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Abstract. In this paper, we obtain a sufficient and necessary condition for the existence
of symplectic critical surfaces with parallel normalized mean curvature vector in two-
dimensional complex space forms. Explicitly, we find that there does not exist any sym-
plectic critical surface with parallel normalized mean curvature vector in two-dimensional
complex space forms of non-zero constant holomorphic sectional curvature. And there
exists and only exists a two-parameters family of symplectic critical surfaces with parallel
normalized mean curvature vector in two-dimensional complex plane, which are rotation-
ally symmetric.
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1 Introduction

Surfaces with non-zero parallel mean curvature vector in two-dimensional complex space
forms are already classified when the Kähler angle is constant by Chen [1], and finally by
Hirakawa [11]. If the Kähler angles of these surfaces are not constant, such surfaces are
studied first by Ogata [16], later by Kenmotsu and Zhou [15], Kenmotsu ([12],[13]), Hi-
rakawa [11], Ferreira and Tribuzy [4], and Fetcu [5]. We know that parallel mean curvature
vector implies constant mean curvature and parallel normalized mean curvature vector.
It is interesting and nature from the viewpoint of differential geometry to study surfaces
with parallel normalized mean curvature vector. In the following, we first introduce a kind
of symplectic surface, then study such surfaces with parallel normalized mean curvature
vector.

Let M be a complex two-dimensional Kähler manifold. Let Σ be a compact oriented
real two-dimensional Riemannian manifold and we consider an isometric immersion x :
Σ → M from Σ into M . Let {e1, e2} be an oriented orthonormal local frame field on Σ.
The Kähler angle θ is a function on Σ that measures the angle of Jdx(e1) and dx(e2) for
the Kähler metric of M , where J denotes the complex structure of M . This is independent
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of the choice of oriented orthonormal frames on Σ. It is said that Σ is a holomorphic curve
if cos θ = 1, Σ is a Lagrangian surface if cos θ = 0 and Σ is a symplectic surface if cos θ > 0.

Let H be the mean curvature vector field of x, which is defined by

H =
∑
α,i

hαiieα, (1.1)

where hαij ’s are the components of the second fundamental form of x, and ei and eα are
adapted frames along x.

A symplectic minimal surface is a critical point of the area of surfaces, which is sym-
plectic. It may be more natural to consider directly the critical point of the functional

L =

∫
Σ

1

cos θ
dµΣ, (1.2)

in the class of symplectic surfaces. The Euler-Lagrange equation of this functional is

cos3 θH = (J(J∇ cos θ)>)⊥. (1.3)

Such a surface is called a symplectic critical surface(cf.[6]).
The second author and his coauthors (cf.[6]-[10]) have obtained many interesting re-

sults about symplectic critical surface from the viewpoint of geometry analysis. In this
paper we will focus on the explicit characterization of symplectic critical surface from
the viewpoint of differential geometry. It follows from (1.3) that a minimal surface with
constant Kähler angle is a symplectic critical surface. In this paper we mainly study sym-
plectic critical surfaces with non-constant mean curvature and non-constant Kähler angle
in two-dimensional complex space forms.

In section 2, we study the fundamental equations of symplectic critical surfaces with
parallel normalized mean curvature vector in two-dimensional complex space forms. We
reduced the local existence problem of such surfaces to the problem of studying a certain
overdetermined system of ordinary differential equations (cf. Theorem 2.3). In section
3, we study the system under the condition ρ = 0 and get all solutions of the system
explicitly in this case. In section 4, we study the system under the condition ρ 6= 0
and find there does not exist any non-trivial solution in this case (cf. Theorem 4.3). In
section 5, we give some geometric results. Concretely, we find that there does not exist
any symplectic critical surface with parallel normalized mean curvature vector in two-
dimensional complex space forms of non-zero constant holomorphic sectional curvature
(cf. Theorem 5.1). And we obtain the explicit representations of all symplectic critical
surfaces with parallel normalized mean curvature vector in C2 (cf. Theorem 5.2).

2 The fundamental equations of symplectic critical surfaces

Suppose that M is a complex two-dimensional kähler manifold of constant holomorphic
sectional curvature 4ρ. Let {ωi} be a local field of unitary coframes on M , so that the
kähler metric is represented by

∑
ωiωi. Here and in what follows, we will agree on the

following range of indices: 1 ≤ i, j, k ≤ 2. We denote by ωij the unitary connection forms
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with respect to {ωi}. So we have

dωi =
∑

ωij ∧ ωj , ωij + ωji = 0,

dωij =
∑

ωik ∧ ωkj + Ωij ,

Ωij = −ρ
(
ωi ∧ ωj + δij

∑
ωk ∧ ωk

)
.

