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Abstract

Text sentiment analysis is an important natural language processing
(NLP) task and has received considerable attention in recent years. Nu-
merous deep-learning based methods have been proposed in previous lit-
erature in terms of new deep neural networks (DNN) including new em-
bedding strategies, new attention mechanisms, and new encoding layers.
In this study, an alternative technical path is investigated to further im-
prove the state-of-the-art performance of text sentiment analysis. An
new effective learning framework is proposed that combines knowledge
distillation and sample selection. A dually-born-again network (DBAN)
is presented in which the teacher network and the student network are
simultaneously trained through an iterative approach. A selection gate is
defined to deal with training samples which are useless or even harmful
for model training. Moreover, both the DBAN and sample selection are
further improved by ensemble. The proposed framework can improve the
existing state-of-the-art DNN models in sentiment analysis. Experimental
results indicate that the proposed framework enhances the performances
of existing networks. In addition, DBAN outperforms existing born-again
network.

Keywords: Classification, deep neural network, knowledge distillation, sample
selection

1 Introduction

Text sentiment analysis is a key component in various text mining application-
s [1, 2]. Its goal is to accurately classify given a text sample into different
categories, which are usually set as three-level {positive, neural, negative} or
five-level {very negative, negative, neutral, positive, very positive}. Deep neural
network (DNN) has become an extensively used learning technique in sentiment
analysis because it does not require hand-crafted features and has a remarkable
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performance [3, 4, 5]. Numerous methods have been proposed in previous pa-
pers. These existing methods focus on the modification of network modules
including new embedding [6], new attention [7], or new encoding layers [8, 9].
In addition, a few studies have attempted to leverage additional knowledge to
further improve performance [10, 11]. Promising results have been obtained
along these technical paths.

Rather than introducing new effective DNN models or utilizing extra domain
knowledge, the deep leaning community also emerges some novel and effective
techniques to improve classification performances of existing DNN models. One
of such techniques is knowledge distillation, which refers to the distillation of
knowledge from a trained teacher network to guide the training of a student
network without modifying the network structures. Numerous applications [12]
of distillation in computer vision demonstrate that knowledge distillation en-
hances the performance of a student network. Furlanello et al. investigated a
special case of knowledge distillation [13], namely, born-again network (BAN),
in which the teacher and the student networks share the same structure. BAN
has been proven to be effective in solving various problems.

Apart from knowledge distillation, noisy-label learning is another extensive-
ly used learning strategy without keeping eyes on new learning models. Labels
in some training data may contain errors due to label difficulty or annotators’
carelessness [14]. Several studies have proposed solutions to deal with noisy
labels [15]. This work brings the main idea of noisy-label learning for sam-
ple selection. The motivation for sample selection is that a small-proportion
of training samples may play a negative role in the model training and these
samples can be seen as noisy.

In addition, ensemble learning [16] combines a set of existing basic learning
methods to produce a more effective model. Ensemble learning has been inte-
grated in knowledge distillation [17] to provide valuable knowledge to supervise
a student model.

Inspired by the above progress in machine-learning strategies, we propose
a new learning framework rather than single learning model design for senti-
ment analysis in this paper. First, a new dually-born-again (DBAN) learning
approach is proposed, in which the teacher network and the student network are
trained simultaneously in each iteration. They share the same network struc-
ture and most parameters. Second, several existing sentiment analysis models
are used and their outputs are combined to guide the learning of the teacher
and student networks inspired by knowledge distillation. Further, a selection
gate is defined to deal with training samples which are useless or even harm-
ful for model training. Experiments on two benchmark data sets indicate that
the proposed framework can improve the learning performance of the existing
state-of-the-art DNN-based sentiment analysis models. Our work is innovative
in the following aspects:

• A new learning framework is proposed to further improve the performance
of existing DNN models for text sentiment analysis. This framework is
inspired by the related studies on knowledge distillation, noisy-label learn-
ing, and ensemble learning.

• A new born-again learning approach is proposed. Our approach simulta-
neously trains the teacher and student networks with mixed supervised
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signals. This approach is more effective and efficient than the existing
born-again strategy.

• To further improve the quality of the training samples, ensemble outputs
are used to construct a selection gate that can filter samples that are
relatively difficult to learn or even harmful.

