bounded on Ω. Hence, a weakly convergent subsequence
{(vk` , uk` ;Λk`1 )}`∈N exists and has the limit point (v∗, u∗;Λ∗1). Since uk` → u∗ a.e. in Ω as ` → ∞,
∇wuk` → ∇wu∗ a.e. in Ω as ` → ∞. According to Lemma 1 in [50], there exists a subsequence of
{τk`}`∈N that converges weakly to τ∗ ∈ ∂|∇wu∗|.

The sequence {(vk` , uk` ;Λk`1 )}`∈N satisfies in the optimality conditions (30), i.e.,
λK∗(Kvk`+1 − g) + r1(vk`+1 − vk`) + γ(vk`+1 − vk`)− Λk`1 = 0,

r1(uk`+1 − vk`+1)− φ(κk`+1
w )divwτ

k`+1 + Λk`1 = 0,

Λk`+1
1 = Λk`1 + r1(uk`+1 − vk`+1).

Based on part (1), taking the limit from the convergent subsequence, we obtainλK∗(Kv∗ − g)− Λ∗1 = 0,
−φ(κ∗w)divwτ

∗ + Λ∗1 = 0, τ ∈ ∂|∇wu∗|,
u∗ − v∗ = 0,

for almost every point in Ω. This derives that the limit point satisfies the first-order optimality conditions
(28). This completes the proof of the convergence theorem. ut

Remark 2 Similarly to the κTV method, we introduce the proximal term of v to achieve the theoretical
convergence of Algorithm 2, and set γ = 0 in the numerical experiments. We also observe that the Θkw
can be guaranteed nonnegative numerically as shown in Fig. 7.

Fig. 2 The original test images. From left to right: T1-weighted brain, T2-weighted brain, Phantom and Barbara

4 Numerical experiments

To assess the performance of the Euler’s elastica model for sparse reconstruction, we carry out simu-
lations on one synthetic T1-weighted brain data1, one T2-weighted brain data2, a phantom image with

1 http://www.bic.mni.mcgill.ca/brainweb/.
2 http://www.mr-tip.
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Fig. 3 The reconstructed images (the first row) and the error images |u − u∗| (the second row) of the T1-weighted brain
image under 10% random sampling pattern

Table 1 The PSNR performance comparison among MR reconstruction approaches for different sampling masks and
sampling ratio of 10%

Image
T1w Brain T2w Brain Phantom Barbara

Ran. Cart. Radial Ran. Cart. Radial Ran. Cart. Radial Ran. Cart. Radial

Zero-filling 13.37 19.69 22.11 14.94 19.73 21.18 17.18 22.70 26.75 16.84 19.97 22.37
TV 14.77 21.13 27.38 23.95 21.49 26.03 22.85 25.53 30.46 19.47 21.50 24.70

TGVST 15.69 24.14 31.53 18.88 23.40 28.90 18.54 24.99 32.61 18.39 21.71 25.26
κTV 30.01 25.02 31.84 31.99 23.55 28.63 23.99 28.17 31.66 21.46 22.92 25.87

LaSAL2 13.68 22.26 30.28 14.68 22.57 28.63 18.22 24.33 30.03 17.76 21.45 24.52
WaTMRI 15.35 22.95 31.10 22.26 22.68 28.49 19.63 25.34 30.60 19.01 21.85 24.46

NLTV 17.68 25.07 30.37 24.79 23.98 27.69 24.74 28.63 34.66 21.56 23.24 26.07
PANO 16.69 24.67 31.94 18.54 23.14 28.45 22.07 26.21 35.44 20.42 22.83 26.33
BM3D 15.80 24.72 33.47 16.89 23.87 29.74 19.24 27.91 35.61 19.72 22.27 26.46
NLκTV 33.22 25.75 34.07 33.37 24.02 29.80 24.84 29.23 35.93 22.05 23.43 26.53

homogeneous structures and the Barbara image with abundant texture patterns; see Fig. 2. The data
acquisition is simulated by undersampling the 2D discrete Fourier transform coefficients of the test images
using three different patterns, i.e., random, Cartesian and radial pattern. All images are normalized to
[0,1] and the sampling ratio is chosen from 10% to 50%.

