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Abstract

The path independence of additive functionals for SDEs driven by the G-Brownian
motion is characterized by nonlinear PDEs. The main result generalizes the existing
ones for SDEs driven by the standard Brownian motion.
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1 Introduction

Stochastic differential equations (SDEs) under the linear probability space have been widely
used in modeling financial markets and economic phenomena [1, 2]. However, in many
practical situations, most of the financial activities take place with uncertainty [3], for which a
fundamental theory of SDEs driven by the G-Brownian motion (G-SDEs) has been developed
in [11, 12, 13]. Since then G-SDEs have received much attention, see for instance [8] on the
Feyman-Kac formula, [9, 10] on the stochastic control, [5, 6] on the ergodicity, [21, 25] on
the stochastic stability, and [7] on the G-SPDEs.

In the equilibrium financial market, there exists a risk neutral measure which admits
a path independent density with respect to the real world probability [27]. To construct
such risk neutral measures, the path independence of additive functionals for SDEs has
been investigated extensively; see [23] for the pioneer work. Subsequently, [23] has been
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extended in [16, 17, 26] for finite dimensional SDEs, and in [18, 24] for infinite dimensional
SPDEs, where [26] allows the SDEs involved to be degenerate. Recently, [19] investigated
the path independence of additive functionals for a class of distribution dependent SDEs.
Nevertheless, all of these papers only focus on linear probability spaces. To fill this gap,
in this paper, we intend to characterize the path independence of additive functionals for
G-SDEs. To this end, below we recall some basic facts on the G-Brownian motion.

For a positive integer d, let (Rd, 〈·, ·〉, | · |) be the d-dimensional Euclidean space, Rd⊗Rd

the family of all d × d-matrices, Sd the collection of all symmetric d × d-matrices, 0d ∈ Rd

the zero vector, 0d×d ∈ Rd ⊗ Rd the zero matrix, and Id×d ∈ Rd ⊗ Rd the identity matrix.
For a matrix A, let A∗ be its transpose and ‖A‖HS = (trace(AA∗))1/2 be its Hilbert-Schmidt
norm (or Frobenius norm). For a number a ∈ R, a+ and a− stipulate its positive part and
negative part, respectively. For σ1, σ2 ∈ Sd, the notation σ1 ≤ σ2 (res. σ1 < σ2) means that
σ2 − σ1 is non-negative (res. positive) definite, and we let

[σ1, σ2] := {γ|γ ∈ Sd, σ1 ≤ γ ≤ σ2}.

Let C1,2(R+×Rd;R) be the collection of all continuous functions V : R+×Rd → R which are
once differentiable w.r.t. the first argument, twice differentiable w.r.t. the second argument,
and all these derivatives are joint continuous. Write ∇ and ∇2 by the gradient operator and
Hessian operator, respectively.

For any fixed T > 0,

ΩT = {ω|[0, T ] 3 t 7→ ωt ∈ Rd is continuous with ω(0) = 0d}

endowed with the uniform topology. Let Bt(ω) = ωt, ω ∈ ΩT , be the canonical process. Set

Lip(ΩT ) := {ϕ(Bt1 , · · · , Btn), n ∈ N, t1, · · ·, tn ∈ [0, T ], ϕ ∈ Cb,lip(Rd ⊗ Rn)},

where Cb,lip(Rd ⊗ Rn) denotes the set of bounded Lipschitz functions f : Rd ⊗ Rn → R.
Let G : Sd → R be a monotonic, sublinear and homogeneous function; see e.g. [13, p16].
Throughtout the paper, we always assume that G : Sd → R is non-degenerate, i.e., there
exists some δ > 0 such that

(1.1) G(A)−G(B) ≥ δ

2
trace[A−B], A ≥ B,A,B ∈ Sd.