(2.1)

We assume H 6= 0. We can construct a unique system of global orthonormal vector
fields {ẽ1, ẽ2, ẽ3, ẽ4} along Σ such that ẽ1 and ẽ2 are tangent to Σ by the following: First
we put ẽ3 = − H

‖H‖ , then the normal vector field ẽ4 of T⊥Σ is uniquely determined by
choosing it to be compatible with the fixed orientations of Σ and M . The system of
vectors {ẽ3, ẽ4,Jẽ3,Jẽ4} is linearly independent, because x is neither holomorphic nor
anti-holomorphic. Here the angle of Jẽ4 and ẽ3 is equal to the Kähler angle θ which is
defined in Section 1. In fact, set

ẽ1 = − Jẽ4 − 〈Jẽ4, ẽ3〉ẽ3

‖Jẽ4 − 〈Jẽ4, ẽ3〉ẽ3‖
, ẽ2 =

Jẽ3 − 〈Jẽ3, ẽ4〉ẽ4

‖Jẽ3 − 〈Jẽ3, ẽ4〉ẽ4‖
.

Then ẽ1 and ẽ2 are tangent to Σ. A straightforward calculation shows

〈Jẽ4, ẽ3〉 = 〈Jẽ1, ẽ2〉 = cos θ.

It is easy to see that {ẽ1, ẽ2, ẽ3, ẽ4} is an adapted frame on Σ in M , that is, ẽ1 and ẽ2 are
sections on TΣ and ẽ3 and ẽ4 are sections on T⊥Σ. The complex structure J is represented
under the frame {ẽ1, ẽ2, ẽ3, ẽ4} as follows:

Jẽ1 = cos θ · ẽ2 + sin θ · ẽ4,

Jẽ2 = − cos θ · ẽ1 − sin θ · ẽ3,

Jẽ3 = sin θ · ẽ2 − cos θ · ẽ4,

Jẽ4 = − sin θ · ẽ1 + cos θ · ẽ3.

Moreover, we define vector fields e1 and e3 as follows:

e1 =
ẽ1 − Jẽ2

‖ẽ1 − Jẽ2‖
= cos

θ

2
· ẽ1 + sin

θ

2
· ẽ3,

e3 =
ẽ1 + Jẽ2

‖ẽ1 + Jẽ2‖
= sin

θ

2
· ẽ1 − cos

θ

2
· ẽ3.

and put

e2 = Je1 = cos
θ

2
· ẽ2 + sin

θ

2
· ẽ4,

e4 = Je3 = − sin
θ

2
· ẽ2 + cos

θ

2
· ẽ4.

Then {e1, e2, e3, e4} is a J-canonical frame along x. We extend {ẽA} and {eA} to a neigh-
bourhood of Σ in M , where A, B and C run from 1 to 4.

Let {θ̃A} and {θA} be the dual coframes of {ẽA} and {eA} respectively. Let θ̃AB and
θAB be the Riemannian connection forms with respect to the canonical 1-forms {θ̃A} and
{θA} respectively and put

ωj = θ2j−1 + iθ2j ,
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ωjk = θ2j−1,2k−1 + iθ2j,2k−1, where i =
√
−1.

Then we have the following relations

θ̃1 + iθ̃2 = cos
θ

2
ω1 + sin

θ

2
ω2,

θ̃3 + iθ̃4 = sin
θ

2
ω1 − cos

θ

2
ω2.

(2.2)

and

θ̃12 = i

(
cos2 θ

2
ω11 − sin2 θ

2
ω22

)
,

θ̃34 = i

(
sin2 θ

2
ω11 − cos2 θ

2
ω22

)
,

θ̃13 + iθ̃23 = −
{
ω12 +

1

2
[dθ − sin θ(ω11 + ω22)]

}
,

θ̃14 + iθ̃24 = i

{
ω12 −

1

2
[dθ − sin θ(ω11 + ω22)]

}
.

(2.3)

We denote the restriction of {θ̃A} to Σ by the same letters. Then we have θ̃3 = 0 = θ̃4

on Σ. Put
φ = θ̃1 + iθ̃2,

the induced metric of Σ is written as

ds2 = φφ.

