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Abstract. We introduce the operators Fi on permutation π = π1 · · · πk−11πk+1 · · · πn
of {1, 2, · · · , n}, where 1 ≤ i ≤ k − 1, i.e., define Fi(π) = π′1π

′
2 · · · π′n as π′j = πj − 1 for

1 ≤ j ≤ i, and π′i+1π
′
i+2 · · · π′n has the same relative order as πi+1πi+2 · · · πn. The operators

Fi have many properties concerning the 132-pattern and inversions. Furthermore, we
find that the operators Fi can be characterized by a series of swaps of two entries. Two
applications of the operators are given. As a first application, we obtain some new objects
in 132-avoiding permutations and in Dyck paths that are enumerated by the entries in
Catalan’s triangle. As another application, we give an algorithm to generate the set of
permutations of length n + 1 with k inversions from the set of permutations of length n
with k inversions when n ≥ k + 1.
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1 Introduction

The nth Catalan number Cn is defined by the recursion

Cn+1 =
n∑
i=0

CiCn−i,

with C0 = 1. The Catalan numbers arise frequently in combinatorics, Stanley [19] gives
over 100 objects that are counted by the Catalan numbers.

The classical Catalan’s triangle C(n, k) is defined by the recurrence relation

C(n, k) = C(n− 1, k) + C(n, k − 1), (1.1)
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n
k

0 1 2 3 4 5 6 7 8 9

0 1
1 1 1
2 1 2 2
3 1 3 5 5
4 1 4 9 14 14
5 1 5 14 28 42 42
6 1 6 20 48 90 132 132
7 1 7 27 75 165 297 429 429
8 1 8 35 110 275 572 1001 1430 1430
9 1 9 44 154 429 1001 2002 3432 4862 4862

Table 1 Catalan’s triangle C(n, k), 0 ≤ k ≤ n ≤ 9

with the boundary conditions C(0, 0) = 1 and C(0, k) = 0 for k > 0 or k < 0. An
alternative recursion for the Catalan’s triangle is

C(n, k) = C(n− 1, 0) + C(n− 1, 1) + · · ·+ C(n− 1, k). (1.2)

The beginning of Catalan’s triangle is shown in Table 1. The entries in Catalan’s triangle
are often called ballot numbers. See [18, A009766] for an overview of Catalan’s triangle, as
well as Barcucci and Verri [2] for earlier investigations. The Catalan numbers can always
be read from Catalan’s triangle by looking at the rightmost number in each row, so we
have

Cn = C(n, n) = C(n, n− 1) = C(n− 1, 0) + C(n− 1, 1) + · · ·+ C(n− 1, n− 1). (1.3)

The exact formulas for Cn and C(n, k) are well-known:

Cn =
1

n+ 1

(
2n

n

)
, C(n, k) =

n− k + 1

n+ 1

(
n+ k

k

)
.

For now, we will give some objects that are counted by the Catalan numbers and the
entries in Catalan’s triangle.

Let Sn be the set of all permutations of {1, 2, · · · , n}. The reduced form of a per-
mutation π on a set {j1, j2, · · · , jr}, where j1 < j2 < · · · < jr, is the permutation in
Sr obtained by renaming the letters of the permutation π so that ji is renamed i for
all i ∈ {1, 2, · · · , r}. In other words, to find the reduced form of a permutation π on r
elements, we replace the ith smallest letter of π by i, for i = 1, 2, · · · , r. We denote red(π)
the reduced form of π. For example, red(4257) = 2134.

Let π ∈ Sn and σ ∈ Sr be two permutations. We say that π contains σ if there exists
a subsequence 1 ≤ i1 < i2 < · · · < ir ≤ n such that red(πi1πi2 · · · πir) = σ; in such a
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context σ is usually called a pattern. We say that π avoids σ, or is σ-avoiding, if such
a subsequence does not exist. The set of all σ-avoiding permutations in Sn is denoted
by Sn(σ), its cardinality is denoted by Sn(σ). There are numerous results on the study
of Sn(σ), see, e.g., [4, 10, 20]. Another problem is counting the number of permutations
of length n which contain exactly r σ-patterns, for r ≥ 1. There is a larger literature
devoted to it, see, e.g., [3, 14, 15].

