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Abstract

Aspect-level sentiment classification aims to distinguish the sentiment polarities over one or more
aspect terms in a sentence. Existing approaches mostly model different aspects in one sentence
independently, which ignore the sentiment dependencies between different aspects. However,
such dependency information between different aspects can bring additional valuable informa-
tion for aspect-level sentiment classification. In this paper, we propose a novel aspect-level sen-
timent classification model based on graph convolutional networks (GCN) which can effectively
capture the sentiment dependencies between multi-aspects in one sentence. Our model firstly
introduces bidirectional attention mechanism with position encoding to model aspect-specific
representations between each aspect and its context words, then employs GCN over the atten-
tion mechanism to capture the sentiment dependencies between different aspects in one sentence.
The proposed approach is evaluated on the SemEval 2014 datasets. Experiments show that our
model outperforms the state-of-the-art methods. We also conduct experiments to evaluate the
effectiveness of GCN module, which indicates that the dependencies between different aspects
are highly helpful in aspect-level sentiment classification.

Keywords: Sentiment classification, Aspect-level, Sentiment dependencies, Graph
convolutional networks

1. Introduction

Aspect-level sentiment classification [1, 2] is a fundamental natural language processing task
that gets lots of attention in recent years. It is a fine-grained task in sentiment analysis, which
aims to infer the sentiment polarities of aspects in their context [3]. For example, in the sentence
“The price is reasonable although the service is poor”, the sentiment polarities for the two aspect
terms, “price” and “service”, are positive and negative respectively. An aspect term (or simply
aspect) is usually an entity or an entity aspect. In this work, we are dedicated in mining the
sentiment expressed with respect to a specific aspect term (not aspect category) in one sentence.
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Fig. 1. An example to illustrate the usefulness of the sentiment dependencies between multiple
aspects. The dependencies can be inferred by some knowledge in the sentence, e.g., conjunction.
The evidence of the usefulness of the sentiment dependencies is that we can easily infer the true
sentiment of “food” even if we mask the word “horrible”.

Aspect-level sentiment classification is much more complicated than sentence-level senti-
ment classification, because identifying the parts of sentence describing the corresponding as-
pects is difficult. Traditional approaches [4, 5] mainly focus on statistical methods to design a
set of handcrafted features to train a classifier (e.g., Support Vector Machine). However, such
kind of feature-based work is labor-intensive. In recent years, neural network models [6, 7] are
of growing interest for their capacity to automatically generate useful low-dimensional represen-
tations from aspects and their contexts, and achieve great accuracy on the aspect-level sentiment
classification without careful engineering of features. Especially, by the ability to effectively i-
dentify which words in the sentence are more important on a given aspect, attention mechanisms
[8, 9] implemented by neural networks are widely used in aspect-level sentiment classification
[10-16]. Chen et al. [11] model a multiple-attention mechanism with a gated recurrent unit net-
work to capture the relevance between each context word and the aspect. Ma et al. [12] design a
model which learns the representations of the aspect and context interactively with two attention
mechanisms. Song et al. [14] propose an attentional encoder network, which employs multi-
head attention for the modeling between context and aspect. These attention-based models have
proven to be successful and effective in learning aspect-specific representations.

Despite these advances, the studies above still remain problems. They all build models with
each aspect individually ignoring the sentiment dependencies information between multiple as-
pects [17-21], which will lose some additional valuable information. For example, in Fig. 1, the
sentiment polarity of the first aspect “setting” is positive. From the conjunction “but”, we are
easy to know that the second aspect “food” has opposite sentiment polarity with “setting”. By
this sentiment dependency relation, we can infer that the polarity of aspect “food” is negative.
Similarly, from the second comma, we conjecture that the sentiment polarity of the last aspect
“service” is likely the same as “food”. Therefore, the sentiment dependencies are helpful to
infer the sentiment polarities of aspects in one sentence. Hazarika et al. [22] also consider the
dependencies of multi-aspects. However, as being discussed in Section 3.8, they use LSTM net-
work to capture the dependencies, which can only model simple and directional dependencies
between aspects.

