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Abstract. We introduce a method to construct bijections on increasing trees. Using
this method, we construct an involution on increasing trees, from which we obtain the
equidistribution of the statistics ‘number of odd vertices’ and ‘number of even vertices at
odd levels’. As an application, we deduce that the expected value of the number of even
vertices is twice the expected value of the number of odd vertices in a random recursive
tree of given size.
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1 Introduction

An increasing tree on the vertex set [n] := {0, 1, 2, . . . , n} is a rooted tree with vertex
set {0, 1, 2, . . . , n} for which the labels of the vertices are increasing along any path from
the root to a leaf. Denote by Tn the set of all increasing trees on the vertex set [n]. It
is known that |Tn| = n!. By random increasing trees (= random recursive trees) on the
vertex set [n], we assume that all increasing trees in Tn are equally likely. An alternative
way of constructing a random recursive tree on the vertex set [n] is as follows. We start
from a single vertex with label 0 (the 0th step); then at the ith insertion step, the new
label i chooses any of the previous i vertices equally likely to be its parent, and the same
procedure continues until the tree contains n+ 1 vertices.

The degree of a vertex of an increasing tree is the number of its children (immediate
descendants). A vertex of an increasing tree is called an odd (resp. even) vertex if it is of
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odd (resp. even) degree. The level of a vertex v, also called the depth of v, is measured
by the number of edges lying on the unique path from the root to vertex v. In particular,
the root lies on level 0. Denote by dT (v) and lT (v) the degree and the level of v in T
respectively. Vertex degrees and vertex levels are two of the most important topics on
increasing trees, there are numerous results on the study of them, see, e.g., [1, 3, 4, 7].

Denote by X
(d)
n the number of vertices of degree d in a random recursive tree on the

vertex set [n]. Let EX(d)
n be the expected value of X

(d)
n . Na and Rapoport [6] proved that

for fixed d and large values of n,

EX(d)
n ≈

n+ 1

2d+1
. (1.1)

From (1.1), it seems reasonable to conjecture that the expected value of the number
of even vertices is twice the expected value of the number of odd vertices in a random
recursive tree on the vertex set [n] for n ≥ 2. A motivation of this paper is to give a
combinatorial proof for this conjecture.

Before we begin, let us introduce two notions. An even vertex of an increasing tree is
called a single even vertex if it lies on an odd level. An even vertex of an increasing tree
is called a double even vertex if it lies on an even level. Denote by On the number of odd
vertices in a random recursive tree on the vertex set [n], denote by En the number of even
vertices, denote by Eo,n the number of single even vertices, and denote by Ee,n the number
of double even vertices. It is clear that EOn + EEn = n+ 1 and EEn = EEo,n + EEe,n.

In Section 2, we prove combinatorially that EEo,n = EEe,n for n ≥ 2. In Section 3,
we introduce a method to construct bijections on increasing trees. Using this method, we
construct an involution on increasing trees, and as a corollary we find that the statistics
‘number of odd vertices’ and ‘number of single even vertices’ have the same distribution
on Tn for n ≥ 0, implying EOn = EEo,n for n ≥ 0 of course. Then we can deduce that
EEn = 2EOn for n ≥ 2 (see Corollary 3.7), which confirms the above conjecture.

2 Proof of EEo,n = EEe,n for n ≥ 2

Let c(n, k) be the signless Stirling number of the first kind, i.e., the number of permutations
of length n with exactly k cycles. It is known (see, e.g., [3, 9]) that c(n, k) also counts
the number of increasing trees on the vertex set [n] for which the root has k children. We
start by proving a simple result.
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Lemma 2.1. Let n ≥ 2. The number of increasing trees on the vertex set [n] with odd
root is equal to the number of increasing trees on the vertex set [n] with even root.