By taking the exterior derivative of (2.2) restricted to Σ, we get

1

2
[dθ + sin θ(ω11 + ω22)] = aφ+ bφ,

ω12 = bφ+ cφ,
(2.4)

where a, b and c are complex-valued smooth functions defined locally on Σ. Let {hαij} be

the components of the second fundamental form so that θ̃iα =
∑

j h
α
ij θ̃j . By using (2.3)

and (2.4), all hαij ’s can be expressed in terms of a, b and c. Indeed, we have

h3
11 = −1

2

[
a+ ā+ 2(b+ b̄) + c+ c̄

]
,

h3
12 =

i

2
(−a+ ā+ c− c̄) ,

h3
22 =

1

2

[
a+ ā− 2(b+ b̄) + c+ c̄

]
,

h4
11 =

i

2

[
a− ā+ 2(b− b̄) + c− c̄

]
,

h4
12 =

1

2
(−a− ā+ c+ c̄) ,

h4
22 =

i

2

[
−a+ ā+ 2(b− b̄)− c+ c̄

]
.

(2.5)

Since H = −‖H‖ẽ3 = (h3
11 + h3

22)ẽ3 + (h4
11 + h4

22)ẽ4, it follows from (2.5) that

b = b̄,
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and
‖H‖ = 4b.

Let K be the Gauss curvature of Σ, then

dθ̃12 = −Kθ̃1 ∧ θ̃2 = − i
2
Kφ ∧ φ.

By taking the exterior derivative of the first formula of (2.3), using (2.1) and (2.4) we have

K = (1 + 3 cos2 θ)ρ− 2(a2 − 2b2 + |c|2). (2.6)

Let KN be the normal curvature of x defined by

dθ̃34 = −KN θ̃1 ∧ θ̃2 = − i
2
KNφ ∧ φ.

By taking the exterior derivative of the second formula of (2.3), using (2.1) and (2.4) we
have

KN = 2(|a|2 − |c|2)− (3 cos2 θ − 1)ρ. (2.7)

Since

(J∇ cos θ)> = (∇ẽ1 cos θ · Jẽ1 +∇ẽ2 cos θ · Jẽ2)>

= ∇ẽ1 cos θ · cos θ · ẽ2 −∇ẽ2 cos θ · cos θ · ẽ1,

then

(J(J∇ cos θ)>)⊥ = ∇ẽ1 cos θ · cos θ · (Jẽ2)⊥ −∇ẽ2 cos θ · cos θ · (Jẽ1)⊥

= − sin θ cos θ∇ẽ1 cos θ · ẽ3 − sin θ cos θ∇ẽ2 cos θ · ẽ4.

Hence, in particular, sin θ 6= 0. From the symplectic critical surface equation (1.3), we get

4b cos3 θ = sin θ cos θ∇ẽ1 cos θ, (2.8)

and

∇ẽ2 cos θ = 0. (2.9)

It follows from the first formula of (2.4) that

dθ = (a+ b)φ+ (a+ b)φ = (a+ a+ 2b)θ̃1 + i(a− a)θ̃2. (2.10)

Combining (2.9) and (2.10), we have

a = a, (2.11)

which implies

dθ = 2(a+ b)θ̃1. (2.12)
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Substituting (2.12) into (2.8), we obtain

a = −(1 + 2 cot2 θ)b. (2.13)

We assume ∇⊥( H
‖H‖) = 0. Then ẽ3 is a parallel vector field along Σ, hence so is ẽ4.

This implies
θ̃34 = 0.

By taking the exterior derivative of (2.4) and using the above, we obtain

θ̃12 = −2i(cot θ + cot3 θ)b(φ− φ),

dθ = −2 cot2 θ b(φ+ φ),

db = −2

{
(cot θ + 4 cot3 θ)b2 +

3

8
ρ sin3 θ cos θ

}
(φ+ φ),

dc ∧ φ = −2

{
2(cot θ + cot3 θ)bc+ (cot θ + 4 cot3 θ)b2 +

3

8
ρ sin3 θ cos θ

}
φ ∧ φ,

|c|2 = (1 + 2 cot2 θ)2b2 − ρ
2(3 cos2 θ − 1),

H = −4bẽ3.

(2.14)

The third and fourth formulas of (2.14) are the Codazzi equations of x. The fifth formula
of (2.14) follows from that the normal bundle is flat.

Set φ = λdz, where λ is a non-zero complex-valued function on a simply connected
domain U with complex coordinate z. Then the set of the first three formulas of (2.14) is
rewritten as the following system of differential equations:

∂λ

∂z̄
= 2λλ(cot θ + cot3 θ)b,

∂θ

∂z̄
= −2λ cot2 θ b,

∂b

∂z̄
= −2λ

{
(cot θ + 4 cot3 θ)b2 +

3

8
ρ sin3 θ cos θ

}
.

(2.15)

In the following we give a lemma about the existence of isothermal coordinate.