For any ξ ∈ Lip(ΩT ), i.e.,

ξ(ω) = ϕ(ω(t1), · · ·, ω(tn)), 0 = t0 < t1 < · · · < tn = T,

the conditional G-expectation is defined by

Ēt[ξ] := uk(t, ω(t);ω(t1), · · ·, ω(tk−1)), ξ ∈ Lip(ΩT ), t ∈ [tk−1, tk), k = 1, · · ·, n,

where (t, x) 7→ uk(t, x;x1, · · ·, xk−1), k = 1, · · ·, n, solves the following G-heat equation

(1.2)


∂tuk +G(∂2

xuk) = 0, (t, x) ∈ [tk−1, tk)× Rd, k = 1, · · ·, n,
uk(tk, x;x1, · · ·, xk−1) = uk+1(tk, x;x1, · · ·, xk−1, xk), k = 1, · · ·, n− 1,

un(tn, x;x1, · · ·, xn−1) = ϕ(x1, · · ·, xn−1, x), k = n.
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Since G is non-degenerate, the solution of (1.2) satisfies uk ∈ C1,2(R+ × Rd;R); see [13,
Appendix C, Theorem 4.5, p127]. The corresponding G-expectation of ξ is defined by
Ē[ξ] = Ē0[ξ]. Then the canonical process Bt(ω) := ωt is called a G-Brownian motion in

(ΩT , L
p
G(ΩT ), Ē), where LpG(ΩT ) is the completion of Lip(ΩT ) under the norm (Ē[| · |p])

1
p ,

p ≥ 1. By definition, we have G(A) = 1
2
Ē〈AB1, B1〉, A ∈ Sd. The function G is called

the generating function corresponding of the d-dimensional G-Brownian motion (Bt)t≥0.
According to [13], there exists a bounded, convex, and closed subset Θ ⊂ Sm such that

(1.3) G(A) =
1

2
sup
Q∈Θ

trace[AQ], A ∈ Sd.

In particular, for 1-dimensional G-Brownian motion (Bt)t≥0, one has G(a) = (σ2a+ −
σ2a−)/2, a ∈ R, where σ2 := Ē[B2

1 ] ≥ −Ē[−B2
1 ] =: σ2 > 0.

Let

Mp,0
G ([0, T ]) =

{
ηt :=

N−1∑
j=0

ξjI[tj ,tj+1)(t); ξj ∈ LpG(Ωtj), N ∈ N, 0 = t0 < t1 < · · · < tN = T
}
.

Let Mp
G([0, T ]) and Hp

G([0, T ]) be the completion of Mp,0
G ([0, T ]) under the norm

‖η‖Mp
G([0,T ]) :=

(
Ē
∫ T

0

|ηt|pdt
) 1

p

, ‖η‖Hp
G([0,T ]) :=

{
Ē
(∫ T

0

|ηt|2dt

) p
2

} 1
p

,

respectively. We need to point out that if p = 2, then Mp
G([0, T ]) = Hp

G([0, T ]). Denote
by Mp

G([0, T ];Rd) all d-dimensional stochastic processes ηt = (η1
t , · · ·, ηdt ), t ≥ 0 with ηit ∈

Mp
G([0, T ]). Let H1

G([0, T ];Rd) be all d-dimensional stochastic processes ζt = (ζ1
t , ···, ζdt ), t ≥ 0

with ζ i ∈ H1
G([0, T ]).

Furthermore, we also need the Choquet capacity associated with the G-expectation. Let
M be the collection of all probability measures on (ΩT ,B(ΩT )). According to [4], there
exists a weakly compact subset P ⊂M such that

Ē[X] = sup
P∈P

EP [X], X ∈ Lip(ΩT ).

Then the associated Choquet capacity is defined by

c(A) = sup
P∈P

P (A), A ∈ B(ΩT ).

A set A ⊂ ΩT is called polar if c(A) = 0, and we say that a property holds quasi-surely (q.s.)
if it holds outside a polar set.