In order to model the dependencies in a effective way, in this paper, we propose a novel
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method to model Sentiment Dependencies with Graph Convolutional Networks (SDGCN) for
aspect-level sentiment classification. In our method, an aspect is treated as a node, and an edge
represents the sentiment dependency relation of two nodes. Two factors motivate the design of
our GCN based model. Firstly, GCN is a simple and effective convolutional neural network oper-
ating on graphs, which can catch inter-dependent information from rich relational data [23, 24].
Secondly, we design the sentiment graphs and then learn the sentiment dependencies between
different aspects in a data-driven way, with which each node absorb relevant information about
its neighborhoods as a new feature representation vector. As far as we know, our work is the first
to adopt GCN for aspect-level sentiment classification task. Furthermore, in order to capture the
aspect-specific representations, our model applies bidirectional attention mechanism with posi-
tion encoding before GCN. We evaluate the proposed approach on the SemEval 2014 datasets.
Experiments show that our model outperforms the state-of-the-art methods. The main contribu-
tions of this paper are presented as follows:

e We design a bidirectional attention mechanism with position encoding to capture the
aspect-specific representations.

e We propose a novel multi-aspects sentiment classification framework, which employs GC-
N to effectively capture the sentiment dependencies between different aspects in one sen-
tence.

e We evaluate our method on the SemEval 2014 datasets. And experiments show that our
model achieves superior performance over the state-of-the-art approaches.

2. Related work

In this section, we will review related works on aspect-level sentiment classification and
graph convolutional network briefly.

2.1. Aspect-level sentiment classification

Sentiment analysis, also known as opinion mining [25-27], is an important research topic in
Natural Language Processing (NLP). Aspect-level sentiment classification is a fine-grained task
in sentiment analysis.

In aspect-level sentiment classification , early works mainly focus on extracting a set of fea-
tures like bag-of-words features and sentiment lexicons features to train a sentiment classifier
[28]. These methods including rule-based methods [29] and statistic-based methods [30] rely
on feature-engineering which are labor intensive. In recent years, deep neural network methods
are getting more and more attention as they can generate the dense vectors of sentences without
handcrafted features [31, 32]. And the vectors are low-dimensional word representations with
rich semantic information remained. Moreover, using the attention mechanism can enhance the
sentence representation for concentrating on the key part of a sentence given an aspect [33-35].
Wang et al. [10] propose ATAE-LSTM that combines LSTM and attention mechanism. The
model makes embeddings of aspects to participate in computing attention weights. RAM is pro-
posed by Chen et al. [11] which adopts multiple-attention mechanism on the memory built with
bidirectional LSTM. Ma et al. [12] design a model with the bidirectional attention mechanism,
which interactively learns the attention weights on context and aspect words respectively. Song
et al. [14] propose an attentional encoder network, which eschews recurrence and apply multi-
head attention for the modeling between context and aspect. However, these works model each
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Fig. 2. The architecture of the proposed network. It consists of the input embedding layer, the
Bi-LSTM, the position encoding, the bidirectional attention mechanism, the GCN and the output
layer.

aspect separately in one sentence, which may loss some sentiment dependency information on
multiple aspects case.

2.2. Graph convolutional network

Graph convolutional network [36] is effective at dealing with graph data which contains
rich relation information. Many works dedicate to extending GCN for image tasks [37-40].
Chen et al. [41] build the model via GCN for multi-label image recognition, which propagates
information between multiple labels and consequently learns inter-dependent classifiers for each
of image labels. GCN has also received growing attention in NLP recently such as semantic
role labeling [42], machine translation [43] and relation classification [44]. Some works explore
graph neural networks for text classification [45, 46]. They view a document, a sentence or a
word as a graph node and rely on the relation of nodes to construct the graph. These studies
show that GCN can effectively capture relation between nodes. Inspired by these studies, we
adopt GCN to predict the sentiment dependencies between multi-aspects.

3. Methodology

Aspect-level sentiment classification can be formulated as follows. Given an input context
consists of N words W¢ = {wi, wg, e, wf\,}, and K aspect terms W¢ = (W%, W% ... W4}, Each
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aspect W% = {w{,wi,... ,ijli} is a subsequence of sentence W¢, which contains M; € [1,N)
words. It is required to construct a sentiment classifier that predicts the sentiment polarities of
the multiple aspect terms.

The overall structure of the proposed SDGCN is shown in Fig. 2. It consists of the input
embedding layer, the Bi-LSTM, the position encoding, the bidirectional attention mechanism,
the GCN and the output layer. We introduce all components sequentially from input to output.

