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Abstract

With the proposed of Generative Adversarial Networks (GANs), the gener-
ative adversarial models have been extensively studied in recent years. Al-
though probability-based methods have achieved remarkable results in image
synthesis tasks, there are still some unsolved challenges that are difficult to
overcome. In this paper, we propose a novel model, called Discriminative
Metric-based Generative Adversarial Networks (DMGANS), for generating
real-like samples from the perspective of deep metric learning. To be spe-
cific, the generator is trained to generate realistic samples by reducing the
distance between real and generated samples. Instead of outputting probabil-
ity, the discriminator in our model is conducted as a feature extractor, which
is well constrained by introducing a combination of identity preserving loss
and discriminative loss. Meanwhile, to reduce the identity preserving loss, we
calculate the distance between samples and their corresponding center and
update these centers during training to improve the stability of our model.
In addition, a data-dependent strategy of weight adaption is proposed to
further improve the quality of generated samples. Experiments on several
datasets illustrate the potential of our model.
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1. Introduction

Generative Adversarial Networks (GANs) [1] as a convincing branch of
deep generative models have attracted tremendous attention. Specifically,
the emergence of GANs has brought significant improvements in many tasks,
such as image generation [2, 3], image super-resolution [4], image-to-image
translation [5, 6], and other related applications [7, 8, 9, 10]. Compared to
deep Boltzmann machines [11] or generative stochastic networks [12], which
require intractable probabilistic computations explicitly, GANs avoid these
computations by deriving back-propagation signals through a competitive
process involving a pair of networks. Nevertheless, vanilla GAN [1] could
only generate low-resolution gray-scale samples, yet the training process of
vanilla GAN is notoriously difficult and often suffers from mode collapse.
To alleviate these problems, researchers have explored various aspects of
GANS, such as the choice of the architectures [13, 14, 15], regularization and
normalization schemes [16, 17], and the design of loss functions [18, 19, 20].
Even though tremendous improvements [21, 15] have been achieved, these
models still pay little attention to deep metric learning, which is widely
applied in supervised classification tasks.

As a popular method for extracting more discriminative features, deep
metric learning has witnessed its success in classification tasks, such as face
recognition [22, 23] and objective recognition [24, 25]. By designing ap-
propriate objective functions, deep metric learning approaches [26, 27, 28]
can obtain intra-class compact and inter-class separable features and achieve
state-of-the-art results on many tasks. The success of deep metric learning
in achieving classification tasks has motivated researchers to investigate the
use of deep metric learning in other relevant tasks such as image generation.
Recently, MBGAN [29] and MLGAN [30] apply deep metric learning to GAN
models to generation tasks. They view the discriminator as a feature extrac-
tor that maps samples into a feature space, where the distances between real
samples are minimized as well as the distances between real and fake sam-
ples are maximized. At the same time, the generator is trained to generate
samples that are close to real data under the learned metric. Furthermore,
by adding a term called “center penalty”, which punishes the discriminator if
it learns inappropriate features for images away from their predefined center
vectors, MLGAN improves the quality of generated images. However, it is
still limited because hand-engineered centers are inflexible, i.e., they cannot
suit the distribution of data during training. On the other hand, MBGAN



adopts a data-dependent margin and needs a triplet of samples in each it-
eration. However, they only calculate the distance between samples, which
means they can not effectively utilize the information on the distribution of
data and are sensitive to samples with noise during training. It is difficult to
get enough representative features only by calculating the distance between
samples in transformed space.

Inspired by the works mentioned above, we propose a novel generative
adversarial model from the perspective of deep metric learning, named Dis-
criminative Metric-based Generative Adversarial Network (DMGAN). Dif-
ferent from traditional GANSs, the generator in our model aims to capture
the distribution of real data by reducing the distance between synthesized
images and real ones in feature space. Simultaneously, we conduct the dis-
criminator as a feature extractor that maps samples into a latent feature
space to measure whether a given sample belongs to real data or not. Sim-
ilar to [31, 32, 33] which optimize their model with group decision making
(GDM) method, our discriminator is trained under the joint supervision of
discriminative loss and identity preserving loss. On the one hand, we max-
imize the distance between real and fake samples using discriminative loss.
On the other hand, the identity preserving loss is optimized to minimize the
distance between samples and their corresponding centers in feature space. It
should be noted that centers of samples utilized in our model are constantly
updated during the training process following the strategy in center loss [28].
Thus the discriminator can extract illustrative features to distinguish real
samples from false ones as well as faithfully preserve the local structure of
samples in feature space. To further improve the quality of samples gener-
ated by our model, we introduce a data-dependent weight adaptive strategy
for the discriminative loss. That is to say, if the distance between generated
samples and real samples in features is large, the corresponding weight will
be small, otherwise, the weight will be large. With the adaptive strategy, our
model can focus more attention on improving those poorly-produced samples
instead of wasting energy on well-produced samples.