2 Related Work

2.1 Knowledge Distillation

Knowledge distillation is initially designed for model compression [18, 19]. Knowl-
edge of distillation usually refers to the distribution outputs of each training
sample of a teacher model. This method borrows the knowledge from a cum-
bersome but high-performance model (teacher) to develop a simple model (stu-
dent). The teacher model can be an ensemble of models and the student model
can be a single model. Various experiments have shown that the class proba-
bilities produced by a teacher model are better than the original ground-truth
labels in training of a student model [20]. Knowledge distillation has been used
in various natural language processing (NLP) tasks including neural machine
translation [21]. To the best of our knowledge, knowledge distillation has not
been applied to sentiment analysis.

Furlanello et al. (2018) proposed a new knowledge distillation strategy, in
which the teacher and the student models share the same structure [13], to
improve the performance of an existing DNN. They are optimized iteratively
(teacher → student → teacher→ student) while the next generation is guided
by the standard ground-truth labels and the class probabilities in the previous
generation. Extensive experiments have shown that the final student model
outperforms the original teacher model.

2.2 Text Classification

Numerous text sentiment classification methods have been proposed in previ-
ous literature and can be divided into three categories. The first category is
rule-based. Rule-based methods are also known as lexicon-based methods in
which dictionary of three kinds (positive, negative, negation) of the key words
are compiled. A set of rules are subsequently constructed based on the ap-
pearance and positional relationships between key words. The second category
is (conventional) learning-based. One-hot word-level features are constructed
and fed into a shallow learning model (e.g., SVM and Adaboost). The third
category is deep learning-based.CNN and long short-term memory (LSTM) are
often used to encode input texts and a softmax classifier is used to predict the
sentiment category [3, 22]. Previous deep learning-based methods have focused
on new network structures (wang et al. 2018), new attention mechanisms, or
the utilization of domain knowledge. Our study adopts a new technical path to
further improve the state-of-the-art sentiment analysis performance.

3



2.3 Noisy-label Learning

Noisy-label learning assumes that a small proportion of labels in training data
are errors caused by labeling noise [14]. The majority of the noisy-label learning
methods attempt to model the labeling noise and than infer the ground-truth
labels[23]. Some other methods assume that there is an additional small-size
training set with high-quality labels [24]. Knowledge distillation has been used in
noisy-label learning [15]. This study attempts to leverage the ensemble learning
to deal with samples that are difficult to train. These samples can be considered
with noisy labels or ambiguous. Our study focus is not on learning with noise
samples, but on improving the performance of the existing DNN models by
mining more information of samples. The difference between our study and
noisy-label learning methods is that noisy-label learning attempts to model the
labeling noise and than infer the ground-truth labels, but our model attempts
to improving the performance of the existing DNN models by finding out the
difficult-to-train samples.

3 Methodology

Text sentiment analysis can be formulated as follows. Given a piece of input
texts s = {x1, · · · , xn}. The analysis goal is to predict the overall sentiment
class of s. Therefore, a sentiment classifier is required to be constructed that
maps s into a sentiment class in predefined sentiment categories.

3.1 The Overall Learning Framework

This study aims to design a learning framework to improve the performance of
a mainstream existing DNN model. Accordingly, a dually-born-again network
and sample selection are leveraged. DBAN can facilitate the performance of
a single DNN model. Meanwhile, sample selection can select samples that are
useless or even harmful for model. Both DBAN and sample selection can further
improve by ensemble learning. Besides, no domain knowledge is used in the
entire process. Let {X,Y } be the training data. Assuming that there are three
existing models (C1, C2, and C3) for ensemble. The entire architecture of our
framework is shown in Fig. 1.

Our model comprises three major modules, namely, DBAN, sample selection,
and learning model ensemble. The outputs of the model ensemble are taken as
input for both the DBAN module and the sample selection module.

The first module, the DBAN, contains two sub-networks, namely, teacher
network and student network. These two networks share most structure and
parameters except the last softmax layer. The loss functions of the two networks
are detailed in the following subsections.

The second module, sample selection, attempts to exclude training samples
which are useless or even harmful for training. The sample selection is imple-
mented via a selection gate. The selection gate is Otest, and its value is in the
range of [0, 1]. Theoretically, the selection gate should be ideally added in the
input of the entire learning system. In practice, the corresponding performance
is better when Otest is added as a multiplier in the loss function.