Lemma 2.1 Suppose Σ is a symplectic critical surface with parallel normalized mean
curvature vector in M . Then there exists a complex coordinate w on a neighborhood of a
point of Σ such that φ = µdw, where µ is real-valued.

Proof: Since θ is not constant, we claim that b is a function of θ. In fact, canceling out
(φ+φ) in the second and third formula of (2.14), we get a differential equation in b for θ.
Using the claim, we write b = b(θ), and define a real-valued function

F (θ) = −2 tan θ + cot θ +
3ρ

8b2
tan θ sin4 θ.

Taking the partial derivative of the second formula of (2.15) with respect to z and using

(2.15), we have a second-order partial differential equation ∂2θ
∂z∂z̄−F (θ)∂θ∂z

∂θ
∂z̄ = 0. It follows

that
∂(θzexp(−

∫
F (θ)dθ))

∂z̄ = 0. Hence, there exists a holomorphic function G(z) on U such

that ∂θ
∂z = G(z)exp

(∫
F (θ)dθ

)
. Setting

w =

∫
G(z)dz, µ = −

exp
(∫
F (θ)dθ

)
2b cot2 θ

,
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the lemma is proved by the conjugate of the second formula of (2.15). 2

Hence, for a neighbourhood U of a point of Σ, there exists an isothermal coordinate
z = u+ iv such that

ds2 = λ2dzdz̄,

where λ is a positive function defined on U , and we have

φ = λdz.

This implies that λ, θ and b are functions of single variable, and (2.15) is seen to be
a system of ordinary differential equations. Consequently, if Σ is a symplectic critical
surface with parallel normalized mean curvature vector in M , then there exist real-valued
smooth functions of single variable λ, θ and b which are defined locally on Σ and satisfy
the system of ordinary differential equations (cf.(2.16)). Moreover, by the fourth and
fifth formulas of (2.14), we find that λ, θ and b are subjected to a second-order ordinary
differential equation (cf.(2.17)).

Next we shall consider a converse problem to the result obtained above, that is, a local
existence problem for symplectic critical surface with parallel normalized mean curvature
vector in M . We need the following fundamental theorem of surfaces theory in M .

Theorem 2.2 ([3]) Let (Σ, ds2) be a connected, simply connected two-dimensional Rie-
mannian manifold. Given complex-valued 1-forms ω1, ω2, ω11, ω22 and ω12 defined on Σ
satisfying the structure equations (2.1) and

ds2 = ω1ω1 + ω2ω2.

Then there exist an isometric immersion x : Σ→M and a unitary frame {E1, E2} along x
such that {ω1, ω2} is the unitary coframe of {E1, E2} and ω11, ω22 and ω12 are the unitary
connection forms with respect to {ω1, ω2}.

In the following we give the necessary and sufficient conditions for the existence of
symplectic critical surfaces with parallel normalized mean curvature vector in M :

Theorem 2.3 Let M be a two-dimensional complex space form of constant holomorphic
sectional curvature 4ρ. If Σ is a symplectic critical surface with parallel normalized mean
curvature vector in M , then there exist a system of local coordinates (u, v) on Σ and real-
valued smooth functions λ(u), θ(u) and b(u) of single variable u which are defined on an
interval I of u, such that they satisfy a system of ordinary differential equations

dλ

du
= 4λ2(cot θ + cot3 θ)b, λ(u) > 0,

dθ

du
= −4λ cot2 θ b,

db

du
= −4λ

{
(cot θ + 4 cot3 θ)b2 +

3

8
ρ sin3 θ cos θ

}
,

(2.16)

subject to

d2F

du2

db

du
+

(
dF

du

)2 db

du
− dF

du

(
d2b

du2
+
d lnλ2

du

db

du

)
=

2

A

(
db

du

)3

(2.17)
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for

F = ln
{
λ4A

}
, A = (1 + 2 cot2 θ)2b2 − ρ

2
(3 cos2 θ − 1).

Conversely, let λ(u), θ(u) and b(u) be real-valued smooth functions on I, which satisfy
(2.16) and (2.17). Let Σ be an open domain in I × (−1, 1) of (u, v)-plane. We define
a Riemannian metric on Σ by ds2 = λ(u)2(du2 + dv2). Then there exists an isometric
immersion x : Σ → M of Σ into M such that it is a symplectic critical surface which
satisfies the followings:

(1) x has parallel normalized mean curvature vector and the length of mean curvature
vector is 4b,

(2) the kähler angle of x is θ,
(3) the second fundamental form of x is explicitly written in terms of λ, θ and b.