The main contributions of our work lie in four folds:

o« We propose the Discriminative Metric-based Generative Adversarial
Network (DMGAN) with a simple and robust training procedure from
the perspective of deep metric learning.

e We combine the discriminative loss and identity preserving loss to ex-
actly recover the implicit distribution of real data. Furthermore, we

3



integrate identity preserving loss and discriminative loss using an adap-
tive weight dependent on data to drive the model to pay more attention
to improving those poorly-produced samples.

e« We calculate the center of samples according to the labels of sam-
ples and then minimize the distance between samples and their data-
dependent centers, so that our model can learn representative features
in transformed space.

o We adopt the point that we can generate samples with the same distri-
bution as real samples by using a deep metric learning method. Experi-
mental results demonstrate that our model outperforms state-of-the-art
results on several datasets.

2. Related works

We briefly review prior works related to our proposed approach in this
section. For clarity, we group them into two aspects: deep metric learning
and generative adversarial networks.

2.1. Deep metric learning

Facing with large amounts of data and complex deep models, researchers
put forward deep metric learning methods, which adopt conventional met-
ric learning approaches on the top of deep features. Generally, deep metric
learning methods are utilized to learn powerful deep nonlinear transforma-
tions into a feature space whose metric is in correspondence with a predefined
similarity. As a typical deep metric learning method, contrastive loss [26]
learns a globally coherent nonlinear function that minimizes intra-class dis-
tance and forces inter-class distance to be larger than a fixed margin. On the
other hand, rather than a pair of samples, triplet loss [27] requires a triplet of
training samples as input and minimizes the distance between an anchor sam-
ple and a positive sample while maximizes the distance between the anchor
sample and a negative sample, which is to make the inter-class gap distance
larger than the intra-class gap by a margin relatively. However, the applica-
tions of contrastive loss and triplet loss are limited because penalizing pairs
or triplets of samples suffer from dramatic data expansion. To alleviate this
problem, center loss [28] targets more directly on the learning objective of the
intra-class variations by constraining the distance between samples and their
corresponding centers, which is very beneficial to the discriminative feature
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learning. Actually, through the joint supervision of center loss and softmax
loss, the discriminative power of deep features can be highly enhanced. Fur-
thermore, each class of samples in magnet loss [34] are further grouped into
several clusters and local discrimination is achieved by adaptively penalizing
the distance between samples and their clustering centers. In summary, as
an essential statistic of samples, the center plays a crucial role in many deep
metric learning algorithms, and the success of utilizing deep metric learning
algorithms on classification tasks motivates us to devote more efforts to im-
proving generative adversarial models from the perspective of deep metric
learning.

2.2. Generative adversarial networks

GAN [1] is a machine learning technique that learns to generate fake
samples indistinguishable from real ones via a competitive game. The archi-
tectures of GAN are composed of two neural networks, a discriminator and
a generator. The discriminator D is equipped to maximize the probability
of assigning correct labels to both real samples and generated samples while
the generator G is trained to fool the discriminator with synthesized data.
During the last few years, a large amount of GANs [35, 36, 37] have been
proposed in two categories: unconditional GANs and conditional GANSs.

As the primitive generative adversarial model, vanilla GAN [1] always en-
counters training instability and mode collapse during the process of achiev-
ing the Nash equilibrium of the generator and the discriminator. To alleviate
the problem of mode collapse and increase the stability of the model, Cat-
GAN [38] puts forward an unconditional categorical generative adversarial
model by utilizing mutual information between real and generated samples.
Besides, MLGAN [30] pays its attention to the way to measure the similarity
between the distribution of real data and synthesized samples and proposes a
novel model based on distance metric learning without condition. Recently,
KM-GAN [39] presents an unconditional generative adversarial model by in-
corporating the idea of updating centers in K-means into GANs. Although
the quality of samples generated by these unconditional GANs has exceed-
ingly improved, they always suffer from problems during training.