3.1. Input embedding layer

Input embedding layer maps each word to a high dimensional vector space [47]. We employ
the pretrained embedding matrix GloVe [48] and pretrained model BERT [49] to obtain the
fixed word embedding of each word. Then each word is represented by an embedding vector
e, € R%m>xl where d,,,; is the dimension of word vectors. After embedding layer, the context
embedding is denoted as a matrix E¢ € R%>*N and the i-th aspect embedding is denoted as a
matrix E4 € Rm>Mi,

3.2. Bidirectional Long Short-Term Memory (Bi-LSTM)
We employ Bi-LSTM on top of the embedding layer to capture the contextual information
-
for each word. After feeding word embedding to Bi-LSTM, the forward hidden state &, € R%*!

—
and the backward hidden state s, € R%*! are obtained, where dj;, is the number of hidden units.
We concatenate both the forward and the backward hidden state to form the final representation:

Iy = [, ) € B2 (1)

In our model, we employ two Bi-LSTM separately to get the sentence contextual hidden out-
put H® = [h§, hS,... 3] € R2iN and each aspect contextual hidden output H! = [h], K5, ...,
h§r 1 € R¥aM: Note that, the Bi-LSTM for each different aspect shares the parameters.

3.3. Position encoding

Based on the intuition that the polarity of a given aspect is easier to be influenced by its
context words with closer distance to the aspect, we introduce position encoding to simulate this
normal rules in natural language. Formally, given an aspect W* that is one of the K aspects,
where i € [1, K] is the index of aspects, the relative distance d;" between the #-th word and the
i-th aspect is defined as follows:

1, dis =0
di ={1-4% 1 <dis<s 2)
0, dis > s

where dis is the distance between a context word and the aspect (here we treat an aspect as a
single unit, and d = 0 means that the context word is also the aspect word), s is a pre-specified
constant, and N is the length of the context. For example, given a sentence “the battery life
is excellent”, and the aspect term is “battery life”. Suppose s = 1, then the position coding is
represented as p = [0.8, 1, 1, 0.8, 0]. Finally, we can obtain the position-aware representation
with position information:

Py =d'hy
Pai:Pi:[pllli9p;is-~~vp?\;] (3)



3.4. Bidirectional attention mechanism

In order to capture the interactive information between the context and the aspect, we employ
a bidirectional attention mechanism in our model. This mechanism consists of two modules: the
context to aspect attention module and the aspect to context attention module. Firstly, the former
module is used to get new representations of aspects based on the context. Secondly, based
on the new representations, the later module is employed to obtain the aspect-specific context
representations which will be fed into the downstream GCN.

3.4.1. Context to aspect attention

This component learns to assign attention weights to the aspect words according to a query
vector, where the query vector is h¢ € R2%*! which is obtained by average pooling operation
over the context hidden output H¢ . For each hidden word vector A" € R*@%*! in one aspect, the
attention weight 8/ is computed as follows:

Tc i 7l ai
fcu(h‘: h?) =ht - Wcu . ht (4)

exp(foa(he, H))
S exp(foalh, K1)

B = ®)

where W,,, € R>%i2dia ig the attention weight matrix.
After computing the word attention weights, we can get the weighted combination of the
aspect hidden representation as a new aspect representation:

M;

mt = Zﬁ?l 'h?i (6)

t=1

3.4.2. Aspect to context attention

This component learns to capture the aspect-specific context representation, which is similar
to context to aspect attention. Specifically, the attention scores is calculated by the new aspect
representation m“ and the position-aware representation p;‘. The process can be formulated as
follows:

Fae(m®, p&iy = m*" - Wy - pi (7)

w _ exp(fum®, p")

= - (8)
LSN exp(faclme, piy)
N
== ) Yk ©)
=1

where W, € R>%ix2diia jg the attention weight matrix. By now, we get the aspect-specific repre-
sentations X = [xy, xp, ..., xg| between each aspect and its context words, where K is the number
of aspects in the context.
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(a) adjacent-relation graph (b) global-relation graph

Fig. 3. Illustration of our proposed sentiment graphs. a;, a», as, a4 and as denote five aspects in
one context.