It is well-known, see [17], that Sn(σ) = Cn for each pattern σ ∈ S3. Using the reverse
and complement operations, and their composition, we see that Sn(132) = Sn(231) =
Sn(213) = Sn(312). Also, we have Sn(321) = Sn(123) by simply applying the reverse
operation. From an enumerative viewpoint, there essentially are only two distinct patterns
to consider, that is, σ = 132 and σ = 321.

A right-to-left maximum of a permutation π = π1π2 · · · πn is an entry πa such that
πa > πb for every b > a. Right-to-left minimum is defined accordingly. By using generating
function techniques, Brändén, Claesson and Steingŕımsson [6] proved that the number of
permutations in Sn(132) with k right-to-left maxima is equal to C(n−1, n−k). Desantis et
al. [7] proved bijectively that the number of permutations in Sn(132) with the first entry
being k is C(n− 1, k− 1), Borie [5] gave this result another proof by means of an explicit
bijection between 132-avoiding permutations and non-decreasing parking functions that
are known to be enumerated by the entries in Catalan’s triangle. Kitaev and Liese [11]
studied the so-called mesh patterns, they showed that for three mesh patterns, their
distributions on 132-avoiding permutations are given by the Catalan’s triangle. Form
(1.3) we can see that those results cited above are all the refinements of the well-known
result Sn(132) = Cn.

Desantis et al. [7] proved bijectively that the number of permutations in Sn(321) with
the first entry being n− k + 1 is C(n− 1, k− 1). Reifegerste[16] proved that the number
of permutations π ∈ Sn(321) with k − 1 elements πi = i + 1 is equal to C(n − 1, n − k).
Those two results are the refinements of the well-known result Sn(321) = Cn.

Let us now consider another object. A Dyck path of length 2n is a path on the square
lattice with steps u = (1, 1) or d = (1,−1) from (0, 0) to (2n, 0) that never falls below
the x-axis. We call the steps of type u up-steps and those of type d we call down-steps.
A return of a Dyck path is a down-step ending on the x-axis. A peak in a Dyck path is
an occurrence of an up-step immediately followed by a down-step, i.e., the occurrence of
ud. The height of the peak is the height of the intersection point of its two steps. It is
well-known that the number of Dyck paths of length 2n is the nth Catalan number Cn.

Krattenthaler [12] exhibited a bijection Φ between 132-avoiding permutations of length
n and Dyck paths of length 2n. We sketch his bijection below. Let π = π1π2 · · · πn be a
132-avoiding permutation. We read the permutation π from left to right and successively
generate a Dyck path Φ(π). When πj is read, then in the path we adjoin as many up-steps
as necessary, followed by a down-step from height hj + 1 to height hj (measured from the
x-axis), where hj is the number of elements in πj · · · πn which are larger than πj.

Using the ballot theorem (see, e.g., [9, p. 73]), Deutsch [8] proved that the number of
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Dyck paths of length 2n with the first (last) peak at height k is equal to C(n− 1, n− k).
He also proved that the number of Dyck paths of length 2n with k returns is equal to
C(n− 1, n− k) by exhibiting a bijection from the Dyck paths of length 2n with k returns
to the Dyck paths of length 2n with the last peak at height k, Brändén, Claesson and
Steingŕımsson [6] provided another proof of this result by using Krattenthaler’s bijection.

The approaches in the literature to deal with the problems related to 132-avoiding
permutations and the Catalan’s triangle are the generating function approach and the
bijection approach. In this paper, we will present a new approach, that is the operator
approach, to deal with such problems.