Proof: Through the above discussions, it is enough to prove the sufficiency for the existence
of symplectic critical surfaces with parallel normalized mean curvature vector in M , which
is equivalent to giving the local construction of a symplectic critical surfaces with parallel
normalized mean curvature vector.

Let (r, s, t) be the standard coordinate of R3 and D a domain in R3 such that r > 0,
0 < s < π

2 and t > 0. We define a R3-valued function f(r, s, t) on D by

f(r, s, t) =

 r2(cot s+ cot3 s) t
−r cot2 s · t
−r
{

(cot s+ 4 cot3 s)t2 + 3
8ρ sin3 s cos s

}
 .

It is obvious that f(r, s, t) has continuous partial derivatives on D, so that it satisfies
Lipschitz condition on D. Hence a solution of (2.16) exists and is unique under preassigned
initial conditions.

Let (λ, θ, b) be a solution of (2.16) which satisfy (2.17) and we put

z = u+ iv and φ = λdz.

We define a complex-valued function c on Σ by

c =

√
(1 + 2 cot2 θ)2b2 − ρ

2
(3 cos2 θ − 1)eiτ , (2.18)

where

cos τ =

√
(1 + 2 cot2 θ)2b2 − ρ

2(3 cos2 θ − 1)

2

dF/du

db/du
.

Then it is proved that c satisfies the fourth formula of (2.14) and |c|2 satisfies the fifth
one. We define ω1, ω2, ω11, ω22 and ω12 on Σ as follows:

ω1 = cos
θ

2
φ,

ω2 = sin
θ

2
φ,

ω11 = − cot
θ

2
(1 + cot2 θ)b(φ− φ),

ω22 = − tan
θ

2
(1 + cot2 θ)b(φ− φ),

ω12 = −ω21 = bφ+ cφ.

(2.19)
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Note that these satisfy (2.1) because of (2.16). Therefore, by Theorem 2.2, we have
an isometric immersion x : Σ → M such that Σ is a symplectic critical surface which
has a parallel normalized mean curvature vector and θ the Kähler angle. The second
fundamental form of x is explicitly written in terms of λ, θ and b by (2.5). 2

Remark 2.4 Let x : Σ → M be a symplectic critical surface. Then the condition of
parallel normalized mean curvature vector implies that the Kähler angle is not constant
and the mean curvature is not constant too. Because if the Kähler angle is constant, then it
follows from the second equation in (2.16) that b = 0, which contradicts to the supposition
that the mean curvature is non-zero. If the mean curvature is constant, then from the third
equation in (2.16), we have

sin θ 6= 0,

and

(1 + 3 cos2 θ)b2 +
3

8
ρ sin6 θ = 0.

When ρ 6= 0, the above formula is impossible. When ρ = 0, the above formula implies that
b = 0, which is a contradiction.

Remark 2.5 (1) Let x : Σ→M be a symplectic critical surface with parallel normalized
mean curvature vector. Then the curvature of the normal connection vanishes and hence
we have by (2.7) or the fifth equation of (2.14),

(1 + 2 cot2 θ)2b2 − ρ

2
(3 cos2 θ − 1) ≥ 0.

(2) The case of

(1 + 2 cot2 θ)2b2 − ρ

2
(3 cos2 θ − 1) ≡ 0 (2.20)

doesn’t exist. In fact it follows from (2.20) that

b2 =
ρ

2
· 3 cos2 θ − 1

(1 + 2 cot2 θ)2
.

When ρ = 0, the above formula implies that b = 0, which is a contradiction. When ρ 6= 0,
substituting the above formula into the third equation of (2.16), we find it is impossible.

For later use, we change these equations (2.16)-(2.17) as follows:

Lemma 2.6 Assume that functions λ(u), θ(u) and b(u) satisfy (2.16). Then on the point
of (1 + 2 cot2 θ)2b2 − ρ

2(3 cos2 θ − 1) 6= 0, (2.17) is equivalent to

(b2D2
1 − 4|c|2D2

2)
db

du
+ 2b|c|2

(
D1

dD2

du
−D2

dD1

du

)
+D1D2

(
b
d|c|2

du
− 2|c|2 db

du

)
= 0, (2.21)

where

|c|2 = b2(2 cot2 θ + 1)2 − ρ
2(3 cos2 θ − 1),

D1 = 2b2(2 cot2 θ + 1)(4 cot2 θ + 1)
− ρ

[
2(2 cot2 θ − 1) + 3 cos2 θ + 3

4(cos2 θ + 1)2
]
,

D2 = b2(4 cot2 θ + 1) + 3
8ρ sin4 θ.

(2.22)
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Proof: Since
F = ln(λ4|c|2).