We compare the proposed algorithms with the state-of-the-art CS-MRI methods including zero-filling
[6], TV [32,24], NLTV [51], TGVST [22], WaTMRI [12], LaSAL2 [38], PANO [40] and BM3D method
[17]. The TV and TGVST are two comparable approaches to the κTV method, the regularization of
which involves the TV term. The NLTV, PANO and BM3D method, which make use of the powerful
nonlocal similarities for reconstruction, are mostly relevant to our NLκTV method. Besides, WaTMRI
and LaSAL2 are two representatives of wavelet-based approaches by exploiting the wavelet tree structure
for sparse reconstruction. All experiments were performed in MATLAB on a dell desktop with 3.6GHz
Intel Core i7.
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(a) TV (b) κTV (c) NLTV (d) BM3D
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Fig. 4 The reconstructed images (the first row) and the error images |u − u∗| (the second row) of the T2-weighted brain
image under 10% radial sampling pattern

Table 2 The PSNR evaluations among different MR reconstruction approaches for different sampling masks and sampling
ratio of 20%

Image
T1w Brain T2w Brain Phantom Barbara

Ran. Cart. Radial Ran. Cart. Radial Ran. Cart. Radial Ran. Cart. Radial

Zero-filling 20.07 21.84 28.32 21.27 21.40 24.65 33.02 26.69 29.22 21.33 22.90 25.98
TV 33.54 24.03 36.99 34.39 23.26 33.80 33.50 29.79 35.46 27.10 24.55 28.82

TGVST 41.81 25.38 39.78 36.62 24.36 35.41 36.97 30.15 35.99 29.23 24.91 30.06
κTV 41.58 26.35 39.99 36.75 24.85 36.19 36.74 31.17 36.05 30.22 25.56 29.81

LaSAL2 40.41 25.40 41.67 37.87 24.25 37.69 37.40 30.56 35.25 27.39 23.98 27.57
WaTMRI 41.02 24.93 39.30 36.31 23.87 35.92 37.37 29.79 36.48 27.86 24.65 29.12

NLTV 39.41 26.79 38.08 34.80 25.18 33.22 38.71 32.22 38.07 31.22 26.36 31.04
PANO 44.34 26.59 42.60 37.66 24.71 36.88 38.76 30.07 36.47 31.16 26.20 30.33
BM3D 44.96 27.10 44.29 38.18 25.40 37.50 39.01 32.37 38.51 31.63 25.92 31.34
NLκTV 45.40 26.82 44.81 38.14 25.60 38.33 39.02 33.05 39.23 31.42 26.43 31.18

4.1 Optimal parameters settings

There are two important parameters for the Euler’s elastica regularity, i.e., a and b, which are fixed as
a = 8, b = 10 for the κTV and a = 0.01, b = 0.01 for the NLκTV, respectively. And ς is set as ς = 10−6 in
both κTV and NLκTV model. We fix nIter = 700 and select λ and r in between the range [5×103, 3×104]
for the κTV. On the other hand, for NLκTV, we empirically set λ = 104, nIter = 100, nInner = 2 and
select r1 ∈ [10, 100], r2 ∈ [0.1, 1] in most experiments.

For both NLTV and NLκTV method, ∀x ∈ Ω, we use the best 10 neighbors in the semi-local searching
window of size 11×11 centered at x with the patch size of 5×5. Other parameters for the NLTV method
are selected as λNLTV = 0.5, r ∈ [0.001, 0.01], nIter = 500 and the inner iteration is set as nInner = 10
for the denoising step.