2 Outline of this paper

In this paper we introduce the operators Fi on permutation π = π1 · · · πk−11πk+1 · · · πn ∈
Sn, where 1 ≤ i ≤ k − 1, i.e., define Fi(π) = π′1π

′
2 · · · π′n as π′j = πj − 1 for 1 ≤ j ≤ i,

and π′i+1π
′
i+2 · · · π′n has the same relative order as πi+1πi+2 · · · πn. The operators Fi have

many properties concerning the 132-pattern and inversions. Furthermore, we find that
the operators Fi can be characterized by a series of swaps of two entries.

As a first application of the operators, we obtain some new objects in 132-avoiding
permutations and in Dyck paths that are enumerated by the entries in Catalan’s triangle.

Consider the following objects in 132-avoiding permutations (throughout this paper,
we use πt for the tth entry of π),

Cn(p) := {π ∈ Sn(132) | πp = 1},
C−n (k, p) := {π ∈ Sn(132) | π1 = k, πp = 1, πn 6= n},
Dn,i(k) := {π ∈ Sn(132) | k = π1 > π2 > · · · > πi},
Dn,i := {π ∈ Sn(132) | π1 > π2 > · · · > πi},

we prove, see Theorem 4, Theorem 5, Theorem 6, Theorem 7 respectively, that

|Cn(p)| = C(n− 1, p− 1),

|C−n (k, p)| = C(n− 2, p+ k − n− 2),

|Dn,i(k)| = C(n− 1, k − i),
|Dn,i| = C(n, n− i).

We remark that |C−n (k, p)| = C(n−2, p+k−n−2) is a refinement of the result of Desantis
et al. [7], stating that the number of permutations in Sn(132) with the first entry being
k is equal to C(n− 1, k − 1).

An irreducible Dyck path is a Dyck path with exactly one return. A reducible Dyck
path is a Dyck path with at least two returns. For example, uuddud is reducible whereas
uududd is irreducible. Given a peak of a Dyck path, if the down-step of this peak is
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immediately followed by an up-step, we call such a peak an up-peak. In other words,
the occurrence of ud in udu is an up-peak, whereas, the occurrence of ud in udd isn’t an
up-peak. We obtain three new objects in Dyck paths that are enumerated by the entries
in Catalan’s triangle (see Theorem 8):

(i) The number of reducible Dyck paths of length 2n with the first peak at height k
and the last peak at height p is equal to C(n− 2, n− k − p).

(ii) The number of Dyck paths of length 2n for which the first peak is at height k and
the first i peaks are all up-peaks is equal to C(n− 1, n− k − i).

(iii) The number of Dyck paths of length 2n for which the first i peaks are all up-peaks
is equal to C(n, n− i− 1).

We remark that (i) is a refinement of the result of Deutsch [8], stating that the number of
Dyck paths of length 2n with the first (last) peak at height k is equal to C(n− 1, n− k).

Let π = π1π2 · · · πn ∈ Sn, we say that (πi, πj) is an inversion of π if i < j but πi > πj.
Denote by INV(π) the number of inversions in π. Note that INV(π) is nothing but the
number of occurrences of the pattern 21 in π. Let Skn be the set of permutations in Sn
with k inversions, its cardinality is denoted by Skn. As another application of the operators
Fi, we give an algorithm to generate the set Skn+1 from the set Skn for n ≥ k+ 1. For other
algorithms on permutations, see [4, Chapter 8], as well as Banderier, Baril and Moreira
Dos Santos [1] for recent investigations.

Here is a guide to the sections of this paper. In Section 3, we introduce the operators
Fi on permutations, then we provide some properties and a characterization of them.
Some applications of the operators are given in Section 4 and Section 5.

3 Operators Fi on permutations

3.1 The definition and some properties

Definition 1. Given π = π1π2 · · · πn ∈ Sn, let p1(π) be the position of entry 1 in π, and
let P (π) := p1(π) − 1. The operator Fi, 0 ≤ i ≤ n, on permutation π ∈ Sn is defined as
follows.

(1) For i = 0, define F0(π) = π.

(2) For i > P (π), define Fi(π) =∞.