3.5. Graph convolutional network

GCN is widely used to deal with data which contains rich relationships and interdependency
between objects, because it can effectively capture the dependence of graphs via message passing
between the nodes of graphs. GCN is a type of neural network that operates directly on a graph
and induces embedding vectors of nodes based on properties of their neighborhoods, and allows
end-to-end learning of prediction pipelines whose inputs are graphs of arbitrary size and shape.
The inputs of a GCN are feature vectors of nodes and the structure of the graph. For every
node in graph, GCN encodes relevant information about its neighborhoods as a new feature
representation vector. We also employ a graph to capture the sentiment dependencies between
aspects. The final output of each GCN node is designed to be the classifier of the corresponding
aspect in our task. Moreover, there are no explicit edges in our task. Thus, It is necessary to
define the edges from scratch.

3.5.1. Sentiment graph

We construct a graph, named sentiment graph, to capture the sentiment dependencies between
multi-aspects in one sentence, where each node is regarded as an aspect and each edge is treated
as the sentiment dependency relation. As shown in Fig. 3, we define two kinds of undirected
sentiment graphs:

e Adjacent-relation graph: An aspect is only connected to its nearby aspects.
o Alobal-relation graph: An aspect is connected to all other aspects.

Note that, as show in Fig. 3, sentiment graph is only decided by the number of aspects and
the order of the aspects. That is to say, conjunction words (or other exiting lexicons) are not used
when building the graph. If two nodes are connected by an edge, it means that the two nodes are
neighboring to each other. Formally, given a node v, we use N(v) to denote all neighbors of v.
u € N(v) means that u and v are connected with an edge.



3.5.2. Sentiment graph based GCN

GCN encodes relevant information about its neighborhood as a new representation vector,
where each node in the graph indicates a representation of aspect. In addition, as Kipf et al. [23]
do, we assume all nodes contain self-loops. Then, the new node representation is computed as
follows:

x}, = ReLU( Z Wcmssxu + bcmss) + RELU(Wselfxv + bself) (10)
ueN(v)

where We 55, Weeir € R&nXdn b oo byl € Ré>1 | x, is the u-th aspect-specific representation
(see Eq.(9)), and ReLU is the rectifier linear unit activation function. In this work, we use
dy = dy = 2hy;g.

By stacking multiple GCN layers, the final hidden representation of each node can receive
messages from a further neighborhood. Each GCN layer takes the node representations from
previous layer as inputs and outputs new node representations:

A= ReLU( Y Whyyy 2+ Blyy) + ReLUW,, 6l + B, ) (11)

cross
ueN(®)

where [ denotes the layer number and 1 </ < L - 1.

The exact sentiment dependencies between different aspects are obtained through a data-
driven way. The sentiment dependencies are learned via accepting information from all neigh-
boring nodes. After training, GCN can capture dependency information between different aspects
to help infer the sentiments of multi-aspects in one sentence.

3.6. Output layer

The final output of each GCN node xiL is treated as a classifier of the i-th aspect. At last, we
use a fully-connected layer to map xiL into the aspect space of C classes:

zi = Woxi +b. (12)

where W, € RE*%dii4 js the weight matrix, and b, € R2%<C is the bias. The predicted probability
of the i-th aspect with sentiment polarity j € [1, C] is computed by:

, _exp(zij)

[T (13)
Vi Yo exp(za)

3.7. Model training

Our model is trained by minimizing the cross entropy with L2-regularization term. For a
given sentence, the loss function is defined as:

K C
loss = Z Zyijlog(y;j) + A0 0P (14)

i=1 j=1

where y;; is a one-hot label of the i-th aspect for the j-th class, A is the coefficient for L2-
regularization, 6 is the parameters that is required to be regularized. Furthermore, we adopt the
dropout strategy during training step to avoid over-fitting.
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Fig. 4. Statistics of the number of aspects in one sentence on SemEval 2014 data set.

3.8. The difference between our method and the existing methods

The significant innovation in this paper is the use of GCN to capture the sentiment dependen-
cies of multi-aspects in one sentence. Existing approaches mostly ignore the dependencies of as-
pects. Hazarika et al. [22] also considered the importance of the dependencies of multi-aspects.
They captured the inter-aspect dependencies of all aspects in the same sentence to predict the
sentiment polarities capture utilizing LSTM netrwork instead of GCN.