In this paper, we consider the following G-SDE

(1.4) dXt = b(t,Xt)dt+
d∑

i,j=1

hij(t,Xt)d〈Bi, Bj〉t + 〈σ(t,Xt), dBt〉,

3



where b, hij = hji : [0, T ]×Rd → Rd and σ : [0, T ]×Rd → Rd⊗Rd, Bt is a d-dimensional G-
Brwonian motion, and 〈Bi, Bj〉t stands for the mutual variation process of the i-th component
Bi
t and the j-th component Bj

t . To ensure the existence and uniqueness of the solution of
(1.4) in M2

G([0, T ];Rd), we assume

|b(t, x)− b(t, y)|+
d∑

i,j=1

|hij(t, x)− hij(t, y)|+ ‖σ(t, x)− σ(t, y)‖HS ≤ K|x− y|,(1.5)

for some constant K ≥ 0 and all t ∈ [0, T ], x, y ∈ Rd; see [13, Theorem 1.2, p82].
Now we recall from [19] the following notions for the path independence of additive

functionals.

Definition 1.1. For f = (fij) : R+×Rd → Sd and g : R+×Rd → Rd, the additive functional

(Af,gs,t )0≤s≤t is defined by

(1.6) Af,gs,t = β

∫ t

s

G(f)(r,Xr)dr + α
d∑

i,j=1

∫ t

s

fij(r,Xr)d〈Bi, Bj〉r +

∫ t

s

〈g(r,Xr), dBr〉,

where β, α ∈ R are two parameters, f = f ∗, and (Xr)r≥0 solves (1.4).

Definition 1.2. The additive functional Af,gs,t is said to be path independent, if there exists
a function V : R+×Rd → R such that for any s ∈ [0, T ] and any solution (Xt)t∈[s,T ] to (1.4)
from time s, it holds

(1.7) Af,gs,t = V (t,Xt)− V (s,Xs), t ∈ [s, T ].

In terms of Definition 1.2, the path independence of the additive functional Af,gs,t means

that Af,gs,t depends only on Xs and Xt but not the path (Xr)s<r<t, for any solution (Xr)r∈[s,T ]

to (1.4) from times s and any t ∈ (s, T ].
The aim of this paper is to provide sufficient and necessary characterizations for the path

independence of the additive functional Af,gs,t .
To see that (1.6) covers additive functionals investigated in existing references for the

path independence under the linear probability space, let Θ in (1.3) be a singleton: Θ = Q,
and Ē = E be a linear expectation. Then the associated G-Brownian motion Bt becomes the
classical zero-mean normal distributed with covariance Q. Specially, let σ2 = σ2 = 1d×d, i.e.,
Q = 1d×d, G(A) = 1

2
trace(A), A ∈ Sd, we have d〈Bi, Bj〉r = δijdr, where δij is a indicative

function, 1 ≤ i, j ≤ d, and (1.6) reduces to

Af,gs,t =

(
α +

β

2

) d∑
i=1

∫ t

s

fii(r,Xr)dr +

∫ t

s

〈g(r,Xr), dBr〉.

Taking f(r,Xr) =
(
α + β

2

)∑d
i=1 fii(r,Xr), this goes back to the additive functional studied

in [19]:

Af,gs,t :=

∫ t

s

f(r,Xr)dr +

∫ t

s

〈g(r,Xr), dBr〉.
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In particular, when f = 1
2
|g|2, we have

(1.8) A
1
2
|g|2,g

s,t =
1

2

∫ t

s

|g|2(r,Xr)dr +

∫ t

s

〈g(r,Xr), dBr〉, 0 ≤ s ≤ t,

which corresponds to the Girsanov transform dQs,t := exp{−A
1
2
|g|2,g

s,t }dP. To make the
solution Xt of (1.4) a martingale under Qs,t, we reformulate (1.4) as

dXt = {b+ h}(t,Xt)dt+ 〈σ(t,Xt), dBt〉,

where

(1.9) h(t, u) :=
d∑
i=1

hii(t, u), (t, u) ∈ R+ × Rd.