Proof. It is well-known (see, e.g., [2, 9]) that

n∑
k=0

c(n, k)xk = x(x+ 1) · · · (x+ n− 1),

taking x = −1 yields (note that n ≥ 2)∑
k odd

c(n, k) =
∑
k even

c(n, k). (2.1)

Since the number of increasing trees on the vertex set [n] for which the root has k children
is c(n, k), we have the number of increasing trees on the vertex set [n] with odd root is∑

k odd c(n, k), and the number of increasing trees on the vertex set [n] with even root is∑
k even c(n, k). Combining this with (2.1) we complete the proof.

Theorem 2.2. Let n ≥ 2. Then EEo,n = EEe,n.

Proof. For given T ∈ Tn, we interchange the two labels 0 and 1 of T , let T ′ be the resulting
tree rooted at the vertex whose new label is 0. (Indeed, this operation is an involution,
i.e., (T ′)′ = T .) See Figure 1 for an example.
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Figure 1. An example illustrating the two steps of the operation

Denote by O(T ) the set of odd vertices of T , denote by Ee(T ) the set of double even
vertices of T , and denote by Eo(T ) the set of single even vertices of T . It is not hard to
see the following two facts:

(A) For any vertex i ∈ {2, 3, . . . , n}, i ∈ Ee(T ) if and only if i ∈ Eo(T
′).

(B) Since dT ′(1) = dT (0)− 1, we have 0 /∈ Ee(T ) if and only if 1 ∈ Eo(T
′).
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Let Ee := {(i, T ) : T ∈ Tn, i ∈ Ee(T )} and Eo := {(i, T ) : T ∈ Tn, i ∈ Eo(T )}. From
(A), (B) and Lemma 2.1, we can see the following three facts respectively:

(a) (i, T ) ∈ Ee if and only if (i, T ′) ∈ Eo for i ∈ {2, 3, . . . , n}.

(b) (0, T ) /∈ Ee if and only if (1, T ′) ∈ Eo.

(c) |{(0, T ) : (0, T ) ∈ Ee}| = |{(0, T ) : (0, T ) /∈ Ee}|.

From (b) and (c) we see

|{(0, T ) : (0, T ) ∈ Ee}| = |{(1, T ′) : (1, T ′) ∈ Eo}|.

Combining this with (a), we get |Ee| = |Eo|, i.e., the total number of double even vertices
of all increasing trees on the vertex set [n] is equal to the total number of single even
vertices of all increasing trees on the vertex set [n], which implies EEo,n = EEe,n.

3 An involution on increasing trees

In this section, we will introduce a method to construct bijections on increasing trees.
Using this method, we will construct an involution φ : Tn → Tn that maps an increasing
tree with m1 odd vertices and m2 double even vertices to an increasing tree with m1 single
even vertices and m2 double even vertices.

Let us first introduce a new notation for increasing trees. Given Tn−1 ∈ Tn−1 and
Tn ∈ Tn, we write

Tn = Tn−1
v←− n

to mean that Tn is obtained from Tn−1 by adding a new vertex n as the child of vertex v,
where 0 ≤ v ≤ n− 1. Let 0 be the unique tree in T0, that is the isolated vertex 0. Then
for any Tn ∈ Tn, we can uniquely write

Tn = 0
v0←− 1

v1←− 2
v2←− · · · vn−1←−− n,

where 0 ≤ vi ≤ i. By definition we know that vertex i+ 1 is the child of vertex vi in Tn.
For example, let

T = 0
0←− 1

0←− 2
2←− 3

0←− 4
2←− 5

4←− 6,

the diagram of T is shown in Figure 2.
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Figure 2. The diagram of 0
0←− 1

0←− 2
2←− 3

0←− 4
2←− 5

4←− 6

Given Tn ∈ Tn, assume

Tn = 0
v0←− 1

v1←− 2
v2←− · · · vn−1←−− n.

Now we are going to recursively define an increasing tree φ(Tn) ∈ Tn. Let

Ti = 0
v0←− 1

v1←− 2
v2←− · · · vi−1←−− i,

or, equivalently,

Ti = Ti−1
vi−1←−− i.