To solve the problems mentioned above and further improve the per-
formance of generative adversarial models, researchers start to pay more
attention to conditional GANs [13, 18, 29, 40]. Indeed, CGAN [40] has
greatly improved the model stability and quality of synthesized samples by
fusing one-hot labels into the adversarial learning process. Subsequently,



DCGAN [13] designs a stable architecture utilizing convolutional neural net-
works and provides several tricks to stabilize the adversarial training of condi-
tional GANs. Based on these efforts, a growing number of conditional GANs
2, 6, 14, 18, 19, 20, 21, 41] are proposed. Among them, some conditional
GANs [2, 6, 14, 21] dedicate to redesigning the architecture of models while
some models [18, 19, 20, 41] adopt different criteria to distinguish between
real and fake samples. For instance, EBGAN [19] regards the discriminator
as an energy function, and LSGAN [20] adopts the least square loss for the
discriminator. Inspired by the successful utilization of deep metric learn-
ing in the tasks of supervised classification, MBGAN further [29] extends
the framework of GAN from the perspective of deep metric learning. To be
specific, the discriminator adopts a triplet of inputs and learns a nonlinear
transformation to map these samples from the original space into a feature
space. However, only penalizing triplets of samples can not employ sufficient
insights of data structure, which would hinder the performance of the model.
The key challenge for generating high-quality images is whether the discrim-
inator can learn representative features for metric-based generative models.
Therefore, it is desirable to tell the algorithm to concentrate on the statistics
of features in representation space for extracting illustrative features as well
as generating more realistic images.

3. Proposed method

In this section, we introduce our generative adversarial model, Discrimi-
native Metric-based Generative Adversarial Network (DMGAN), which bor-
rows the idea from deep metric learning. Firstly, we give a detailed descrip-
tion of our model in regular. Then a strategy of weight adaption is introduced
to improve the performance of DMGAN.

3.1. Regular DMGAN

The diagram in Figure 1 shows the framework of our model. Give a
random vector z ~ p,, the generator GG directly learns a mapping that maps
the latent variable z to a real-like fake sample G(z). The discriminator, as
a feature extractor, utilizes the proposed metric function to distinguish real
samples from synthesized ones. To be specific, the discriminator embeds the
real sample x or generated sample G(z) into a feature space where samples
are measured by Euclidean distance. Indeed, many different distance metrics
can be selected for DMGAN, and we focus on Euclidean distance for ease of
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Figure 1: Architectures of the proposed DMGAN. Similar to regular GANs, the gener-
ator and discriminator in DMGAN can be realized by multi-layer perceptron (MLP) or
convolutional neural network (CNN). The generator aims to synthesize realistic images
while the discriminator aims to extract representative features through joint supervision
of identity preserving loss £;, and discriminative loss £4. € and c in the objective of L;,,
represent the centers corresponding to samples G(z) and .

presentation. The discussion and analysis can easily be extended to other
types of metrics. To accurately measure the distance between generated
samples and real samples, we adopt a group decision making method and
introduce an objective for the discriminator that contains two parts, i.e.,
discriminative loss and identity preserving loss. The discriminative loss is
used to enlarge the distance between real samples and fake ones so that real
and fake samples can be distinguished, and the specific objective function is
listed as follows:

Li=—| D(G(2))—D(x) || (discriminative loss) (1)

where D(x) and D(G(z)) are the output features of real and generated sam-
ples of the discriminator, respectively.

Since L4 is a part of the loss function of our discriminator for a pair of
dissimilar samples, we can separate real samples and synthetic samples in
feature space by minimizing the objective function £;. Nevertheless, only
optimizing £, during training cannot guarantee that the features learned by
the discriminator are representative. Hence, we introduce identity preserving
loss to the discriminator to learn robust features. To be specific, as another
part of the objective function of the discriminator, the identity preserving
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loss tries to push each sample close to its corresponding center. Let ¢ and
¢ denote centers of deep features D(x) and D(G(z)), then the objective can
be formulated as follows:

Ly =| D(x)—cl|2+ || D(G(z)) —c |2 (identity preserving loss) (2)