Differentiating the above formula and using (2.16), we obtain

dF

du
=
−2

|c|
db

du
· bD1

2|c|D2
. (2.23)

Differentiating (2.23) with respect to u, we get

d2F

du2
=

(
2

|c|2
d|c|
du

db

du
− 2

|c|
d2b

du2

)
· bD1

2|c|D2

+
1

2|c|4D2
2

[
2b|c|2

(
D1

dD2

du
−D2

dD1

du

)
+D1D2

(
b
d|c|2

du
− 2|c|2 db

du

)]
. (2.24)

Substituting (2.23) and (2.24) into (2.17), we have (2.21). Hence we finish our proof. 2

Since both θ(u) and b(u) are not constants, regarding θ as variable, we get from (2.16)
that

dλ

dθ
= −λ(θ) · (tan θ + cot θ),

db

dθ
= (tan θ + 4 cot θ) · b(θ) +

3ρ

8
· sin4 θ tan θ

b(θ)
.

(2.25)

The integration of the first equation of (2.25) gives us the solution of λ(θ) as follows:

λ(θ) = c1 cot θ, (2.26)

for any positive constant c1.
Let x = sin2 θ denote new variable. Then the second equation of (2.25) implies that

db

dx
= b(x) · 4− 3x

2x(1− x)
+

3ρ

16
· x2

b(x)(1− x)
, (2.27)

and from (2.21) that

ρ ·
3∑

k=0

h3−k(x)ρ3−kb(x)2k = 0 (2.28)

with

h0(x) = 16(x− 1)(x− 2)3,

h1(x) = −1

4
x2(3x5 − 148x3 + 464x2 − 448x+ 128),

h2(x) =
1

32
x5(9x5 − 36x4 − 6x3 − 96x2 + 264x− 128),

h3(x) =
3

64
x8(3x− 2)(3x2 − 2).

(2.29)

We assume that (2.27) and (2.28) hold on some interval (0 ≤)x1 < x < x2(≤ 1).
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3 Analysis of the overdetermined system: ρ = 0 case

When ρ = 0, we get all solutions of the system (2.16)-(2.17) as follows.

Lemma 3.1 Assume that ρ = 0. Then all solutions of the system (2.16)-(2.17) are given
by

λ(θ) = c1 cot θ,

b(θ) = c2 sin3 θ tan θ,
(3.1)

for any positive constants c1 and c2.

Proof: In this case, the second equation of (2.25) reduces to

db

dθ
= (tan θ + 4 cot θ) · b(θ).

The integration of the above equation gives us the solution of b(θ). Combining (2.26), we
get (3.1). Furthermore, since ρ = 0, then (2.28) is automatically satisfied. Hence we finish
our proof. 2

4 Analysis of the overdetermined system: ρ 6= 0 case

In this section we study the system (2.16)-(2.17) with ρ 6= 0. We will prove that the
system has no solution of θ(u) being nonconstant.

If there are nonconstant functions λ(u), θ(u), b(u) such that they satisfy the system
(2.16)-(2.17), then they must satisfy (2.27) and (2.28) too. Since ρ 6= 0, then (2.28)
reduces to

3∑
k=0

h3−k(x)ρ3−kb(x)2k = 0 (4.1)

with hi(x) (i = 0, 1, 2, 3) being given by (2.29). We assume that I = (x1, x2) is the
maximal interval of the existence of solution of (2.27) and (4.1).

Lemma 4.1 For ρ > 0, we have I = (0,
√

2
3) or (

√
2
3 , 1). For ρ < 0, we have I = (0, 1).

Proof: Claim. For ρ > 0, b(x) = 0 on the interval (0, 1) if and only if x =
√

2
3 . For ρ < 0,

b(x) is non-zero everywhere on (0, 1).
Proof of Claim. If b(x) = 0 for x ∈ (0, 1), then by (4.1) we have h3(x) = 0 for x ∈ (0, 1),

which implies x = 2
3 or x =

√
2
3 by (2.29). Conversely, substituting x = 2

3 and x =
√

2
3

into (4.1) respectively, we get

b

(
2

3

)2

·

[
144 · b

(
2

3

)4

+ 10ρ · b
(

2

3

)2

− 1

9
ρ2

]
= 0,

b

(√
2

3

)2

·

a0 · b

(√
2

3

)4

+ a1ρ · b

(√
2

3

)2

+ a2ρ
2

 = 0,

(4.2)

11



where a0, a1, a2 are fixed positive numbers.