The third module, ensemble learning, has two important roles in the entire
learning framework. This module has two outputs (see Fig. 1), namely, Otrain
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Fig. 1. Overview of the whole learning framework.

and Otest. The first output, Otrain, is used as supplementary supervised infor-
mation in DBAN, which is a standard operation in knowledge distillation. The
second output, Otest, is used for sample selection.

3.2 Dually-born-again Network (DBAN)

The primary goal of knowledge distillation is to compress models while retain-
ing the prediction performance as good as possible. BAN is a special type of
knowledge distillation and its goal is to produce improved model parameters
for an existing model rather than compressing the existing model. This study
also aims to improve the performance of an existing sentiment analysis model
without modifying the structure of the model.

The existing BAN merely involves one DNN structure to be learned. BAN
iteratively borns a new student model. The newly born student model is subse-
quently used as the teacher model to born the next new student model. After K
steps, a total of K student models are obtained. Experimental results on image
classification indicate that the student network can achieve better results than
the original model after several iterations. The graphical representation of the

BAN training procedure is shown in Fig. 2. The kth model f
(k)
student is trained

based on the training samples X, true labels Y and the softmax output by the

(k-1)th model f
(k−1)
student.

BAN needs to train the student network from scratch (all parameters are
required to be re-initialized) in each step1, leading to a high learning complexity.
This work explores an alternatively training way in which teacher and student
networks are trained simultaneously. Our dual learning procedure for network
born again is called dually-born-again network (DBAN). Compared to the ex-
isting BAN, all parameters in DBAN are not required to be re-initialized and
thus it has lower time consumption, which will be verified in the experimental
section.

1Our experimental results indicate that the performance of the student network could not
be improved if the parameters of the student network are initialized by copying those of its
teacher network.
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Fig. 3. The learning procedure of DBAN. The left shows the first step and the
right shows the k-th step. Sample selection is considered in the loss function
and does not explicitly appears in this figure.

The graphical model of DBAN is shown in Fig. 3. The teacher and the
student networks share the same network structure and most of the parameters.
Only the last layers of the two networks are different.

The final supervised labels for teacher network is the mixture of ground-truth
labels Ytrue and ensemble-based labels Yensemble.

In the initialization step, the teacher and student networks are trained based
on the sample set X, ground-truth label set Y and Otrain generated by the

ensemble module. Thereafter, two models f
(1)
teacher and f

(1)
student are obtained. In

this step, the loss function is defined as follows:

loss(1) =
∑
i

l(f
(1)
teacher(xi), ỹi) + l(f

(1)
student(xi), ỹi) (1)

where
ỹi = (1− λ1) yi + λ1 o

(tr)
i (2)

where yi ∈ Y is the one-hot vector of the ground-truth label of the ith sample.

o
(tr)
i ∈ Otrain, and λ1 ∈ [0, 1] is a parameter.
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Algorithm 1: Dually-born-again Network

Input : training set D, number of training steps K, training
configurations {λ1, n};

1 Initialize θ0;
2 k ← 1;

3 Compute loss loss(1) using Eq. (1);

4 Updata θ0 to θ1 by training n iterations using loss(1);

5 Compute distribution output f
(2)
teacher(xi,θ1);

6 for k = 2, 3, . . . ,K do
7 Compute loss loss(k) using Eq. (3);

8 Updata θk−1 to θk by training n iterations using loss(k);

9 Compute distribution output f
(k)
teacher(xi,θk);

10 end
Return: M : y = f(x;θ = θK).

In the kth step, the teacher network remains trained based on Y and Otrain,
whereas the student work is trained based on a new label set Y (k−1). The set
Y (k−1) is the distribution output by running f

(k−1)
teacher on X. The loss function

used in the k-th step becomes the following form:

loss(k) =
∑

i l(f
(k)
teacher(xi), ỹi)

+ l(f
(k)
student(xi), f

(k−1)
teacher(xi))

(3)

In the implementation of the network training, the first step runs n iterations
based on the loss defined in Eq. (1). Subsequently, the second step iteratively
runs based on the loss defined in Eq. (3) until certain stop criteria is attained.
The pseudo code of DBAN is provided in Algorithm 1.

In addition to the difference in parameter initialization strategy for student
network training, there are two major differences between BAN and DBAN, as
listed below:

• In DBAN, the teacher network and the student network are trained si-
multaneously. However, BAN trains the teacher network and the student
network separately.