L;, is an objective to minimize the intra-class variations by enforcing D(x)
(or D(G(2))) to have small distance with its corresponding center ¢ (or €) in
feature space. Centers in our model share the same dimension with the out-
put of the discriminator and are initialized to (0,0,---,0). Furthermore, to
alleviate the limitation of hand-engineered centers on training, we constantly
update them during training as deep features of samples are changed. The
updated criteria is computed as:

> iy 6(y; =i)(ei — x5)
1+> 700 0y =1)

c =c;—7v-ANc¢; (4)

?

where m is the size of mini-batch. ¢ is an indicator function that means
d(condition) = 1 if the condition is satisfied, and §(condition) = 0 if not. ¢;
represents the center of deep features of real samples in category 7. If there
is no label in given data, the model treats all the training data as the same
class, that means | i |[= 1 (| 7 | represents the number of different 7). On the
contrary, | i | = k (k > 1), where k refers to the number of classes of data. ¢
has the same update rule as ¢, but the difference is that updating ¢ depends
on generated samples. v is a hyper-parameter introduced for controlling
the updated ratio of data-dependent centers. When the value of v is large,
the new data-dependent center depends more heavily on the features of the
current stage and has less memory of the previous features. On the other
hand, when ~ is small, it will depend heavily on the center of the last step.
So we can see that fixing centers in MLGAN can be considered as a special
case when 7 is set to 0.

To learn more discriminative features and accurately distinguish real sam-
ples from generated ones, we adopt the joint supervision of £; and L;, to
train the discriminator, and the final objective is a weighted sum of £; and
£ip:

mgnﬁp :£ip+)\'£d (5)



Algorithm 1 Training algorithm for DMGAN
Input: Training set X, random noise z ~ P,, batch size m, hyper-

parameters A, v, number of epochs T', Adam hyper-parameters a, 51, 59
Output: Generated samples G(z)

Initialize parameters of D and G

Initialize centers ¢ = ¢ = (0,0, ---,0)

fort=1:T do

Sample m samples {x;}”, from real data X

Sample m noise samples {z;}7, from random noise distribution P,
Lp=Lp+ N Ly

gradg, = Vo, Lin + -V, Ly

04 = Adam(grady, 04, o, B1, P2)

Lo=—Ly

gradg, = Vg, Lg

0, = Adam(grady,8,, a, 1, B2)

Update centers ¢ and ¢ by ¢! = ¢t — v - Ac
end for

t

where A is a predefined hyper-parameter to govern the relative importance of
discriminative loss compared with the identity preserving loss. On the other
hand, the generator attempts to synthesize real-like samples by minimizing
the distance between real samples and generated samples in feature space,
and the objective of the generator is listed as:

mén Lo=—Ly4 (6)

In DMGAN, the generator and the discriminator can be trained with
stochastic gradient descent (SGD) [42] by backpropagation. The details of
the learning algorithm are given in Algorithm 1.

3.2. waDMGAN

In regular DMGAN, the discriminative loss L, assigns the same weight
for different generated samples, although some synthesized samples are of
good quality while others are not. This way of setting weights limits the
convergence of our model due to the lack of considering the difference be-
tween samples. In this section, instead of using a fixed weight of L; as in
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Algorithm 2 Training algorithm for waDMGAN
Input: Training set X, random noise z ~ P,, batch size m, hyper-

parameters A, v, number of epochs T', Adam hyper-parameters a, 51, 59
Output: Generated samples G(z)

Initialize parameters of D and G

Initialize centers ¢ = ¢ = (0,0, ---,0)

fort=1:T do

Sample m samples {x;}”, from real data X

Sample m noise samples {z;}7, from random noise distribution P,
for:=1:mdo

L Z?;HG(Z@)—%Hl}
1G(zi)—zill1

weight; = exp {
end for
weight = (weighty, weights, - - - weight,,)
Lp =L+ N weight - Ly
gradg, = Vo, L, + X - weight - Vo, L
0, = Adam(grady, 04, e, 51, 52)
Lo=—Ly
gradg, = Vg, Lg
0, = Adam(grady,8,, o, 1, B2)

Update centers ¢ and ¢ by ¢! = ¢! — v - Ac
end for

t

Eq. 5, we improve regular DMGAN by providing a data-dependent weight
adaptive strategy. That is to say, we assign different weights to different
samples according to the quality of samples generated during the training
process. By adding the data-dependent weights, the model can automati-
cally adapt the weights to guide the discriminator to extract more robust
and representative features and make the generator pay more attention to
improving poor-produced samples. The 7th adaptive weight is defined as
follows:

w2 | Glz1) — i |
) L m i=1 i i _ o
weight; exp{ | Gz — il } (i=1,2,---,m) (7)