Parameters for the comparison algorithms are chosen to achieve the best balance of measure and
CPU-time in each experiment. The regularization parameter λ plays an important role in the TV and
PANO model, which is chosen as λTV ∈ [102, 104] and λPANO = 106 in most experiments. For BM3D,
the range of the parameter for the observation fidelity is λBM3D ∈ [0, 5]. The total iteration number for
the TGVST, LaSAL2 and BM3D is set as 500, 100 and 80 to balance the performance and efficiency.
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Fig. 5 The reconstructed images (the first row) and the error images |u−u∗| (the second row) of the phantom data under
20% Cartesian sampling pattern

Table 3 The performance evaluations among MR reconstruction approaches for different sampling masks and sampling
ratio of 50%

Image
T1w Brain T2w Brain

Random Cartesian Radial Random Cartesian Radial
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Zero-filling 42.33 0.9098 30.84 0.8067 40.51 0.8779 33.72 0.7138 28.34 0.8196 32.74 0.6862
TV 50.21 0.9985 38.23 0.9684 50.23 0.9985 44.59 0.9949 35.44 0.9643 45.59 0.9951

TGVST 51.26 0.9952 39.76 0.9702 50.64 0.9932 45.81 0.9872 38.16 0.9739 46.23 0.9845
κTV 52.04 0.9987 44.43 0.9943 52.02 0.9987 45.19 0.9954 39.80 0.9848 46.28 0.9957

LaSAL2 53.85 0.9986 43.07 0.9887 54.56 0.9987 47.75 0.9936 38.69 0.9736 49.22 0.9948
WaTMRI 54.10 0.9992 41.44 0.9882 55.47 0.9994 49.56 0.9975 39.64 0.9819 51.11 0.9980

NLTV 51.91 0.9974 40.30 0.9598 51.64 0.9972 42.68 0.9701 38.23 0.9605 43.45 0.9741
PANO 54.83 0.9992 42.16 0.9824 55.25 0.9992 49.56 0.9972 39.95 0.9807 50.78 0.9974
BM3D 54.57 0.9992 47.77 0.9972 55.18 0.9992 49.58 0.9962 42.68 0.9893 50.86 0.9964
NLκTV 54.83 0.9993 47.98 0.9967 55.42 0.9993 49.40 0.9970 42.36 0.9893 50.76 0.9975

Both the iteration number and relative error ε = 5× 10−5 are used as the terminating conditions for all
algorithms. We evaluate the reconstruction performance using both PSNR (peak signal-to-noise ratio)
and SSIM (structural similarity index).

4.2 The performance evaluations

In the first example, we generate the undersampled k-space data with sampling ratio 10% and three
kinds of sampling patterns, where Table 1 details the PSNR obtained by the comparison algorithms. It
is obviously shown that the NLκTV method outperforms other CS-MRI approaches. We display both
the reconstructed image and error image of T1-weighted brain image using random sampling and the
T2-weighted brain image using radial sampling in Fig. 3 and Fig. 4, respectively. Based on the qualitative
and quantitative results, we make the following observations:

¬ The κTV produces much better reconstruction results than TV model, which demonstrates that the
minimization of the total curvature can help to recover the missing information and effectively improve
the reconstruction quality;
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(b) Sampling ratio = 20%

Fig. 6 The SSIM evaluations of T1-weighted brain image for different sampling masks and sampling ratios
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Fig. 7 On the T1-weighted image with different sampling masks, the behavior of Θk (left) and Θkw (right) versus iteration
numbers

­ It is well-known that the nonlocal approaches can take care of the texture structures (e.g., Barbara
image) based on patch redundancy. Indeed, the comparisons between NLTV and NLκTV show that
the nonlocal curvature not only preserves the fine structures and details but also the homogeneity in
the smooth region such as the white matter of the T1-weighted brain image and black background of
the T2-weighted brain image;

® By comparing the κTV and NLκTV, especially the error images, we observe the NLκTV always
presents a lighter coloring, which indicates the reconstruction of NLκTV is much closer to the ground
truth. In addition, the PSNR values also prove the advantages of the nonlocal similarities in improving
the reconstruction quality.