If ρ > 0, then a0 · b
(√

2
3

)4

+ a1ρ · b
(√

2
3

)2

+ a2ρ
2 > 0, which implies b

(√
2
3

)
= 0 by

(4.2). But b
(

2
3

)2
= −5+

√
41

144 · ρ 6= 0.

If ρ < 0, then from (4.2) we get b
(

2
3

)2
= 5+

√
41

144 ·(−ρ) 6= 0 and b
(√

2
3

)2

=
a1±
√
a21−4a0a2
2a0

·
(−ρ) 6= 0. This proves the Claim.

Proof of Lemma 4.1. For ρ > 0, suppose 0 < x1 <
√

2
3 , then from (2.29) that

limx→x1 h3(x) exists and the limit is a non-zero finite number. Then by the formula (4.1),
we can see that limx→x1 b(x) exists and the limit is also a non-zero finite number. Since

0 < x1 <
√

2
3 and b(x1) 6= 0, there exists a finite limit of b′(x) as x tends to x1 in (2.27).

Hence, b = b(x) can be extended to x ≤ x1 by (2.27). This contradicts the definition of

x1. Therefore we must have x1 = 0. Similarly we get x2 =
√

2
3 or x1 =

√
2
3 , x2 = 1. So

for ρ > 0, we have I = (0,
√

2
3) or (

√
2
3 , 1). If ρ < 0, through the similar discussion as the

case of ρ > 0, we have I = (0, 1). This proves Lemma 4.1. 2

In the following we prove:

Lemma 4.2 For any ρ 6= 0, the system (2.16)-(2.17) does not possess any solution such
that θ(u) is nonconstant.

Proof: From the discussion before, we only need to show that there do not exist any
nonconstant solutions of (2.27) with (4.1) on I. Assume that there exists a nonconstant
solution b = b(x) of (2.27) with (4.1) on I. Set σ = b2. Since b 6= 0 on I, then (2.27) and
(4.1) become to the following system:

σ′ = 2f0σ + 2g0ρ,
h0σ

3 + h1ρσ
2 + h2ρ

2σ + h3ρ
3 = 0,

(4.3)

where hi (i = 0, 1, 2, 3) are given by (2.29) and

f0 =
4− 3x

2x(1− x)
, g0 =

3x2

16(1− x)
.

Differentiating the second equation of (4.3) on x and using the first equation of (4.3), we
have

(h′0 + 6h0f0)σ3 + (h′1 + 4h1f0 + 6h0g0)ρσ2 + (h′2 + 2h2f0 + 4h1g0)ρ2σ + (h′3 + 2h2g0)ρ3 = 0. (4.4)

Eliminating the term of σ3 from (4.4) and the second equation of (4.3), by ρ 6= 0 we get

µ0σ
2 + µ1ρσ + µ2ρ

2 = 0, (4.5)

where
µ0 = h′0h1 − h0h

′
1 + 2h0h1f0 − 6h2

0g0,
µ1 = h′0h2 − h0h

′
2 + 4h0h2f0 − 4h0h1g0,

µ2 = h′0h3 − h0h
′
3 + 6h0h3f0 − 2h0h2g0.
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Differentiating (4.5) on x and using the first equation of (4.3), we have

(µ′0 + 4µ0f0)σ2 + (µ′1 + 2µ1f0 + 4µ0g0)ρσ + (µ′2 + 2µ1g0)ρ2 = 0. (4.6)

Eliminating the term of σ2 from (4.5) and (4.6), by ρ 6= 0 we get

ζ0σ + ζ1ρ = 0, (4.7)

where
ζ0 = µ′0µ1 − µ0µ

′
1 + 2µ0µ1f0 − 4µ2

0g0,
ζ1 = µ′0µ2 − µ0µ

′
2 + 4µ0µ2f0 − 2µ0µ1g0.

Differentiating (4.7) on x and using the first equation of (4.3) again, we have

(ζ ′0 + 4ζ0f0)σ + (ζ ′1 + 2ζ0g0)ρ = 0. (4.8)

Eliminating the term of σ from (4.7) and (4.8), by ρ 6= 0 we get

ζ ′0ζ1 − ζ0ζ
′
1 + 2ζ0ζ1f0 − 2ζ2

0g0 = 0. (4.9)

A straightforward computation by Mathematica of Wolfram shows that the left hand side
of (4.9) is a polynomial of degree 39 with respect to x. So it is impossible for x ∈ I no
matter that ρ > 0 or ρ < 0. Hence we finish our proof. 2

Combining Lemma 3.1 and Lemma 4.2, we have the following result:

Theorem 4.3 The system of (2.16)-(2.17) has a solution such that θ(u) is nonconstant
if and only if ρ = 0. Moreover, in the case of ρ = 0, all solutions are given by (3.1).