Clearly, Ti is the subtree of Tn consisting of the vertices 0, 1, . . . , i. We associate each Ti
a permutation σi = σi(0)σi(1) · · ·σi(i) of {0, 1, . . . , i}, called the relabelled permutation of
Ti. For 0 ≤ i ≤ n, define

φ(Ti) = 0
σ0(v0)←−−− 1

σ1(v1)←−−− 2
σ2(v2)←−−− · · · σi−1(vi−1)←−−−−−− i,

or, equivalently,

φ(Ti) = φ(Ti−1)
σi−1(vi−1)←−−−−−− i.

Then φ(Tn) is an increasing tree in Tn. It is not hard to see that φ : Tn → Tn is a bijection
when each σi has been defined with respect to Ti. To see this, let us show how to recover
Tn from φ(Tn) recursively. First, φ(T0) = T0 = 0. Assume Ti has been recovered for some
0 ≤ i ≤ n− 1, then σi is determined. Assume

φ(Ti+1) = φ(Ti)
v←− i+ 1,

then Ti+1 can be recovered as follows

Ti+1 = Ti
σ−1
i (v)
←−−−− i+ 1.
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This is a general method to construct bijections on increasing trees. In particular, if
we define σi = 012 · · · i for any Ti, then φ : Tn → Tn is the identity map. In what follows,
we are going to define a particular sequence σ0, σ1, . . . , σn−1, σn such that φ is our desired
involution.

First let σ0 =
(
0
0

)
(the two-line notation of permutations). Assume that σi has been

defined with respect to Ti for some 0 ≤ i ≤ n− 1. Note that Ti+1 = Ti
vi←− i+ 1, we define

σi+1 (with respect to Ti+1) by considering the following two cases. (Since lTi(v) = lTn(v)
and lφ(Ti)(v) = lφ(Tn)(v) for all i and 0 ≤ v ≤ i, we write l(v) instead of lTi(v), and write
lφ(v) instead of lφ(Ti)(v).)

(i) If both l(vi) and lφ(σi(vi)) are odd, define

σi+1 =

(
0 1 · · · i i+ 1

σi(0) σi(1) · · · σi(i) i+ 1

)
. (3.1)

(ii) Otherwise, i.e., at least one of l(vi) or lφ(σi(vi)) is even, define

σi+1 =

(
0 1 · · · vi − 1 vi vi + 1 · · · i i+ 1

σi(0) σi(1) · · · σi(vi − 1) i+ 1 σi(vi + 1) · · · σi(i) σi(vi)

)
.

(3.2)

Note that, the right-hand side of (3.2) is obtained from the right-hand side of (3.1) by
swapping the letters σi(vi) and i + 1. We call σi obtained from the above procedure the
relabelled permutation of Ti with respect to φ. Let us look at an example.

Example 3.1. Consider the increasing tree T shown in Figure 2, that is,

T = 0
0←− 1

0←− 2
2←− 3

0←− 4
2←− 5

4←− 6.

We illustrate each step of constructing φ(T ) below.

(0) Let T0 = φ(T0) = 0; σ0 =

(
0
0

)
; l(0) = lφ(0) = 0.

(1) Let T1 = 0
0←− 1, then

φ(T1) = 0
σ0(0)←−−− 1 = 0

0←− 1.

Since l(v0) = l(0) = 0 is even, we have σ1 =

(
0 1
1 0

)
.

l(1) = l(0) + 1 = 1, lφ(1) = lφ(0) + 1 = 1.
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(2) Let T2 = T1
0←− 2, then

φ(T2) = φ(T1)
σ1(0)←−−− 2 = φ(T1)

1←− 2 = 0
0←− 1

1←− 2.

Since l(v1) = l(0) = 0 is even, we have σ2 =

(
0 1 2
2 0 1

)
.

l(2) = l(0) + 1 = 1, lφ(2) = lφ(1) + 1 = 2.

(3) Let T3 = T2
2←− 3, then

φ(T3) = φ(T2)
σ2(2)←−−− 3 = φ(T2)

1←− 3 = 0
0←− 1

1←− 2
1←− 3.

Since both l(2) and lφ(σ2(2)) = lφ(1) are odd, we have σ3 =

(
0 1 2 3
2 0 1 3

)
.

l(3) = l(2) + 1 = 2, lφ(3) = lφ(1) + 1 = 2.