When σ is invertible, taking g = σ−1(b+ h) in (1.8), we have

A
1
2
|g|2,g

s,t =
1

2

∫ t

s

|σ−1(b+ h)|2(r,Xr)dr +

∫ t

s

〈(σ−1(b+ h))(r,Xr), dBr〉, 0 ≤ s ≤ t.

Then, by the Girsanov theorem, (Xr)s≤r≤t is a martingale under Qs,t, which fits well the
requirement of risk netural measure in finance. The path independence of this particular
additive functional has been investigated in [16, 19, 23, 24, 26].

Remark 1.1. When α 6= 0, (1.6) is equivalent to

α−1Af,gs,t = α−1β

∫ t

s

G(f)(r,Xr)dr +
m∑

i,j=1

∫ t

s

fij(r,Xr)d〈Bi, Bj〉r

+

∫ t

s

〈α−1g(r,Xr), dBr〉.

So, in this case, the path independence of the additive functional (1.6) can be reduced to the
case of α = 1. However, the case for α = 0 also includes interesting examples (see Example
4.1 below), so it is reasonable to consider Af,gs,t in (1.6) with two parameters α and β.

The remainder of the paper is organized as follows. In Section 2, following the line of
[15, 22], we present a decomposition theorem for multidimensional G-semimartingales. In
Section 3, we characterize the path independence of Af,gs,t using nonlinear PDEs, so that main
results in [16, 23, 24, 26] are extended to the present nonlinear expectation setting. Finally,
in Section 4, we provide an example to illustrate the main result for α = 0 as mentioned in
Remark 1.1.
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2 A Decomposition Theorem

This part is essentially due to [15, 22]. Set δn(t) :=
∑n−1

i=1 (−1)i1( i
n
, i+1
n

](t), t ∈ [0, T ]. For any

A,B ∈ Sd, let (A,B)HS = trace(AB) and ‖A‖HS =
√

(A,A)HS. Then (Sd, 〈·, ·〉HS, ‖ · ‖HS)
is a Hilbert space; see e.g. [20]. Let spec(·) be the spectrum of a matrix ·, and let 〈B〉t =
(〈Bi, Bj〉t)ij.

From now on, we consider

(2.1) G(A) :=
1

2
sup
γ∈[σ,σ̄]

〈γ2, A〉HS, A ∈ Sd, 0 < σ < σ are two matrices in Sd.

Consequently, σ2 < d
dt
〈B〉t ≤ σ̄2, and (1.1) holds for δ = λ0(σ2), where λ0(σ2) = min{λ ∈

spec(σ2)}.
Let M1

G([0, T ];Sd) be all symmetric d × d matrices ηt = (ηijt )d×d with ηij ∈ M1
G([0, T ]),

and ‖η‖M1
G([0,T ];Sd) = Ē

∫ T
0
‖ηt‖HSdt.

Let c0 = min{λ ∈ spec((σ̄2 − σ2)/2)}, C0 = 1
2
‖σ̄2 − σ2‖HS.

To make the content self-contained, we cite from [15] some well-known results and restated
them as follows.

Lemma 2.1. Let G be in (2.1). For any η ∈M1
G([0, T ];Sd), the limit

‖η‖MG
:= lim

n→∞
Ē
∫ T

0

δn(s)(ηs, d〈B〉s)HS

exists. Moreover, ‖ · ‖MG
defines a norm on M1

G([0, T ];Sd), and for any 0 < ε ≤ c0, it holds
that,

ε‖η‖M1
Gε

([0,T ];Sd) ≤ ‖η‖MG
≤ C0‖η‖M1

G([0,T ];Sd),

where Gε(A) := 1
2

supγ∈[σε,σ̄ε]
〈γ2, A〉HS, σ

2
ε := σ2 + ε Id×d, and σ̄2

ε := σ̄2 − ε Id×d.

With Lemma 2.1 in hand, we have the following corollary which will play a crucial role
in the analysis below.

Corollary 2.2. Let G be in (2.1), and let η ∈M1
G([0, T ];Sd), ζ ∈M1

G([0, T ]). If∫ t

0

(ηs, d〈B〉s)HS =

∫ t

0

ζsds, t ∈ [0, T ],

then

Ē
∫ T

0

‖ηs‖HSds = Ē
∫ T

0

|ζs|ds = 0.

