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Abstract. X-ray computed tomography (CT) reconstruction with sparse projec-
tion views was proposed to reduce both the radiation dose and scan time. How-
ever, lacking of sufficient projection views may lead to severe artifacts for analyt-
ical reconstruction method such as the filtered back projection (FBP). Although
the projection data is incomplete, we can generate the full-sampling system matri-
ces according to the sufficient-sampling conditions [5]. Thus, we propose a novel
iterative reconstruction model by fitting the CT images and their corresponding
measurements in Radon domain through the full-sampling system matrices to
fully make use of the prior information contained in observed data. Our proposed
model is solved by the learned alternating minimization method, which accounts
for a forward operator in deep neural network by the unrolling strategy. Numeri-
cal results demonstrate that the proposed approach outperforms some latest learn-
ing based reconstruction methods for the sparse-view CT problems.
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1 Introduction

Image reconstruction from down-sampled or limited measurements, e.g., low dose and
limited angle CT, are examples of ill-posed inverse problems, which can be formulated
as estimating the image u ∈ X from the measurement g ∈ Y ,

g = Au+ n, (1)

where the reconstruction space X and data space Y are typically Hilbert space, A :
X → Y is the projection matrix for sparse CT, and n ∈ Y is the random noises gen-
erated during the imaging processes. The goal of CT reconstruction is to recover the
image u from the set of acquired projection data g. For the sparse-view CT, the sys-
tem matrix, denoted by AS , has fewer rows than columns so that there is a nontrivial
nullspace and has infinity many solutions. Even if the solution of the inverse problem
exists and is unique, the linear operator AS may still be ill-conditioned such that the
condition number ‖A‖‖A−1‖ is large and the linear system (1) is sensitive to the per-
turbations in data.

One way for the ill-posed inverse problem is to introduce certain regularity into the
problem to guarantee the existence, uniqueness and stability of the solution. The general
regularization method gives the following energy minimization problem

min
u∈X

D(Au, g) +R(u), (2)
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where D(Au, g) is the data fidelity term and R(u) is the regularization term. Thus, the
task of solving (2) mainly includes: 1) how to define the data fidelity to describe the
interrelationship between g and u; and 2) how to model the regularization according to
the prior information of u. In case of additive Gaussian noise and the unknown u being
piecewise constant, we can obtain the well-known total variation minimization model
for CT reconstruction [7] as follows

min
u∈X

1

2
‖Au− g‖2X + λ‖∇u‖1, (3)

where λ acts as a trade-off parameter between the data discrepancy and regularization.
Although TV regularization improves the reconstruction quality compared to analytical
reconstruction such as filtered back-projection (FBP) method, it is still not judicious to
choose the data fidelity and regularization in such a sophisticated way.

Due to the development of deep convolutional neural networks (CNN) in a broad
range of computer vision tasks, deep learning techniques are being actively used in med-
ical imaging community. The pioneer work of Yang et al. [8] reformulated an ADMM
algorithm for compressive sensing MR imaging into a deep network by learning the
parameters end-to-end in the training phase. Jin et al. [4] used the deep CNN as a
post-processing step after the reconstruction of FBP to mitigate noises and artifacts.
Adler and Öktem [1] proposed the learned primal dual algorithm for CT reconstruction
by unrolling the proximal primal-dual optimization method and replacing the proxi-
mal operators with convolutional neural networks. Liu, Kuang and Zhang [6] used a
deep learning regularization structure to learn the data consistence from the observed
data. Dong, Li and Shen [3] proposed a joint spatial-Radon domain reconstruction (JSR)
model for sparse view CT imaging, and was recently reformulated into the feed-forward
deep network [9]. Learning-based models have been already proven efficient for image
reconstruction problems.