• In DBAN, the teacher network and the student network share most pa-
rameters. In BAN, the parameters between the teacher network and the
student network are independent.

3.3 Sample Selection

Classification errors are inevitable in machine learning. The reason that classi-
fication errors of an involved model occurs mainly lies in the following aspects:
(1) The classification capability of a model is not ideal. In practice, it is nearly
impossible to construct a perfect model with 100% classification accuracy. (2) A
few samples may play a negative role in training because several text semantics
are reasonably vague or obscure to understand even by human beings. (3) A
few labels are errors. Label inconsistency and labeling errors are inevitable in
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Algorithm 2: Sample Selection

Input : training set D{X,Y };
Output: Otest;

1 Evenly divided D into four subsets: D1, D2, D3, D4;
2 for i = 1, 2, 3, 4 do
3 Train the model using (D - Di);
4 Compute the maximum value of the softmax output on Di Otest,i;

5 end
6 return Otest = Otest,1 ∪Otest,2 ∪Otest,3 ∪Otest,4.

text sentiment annotation. These samples are harmful for the model learning.
Intuitively, if text samples that are vague/obscure semantics or labeling errors
are known in mode training, then these difficult-to-train samples can be exclud-
ed or given substantially low weights during the training stage. Therefore, the
performance can be improved.

In order to identify the difficult-to-train samples, we made statistics on the
error rates in terms of the maximum value of the softmax output on test data.
The results shown in Fig. 4. The y-axis in Fig. 4 shows the error rates, while
the x-axis shows the range of the maximum value of the softmax output. An in-
creasing trend can be observed in Fig. 4. The error-classified samples are usually
with lower maximum values of the corresponding softmax outputs. Alternative-
ly, the maximum distribution outputs partially reflect the samples which are
difficult to classify, thereby motivating us to conduct (difficult-to-train) sample
selection based on maximum distribution output. The pseudo code of sample
selection for one model is provided in Algorithm 2.

3.4 The Improved Loss with Sample Selection

By considering sample selection o
(te)
i ∈ Otest, the loss functions defined in Eqs.

(1) and (3) can be improved as follows:

loss(1) =
∑

i o
(te)
i × l(f (1)teacher(xi), ỹi)

+ l(f
(1)
student(xi), ỹi) + λ2|1− o(te)i |1

(4)

loss(k) =
∑

i o
(te)
i × l(f (k)teacher(xi), ỹi)

+ l(f
(k)
student(xi), f

(k−1)
teacher(xi)) + λ2|1− o(te)i |1

(5)

The last term is a sparse constraint that is used to prevent the loss from
becoming zero if all the samples’ selection-gate values equal to zero. The sparse
constraint is reasonable because the proportion for the samples unsuitable for
training is usually small.

3.5 Model Ensemble

Ensemble learning is effective toward improving prediction performances with-
out applying novel models. It has been used in a number of NLP tasks [25].
Although an ensemble of models is usually more effective than a single model,
it is usually in larger-size and more time-consuming. Therefore, this study does
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not attempt to design an ensemble for the final sentiment analysis. Instead, we
use a single model for our final sentiment analysis while utilizing the ensemble
in the training stage. As previously mentioned, ensemble learning plays two
important roles in the whole learning framework according to its two different
outputs. The first role is the supervised information for DBAN; the second
role is for sample selection. These two roles are implemented by two forms of
outputs of the ensemble models, i.e., Otrain and Otest in Fig. 1.

Fig. 5 explains how outcomes Otrain and Otest are generated based on the
training data {X,Y } and three existing sentiment analysis DNN models (C1,
C2, and C3)2. As shown in Fig. 5(a), the data {X,Y } are first used to train
the three models, C1, C2, and C3. Then the three trained models are run on

training sample set X to generate Otrain. Let o
(tr)
i1 , o

(tr)
i2 , and o

(tr)
i3 be the three

(distribution) labels output by the three trained models for xi ∈ X. Then the

generated label o
(tr)
i ∈ Otrain is as follow:

o
(tr)
i = (o

(tr)
i1 + o

(tr)
i2 + o

(tr)
i3 )/3. (6)

In Fig. 5(b), the data {X,Y } is first evenly divided into four subsets. Any
combination of three subsets are then used to train three models, and the the
rest subset is used to run the three models. After four iterations (note that the
number of possible combination is four), Otest is generated. The selection gate

o
(te)
i ∈ Otest is constructed based on the output by the ensemble module. Let

o
(te)
i,1 , o

(te)
i,2 , and o

(te)
i,3 be the three output distribution labels for the ith sample.