Proof. According to Lemma 2.1 and [22, Theorem 3.3 (i)], we deduce that

‖η‖MG
= lim

n→∞
Ē
∫ T

0

δn(s)(ηs, d〈B〉s)HS = lim
n→∞

Ē
∫ T

0

δn(s)ζsds = 0.

Recall from Lemma 2.1 that ‖η‖MG
is a norm, then, c-q.s., ηt ≡ 0d×d, a.e. t ∈ [0, T ].

Therefore, Ē
∫ T

0
‖ηs‖HSds = 0, which leads to Ē

∫ T
0
|ζs|ds = 0.
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Consider the following Itô process in (ΩT , L
p
G(ΩT ), Ē)

(2.2) Xt =

∫ t

0

ξrdr +
d∑

i,j=1

∫ t

0

ηijr d〈Bi, Bj〉r +
d∑
i=1

∫ t

0

ζ irdB
i
r, t ≥ 0,

where ξ, ηij ∈M1
G([0, T ];Rd) with ηij = ηji, and ζ i ∈ H1

G([0, T ];Rd).
Now we can state the following decomposition theorem.

Theorem 2.3. For G in (2.1) and let Xt be in (2.2). Then Xt = 0d for all t ∈ [0, T ] if and
only if on ΩT × [0, T ] it holds c× dt− q.s.× a.e., ξt = 0d, η

ij
t = 0d, ζ

i
t = 0d, i, j = 1, · · ·, d.

Proof. The proof of the sufficiency is trivial, it suffices to prove the necessity. Assume
Xt = 0d for t ∈ [0, T ]. Then (2.2) is equivalent to

(2.3)

∫ t

0

ξksds+
d∑

i,j=1

∫ t

0

ηkijr d〈Bi, Bj〉r +
d∑
j=1

∫ t

0

ζkjs dBj
s = 0d, k = 1, · · · , d, t ∈ [0, T ],

where ξk· (resp. ηkij· ) denotes the k-th component of the column vector ξ (resp. ηij· ). Taking
quadratic processes w.r.t.

∫ ·
0
ζkis dBi

s on both side of (2.3), we deduce that

0 =
d∑

i,j=1

〈∫ ·
0

ζkjs dBj
s ,

∫ ·
0

ζkis dBi
s

〉
t

=

〈
d∑
i=1

∫ ·
0

ζkis dBi
s

〉
t

=
d∑

i,j=1

∫ t

0

ζkjs ζ
ki
s d〈Bi, Bj〉s =

∫ t

0

((ζks )∗ζks , d〈B〉s)HS

=

∫ t

0

〈d〈B〉s(ζks )∗, (ζks )∗〉 ≥
∫ t

0

〈σ2(ζks )∗, (ζks )∗〉ds ≥ 0

with ζk := (ζk1, · · · , ζkd). Since σ2 > 0, this implies ζt = 0d×d, a.e. t ∈ [0, T ].
It remains to show that ξt = 0d and ηt = 0d. In fact, since ζt = 0d, we have∫ t

0

−ξksds =
m∑

i,j=1

∫ t

0

ηkijs d〈Bi, Bj〉s =

∫ t

0

(ηks , d〈B〉s)HS, k = 1, · · ·, d, t ∈ [0, T ]

with ηk· = (ηkij· )ij. By Corollary 2.2, this implies

Ē
∫ T

0

|ξks |ds = Ē
∫ T

0

‖ηks‖HSds = 0, k = 1, · · ·, d.

Thus, we conclude that c-q.s. for a.e. t ∈ [0, T ], ηkt = 0d×d and ξkt = 0, k = 1, · · ·, d.
Therefore, ξt = ηijt = 0d.
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3 Characterization of Path Independence

The main result of the paper is the following.