In this work, we aim to reconstruct the sparse-view CT by making using of the full-
sampling system matrix, which is called as the learned full sampling reconstruction
(FSR). Instead of modeling the data fidelity term according to the noise distribution
and the regularization term based on the prior information, we take the advantages of
deep CNN to learn the interrelationship between observed data and reconstruction im-
age and the prior information directly from the data. As we can obtain the full sampling
system-matrix according to the sufficient sampling conditions in [5], we introduce an-
other fidelity term to enforce the closeness of the reconstructed image and the full sam-
pling projection data. In this way, we can learn the prior information of the completed
Radon domain data from the training data, which is then applied to approximate the full-
sampling projection in the testing. We use the alternating direction method to achieve
an iterative scheme, and find the best update in each iteration using the CNN. Numeri-
cal experiments demonstrate that the proposed FSR-net achieves better performance in
sparse-view CT reconstruction.

2 Our Approach

In CT reconstruction, the system matrix A reflects the relationship between the pro-
jections on detector and the reconstructed objects. For the circular fan-beam CT, the
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dimensions of the system matrix A are M ×Npix, where Npix denotes the total number
of pixels and M is the number of ray integrations defined by

M = Nviews ×Nbins

with Nviews being the number of views (i.e., 2π arc is divided into Nviews equally
spaced angular intervals) and Nbins being the number of bins on the detectors (i.e.,
the detector is equally divided into Nbins). Before we discuss the sparse-view CT, we
define the full sampling based on the four sufficient-sampling conditions (SSCs) in [5],
which is obtained by setting the sampling parameters Nviews and Nbins for given Npix

to characterize the invertibility and stability of the system matrix. The first pair of the
SSCs characterizes invertibility of A, that is

SSC1 : M ≥ Npix and SSC2 : σmin 6= 0,

where σmin is the smallest singular value ofA. The other pair of the SSCs characterizes
the numerical stability for inversion of A, which is defined as

SSC3 :
κ(A)

κDC
< rsamp and SSC4 : Nviews = Nbins = 2N,

where κ(A) = σmax

σmin
, κDC = lim

Nbins → ∞
Nviews → ∞

κ(A), rsamp is a finite ratio parameter greater

than 1, and N is the length of the field-of-view (ROV) of the detector (Npix ≈ π
4N

2).
As shown, both the SSC1 and SSC4 are simple to evaluate, which will be used to define
the full-sampling system matrix in our work.

In contrast, when the Nviews is not large enough to meet the SSCs for the fixed
Nbins, it can be regarded as the sparse-view CT problem. Our goal is to develop efficient
reconstruction methods for such ill-posed inverse problem. Since the full-sampling sys-
tem matrix can be constructed according to the SSCs, we directly bridge the completed
Radon domain data f ∈ Z and the reconstructed image u ∈ X through a full-sampling
system matrix such that

f = AFu,

where AF : X → Z is the full-sampling projection matrix and Z is a Hilbert space.
Therefore, we propose the following minimization model to jointly reconstruct the spa-
tial and Radon domain data for sparse-view CT

min
u∈X,f∈Z

D(ASu, g) +R(u) + F(AFu, f), (4)

where F(AFu, f) is used to measure the distance between AFu and f . Since the un-
known u and f are coupled together in (4), we introduce a new variable ũ and rewrite
(4) by adding a fitting term ‖ũ− u‖2 as follows

min
u∈X,f∈Z,ũ∈X

D(AS ũ, g) +R(ũ) + F(AFu, f) +
1

2r
‖ũ− u‖2X , (5)
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where r is a positive parameter used to measure the trade-off between the under-sampling
data g and a full-sampling projected data f . The first term in (5) contains the linear op-
erator AS , which can be reformulated based on the Legendre-Fenchel conjugate [2]

min
u∈X,f∈Z,ũ∈X

max
p∈Y

〈AS ũ, p〉 − D∗(p, g) +R(ũ) + F(AFu, f) +
1

2r
‖ũ− u‖2X , (6)

where D∗ denotes the conjugate of D. The classical alternating direction method can
be used to obtain an efficient algorithm for the multiple variable minimization problem
(6), which gives