5 Geometric results

In this section, we show geometric results obtained by the application of Theorem 4.3.
First, we state our result in the case of ρ 6= 0:

Theorem 5.1 Assume that M is a two-dimensional complex space form of non-zero con-
stant holomorphic sectional curvature. Then there does not exist any symplectic critical
surface with parallel normalized mean curvature vector in M .

Next, we will find all symplectic critical surfaces in C2 such that the normalized mean
curvature vectors are parallel.

Let x : Σ→ C2 be an isometric immersion such that Σ is a symplectic critical surface
with parallel normalized mean curvature vector. By Lemma 3.1, (2.26) and (2.18), the
complex-valued 1-forms ωj and ωjk of the immersion x are fixed using two constants. So,
there exists and only exists a two-parameters family of symplectic critical surfaces with
parallel normalized mean curvature vector in C2. Now we get the explicit representations
of such surfaces.

There exists a unitary frame {Z1, Z2} along x such that {ω1, ω2} is the unitary coframe
of {Z1, Z2} and ωjk’s are the unitary connection forms with respect to {ω1, ω2}.

13



We know that

dZj =
2∑

k=1

ωjkZk, 1 ≤ j ≤ 2 (5.1)

and

dx = cos
θ

2
φ · Z1 + sin

θ

2
φ · Z2. (5.2)

Let λ(θ) and b(θ) be the functions of (3.1). Put z = u(θ) + iv and φ = λ(θ)dz. By
(2.18), (2.22) and (2.23), we set

c = −(1 + 2 cot2 θ)b.

Then (2.19) implies that

ω11 = f1(θ)dv, ω22 = f2(θ)dv, ω12 = f3(θ)dθ + f4(θ)dv,

where

f1(θ) = 4ic1c2 cos2 θ

2
,

f2(θ) = 4ic1c2 sin2 θ

2
,

f3(θ) =
1

2
,

f4(θ) = −2ic1c2 sin θ.

From (5.1) and the equations above, we have 2× 2-matrix differential equations

∂

∂θ

(
Z1

Z2

)
=

(
0 f3(θ)
−f̄3(θ) 0

)(
Z1

Z2

)
,

∂

∂v

(
Z1

Z2

)
=

(
f1(θ) f4(θ)
−f̄4(θ) f2(θ)

)(
Z1

Z2

)
.

(5.3)

We solve these as follows:
By direct computation, we know that the eigenvalues of the matrix of coefficients of

the second equation in (5.3) are 0 and 4ic1c2, which are independent of the variable θ.
Take a matrix T (θ) which diagonalizes the matrix of coefficients. Then the equations (5.3)
are written as

∂

∂θ
T (θ)−1

(
Z1

Z2

)
=

(
0 0
0 0

)
,

∂

∂v
T (θ)−1

(
Z1

Z2

)
=

(
0 0
0 4ic1c2

)
T (θ)−1

(
Z1

Z2

)
,

where

T (θ) =

(
sin θ

2 − cos θ2
cos θ2 sin θ

2

)
.
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By integration of the above equations, we can see that there exist constant vectors v1,v2

such that (
Z1(θ, v)
Z2(θ, v)

)
=

(
sin θ

2 · v1 − cos θ2 · e
4ic1c2vv2

cos θ2 · v1 + sin θ
2 · e

4ic1c2vv2

)
.

Since {Z1(θ, v), Z2(θ, v)} is the unitary frame field, we can put

v1 = e1, v2 = e2,

where {e1, e2} is the standard basis of C2.
The differential equation (5.2) is equivalent to

∂x

∂u
= λ(u)

{
sin θ(u) · e1 − cos θ(u) · e4ic1c2ve2

}
,

∂x

∂v
= −iλ(u)e4ic1c2ve2.

(5.4)

We integrate the second equation in (5.4) for v. After that, using the first equation in
(5.4),(2.26),(2.16) and a parallel translation of C2, we get an expression of the immersion
x : Σ→ C2 by

x(u, v) =
(
F1(u), F2(u)e4ic1c2v

)
∈ C2, (5.5)

where F1(u) = 1
4c2

ln cot θ(u) and F2(u) = −1
4c2

cot θ(u).
These surfaces are rotationally symmetric and are just the ones given by the second

author and his coauthors (cf. [8],§6). From the above discussion, we have

Theorem 5.2 There exists and only exists a two-parameters family of symplectic criti-
cal surfaces with parallel normalized mean curvature vector in C2, which is rotationally
symmetric and congruent to (5.5).
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