Theorem 3.1. Let G be in (2.1). Then Af,gs,t is path independent in the sense of (1.7) for
some V ∈ C1,2(R+ × Rd) if and only if

(3.1)


∂
∂t
V (t, x) = βG(f)(t, x)− 〈∇V, b〉(t, x),

αfij(t, x) =
(
〈∇V, hij〉+ 1

2
〈σi, (∇2V )σj〉

)
(t, x),

g(t, x) = (σ∗∇V )(t, x), (t, x) ∈ [0, T ]× Rd,

where i, j = 1, · · · , d, and σi stands for the i-th column of σ.

Proof. We first prove the necessity. For any (s, x) ∈ [0, T ]×Rd, let (Xt)t≥s solves (1.4) with
Xs = x. Since (Af,gs,t )t∈[s,T ] is path independent in the sense of (1.7), it follows that

dV (t,Xt) = βG(f)(t,Xt)dt+ α
d∑

i,j=1

fij(t,Xt)d〈Bi, Bj〉t(3.2)

+〈g(t,Xt), dBt〉, t ∈ [s, T ].

On the other hand, by Itô’s formula, we derive that

dV (t,Xt) =

(
∂

∂t
V + 〈∇V, b〉

)
(t,Xt)dt+ 〈(σ∗∇V )(t,Xt), dBt〉

+
d∑

i,j=1

(
〈∇V, hij〉+

1

2
〈σi, (∇2V )σj〉

)
(t,Xt)d〈Bi, Bj〉t, t ∈ [s, T ].

(3.3)

Since coeffieients b, h and σ satisfy the Lipschitz condition in (1.5), and the solution of (1.4)
satisfies Xt ∈M2

G([0, T ];Rd), it’s not difficult to verify
(
∂
∂t
V + 〈∇V, b〉

)
(t,Xt) ∈M1

G([0, T ]),(
〈∇V, hij〉 + 1

2
〈σi, (∇2V )σj〉

)
(t,Xt) ∈ M1

G([0, T ]), and (σ∗i∇V )(t,Xt) ∈ H1
G([0, T ]), thus

hypotheses of Theorem 2.3 are satisfied. Combining (3.2) and (3.3), and applying Theorem
2.3 for the process V (t,Xt), we obtain c-q.s. for a.e. t ∈ [s, T ],

(3.4)


(
∂
∂t
V + 〈∇V, b〉

)
(t,Xt) = βG(f)(t,Xt),

αfij(t,Xt) =
(
〈∇V, hij〉+ 1

2
〈σi, (∇2V )σj〉

)
(t,Xt),

g(t,Xt) = (σ∗∇V )(t,Xt).

Since all terms in (3.4) are continuous in t, these equations hold c-q.s. at t = s, so by Xs = x,
we have

(3.5)


(
∂
∂t
V + 〈∇V, b〉

)
(s, x) = βG(f)(s, x),

αfij(s, x) =
(
〈∇V, hij〉+ 1

2
〈σi, (∇2V )σj〉

)
(s, x),

g(s, x) = (σ∗∇V )(s, x).
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Due to the arbitrariness of s and x, we prove (3.1).
Next, for the sufficiency, taking advantage of (3.1), we deduce from (3.3) that (3.2) holds

true. By taking stochastic integration we prove (1.7), and therefore complete the proof.

Let us comparison this result with known ones in the linear expectation setting.

Remark 3.2. Comparing with the Girsanov transform in the linear expectation setting as
mentioned in Introduction, we take for instance α = 1, β = −1, hij = 0 and

(3.6) fii =
1

d
|g|2, 1 ≤ i ≤ d.

When σ2 = σ̄2 = 1d×d, this goes back to the classic linear expectation, (Bt)t≥0 is a d-
dimensional standard Brownian motion defined on the probability space (Ω,F ,P), we have
〈Bi, Bj〉r = δijr, and

G(f) =
|g|2

2d
trace[1d×d] =

|g|2

2
.