pk+1 = arg min
p∈Y

D∗(p, g)− 〈AS ũk, p〉+ 1
2τ ‖p− p

k‖2Y ,

ũk+1 = arg min
ũ∈X

R(ũ) + 〈AS ũ, pk+1〉+ 1
2r‖ũ− u

k‖2X ,
fk+1 = arg min

f∈Z
F(AFu

k, f) + 1
2σ‖f − f

k‖2Z ,

uk+1 = arg min
u∈X

F(AFu, f) + 1
2r‖u− ũ

k+1‖2X ,

(7)

where τ and σ are positive parameters. As shown, the proximal method is adopted for
the subproblem with respect to p and f in case the likelihood functional D(·, ·) and
F(·, ·) are non-smooth. The solutions to each subproblem can be expressed as follows

pk+1 = (I + τ∂D∗)−1(pk, τAS ũ, g),
ũk+1 = (I + r∂R)−1(uk, rA∗Sp

k+1),
fk+1 = (I + σ∂F)−1(fk, σAFu

k),
uk+1 = (I + r∂F)−1(ũk+1, rA∗F f

k+1).

(8)

Guided by the success of deep learning, we use CNN for unrolled iterative scheme such
that the network can learn how to combine the variables in the object functional, which
accounts for a deep feed-forward neural network by using CNNs to approximate the
inverse operators in (8). The alternating direction algorithm with I iterations is outlined
as Algorithm 1.

Algorithm 1 Learned Full Sampling Reconstruction (FSR)

1: Initialize u0, f0, p0, ũ0

2: for k = 1, . . . , I, do
3: pk+1 ← Γθp(pk, ASu

k, g)
4: ũk+1 ← Λθũ(uk, A∗Sp

k+1)
5: fk+1 ← Πθf (fk, AF ũ

k+1)
6: uk+1 ← Θθu(ũk+1, A∗F f

k+1)
7: return uI , f I

Remark 1. In the algorithm, we assume the constraint ũ = u holds unconditionally.
Therefore, fk+1 is calculated based on AF ũk+1 rather than AFuk as ũk+1 was already
updated in the previous step. Besides, instead of selecting specific values for τ , σ and
r, we let the network learn the appropriate value by itself.
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3 Experiments and Results

In this section, we evaluate the proposed algorithm on both ellipse data [1] and piglet
data3 by comparing with the state-of-the-art work, i.e., FBP-Unet denoising [4] and
Leaned Primal-Dual [1].

3.1 Implementation

The methods are implemented in Python using Operator Discretization Library (ODL)
and TensorFlow. We let the number of data that persists between the iterates be Nu =
Nũ = 6 and Np = Nf = 7. The convolution are all 3 × 3 pixel size, and the numbers
of channels in each iteration are p of 9 → 32 → 32 → 7, ũ of 7 → 32 → 32 → 6,
f of 8 → 32 → 32 → 7 and u of 7 → 32 → 32 → 6. The network structure of one
iteration is illustrated in Fig. 1, where totally 10 iterations are contained in our network.
As shown, each iteration involves four 3-layer that is the depth of network is 120 layers.

Fig. 1. Network architecture to solve the tomography problem. Each box corresponds to one
variable, which are all of the same architecture.

We use the Xavier initialization scheme to initialize the convolution parameters, and
initialize all biases to zero. Let Θ = {θp, θũ, θf , θu} and T † be the pseudo-inverse of
the minimization process (4) defined as

T †Θ(g) ≈ (utrue, ftrue) for data g satisfying (1),

Suppose (TΘ(u), TΘ(f)) = T †Θ(g) and (g1, u
∗
1), (g2, u

∗
2), . . . , (gL, u

∗
L) be L training

samples. We apply the ADAM optimizer in TensorFlow to minimize the following em-
pirical loss function

L(Θ) =
1

2L

L∑
i=1

(
‖TΘ(ui)− u∗i ‖

2
X + ‖TΘ(fi)−AFu∗i ‖

2
Z

)
. (9)