(3) For 1 ≤ i ≤ P (π), we define Fi(π) = π′1π
′
2 · · · π′n ∈ Sn satisfying π′j = πj − 1 for

1 ≤ j ≤ i and red(π′i+1π
′
i+2 · · · π′n) = red(πi+1πi+2 · · · πn).
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Example 1. Let π = 5321476, we have P (π) = 3, F0(π) = 5321476, F1(π) = 4321576,
F2(π) = 4231576, F3(π) = 4213576, F4(π) = F5(π) = F6(π) = F7(π) =∞.

For π = π1π2 · · · πn, we denote π[i,j] := πiπi+1 · · · πj, and denote π[i,j] − 1 := (πi −
1)(πi+1 − 1) · · · (πj − 1). We have the following theorem.

Theorem 1. Let π = π1π2 · · · πn ∈ Sn and 1 ≤ i ≤ P (π). Let πn+1 = n + 1. Assume
Fi(π) = π′1π

′
2 · · · π′n, we have

(1) For j ≤ i, π′j = πj − 1.

(2) For j ≥ i + 1, π′j = min{πt − 1 | πt > πj, i + 1 ≤ t ≤ n + 1}. Therefore, π′j ≥ πj
for j ≥ i+ 1.

Proof. By definition, (1) is trivially true. Now we prove (2). Let {πi+1 − 1, πi+2 − 1, · · · ,
πn+1− 1} = {ai+1, ai+2, · · · , an+1}, where 0 = ai+1 < ai+2 < · · · < an < an+1 = n. Denote
Fi(π) = π′. By definition, we see that red(π′[i+1,n]) = red(π[i+1,n]) = red(π[i+1,n] − 1).

It is not hard to see that the underlying set of π[i+1,n] − 1 is {ai+1, ai+2, ai+3, · · · , an},
and the underlying set of π′[i+1,n] is {ai+2, ai+3, · · · , an, an+1}. So, if πj − 1 = ar, we have

π′j = ar+1. Then, π′j = ar+1 = min{ax | ax > ar, i+1 ≤ x ≤ n+1} = min{πt−1 | πt−1 >
πj − 1, i + 1 ≤ t ≤ n + 1} = min{πt − 1 | πt > πj, i + 1 ≤ t ≤ n + 1}, completing the
proof.

The operators Fi have several interesting properties. Let us start with a property
concerning the inversions.

Proposition 1. If π ∈ Skn, then Fi(π) ∈ Sk−in for 0 ≤ i ≤ P (π).

Proof. Let π = π1π2 · · · πn, Fi(π) = π′ = π′1π
′
2 · · · π′n, π′′ = π−1 = (π1−1) · · · (πn−1). It is

obvious that INV(π) = INV(π′′). By definition we see that π′[1,i] = π′′[1,i] and red(π′[i+1,n]) =

red(π′′[i+1,n]), this yields INV(π′[1,i]) = INV(π′′[1,i]) and INV(π′[i+1,n]) = INV(π′′[i+1,n]). Let

{πi+1−1, πi+2−1, · · · , πn−1} = {ai+1, ai+2, · · · , an}, where 0 = ai+1 < ai+2 < · · · < an. It
is easy to see that the underlying set of π′′[i+1,n] is {0, ai+2, ai+3, · · · , an} and the underlying

set of π′[i+1,n] is {ai+2, ai+3, · · · , an, n}. In π′′, (π1 − 1, 0), (π2 − 1, 0), · · · , (πi − 1, 0) are

inversions. Whereas, in π′, (π1− 1, n), (π2− 1, n), · · · , (πi− 1, n) are not inversions. This
implies INV(π′) = INV(π′′)− i = INV(π)− i, completing the proof.

Now we are going to give some properties of the operators Fi concerning the 132-
pattern.