LSTM can indeed model the dependencies of a sequence. However, there are several dis-
advantages to using LSTM to capture the sentiment dependencies of aspects. First, for a single
LSTM, a node is only related to the previous nodes. But an aspect may also be related to the fol-
lowing aspects. Second, LSTM is directional, while the sentiment dependencies between aspects
are non-directional. Because GCN is also non-directional, it is more appropriate to use GCN to
model the dependencies. Third, LSTM can not model complex graphs, like Fig. 3 (b). GCN is
able to build complex graphs. Furthermore, experiments show that the performance of models
utilizing GCN is generally better than models using LSTM.

4. Experiments

4.1. Data sets and experimental settings

To demonstrate the effectiveness of our proposed method, as most previous works [10, 12, 14,
35], we conduct experiments on two datasets from SemEval 2014 Task4? [50], which contains

2The detailed introduction of this task can be found at http://alt.qcri.org/semeval2014/task4.
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Table 1: The details of the experimental data sets.

Data Positive Negative Neutral
Restaurant Train 2164 807 637
) Test 728 196 196
Lapto Train 994 870 464
piop Test 341 128 169

the reviews in laptop domain and restaurant domain respectively. The details of the SemEval
2014 datasets are shown in Table 1. Each dataset consists of train and test set. Each review
(one sentence) contains one or more aspects and their corresponding sentiment polarities, i.e.,
positive, neutral and negative. To be specific, the number in the table means the number of
aspects in each sentiment category. To demonstrate the necessity of considering the sentiment
dependencies between the aspects, we further calculate the number of aspects in each sentence,
which is presented in Fig. 4. From the histogram in Fig. 4, we can observe that each sentence
contains one to thirteen aspects. The number of aspects in most reviews is 1 to 4. The pie chart
shows the proportion of only one aspect and more than one aspect in one sentence. It can be seen
that more than half of the aspects do not appear alone in a review. According to these statistics,
we can conclude that it is common to include multi-aspects within one sentence. Our model
mainly aims to capture the sentiment dependencies between different aspects in one sentence.

In our implementation, we respectively use the GloVe? [48] word vector and the pre-trained
language model word representation BERT* [49] to initialize the word embeddings. The dimen-
sion of each word vector is 300 for GloVe and 768 for BERT. The number of LSTM hidden units
is set to 300, and the output dimension of GCN layer is set to 600. The value of s is set to 10.
The weight matrix of last fully connect layer is randomly initialized by a normal distribution
N(0,1). Besides the last fully connect layer, all the weight matrices are randomly initialized
by a uniform distribution U(-0.01,0.01). In addition, we add L2-regularization to the last fully
connect layer with a weight of 0.01. During training, we set dropout to 0.5, the batch size is set
to 32 and the optimizer is Adam Optimizer with a learning rate of 0.001. Note that GCN allows
input with different number of nodes, so the model can take different numbers of aspects as in-
put. GCN is learned together with neural network parameters within an end-to-end framework.
We implement our proposed model using Tensorflow?. To evaluate performance, we employ the
Accuracy and Macro-F1 metrics. The Macro-F1 metric is more appropriate when the data set is
unbalanced.

4.2. Comparative methods

To comprehensively evaluate the performance of SDGAN, we compare our model with the
following state-of-the-art models.

e TD-LSTM [7] constructs aspect-specific representation by the left context with aspect and
the right context with aspect, then employs two LSTMs to model them respectively. The

3https://nlp.stanford.edu/projects/glove/
“https://github.com/google-research/bert#pre-trained-models
Shttps://www.tensorflow.org/
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Table 2: Comparisons with baseline models on the Restaurant dataset and Laptop dataset. The
results of baseline models are retrieved from published papers. The best results in GloVe-based
models and BERT-based models are all in bold separately. ‘-A’ means that the model is based on
the adjacent-relation graph, and ‘-G’ means that the model is based on the global-relation graph.
w/o means without.