Let m(v) be the maximum value of the elements in a vector v. The selection

2The three models here is just for illustration. The number of models can also be 4, 5, etc..
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Fig. 5. The approaches of generating Otrain and Otest.

gate o
(te)
i can be calculated as follows:

o
(te)
i = w1m(o

(te)
i,1 ) + w2m(o

(te)
i,2 ) + w3m(o

(te)
i,3 )

s.t. w1 + w2 + w3 = 1; w1, w2, w3 ≥ 0
(7)

or

o
(te)
i = sigmoid(

[
w1 w2 w3

] m(o
(te)
i,1 )

m(o
(te)
i,2 )

m(o
(te)
i,3 )

+ b) (8)

where w1, w2, w3, and b are the parameters to be learned. The above two
calculations are linear and non-linear, respectively.

4 Experiments

4.1 Data Sets

To demonstrate the effectiveness of our proposed method, as most previous
works [3, 11, 26], we conduct experiments on two benchmarks, namely, movie
reviews (MR) [27] and Stanford Sentiment Treebank (SST) [28]. Table 1 shows
statistics of the two datasets.

MR: MR is a collection of movie reviews in English. Each sample in the MR
dataset is divided into two categories, namely, negative and positive.

SST: The original SST data set provides phrase-level annotations. However,
our experiments only considered the sentence-level annotations. Each sentence
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Table 1: Details of the experimental data sets. Train/Dev/Test:
train/development/test set.

DATA MR SST
Train 8636 8534
Dev 960 1100
Test 1066 2210

are classified into five categories (i.e. very positive, positive, neutral, negative,
very negative).

4.2 Competing Models

In order to comprehensively evaluate the performance of our proposed method,
the following state-of-the-art sentiment analysis DNN models are considered for
comparison:

CNN [3]: This model utilizes convolution and pooling operations for sen-
timent analysis. In our experiment, the word vectors are static. Moreover, we
added additional L2 penalty for the weights in last layer to reduce over fitting.

LSTM-CNN [22]:This model combines the CNN and LSTM networks to
perform sentiment analysis. LSTM is used to encode the input layer, while CNN
is used to obtain more higher-level representations on the hidden vectors.

LR-LSTM [11]: This model is a linguistical regularized variant of LSTM.
Linguistically regularizer is based on lexical cues (e.g., polar words and negation
words). This method achieves the state-of-the-art performances.

BiLSTM-ELMo-ATT [29]: ELMo (Embeddings from Language Models)
generalizes traditional word embedding research along a different dimension.
They propose to extract context sensitive features from a language model.

BERTBASE [30]: BERT is based on a multi-layer bidirectional Transformer,
and is trained on plain text for masked word prediction and next sentence
prediction tasks. In order to apply a pre-trained model to specific natural
language understanding tasks, we often need to fine-tune. BERTBASE is the
base BERT model released by the authors. Our implementation is based on the
Tensorflow implementation of BERT 3.

4.3 Hyper-parameters and Training

All word vectors in our experiments are initialized by Glove [31]. The vocabu-
lary size is 1.9M, while the dimension of each word vector is 300. The setting of
hyper-parameters is mainly based on the original papers. All the LSTM hidden
states are set to 300. The dropout rate is 0.5. The L2 regularization of CNN is
0.8, while that of LSTM-CNN is 0.4. The learning rate of CNN and LSTM-CNN
is set to 0.01, while the batch size is set to 64. For LR-LSTM, the learning rate
is set to 0.1, while the batch size is 25. The code of LR-LSTM is released by
Qian et al. [11]. The other methods are implemented by Tensorflow4. The pa-
rameter λ1 is searched in [0, 0.2, 0.4, 0.6, 0.8, 1] and the parameter λ2 is searched
in [0.0001, 0.001, 0.01, 0.1, 1, 10].

3https://github.com/google-research/bert#pre-trained-models
4https://www.tensorflow.org/
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4.4 Overall Results

Table 2: The accuracies of the competing models on MR and SST.