Given a mini-batch samples, we calculate the pixel-wise gap between each
real and generated sample and then count the average distance of batch
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samples in each step of training. When the distance between real samples
and synthesized samples is smaller than the average value, the weight is
larger. Similarly, the weight will be a lower value if the distance between
the real and generated samples is larger than the average distance. Besides,
we add an exponential term to change the degree of the variation of weights
and the objective function of the discriminator with weight adaption is as
follows:

mDin Lp =L+ \-weight - Ly (8)

With this more relaxed condition, the discriminator in our model can
obtain more robust and discriminative features, thus the strategy of weight
adaption is an efficient way for generating more realistic images. For conve-
nience, we call DMGAN with weight adaption waDMGAN and summarize
the learning details of waDMGAN in Algorithm 2.

4. Experiments

We implement our experiments on various datasets, including MNIST
[42], SVHN [43] and CIFAR-10 [44]. In the following sections, we first de-
scribe experimental details and then show results on different datasets.

Generator Discriminator
Input 100-D random noise Input 64 x 32 x 32 X 3 images
5c-2s-5120 UpConv, BN, LReLU | 5c¢-2s-640 Conv, BN, LReLLU
5c-2s-2560 UpConv, BN, LReLU | 5c¢-2s-1280 Conv, BN, LReLU
5c-2s-1280 UpConv, BN, LReLU | 5c-2s-2560 Conv, BN, LReLU
5c-2s-640 UpConv, BN, LReLU | 5c¢-2s-5120 Conv, BN, LReLU

5c-2s-30  UpConv, BN, LReLLU 5000 FC
Tanh
Output 64 x 32 x 32 x 3 Output 500-D feature vector

Table 1: The structures of the generator and discriminator. “5c-2s-5120” denotes a 5 X 5
kernel with stride 2 and 512 outputs. “UpConv” stands for a fractionally-strided con-
volution layer, “FC” is the abbreviation of a fully connected layer. “BN” and “LReLU”
imply batch normalization and leaky ReLLU, respectively. The dimensionality of the output
vector of discriminator is set to 500.

Experimental details and hyper-parameters Before presenting ex-
periments, we briefly introduce some experimental details. We use the Ten-
sorFlow [45] library (version 1.3.0) to implement our experiments. Mean-
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while, a speed-up computing technique by TitanX GPU is exploited. The
exact architectures of the discriminator and the generator are typically imple-
mented as MBGAN, which are described in Table 1. Besides, we constraint
our model with Lipschitz restriction, which is realized by adding weight clip-
ping in the discriminator. For the clipping threshold, we experimentally set
it to [-0.1, 0.1]. In our experiments, the model requires techniques such as
batch normalization [46] and leaky ReLU [47] to achieve convergence. We
use Adam optimization [48] for training and set the learning rate to 0.0002,
momentum parameters « to 0.5, 8; and S5 to 0.9 and 0.99, respectively. All
models used in the following experiments are trained with mini-batch size of
64. Without a special explanation, these hyper-parameters are fixed for all
the visualization experiments.

Datasets We implement our experiments on various datasets, includ-
ing MNIST [42], SVHN [43] and CIFAR-10 [44]. We conduct experiments
on these datasets for the following reasons. Firstly, they are all labeled
databases, which meet the requirements of our algorithm. It is suitable for
us to learn faithful data-dependent centers during training due to the lit-
tle difference in the number of samples of different categories in these three
datasets. Secondly, many generative adversarial models conduct their exper-
iments on these datasets, and the complexity of samples in MNIST, SVHN,
and CIFAR-10 is gradually increasing. Experiments on them can illustrate
that our model not only performs very well on simple images but also can
deal with complex datasets. Figure 2 shows some examples of these datasets,
and details of them are described as follows:

o MNIST [42] contains 60,000 training images and 10,000 test images of
digits 0 to 9, and the images in MNIST are grayscale with size 28.

o SVHN [43] is a real-world dataset that is obtained from house num-
bers in Google Street View pictures. As a dataset composed of digital

images, SVHN contains RGB samples with more complication than
MNIST.

o CIFAR-10 [44] contains 32 x 32 RGB images belong to 10 different
classes, with 5000 training images and 1000 test images per class. Both
training images and test images are utilized to train our model.