Most parameters are set the same as the PD-net in [1]. We use 2× 105 batches on each
problem and a learning rate schedule according to cosine annealing, i.e., the learning

3 https://1drv.ms/u/s!Aj4IQl4ug0 9hEb1c6UzqHKxA4nZ
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rate at step t is ηt = η0

2

(
1 + cos(π t

tmax
)
)
, where the initial learning rate is set as

η0 = 10−3 for the ellipse data and η0 = 10−4 for the piglet phantom. We let the
parameter β2 of the ADAM optimizer to 0.99 and limit the gradient norms to 1 to
improve training stability. The batch size is set as 5 and 1 for the ellipse data and piglet
phantom, respectively.

3.2 Results on Ellipse Phantoms

Similar to [1], we randomly generate ellipses on a 128 × 128 pixel domain by par-
allel beam projection geometry with Nbins = 128 and Nviews = 15, Nviews = 30.
Both 5% and 10% additive white Gaussian noises are added to the projection data. We
use the full sampling system matrix provided by ODL for parallel beam CT as AF
in our model (4). Table 1 presents the PSNR and SSIM obtained by the CNN based
models. It is obviously shown that the best PSNR values are always achieved by our
FSR-net and PD-net ranks the second position, both of which are significantly better
than the Unet based post-processing method. Especially, the advantage of our FSR-net
over PD-net becomes more convincing for Nviews = 15 and 5% Gaussian noise, giving
an improvement exceeding 1 dB, which demonstrates the effectiveness of our model in
sparse-view reconstruction. The comparison of the PSNR and SSIM between the FBP
with g and FBP using the reconstructed projection data f from our model in Table 1
also demonstrates that our model can recover the Radon domain data to certain qual-
ities. We display the reconstruction results of the sparse 15 views with 5% Gaussian
noise in Fig. 2, which shows that our reconstruction preserves the geometry and details
better than the other two methods.

Nviews Noises Methods PSNR SSIM time FBP(PSNR) FBP(SSIM)

30

5%
FBP-Unet 28.1693 0.9346 1.5

19.7216 0.5938
PD-net 39.2301 0.9860 4.6
FSR-net 39.6588 0.9897 6.6 21.5168 0.8930

10%
FBP-Unet 26.2985 0.9250 1.5

19.1199 0.5073
PD-net 31.9033 0.9707 4.6
FSR-net 32.1213 0.9695 6.6 21.2971 0.8881

15

5%
FBP-Unet 19.8411 0.7224 1.4

16.1378 0.4217
PD-net 30.3615 0.9719 4.4
FSR-net 32.0468 0.9707 6.4 21.3333 0.8607

10%
FBP-Unet 19.4893 0.7370 1.4

15.5722 0.3394
PD-net 25.1603 0.9301 4.4
FSR-net 25.9528 0.9238 6.4 20.8019 0.8470

Table 1. Comparison of reconstruction methods for the ellipses in terms of PSNR, SSIM and
Runtime.

In addition, we apply the parameters trained by the sparse 30 views and 5% Gaus-
sian noise to testing data with different sparsity, i.e., g obtained by Nviews = 30, 25, 20.
We compare the results with the learned PDHG net, learned primal net and learned
primal-dual net from [1] in terms of PSNR and SSIM in Table 2. As shown, our model
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(a) FBP (b) FBP with f (c) FBP-Unet (d) PD-net (e) FSR-net

Fig. 2. Reconstruction comparison on the ellipse data, where the window is set to [0.1, 0.4].

performs more stable in adapting with different testing data, which is because our model
tries to minimize the distance between the reconstructed image and the full-sampling
projection data.