(4) Let T4 = T3
0←− 4, then

φ(T4) = φ(T3)
σ3(0)←−−− 4 = φ(T3)

2←− 4 = 0
0←− 1

1←− 2
1←− 3

2←− 4.

Since l(0) is even, we have σ4 =

(
0 1 2 3 4
4 0 1 3 2

)
.

l(4) = l(0) + 1 = 1, lφ(4) = lφ(2) + 1 = 3.

(5) Let T5 = T4
2←− 5, then

φ(T5) = φ(T4)
σ4(2)←−−− 5 = φ(T4)

1←− 5 = 0
0←− 1

1←− 2
1←− 3

2←− 4
1←− 5.

Since both l(2) and lφ(σ4(2)) = lφ(1) are odd, we have σ5 =

(
0 1 2 3 4 5
4 0 1 3 2 5

)
.

l(5) = l(2) + 1 = 2, lφ(5) = lφ(1) + 1 = 2.

(6) Let T6 = T5
4←− 6, then

φ(T ) = φ(T6) = φ(T5)
σ5(4)←−−− 6 = φ(T5)

2←− 6 = 0
0←− 1

1←− 2
1←− 3

2←− 4
1←− 5

2←− 6.

Since lφ(σ5(4)) = lφ(5) is even, we have σ6 =

(
0 1 2 3 4 5 6
4 0 1 3 6 5 2

)
.

The diagrams of T and φ(T ) are shown in Figure 3.
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Figure 3. The diagrams of T and φ(T )

The bijection φ : Tn → Tn defined by the above procedure has several interesting
properties. Let us start with the following lemma.

Lemma 3.2. Let n ≥ 0. Given Tn ∈ Tn, assume T ′n = φ(Tn), let σn be the relabelled
permutation of Tn with respect to φ, and let σ′n be the relabelled permutation of T ′n with
respect to φ. Then φ(T ′n) = Tn and σ′n = σ−1n . Therefore, φ : Tn → Tn is an involution.

Proof. We use induction on n. The initial case of n = 0 is obvious. Assume the statement
is true for n, and prove for n+ 1. Given Tn+1 ∈ Tn+1, assume

Tn+1 = Tn
v←− n+ 1.

By the definition of φ, we have

T ′n+1 = T ′n
σn(v)←−−− n+ 1,

and

φ(T ′n+1) = φ(T ′n)
σ′n(σn(v))←−−−−− n+ 1.

By the induction hypothesis, we know φ(T ′n) = Tn and σ′n = σ−1n , thus

φ(T ′n+1) = φ(T ′n)
σ′n(σn(v))←−−−−− n+ 1 = Tn

σ′n(σn(v))←−−−−− n+ 1 = Tn
v←− n+ 1 = Tn+1.

In the following we prove σ′n+1 = σ−1n+1. If both lTn(v) and lT ′n(σn(v)) are odd, we have

σn+1 =

(
0 1 · · · n n+ 1

σn(0) σn(1) · · · σn(n) n+ 1

)
.

Clearly, both lT ′n(σn(v)) and lφ(T ′n)(σ
′
n(σn(v))) = lTn(v) are odd, then

σ′n+1 =

(
σn(0) σn(1) · · · σn(n) n+ 1

0 1 · · · n n+ 1

)
.
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In this case, we have σ′n+1 = (σn+1)
−1. If at least one of lTn(v) or lT ′n(σn(v)) is even, then

σn+1 =

(
0 1 · · · v · · · n n+ 1

σn(0) σn(1) · · · n+ 1 · · · σn(n) σn(v)

)
.

Since at least one of lT ′n(σn(v)) or lφ(T ′n)(σ
′
n(σn(v))) = lTn(v) is even, we have

σ′n+1 =

(
σn(0) σn(1) · · · σn(v) · · · σn(n) n+ 1

0 1 · · · n+ 1 · · · n v

)
.

We also have σ′n+1 = (σn+1)
−1. This completes our induction proof.