Word Embedding  Models Restaurant Laptop
Acc Macro-F1 Acc Macro-F1
TD-LSTM [7] 75.63 - 68.13 -
ATAE-LSTM [10] 77.20 - 68.70 -
MenNet [51] 78.16 65.83 70.33 64.09
TIAN [12] 78.60 - 72.10 -
RAN [11] 80.23 70.80 74.49 71.35
GloVe PBAN [52] 81.16 - 74.12 -
TSN [35] 80.1 - 73.1 -
SDLSTM [22] 79.0 - 72.5 -
AEN [14] 80.98 72.14 73.51 69.04
SDGCN-A 82.14 73.47 75.39 70.04
SDGCN-G 82.95 75.79 75.55 71.35
SDGCN-G w/o P 81.61 72.93 73.67 68.70
SDGCN-G w/o Bi-att  82.77 74.33 74.61 70.33
Ablated SDGEN ¢ GeN G wio GON 8161 7349 7351 69.73
BERT AEN-BERT [14] 83.12 73.76 79.93 76.31
SDGCN-BERT 83.57 76.47 81.35 78.34

last hidden states of the two LSTMs are finally concatenated for predicting the sentiment
polarity of the aspect.

o ATAE-LSTM [10] first attaches the aspect embedding to each word embedding to capture
aspect-dependent information, and then employs attention mechanism to get the sentence
representation for final classification.

e MemNet [51] uses a deep memory network on the context word embeddings for sentence
representation to capture the relevance between each context word and the aspect. Finally,
the output of the last attention layer is used to infer the polarity of the aspect.

o TAN [12] generates the representations for aspect terms and contexts with two attention-
based LSTM network separately. Then the context representation and the aspect represen-
tation are concatenated for predicting the sentiment polarity of the aspect.

o RAM [11] employs a gated recurrent unit network to model a multiple attention mechanis-
m, and captures the relevance between each context word and the aspect. Then the output
of the gated recurrent unit network is obtained for final classification.

e PBAN [52] appends the position embedding into each word embedding. It then introduces
a position-aware bidirectional attention network (PBAN) based on Bi-GRU to enhance the
mutual relation between the aspect term and its corresponding sentence.
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e TSN [35] is a two-stage framework for aspect-level sentiment analysis. The first stage, it
uses a position attention to capture the aspect-dependent representation. The second stage,
it introduces penalization term to enhance the difference of the attention weights towards
different aspects in one sentence.

e SDLSTM [22] predicts the sentiment polarities of all aspects in the same sentence to cap-
ture the inter-aspect dependencies and learns temporal dependency of their corresponding
sentence representations utilizing LSTM model.

e AEN [14] mainly consists of an embedding layer, an attentional encoder layer, an aspect-
specific attention layer, and an output layer. In order to eschew the recurrence, it employs
attention-based encoders for the modeling between the aspect and its corresponding con-
text.

o AEN-BERT [14] is AEN with BERT embedding.

4.3. Overall results

Table 2 shows the experimental results of competing models. To evaluate performance of the
model, we employ Accuracy and Macro-F1 metrics. The Macro-F1 metric is more appropriate
when the data set is not balanced. In order to remove the influence with different word repre-
sentations and directly compare the performance of different models, we compare GloVe-based
models and BERT-based models separately. Our proposed model achieves the best performance
on both GloVe-based models and BERT-based models, which demonstrates the effectiveness of
our proposed model. In particularly, SDGCN-BERT obtains new state-of-the-art results.

Among all the GloVe-based methods, the TD-LSTM approach performs the worst because
it takes the aspect information into consideration in a very coarse way. ATAE-LSTM, Men-
Net and TAN are basic attention-based models. After taking the importance of the aspect into
account with attention mechanism, they achieve a stable improvement comparing to the TD-
LSTM. RAM achieves a better performance than other basic attention-based models, because it
combines multiple attentions with a recurrent neural network to capture aspect-specific represen-
tations. PBAN achieves a similar performance as RAM by employing a position embedding. To
be specific, PBAN is better than RAM on Restaurant dataset, but worse than RAN on Laptop
dataset. Compared with RAM and PBAN, the overall performance of TSN is not perform well
on both Restaurant dataset and Laptop dataset, which might because the framework of TSN is
too simple to model the representations of context and aspect effectively. AEN is slightly better
than TSN, but still worse than RAM and PBAN. It indicates that the discard of the recurrent
neural networks can reduce the size of model while lead to the loss of performance.

Comparing the results of SDGCN-A and SDGCN-G, we observe that the GCN built with
global-relation is slightly higher than built with adjacent-relation in both accuracy and Macro-
F1 measure. This may indicate that the adjacent relationship is not sufficient to capture the
interactive information among multiple aspects due to the neglect of the long-distance relation
of aspects.