Table 2 lists the PSNR obtained by the CS-MRI algorithms on undersampled data with sampling ratio
20% and different sampling patterns. Clearly, the performances of the proposed methods are consistent
with the experiments using sampling ratio 10%, such that our approaches give better reconstruction
results for most image- and mask-type combinations. As shown, the PSNR values of NLκTV exceed the
ones obtained by NLTV and κTV in all experiments. Especially, the NLκTV is noticeably better than
all local methods because more patch similarities can be observed with relatively high sampling rate. We
also display the selective visual results of the phantom image with Cartesian sampling pattern in Fig. 5.
Compared to the NLTV and BM3D approach, less energy is contained in the left part of the error image
of our NLκTV method. However, the upper right corner of NLκTV is not as smooth as NLTV because
the weight function is precomputed based on the κTV reconstruction and fixed during the reconstruction.
Even though, the overall quality of the NLκTV method is better than NLTV and BM3D for the phantom
image.
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Fig. 8 Reconstruction PSNR in dB of the NLκTV with different r1, r2 for 10% random, Cartesian and radial sampling
pattern
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Fig. 9 Evaluations on the T1-weighted image with 10% random downsampling

Fig. 6 depicts the SSIM values evaluated on the T1-weighted brain image for three mask types with
sampling ratio 10% and 20%, which correspond with the PSNR listed in Table 1 and 2. Similarly to
the denoising example in Fig. 1, the nonlocal elastica model significantly improves the image structural
information compared to the NLTV method. Among these CS-MRI algorithms, the nonlocal methods
(i.e., NLTV, PANO and BM3D) perform much better than other approaches, especially the BM3D which
utilizes the Block Matching 3D (BM3D) model as the regularizer for MRI reconstruction problem. By
facilitating nonlocal structures in the image using groups of image patches, the BM3D model can achieve
the state-of-the-art performance for image denoising and reconstruction problems. We observe that our
NLκTV model can give better (e.g. the reconstruction image with random sampling and sampling rate
10%) or comparable reconstruction results than the BM3D model due to the minimization of the nonlocal
curvature.

In addition, we carry out an experiment on a relatively high sampling rate 50% to make the comparison
more convincing. We use the T1-weighted and T2-weighted brain image as examples and record both
the PSNR and SSIM in Table 3. Compared to sampling rate of 20%, the performance of all CS-MRI
reconstruction methods increase significantly. The WaTMRI and PANO work well on the random and
radial pattern, but their performance on Cartesian pattern are not as good as BM3D and NLκTV.
As shown, our NLκTV model provides very competitive results for all sampling patterns, which has a
remarkable advantage over both κTV and NLTV.

To validate the numerical convergence of the proposed algorithms, we plot the curves of Θk and Θkw
using the T1-weighted image of sampling ratio 10% in Fig. 7. In the computation of Θk and Θkw, τk is
the subgradient of L1 norm, which is simply set to zero at the non-differentiable points. Although we can
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not find the theoretical lower bound of Θk and Θkw, it is shown to be nonnegative in practice. Besides,
we discuss the impact of r1 and r2 in NLκTV method based on the same test image. By varying the
parameter (r1, r2) ∈ [2−10, 210] × [2−10, 210], we perform the NLκTV algorithm and plot the PSNR in
Fig. 8. It can be observed that there are relatively large intervals for both r1 and r2 to generate good
reconstruction results.

Fig. 9 presents the absolute error and PSNR curve obtained using the T1-weighted brain image
under the random sampling pattern. As we mentioned, the weight function of our NLκTV method is
computed based on the κTV reconstruction. The error curve shows that both κTV and NLκTV method
converge very fast, i.e., less than 10 seconds, while other methods require more than 30 seconds and
converge to relatively large absolute errors. On the other hand, the PSNR curves illustrate that both
NLκTV and BM3D method converge less than 100 iterations and our NLκTV method achieves results
with much better quality. Thus, our NLκTV algorithm outperforms other CS-MRI methods in numerical
convergence.