Evaluation metrics Quantitatively estimating GAN models remains
a challenging task because likelihood cannot be efficiently evaluated. An
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Figure 2: Some real samples of MNIST, SVHN and CIFAR-10.

intuitive metric can be obtained by having human annotators judge the visual
quality of samples [2]. However, using human annotators always suffers from
a problem that the metric varies depending on the setup of the task and the
motivation of annotators.

As a substitution to human annotators, Inception Score (IS) [3] is pro-
posed to evaluate samples automatically. In particular, generated samples
are fed into the Inception model [49] to get a conditional distribution. IS
reveals the exponential result of the entropy of samples, which corresponds
to a higher value when generated samples are of high quality and diversity,
and a lower value if the quality of generated images is poor.

As another evaluating criterion, Frechet Inception Distance (FID) [50]
measures the difference between real samples and generated samples by
Frechet distance. It should be noted that if the distributions of generated
images and real images are more similar, the value of the corresponding FID
is smaller. Both IS and FID are well-performing approaches to measure the
performance of GANs and correlate well with human judgment. We use
both of them to quantify the diversity and quality of generated samples in
our experiments.

4.1. Ezxperiments on MNIST

In this experiment, we use the network architectures listed in Table 1 but
reset the output dimensionality of the generator and the input dimensionality
of the discriminator to 64 x 28 x 28 x 1. For a fair comparison, all GAN
models use the same network architectures. In regular DMGAN, we set the
update ratio of centers to 1.0 and the hyper-parameter A in Eq. 5 to 1.2. In
MBGAN, there are two additional hyper-parameters o and K, where « is
used to control the magnitude of the data-dependent margin and K denotes
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the dimensionality of the output features. According to the descriptions in
MBGAN, we set o to 200 and K to 500.

733/07s50pM7 3 07S o> Hb% 2
6 002 5924/ ¢ O fa 41 25 & 82323
ds5s]|yoz ¢ 5 qQ ¢«O L2 7 /A28 2
299/9 699 3 7 g 79 3% 26919
\ 7028 ) 44 17 S14¢ g 3 /HD3
47 67 1 s qENal 7157087 O i 360
Y8 834709473 490700 & 223806
029+ 6721 A 1 o | 9 / b S & 3
(a) DCGAN (b) regular DMGAN

Figure 3: The generated samples on MNIST. By comparing subfigure (a) and (b), we find
that our regular DMGAN can synthesize samples with comparable quality over DCGAN.
Besides, our model is capable to generate samples with clearer backgrounds than MBGAN
by comparing subfigure (b) and (c).

We compare our regular DMGAN with popular DCGAN and MBGAN,
which are also from the perspective of deep metric learning. From the re-
sults shown in Figure 3, we can see that DMGAN generates real-like samples
similar to DCGAN, although it is trained without implicit calculations of
probability. Meanwhile, the generated images are more realistic than images
synthesized by MBGAN. Indeed, due to the lack of restrictions on the distri-
bution of features of the whole samples, MBGAN just generates images with
blurred backgrounds. And we own the superiority of DMGAN to implicitly
constraint the distribution of data by utilizing data-dependent centers.

4.2. Experiments on SVHN

In our experiments, we use the training set of SVHN, which consists of
73,527 RGB digits with all images having been resized to a fixed resolution
32 x 32. We use the same architectures as MBGAN shown in Table 1, and the
metric criteria FID is utilized to evaluate the quality of synthesized samples.

In our model, we introduce data-dependent centers to the objective of
the discriminator to extract representative features, which are essential for
generative models based on deep metric learning. To demonstrate data-
dependent centers can help DMGAN to generate more realistic images, we
first conduct experiments to investigate the performance of our model related
to the update ratio of centers. For ease of exposition, DMGAN with centers’
update ratio v = 0 is called DMGAN-f, in which centers utilized in the
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discriminative objective are fixed as initial vectors during training. Then we
compare DMGAN-f with regular DMGAN models where centers are updated
in the training process as in Algorithm 1.

A 1.0 1.4 1.8 2.2 2.6 3.0
Regular DMGAN | 191.25 | 64.76 | 46.79 | 60.87 | 52.76 | 51.28

Table 2: The FID of regular DMGAN with different values for hyper-parameter A\. The
lower the score corresponding to the better the model.