Recall that, O(T ) denotes the set of odd vertices of T , Ee(T ) denotes the set of double
even vertices of T , and Eo(T ) denotes the set of single even vertices of T . We have the
following result.

Lemma 3.3. Let n ≥ 0. Given Tn ∈ Tn, let σn be the relabelled permutation of Tn with
respect to φ. Then for any vertex i of Tn, 0 ≤ i ≤ n, we have

(i) If i ∈ O(Tn), then σn(i) ∈ Eo(φ(Tn)).

(ii) If i ∈ Eo(Tn), then σn(i) ∈ O(φ(Tn)).

(iii) If i ∈ Ee(Tn), then σn(i) ∈ Ee(φ(Tn)).

Before we start our proof, let us look at an example. Consider the trees T and φ(T )
shown in Figure 3. It is clear that

O(T ) = {0, 4}, Eo(T ) = {1, 2}, Ee(T ) = {3, 5, 6},

and

O(φ(T )) = {0, 1}, Eo(φ(T )) = {4, 6}, Ee(φ(T )) = {2, 3, 5}.

Let σ be the relabelled permutation of T with respect to φ, from Example 3.1 we see

σ = σ6 =

(
0 1 2 3 4 5 6
4 0 1 3 6 5 2

)
.

Then Lemma 3.3 is verified as

σ (O(T )) = {σ(0), σ(4)} = {4, 6} = Eo (φ(T )) ,

σ (Eo(T )) = {σ(1), σ(2)} = {0, 1} = O (φ(T )) ,

σ (Ee(T )) = {σ(3), σ(5), σ(6)} = {3, 5, 2} = Ee (φ(T )) .
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Proof of Lemma 3.3. We use induction on n. The initial case of n = 0 is obvious. Assume
(i), (ii), (iii) are true for n, and prove for n+ 1. Given Tn+1 ∈ Tn+1, assume

Tn+1 = Tn
v←− n+ 1,

by the definition of φ, we know

φ(Tn+1) = φ(Tn)
σn(v)←−−− n+ 1.

Denote by l(i) the level of i in Tn+1, and denote by lφ(i) the level of i in φ(Tn+1).

Using Lemma 3.2, it is easy to see that (i) and (ii) imply (iii), so we will only prove
(i) and (ii). For any 0 ≤ i ≤ n + 1 and i 6= v, n + 1, we have dTn(i) = dTn+1(i),
dφ(Tn)(σn(i)) = dφ(Tn+1)(σn(i)), and σn+1(i) = σn(i). Combining those facts and the
induction hypothesis, we have

i ∈ O(Tn+1)⇒ i ∈ O(Tn)

⇒ σn(i) ∈ Eo(φ(Tn))

⇒ σn(i) ∈ Eo(φ(Tn+1))

⇒ σn+1(i) ∈ Eo(φ(Tn+1)).

Thus, (i) is true for vertex i. A similar argument shows that (ii) is also true for vertex i.
We only consider vertex v and vertex n+ 1 below.

We first prove (i). Since n+1 is a leaf of Tn+1, so n+1 /∈ O(Tn+1). Assume v ∈ O(Tn+1),
our goal is to prove σn+1(v) ∈ Eo(φ(Tn+1)). Clearly, v ∈ Eo(Tn) or v ∈ Ee(Tn).

Case 1.1. If v ∈ Eo(Tn), by the induction hypothesis, we have σn(v) ∈ O(φ(Tn)). If
lφ(σn(v)) is odd, then σn(v) ∈ Eo(φ(Tn+1)). Since both l(v) and lφ(σn(v)) are odd, we have
σn+1(v) = σn(v) ∈ Eo(φ(Tn+1)). If lφ(σn(v)) is even, then lφ(n+ 1) = lφ(σn(v)) + 1 is odd,
so n+ 1 ∈ Eo(φ(Tn+1)). Since lφ(σn(v)) is even, we have σn+1(v) = n+ 1 ∈ Eo(φ(Tn+1)).
Therefore, in this case we always have σn+1(v) ∈ Eo(φ(Tn+1)).