4.3 Estimation of the weight function

The weight function plays a very critical role in nonlocal methods, especially for image inpainting and
sparse reconstruction problem. We compare the reconstruction quality and the computational efficiency of
the NLκTV method with either updated or fixed weights on the T1-weighted brain image with sampling
ratio 20%. The terminating conditions are given as either the relative error reaching 3 × 10−5 or the
iteration number reaching 500. In particular, the initial weight for the updated case is calculated using
the zero-filling reconstruction and updated every 20 iterations thereafter. We list the obtained PSNR
and SSIM in Table 4 which shows the NLκTV with the fixed weights can provide reconstruction results
as good as the ones obtained using the updated weights. On the other hand, the CPU-time of the fixed
weight scheme is far faster. Thus, it is reasonable to use the reconstruction of the κTV method to compute
the weight function for the NLκTV model.

Table 4 The performance evaluation and speed comparison for fixed weights and updated weights on the T1-weighted
image of sampling ratio 20%

Mask Weights PSNR SSIM Iteration CPU(sec)

Random
updated 45.52 0.993 320 96.0

fixed 45.41 0.995 54 8.7

Cartesian
updated 26.59 0.888 500 144.0

fixed 26.82 0.851 44 7.8

Radial
updated 45.03 0.994 117 34.4

fixed 44.85 0.994 73 9.9

4.4 Complexity analysis

The proposed NLκTV method can be separated into the reconstruction step and nonlocal denoising step.
The reconstruction (22) is realized by the FFT, the computational complexity of which is O(N logN) with
N being the total pixels of an image. The computational complexity of nonlocal denoising isO(NQ), where
Q is the number of similar patches used in the experiments. Without loss of generality, the computational
complexity of the NLκTV method can be approximately given as O(N logN); see Table 5.

We also list the average time required by each algorithm obtained by averaging among all test images
with all combinations of the mask types and sampling ratios in Table 5, where the CPU-time of NLκTV
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is the total time of the preprocessing using the κTV and the reconstruction by nonlocal κTV. As shown,
although the computational complexity is the same as the NLTV and PANO, the NLκTV costs much
less CPU-time as it converges faster in practice. Besides, we observe that our NLκTV is also faster than
the BM3D such that our proposal produces comparable or better reconstruction results using only less
than 1/3 its CPU-time.

Table 5 The complexity and average CPU-time for different MR reconstruction methods

Methods κTV TGVST LaSAL2 WaTMRI NLTV PANO BM3D NLκTV

O(·) N logN N logN - N logN N logN NQ N logN N logN
Time(s) 4.5 34.3 56.9 5.5 81.3 57.4 33.5 10.2

5 Conclusion

We proposed a novel sparse reconstruction method based on the Euler’s elastica energy, which is a well-
known high-order regularizer for dealing with image denoising and inpainting problem. In order to further
improve the reconstruction quality, we extended the Euler’s elastica into the nonlocal formulation. By
regarding the Euler’s elastica as a weighted TV model, efficient algorithms were developed for both local
and nonlocal model based on the ADMM, the convergence of which was also discussed under certain
assumptions. We evaluated both local and nonlocal elastica methods on sparse reconstruction problems
under different sampling patterns and sampling ratios for a variety of images. By compared with the state-
of-the-art CS-MRI algorithms, our proposal produced the overall best performance for undersampled
observations with high efficiency. It demonstrated the superiority of the NLκTV method in recovering
missing information and preserving structures by taking advantages of both high-order regularizer and
the nonlocal mechanism.

The proposed nonlocal elastica model can be applied to many other image tasks such as denoising,
inpainting and segmentation, in which the minimization of curvature can play an important role. We
can also further improve our nonlocal formulation using the block based method [30] and measuring the
distances between image patches by structural similarity [45].
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