Model MR SST
CNN 80.3 45.6
S+CNN 81.5 46.4
D+CNN 81.6 46.8
SD+CNN 82.5 47.1

LSTM-CNN 80.3 46.0
S+LSTM-CNN 82.3 47.4
D+LSTM-CNN 83.7 48.6
SD+LSTM-CNN 84.4 49.3

LR-LSTM 81.3 47.4
S+LR-LSTM 82.8 47.8
D+LR-LSTM 82.2 48.1
SD+LR-LSTM 83.6 48.5

BiLSTM-ELMo-ATT 81.6 48.4
S+BiLSTM-ELMo-ATT 83.0 49.1
D+BiLSTM-ELMo-ATT 82.1 48.8
SD+BiLSTM-ELMo-ATT 83.4 49.7

BERTBASE 86.3 51.3
S+BERTBASE 86.9 51.8
D+BERTBASE 86.7 51.8
SD+BERTBASE 87.0 52.1

Our proposed learning framework consists of several new modules (i.e., en-
semble, DBAN, sample selection). By training existing DNN models using our
proposed learning framework, the following new models are obtained5:

• MODEL*: MODEL* indicates the baseline models without sample se-
lection or DBAN.

• S+MODEL*: This model is generated by training MODEL* with sam-
ple selection.

• D+MODEL*: This model is generated by training MODEL* with D-
BAN.

• SD+MODEL*: This model is generated by training MODEL* with
the proposed learning framework (including both sample selection and
DBAN).

Table 2 shows the experimental results of competing models on the two
benchmark data sets MR and SST. The results verify that the classification
accuracies of existing models (i.e., CNN, LSTM-CNN, LR-LSTM, ELMo and

5Note that the ensemble module is the basis module for both sample selection and D-
BAN. It is not independently used here, whereas its effectiveness is verified in an independent
subsection.
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BERTBASE) are further improved by integrating the proposed learning frame-
work. The model, SD+BERTBASE, achieves the best results on both data sets.
In addition, both the DBAN and sample selection are also demonstrated to be
useful for the training of existing models.

On the MR data set, SD+CNN achieved an accuracy rate 2.2% points higher
than the existing CNN model. Meanwhile, SD+LSTM-CNN model performed
4.1% better than the existing LSTM-CNN model, while the SD+LR-LSTM
model performed 2.3% better than the existing LR-LSTM model. Even in the
strong baseline models ELMo and BERTBASE, our method still achieves 1.8%
and 0.7% improvement respectively. On the SST data set, the accuracy rate
is improved by 1.2, 2.6, 1.1, 1.3 and 0.8 percentage points compared with the
existing CNN, LSTM-CNN, LR-LSTM, ELMo, BERTBASE models respectively.

Note that for selection sample, the results of using Eq. (7) are slightly better
than those of using Eq. (8). Therefore, Eq. (7) is used in all experiments.

Table 3: The training time of DBAN and BAN.

Model
MR SST

DBAN BAN DBAN BAN
CNN ∼2.5h ∼4.8h ∼2.8h ∼5.0h
LSTM-CNN ∼4.1h ∼8.0h ∼4.5h ∼9.0h
LR-CNN ∼23h ∼40h ∼28h ∼45h
BiLSTM-ELMo-ATT ∼3.2h ∼6.1h ∼3.8h ∼7.1h
BERTBASE ∼4.2h ∼7.6h ∼4.6h ∼8.7h

Table 4: The accuracy comparison between DBAN and BAN.

Model MR SST
CNN 80.3 45.6
BAN+CNN 81.4 46.7
D+CNN 81.6 46.8

LSTM-CNN 80.3 46.0
BAN+LSTM-CNN 82.8 48.4
D+LSTM-CNN 83.7 48.6

LR-LSTM 81.3 47.4
BAN+LR-LSTM 82.0 47.6
D+LR-LSTM 82.2 48.1

BiLSTM-ELMo-ATT 81.6 48.4
BAN+BiLSTM-ELMo-ATT 81.9 48.7
D+BiLSTM-ELMo-ATT 82.1 48.8

BERTBASE 86.3 51.3
BAN+BERTBASE 86.4 51.8
D+BERTBASE 86.7 51.8
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Fig. 6. The variations of the accuracies under different values of λ1 in Eq. (3).