So

Af,gs,t : = β

∫ t

s

G(f)(r,Xr)dr + α
d∑

i,j=1

∫ t

s

fij(r,Xr)d〈Bi, Bj〉r

+

∫ t

s

〈g(r,Xr), dBr〉

=
1

2

∫ t

s

|g(r,Xr)|2dr +

∫ t

s

〈g(r,Xr), dBr〉

gives the weighted probability exp{−Af,gs,t }dP in the Girsanov theorem.
By taking α = 1, β = −1, hij = 0 and f in (3.6), the assertion of Theorem 3.1 becomes

that Af,gs,t is path independent in the sense of (1.7) for some V ∈ C1,2(R+ × Rd;R) if and
only if 

∂
∂t
V (t, x) = −1

2
G
(

(〈σi, (∇2V )σj〉)1≤i,j≤d

)
(t, x)− 〈∇V, b〉(t, x),

fij(t, x) = 1
2
〈σi, (∇2V )σj〉(t, x),

g(t, x) = (σ∗∇V )(t, x), (t, x) ∈ [0, T ]× Rd.

It is easy to see that this generalizes the main results derived in [16, 23, 24, 26] where h ≡ 0
and g is given by σ−1b, under additional condition ensuring the existence of σ−1b, i.e., b
takes value in {σv : v ∈ Rd}.

However, since G is a linear function in the linear expectation case, Theorem 3.1 does
not directly apply to existing results, but extends them to the non-degenerate G-setting.

Moreover, the nonlinear PDE included in (3.1) covers the G-heat equation as a special
example.
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Remark 3.3. When h = b = 0, α = 1, and β = −2, the PDE in (3.1) for V reduces to the
following G-heat equation

∂

∂t
V (t, x) +G

((
〈σi, (∇2V )σj〉(t, x)

)
1≤i,j≤m

)
= 0,

which is one of main motivations for the study of G-Brownian motion.

4 An Example with α = 0

Now we provide an example to demonstrate our main result for α = 0. As indicated in
Remark 1.1 that when α 6= 0 the study can be reduced to α = 1.

Example 4.1. Let d = 1, α = 0, and β = 2. By Theorem 3.1, Af,gs,t is path independent if
and only if

(4.1)


f(t, x) = 1

2
G−1

(
∂V
∂t

+ b∂V
∂x

)
(t, x),(

h∂V
∂x

)
(t, x) + 1

2

(
σ2 ∂2V

∂x2

)
(t, x) = 0,

g(t, x) =
(
σ∗ ∂V

∂x

)
(t, x), (t, x) ∈ [0, T ]× R.

We may solve V by using Lt-Harmonic function:

(4.2) LtV0(x) = 0, V0 ∈ C1,2(R→ R), t ≥ 0,

where Lt = h(t, x) ∂
∂x

+ 1
2
σ2(t, x) ∂2

∂x2
.

For any Lt-Harmonic function V0, t ≥ 0, let V (t, x) = ϕ(t)V0(x) for some ϕ ∈ C1,2(R+ →
R). Then V solves the above PDE in (4.1). Therefore, Af,gs,t is path independent if

(4.3)

{
f(t, x) = 1

2
G−1 (ϕ′(t)V0(x) + b(t, x)ϕ(t)V ′0(x)) ,

g(t, x) = σ(t, x)ϕ(t)V ′0(x), (t, x) ∈ [0, T ]× R.

To present specific choices of V0, let h and σ do not depend on t. Then (4.2) becomes

h(x)V ′0(x) +
1

2
σ2(x)V ′′0 (x) = 0.

When σ2(x) 6= 0, this is equivalent to

V ′′0 (x) = −2
h(x)

σ2(x)
V ′0(x).

Thus,

V0(x) = V0(0) + V ′0(0)

∫ x

0

e
−2

∫ u
0

h(r)

σ2(r)
dr

du.

In particular, when σ(x) = 1, h(x) = x, we have

V0(x) = V0(0) + V ′0(0)

∫ x

0

e−u
2

du,

which is related to the Gaussian distribution.
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