Case 1.2. If v ∈ Ee(Tn), by the induction hypothesis, we have σn(v) ∈ Ee(φ(Tn)), so
n+ 1 ∈ Eo(φ(Tn+1)). Since l(v) is even, we have σn+1(v) = n+ 1 ∈ Eo(φ(Tn+1)).

We now prove (ii). It is clear that at most one of v and n + 1 belongs to Eo(Tn+1).
We consider two separate cases.

Case 2.1. If v ∈ Eo(Tn+1), our goal is to prove σn+1(v) ∈ O(φ(Tn+1)). Since v ∈
Eo(Tn+1), we have v ∈ O(Tn) and l(v) is odd. By the induction hypothesis, we have
σn(v) ∈ Eo(φ(Tn)), then σn(v) ∈ O(φ(Tn+1)). Since both l(v) and lφ(σn(v)) are odd, we
have σn+1(v) = σn(v) ∈ O(φ(Tn+1)).
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Case 2.2. If n+ 1 ∈ Eo(Tn+1), then l(v) is even, thus, we have σn+1(n+ 1) = σn(v).
Our goal is to prove σn+1(n + 1) = σn(v) ∈ O(φ(Tn+1)). Since l(v) is even, we have
v ∈ O(Tn) or v ∈ Ee(Tn). If v ∈ O(Tn), by the induction hypothesis, we have σn(v) ∈
Eo(φ(Tn)), then σn+1(n + 1) = σn(v) ∈ O(φ(Tn+1)). If v ∈ Ee(Tn), by the induction
hypothesis, we have σn(v) ∈ Ee(φ(Tn)), we also have σn+1(n+ 1) = σn(v) ∈ O(φ(Tn+1)).

The induction proof is completed.

Combining Lemma 3.2 and 3.3, we obtain the main theorem of this section.

Theorem 3.4. Let n ≥ 0. Then φ : Tn → Tn is an involution that maps an increasing
tree with m1 odd vertices and m2 double even vertices to an increasing tree with m1 single
even vertices and m2 double even vertices.

It is straightforward to see the following corollary from Theorem 3.4.

Corollary 3.5. Let n ≥ 0. Then the number of increasing trees on the vertex set [n] with
m1 odd vertices and m2 double even vertices is equal to the number of increasing trees on
the vertex set [n] with m1 single even vertices and m2 double even vertices.

Summing over all m2 in Corollary 3.5 for fixed m1, we obtain the following corollary.

Corollary 3.6. Let n ≥ 0. Then the number of increasing trees on the vertex set [n] with
m1 odd vertices is equal to the number of increasing trees on the vertex set [n] with m1

single even vertices.

From Corollary 3.6 and Theorem 2.2, we immediately obtain the following result,
which confirms our conjecture in the introduction.

Corollary 3.7. Let n ≥ 2. Then EOn = EEo,n = EEe,n. Therefore, EEn = 2EOn for
n ≥ 2.

Let Fn be the increasing trees on the vertex set [n] with no double even vertex. From
Corollary 3.6 we find that the statistics ‘number of odd vertices’ and ‘number of even
vertices’ have the same distribution on Fn.

Let E(n) be the nth Euler number, i.e., the number of alternating (down-up) permu-
tations of length n. The following two formulas are well-known:

secx =
∞∑
n=0

E(2n)
x2n

(2n)!
and tanx =

∞∑
n=0

E(2n+ 1)
x2n+1

(2n+ 1)!
.
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For this reason E(2n) is called the nth secant number and E(2n + 1) is called the nth
tangent number, see [8]. An even tree is an increasing tree such that every vertex is an
even vertex. (Such a tree must have an odd number of vertices.) Let E2n be the set of even
trees on the vertex set {0, 1, 2, . . . , 2n}. It is known [5, 9] that |E2n| = E(2n). Combining
this with Corollary 3.6, we obtain the following result.

Corollary 3.8. Let n ≥ 0. Then the number of increasing trees on the vertex set
{0, 1, 2, . . . , 2n} with no single even vertex is equal to the nth secant number E(2n).
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