Nviews 30 25 20
PSNR SSIM PSNR SSIM PSNR SSIM

PDHG-net 29.6762 0.9111 27.4642 0.8602 22.8205 0.6866
Primal-net 37.2040 0.9848 35.4175 0.9812 33.1559 0.9655
PD-net 39.2301 0.9860 36.4508 0.9757 34.6969 0.9365
FSR-net 39.6588 0.9897 38.6696 0.9853 35.8236 0.9769

Table 2. Reconstruction comparison on the ellipse data of learning-based models with different
sparsities.

3.3 Results on piglet phantom data

We test the proposed model on simulated CT data of a deceased piglet, which is scanned
from a 64-slice multi-detector CT scanner (Discovery CT750 HD, GE Healthcare) using
100kV and 0.625mm slice thickness. We use 896 images of size 512 × 512 as the
ground truth for training and 10 for evaluation. We adopt the fan-beam geometry with
Nbins = 512 and Nbins = 1024, source to axis distance 500mm and axis to detector
distance 500mm. The number of views is set as follows

• For Nbins = 512, the observed data g is generated by 64 uniformly distributed
views over 2π arc with two different Poisson noises of 104 and 5 × 105 incident
photons per pixel before attenuation. The full-sampling system matrix AF is con-
structed according to SSC1, i.e., Nviews = 512;

• For Nbins = 1024, the observed data g is generated with either 120 views or 60
views and Poisson noise of 104 incident photons. The full-sampling system matrix
AF is defined according to SSC4, i.e., Nviews ≈ 1024. Because Nviews ≈ 1024
gives too much computational burden, we use Nviews = 720 in practice.

As shown in Table 3 and 4, our model outperforms other methods in reconstruction
quality. Especially when we use the parameters trained by Nviews = 64 to reconstruct
the sparse data such as Nviews = 32, 28, 24, our model achieves a PSNR 0.5 ∼ 3dB
higher than PD-net. Both the reconstructed images and the error maps are displayed
in Fig. 3, the first column displays the FBP reconstruction of observed data g (row
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one) and our estimated full-sampling measurement f (row two). It is obviously shown
that our model can well inpaint the Radon domain data and improve the reconstruction
quality.

Nbins Nviews Noises Methods PSNR SSIM time FBP/PSNR FBP/SSIM

512

64 5× 105
FBP-Unet 32.165 0.992 5.2

27.02 0.832
PD-net 36.202 0.997 5.3
FSR-net 36.875 0.997 6.6 27.423 0.9222

64 104
FBP-Unet 28.917 0.9853 5.2

22.7613 0.4196
PD-net 29.999 0.9887 5.3
FSR-net 30.564 0.9903 6.6 27.3457 0.9182

1024

120 104
FBP-Unet 30.8926 0.9898 5.3

20.5832 0.3023
PD-net 32.382 0.9933 5.4
FSR-net 33.084 0.9941 6.7 27.3967 0.921

60 104
FBP-Unet 28.192 0.9793 5.5

18.0077 0.1658
PD-net 31.263 0.9913 5.6
FSR-net 31.763 0.9921 7 27.3917 0.9198

Table 3. Comparison of reconstruction methods for a piglet phantom in terms of PSNR, SSIM
and Runtime (s).

Nviews 32 28 24
PSNR SSIM PSNR SSIM PSNR SSIM

FBP-Unet 23.44 0.9513 20.1502 0.9008 18.9658 0.855
PD-net 25.27 0.9761 21.0392 0.9453 18.333 0.906
FSR-net 25.86 0.973 23.0581 0.9534 21.1436 0.9304

Table 4. Reconstruction comparison on the piglet dataset of learning-based models with different
sparsities.

4 Conclusion
We proposed a novel iterative reconstruction model by fitting the reconstructed im-
age with its corresponding measurements in Radon domain through the full-sampling
system matrices. This new algorithm is in the family of deep learning based iterative re-
construction schemes. The application on sparse-view CT image reconstruction demon-
strates the effectiveness of the proposed model and it is also clearly shown that the
proposed method can be applied to other applications such as limited-angle CT recon-
struction and compressed-sensing MR reconstruction.
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