Benefits from the power of pre-trained BERT, BERT-based models have shown huge su-
periority over GloVe-based models. Furthermore, compared with AEN-BERT, on the Restau-
rant dataset, SDGCN-BERT achieves absolute increases of 1.09% and 1.86% in accuracy and
Macro-F1 measure respectively, and gains absolute increases of 1.42% and 2.03% in accuracy
and Macro-F1 measure respectively on the Laptop dataset. The phenomenon further prove the
effectiveness of our proposed SDGCN.
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In order to verify that the improvement of our method is statistically significant, we conduct
a hypothesis test at the 0.05 significance level. For the GloVe-based models, compared SDGCN-
G with the other state-of-the-art methods models, all the produced p-values are less than 0.01,
suggesting that the improvements of our model are significant. As for the BERT-based models,
on Restaurant and Laptop, the produced p-values between SDGCN-BERT and AEN-BERT are
less than 0.05 and less than 0.01, respectively. This phenomenon further prove the effectiveness
of our proposed SDGCN.

4.4. Performance of Ablated SDGCN

To investigate the impact of each component such as the position encoding module, the bidi-
rectional attention mechanism, the GCN module, we perform comparison between the full S-
DGCN models and its ablations (in Table 2). Note that, the input embedding layer, the Bi-LSTM
module and the output layer are the necessary modules to form a complete model, so they can not
be discarded. w/o Bi-att means that the attention mechanism only has aspect to context attention
module.

After removing the position encoding module, the SDGCN-G are reduced to SDGCN-G
w/o P. From the results, the model with position information gains a significant improvement
compared to the model without position information. It shows the importance of the position
encoding.

Comparing the results of SDGCN-G and SDGCN-G w/o Bi-att, we observe that the perfor-
mance of SDGCN-G w/o Bi-att is incomparable with SDGCN-G. It indicates the importance of
the bidirectional attention mechanism. Besides, SDGCN-G w/o P performs consistently worse
than SDGCN-G w/o Bi-att, which verifies position modules is more important than the bidirec-
tional attention mechanism. Comparing the results of SDGCN-G and SDGCN-G w/o GCN, we
find that the results of SDGCN-G are always better than those of SDGCN-G w/o GCN. This
demonstrates the effectiveness of GCN module.

In summary, this results show that all the three discarded components are crucial for good
performance.

Table 3: The effect of GCN (builded with global-relation graph).

Models Restaurant Laptop
Acc  Macro-F1 Acc Macro-Fl

Att 79.73 69.64 7194  66.94
Att+GCN 81.07 72.69  73.04  68.55
BiAtt 80.18  71.30 7241 67.16
BiAtt+GCN 81.61 7293  73.67  68.70
Att+P 81.43 7240 72,12 68.67
Att+P+GCN 82.77 7433  74.61 70.33
BiAtt+P 81.61 7349 7351 69.73

BiAtt+P+GCN (SDGCN) 82.95 7579 7555 71.35

4.5. The effect of GCN module
In this section, we design a series of models to further verify the effectiveness of GCN mod-

ule. Because our model contains several modules, in order to verify that GCN can indeed improve
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the performance of the model, we performed comparative experiments with and without GCN in
the case of discarding different modules. These models are:

o Att: Attis the baseline model that discards the position encoding module, the bidirectional
attention mechanism and the GCN module from SDGCN (The remaining modules are the
necessary modules to form a complete model).

o Att+GCN: Adding GCN module based on Att is Att+GCN.

o BiAtt: BiAtt is a model that discards the position encoding module and the GCN module.
o BiAtt+GCN: Adding GCN module based on Att is Att+GCN.

o Att+P: Att+P is a model that discards the position encoding module and the GCN module.
o Att+P+GCN: Adding GCN module to Att+P is Att+P+GCN.

o BiAtt+P: BiAtt+P is based on SDGCN, where we remove the GCN module.

o BiAtt+P+GCN: Adding GCN module based on BiAtt+P is BiAtt+P+GCN (the full mod-
el of proposed SDGCN).