4.5 Comparison of DBAN and BAN

To further reveal the effectiveness of DBAN, we compared DBAN and BAN with
the five existing DNN models, namely, CNN, LSTM-CNN, LR-LSTM, ELMo
and BERTBASE. The ensemble module (defined in Eq. (6)) is used in both
DBAN and BAN.

The results shown in Table 3 indicate that DBAN is generally better than
BAN. As previous stated, the training with BAN is time consumption as the
network parameters should be re-initialized in each step. The training time of D-
BAN and BAN is recorded during learning and the results are shown in Table 4.
Therefore, DBAN requires less training time than BAN, and the performance
is better than BAN.

4.6 Experiments on the Ensemble Module

In DBAN, the output (Otrain) of the ensemble module is used as the additional
supervised information defined in Eq. (2). The parameter λ1 in Eq. (2) tunes
the proportion of the ground-truth labels and the labels Otrain. Fig. 6 shows
the performances of D+CNN, D+LSTM-CNN, D+LR-LSTM, D+ELMo and
D+BERTBASE under different values of λ1. The results show that with λ1 in-
creases, the accuracy increases as well. Nevertheless, when λ1 is closed to 1, the
accuracy decreases. The variations indicate that Otrain plays more important
role in DBAN than the ground-truth labels (λ1 = 0). The ensemble output
Otrain benefits the performances of DBAN.

In order to verify the influence of ensemble learning in sample selection, we
conducted experiments on the two benchmark datasets by using different inputs
for the sample selection module. The results are shown in Table 5. When Otest

is generated by ensemble module, the corresponding models achieve the highest
accuracies for each model on both the data sets. The results also verify the
usefulness of the ensemble module.
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Table 5: The accuracy comparison when different inputs for sample selection
are utilized.

Model Input for sample selection MR SST

CNN
Without sample selection 80.3 45.6

With sample selection 80.7 45.8
Ensemble (Otest) 81.5 46.4

LSTM-CNN
Without sample selection 80.3 46.0

With sample selection 81.8 46.5
Ensemble (Otest) 82.3 47.4

LR-LSTM
Without sample selection 81.3 47.4

With sample selectio 82.3 47.6
Ensemble (Otest) 82.8 47.8

BiLSTM-ELMo-ATT
Without sample selection 81.6 48.4

With sample selectio 82.9 48.6
Ensemble (Otest) 83.0 49.1

BERTBASE

Without sample selection 86.3 51.3
With sample selectio 86.8 51.6

Ensemble (Otest) 86.9 51.8

4.7 Case Study for Sample Selection

Sample selection has rarely been analyzed in previous studies. To further il-
lustrate that a few training samples play a negative role in training, we cite
several typical examples from training sets, the weights of which are extremely
minimal.

• “I’ve never bought from telemarketers, but I bought this movie”. The
weight value is 0.002. The review contains implicit information that indi-
rectly expresses the affirmation of the movie.

• “The biggest problem with this movie is that its not nearly long enough”.
The weight value is 0.025. The text implicitly expresses the love for the
movie, and does not actually say that the movie is considerably short.

• “The movie is not as terrible as the synergistic impulse that created it.”
The sentence contains negative words, and the weight value is 0.265. It
implies that the model cannot considerably judge the sentiment of the text
containing negative words.

The sentiment labels of the preceding samples are difficult to judge. That
is, these samples add considerable burden to the training. Hence, reducing the
weights of these samples benefits the training because “less is more” in real
applications.

5 Conclusion

This paper investigates a new learning strategy to increase the sentiment anal-
ysis accuracy of a given deep neural network. Our proposed learning strategy
is mainly based on BAN learning which is a special case of knowledge distilla-
tion. To mitigate the defects of existing BAN, a new learning approach, namely,
DBAN, is presented and the teacher and student networks are trained simul-
taneously. The ensemble of existing DNN models is used for two goals. The

15



first goal is to provide substantially effective knowledge to network training in
DBAN; the second goal is to perform sample selection to improve the quality
of the training data. The experimental results verify the effectiveness of the
proposed learning strategy as well as the three independent modules, namely,
DBAN, sample selection and ensemble. The performances of three typical DNN
models are enhanced after using our learning strategy.

In our future work, we will extend the proposed learning framework for more
NLP tasks such as opinion mining and machine translation.
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