\
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B O-
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\
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1 = o - o
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20 .
0 02 04 06 08 | 1.2 14 1.6 1.8 2

ratio

Figure 4: The curve shows the FID scores of regular DMGAN for different update ratio of
centers tested on SVHN. We find that DMGAN with data-dependent centers (ratio > 0)
could achieve superior performance compared with models with fixed centers (ratio =

0). This demonstrates that utilizing data-dependent centers significantly enhances the
performance of DMGAN.

The hyper-parameter A is introduced to balance the identity preserving
loss and discriminative loss in the objective of the discriminator. Specifically,
the identity preserving loss can make the discriminator learn more robust
features, while the discriminative loss is used to increase the distance between
real samples and generated ones. Therefore, it is very important to select an
appropriate A before investigating the impact of data-dependent centers. To
select the most suitable A, we fix the update ratio v of centers to 0.5 and
vary A from 1.0 to 3.0 to learn different models. The FID of these models on
SVHN listed in Table 2 shows that the quality of generated samples is the
best when A\ is selected to be 1.8.

After fixing \, we vary the update ratio of centers from 0 to 3.0 to ex-
plore the effect of different update ratios on the performance of our model.
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However, DMGAN encounters mode collapse problem when ~ is larger than
2.0, which may due to the instability caused by too fast changes of centers
during training. Figure 4 shows the results of FID on different models with
the update ratio of centers from 0 to 2.0. From these results, we can make
several observations:

o DMGAN with data-dependent centers could achieve superior perfor-
mance compared with models with fixed centers. This result shows

that utilizing data-dependent centers significantly enhances the per-
formance of DMGAN.

e The experimental results show that the performance of our model re-

mains stable across a wide range of v, which illustrates the robustness
of DMGAN.

In addition, we give a comparison of the synthesized samples showed in Fig-
ure 5 to demonstrate the advantage of data-dependent centers in DMGAN.

Specifically, DMGAN-f produces poorer images, while DMGAN with centers
updated improves the quality of generated images.

Figure 5: Subfigure (a) shows samples synthesized by DMGAN with fixed centers
(DMGAN-f) and subfigure (b) exhibts samples generated by DMGAN with data-
dependent centers. The results of DMGAN-f and DMGAN on SVHN illustrate the ad-
vantage of data-dependent centers in DMGAN.

4.8. Experiments on CIFAR-10

Experimental results in section 4.1 demonstrate that the generating tasks
can be achieved by GAN models from the perspective of deep metric learn-
ing. Meanwhile, we also validate the importance of data-dependent centers
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in DMGAN via experiments on SVHN in section 4.2. In this part, we first
present a comparison between our proposed regular DMGAN and waDM-
GAN to verify the crucial role of the strategy of weight adaption in DMGAN.
At the same time, we compare our model with state-of-the-art GAN models

and illustrate that waDMGAN can generate samples with similar quality to
other models on CIFAR-10 dataset.
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Figure 6: The comparison of IS scores of samples synthesized by waDMGAN and regular
DMGAN with different update ratios of centers. According to the results, we find that the
scores of waDMGAN are regularly higher than that of DMGAN except for the case that
the centers are fixed, which verifies that equipping DMGAN with the strategy of weight
adaption improve the performance of our model.

4.3.1. DMGAN vs. waDMGAN

In our experiments, both training images and test images are utilized to
train DMGAN models. The architectures of the discriminator and generator
are the same as MBGAN with weight clipping as shown in Table 1. To
present the influence of the strategy of weight adaption on DMGAN, we
compare regular DMGAN with waDMGAN. Before the comparison, we first
select appropriate hyper-parameter A following the same procedure as in
experiments on SVHN in section 4.2 and obtain the optimal A in Equation 8
at 1.2. Differently, we use IS to evaluate the quality of synthesized samples
in this section.

In order to highlight the advantages of adaptive weights over fixed weights,
we compare the quality of generated samples of waDMGAN and regular DM-
GAN with different update ratios of centers in our experiment. Quantitative
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results are shown in Figure 6. According to the results, equipping DMGAN
with the strategy of weight adaption increases the performance within the
whole range of update ratios of centers, especially in the case of update ra-
tio at 1.0, which shows that waDMGAN has the desired effect of improving
the quality of generated samples. Indeed, waDMGAN’s superiority is that it
pays more attention to poor synthesized samples by automatically adjusting
updated gradients. To further demonstrate the advantages of waDMGAN,
we visualize the results of waDMGAN and DMGAN in Figure 7 (a) and (b).
According to the results, images generated by waDMGAN are clearer and
containing more details than images generated by DMGAN.