Table 3 shows the performances of all these models. As we stated above, Att corresponds
to the non-GCN version of Att+GCN. It can be observed from Table 3 that compared with Att,
Att+GCN brings absolute increments of 1.34% and 1.10% in accuracy on the Laptop dataset and
Restaurant dataset respectively. It shows that GCN is also effective for the basic model (without
bidirectional attention mechanism and position encoding).

BiAtt+GCN outperforms BiAtt over 1 percent both on the Restaurant and Laptop. This re-
sults verify that GCN can improve the performance of the model without the influence of the
position encoding module. Similarly, Att+P+GCN has better performance than Att+P, which
indicates that GCN can improve the performance of the model without the influence of the bidi-
rectional attention mechanism.

Overall, it is clear to see that, comparing with GCN-reduced models, the four models with
GCN achieve higher performance, respectively. The results verify that the modeling of the sen-
timent dependencies between different aspects with GCN plays a great role in predicting the
sentiment polarities of aspects.

4.6. Impact of GCN layer number

The number of GCN layers is one very important setting parameter that affects the perfor-
mance of our model. In order to investigate the impact of the GCN layer number, we conduct
experiment with the different number of GCN layers from 1 to 8. The performance results are
shown in Fig. 5. As can be seen from the results, in general, when the number of GCN layers is 2,
the model works best. When the number of GCN layers is bigger than 2, the performance drops
with the increase of the number of GCN layers on both the datasets. The possible reason for the
phenomenon of the performance drop may be that with the increase of the model parameters, the
model becomes more difficult to train and over-fitting.
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Fig. 5. Comparisons with different depths of GCN in our model.

4.7. Case study

In order to have an intuitive understanding of the difference between with-GCN model (our
proposed model) and without-GCN model, we use two examples with multiple aspects from
laptop dataset as a case study. We draw heat maps to visualize the attention weights on the words
computed by the two models, as shown in Fig. 6. The deeper the color, the more attention the
model pays to it.

As we can see from the first example, i.e., “i love the keyboard and the screen.”, with two
aspects “keyboard” and “screen”, without-GCN model mainly focuses on the word “love” to
predict the sentiment polarities of the two aspects. While for with-GCN model, besides the word
“love”, it also pays attention to the conjunction “and”. This phenomenon indicates that with-
GCN model captures the sentiment dependencies of the two aspects through the word “and”,
and then predicts the sentiments of “keyboard” and “screen” simultaneously.

The second example is “air has higher resolution but the fonts are small.” with two aspects
“resolution” and “fonts”. It is obvious that the sentiments of the two aspects “resolution” and
“fonts” are opposite connected by the conjunction “but”. Without-GCN model predicts the
polarity of aspect “resolution” by the word “higher and the polarity of aspect “fonts by the
word “small” in isolation, which ignores the relation between the two aspects. In the contrary,
with-GCN model enforces the model to pay attention on the word “but” when predicting the
sentiment polarity for aspect “fonts”.

From these examples, we can observe that our proposed model (with-GCN model) not only
focuses the corresponding words which are useful for predicting the sentiment of each aspect, but
also considers the textual information which is helpful for judging the relation between different
aspects. By using attention mechanism to focus on the textual words describing the interdepen-
dence between different aspects, the downstream GCN module can effectively further represent
the sentiment dependencies between different aspects in one sentence. With more useful infor-
mation, our proposed model can predict aspect-level sentiment category more accurately.
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Fig. 6. Illustration of attention weights obtained by models with GCN and without GCN respec-
tively. (a) and (b) are two examples from the Laptop dataset. (a) Aspects: keyboard, screen; (b)
Aspects: resolution, fonts.

5. Conclusion

In this paper, we design a novel GCN based model (SDGCN) for aspect-level sentiment clas-
sification. The key idea of our model is to employ GCN to model the sentiment dependencies
between different aspects in one sentence. Specifically, SDGCN first adopts bidirectional atten-
tion mechanism with position encoding to obtain aspect-specific representations, then captures
the sentiment dependencies via message passing between aspects. Thus, SDGCN benefits from
such dependencies which are always ignored in previous studies. Experiments on SemEval 2014
verify the effectiveness of the proposed model, and SDGCN-BERT obtains new state-of-the-art
results. The case study shows that SDGCN can not only pay attention to those words which are
important for predicting the sentiment polarities of aspects, but also pay attention to the words
which are helpful for judging the sentiment dependencies between different aspects.
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