(a) waDMGAN (b) DMGAN (c) MBGAN

Figure 7: The visualization results of waDMGAN, DMGAN, and MBGAN on CIFAR-
10. By comparing results of subfigures (a) and (b), we find that synthesized samples
by waDMGAN contain more clear background details than those of regular DMGAN.
Compared with results of waDMGAN and DMGAN, samples generated of MBGAN in
subfigure (c) suffer from a serious lack of details.

4.3.2. DMGAN wvs. other GAN models

To further verify the effectiveness of our proposed approach, we conduct
experiments to compare our model with state-of-the-art GAN models. The
quantitative results of different models are shown in Table 3. Compared
with two popular models, DCGAN and WGAN, waDMGAN achieves the
IS of 6.04 that outperforms 5.88 and 5.92 gained by WGAN and DCGAN,
respectively. These results illustrate that GAN models, which is from the per-
spective of deep metric learning, can generate similar or better samples than
probability-based GANs. In addition, compared with metric-based models
such as MBGAN and KMGAN, both DMGAN and waDMGAN outperform

18



them with a large margin. These results demonstrate the effectiveness of our
models. However, the results of our models are lower than WGAN-GP due
to lack of gradient penalty, which motivates us to introduce gradient penalty
into our model in further work.

On the other hand, we record the time of each iteration of models during
the learning process and show them in Table 3. According to the results
shown in Table 3, we find that our models are slower than DCGAN due
to the need of metric learning. Same as metric-based generative adversar-
ial models, our models achieve comparable speed with MBGAN, although
our models need to calculate data-dependent centers and adaptive weights
additionally. Meanwhile, our models have an apparent advantage over KM-
GAN and SAGAN, which needs complex self-attention calculations. This
result illustrates that our models are more relaxed to be optimized than
other models.

Model Inception Score | Time ( ms/per iteration )
DCGAN 5.92 + 0.17 237
WGAN [51] 5.88 + 0.07 397
MBGAN 5.07 = 0.06 274

MLGAN-clipping [30] | 5.23 = 290 i

WGAN-GP 6.46 = 0.03 413
KM-GAN 5.61 = 0.09 650
SAGAN 5.72 £+ 0.06 3563
DMGAN 5.69 = 0.08 263
waDMGAN 6.04 = 0.04 259

Table 3: Inception Scores and the time of each iteration on CIFAR-10. Among uncon-
ditional models, our models achieve state-of-the-art performance. With the addition of
condition information, waDMGAN outperforms all other supervised algorithms except
WGAN-GP. Besides, the time of per iteration of models illustrate that our models are
more relaxed to be optimized than other state-of-the-art models.

Finally, Figure 7 shows the images generated by DMGAN, waDMGAN
and MBGAN on CIFAR-10 dataset. As we can see from the figure, samples
synthesized by waDMGAN have more details and clearer backgrounds than
those of regular DMGAN. On the other hand, details of images generated by
MBGAN degrade more heavily. Through convincing visualization results and
quantitative evaluations, we demonstrate the performance of our method.
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5. Conclusion and future work

In this paper, we proposed a novel GAN model, referred to DMGAN,
from the perspective of deep metric learning. Instead of outputting prob-
ability, the discriminator in DMGAN is conducted as a feature extractor
whose outputs are multi-dimensional features. In addition, identity preserv-
ing loss and discriminative loss are introduced to constrain the discriminator
for representative features. Moreover, we introduce data-dependent centers
in the identity preserving loss to learn robust discriminative features. Mean-
while, a strategy of weight adaption is proposed to make the discriminator
pay more attention to poor samples and improve the quality of generated
images. On the other hand, the generator synthesizes realistic samples by
minimizing the distance between real samples and generated samples. Ex-
tensive experiments on several datasets demonstrate the effectiveness of our
proposed approach.

Unfortunately, our proposed model is conditioned on labels of samples,
and the acquisition of class labels is expensive and time-consuming in prac-
tice. Therefore, we will improve our model to fit more unlabeled datasets in
future works.
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