Proposition 2. For any permutation π, if π contains a 132-pattern, then Fi(π) also
contains a 132-pattern, where 0 ≤ i ≤ P (π).
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Proof. Assume πj1πj2πj3 is a 132-pattern of π = π1π2 · · · πn, i.e., j1 < j2 < j3 and πj1 <
πj3 < πj2 . For given i, 0 ≤ i ≤ P (π), assume Fi(π) = π′1π

′
2 · · · π′n, we distinguish three

cases.

(i) If i < j1 or i ≥ j3. Since red(Fi(π)[1,i]) = red(π[1,i]), red(Fi(π)[i+1,n]) = red(π[i+1,n]),
then π′j1π

′
j2
π′j3 is a 132-pattern of Fi(π).

(ii) If j1 ≤ i < j2. By definition we see that π′j1 = πj1−1 and π′j3 < π′j2 . From Theorem
1(2) we know πj3 ≤ π′j3 . Thus π′j1 = πj1 − 1 < πj1 < πj3 ≤ π′j3 , then π′j1 < π′j3 < π′j2 ,
namely π′j1π

′
j2
π′j3 is a 132-pattern of Fi(π).

(iii) If j2 ≤ i < j3. By definition we have π′j1 = πj1 − 1, π′j2 = πj2 − 1. It is easy to see
that in permutation Fi(π) the entry πj3 − 1 must be on the right of π′i, then it is certainly
on the right of π′j2 . Therefore π′j1 , π

′
j2
, πj3 − 1 is a 132-pattern of Fi(π).

In summary, Fi(π) contains a 132-pattern, and the proof is completed.

Proposition 3. For any permutation π, if FP (π)(π) contains a 132-pattern, then π must
contain a 132-pattern.

Proof. Suppose π = π1π2 · · · πn and FP (π)(π) = π′ = π′1π
′
2 · · · π′n. The case of P (π) = 0,

i.e., π1 = 1, is trivially true as F0(π) = π. We only consider the case of P (π) > 0 below.
Assume π′j1π

′
j2
π′j3 is a 132-pattern of π′, i.e., j1 < j2 < j3 and π′j1 < π′j3 < π′j2 . We

distinguish three cases.

(i) If P (π) ≥ j3. By definition we have πj1 = π′j1 + 1, πj2 = π′j2 + 1, πj3 = π′j3 + 1,
therefore πj1πj2πj3 is a 132-pattern of π.

(ii) If P (π) < j2. Since πP (π)+1 = 1, then πP (π)+1 is a right-to-left minimum of π.
As red(π′[P (π)+1,n]) = red(π[P (π)+1,n]), we see that π′P (π)+1 is a right-to-left minimum of π′.
Therefore π′P (π)+1π

′
j2
π′j3 is a 132-pattern of π′, this implies πP (π)+1πj2πj3 is a 132-pattern

of π as red(π′[P (π)+1,n]) = red(π[P (π)+1,n]).

(iii) If j2 ≤ P (π) < j3. By definition we have πj1 = π′j1 + 1, πj2 = π′j2 + 1. It is easy
to see that in permutation π the entry π′j3 + 1 must be on the right of πP (π), then it is
certainly on the right of πj2 , therefore πj1 , πj2 , π

′
j3

+ 1 is a 132-pattern of π.

In summary, π contains a 132-pattern, this completes the proof.

Taking a second look at Proposition 3, it is natural to ask whether the statement holds
for Fi, i < P (π). The answer is in the negative. For example, π = 43512 is 132-avoiding
but F2(π) = 32514 contains a 132-pattern. Surprisingly, adding a restriction on π will do
the job, that is the content of the next proposition.

Proposition 4. Let π = π1π2 · · · πn with π1 > π2 > · · · > πi+1, if Fi(π) contains a
132-pattern, then π must contain a 132-pattern.
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Proof. Let Fi(π) = π′ = π′1π
′
2 · · · π′n. By definition we know that π′j = πj−1 for 1 ≤ j ≤ i,

and red(π′[i+1,n]) = red(π[i+1,n]). Assume π′j1π
′
j2
π′j3 is a 132-pattern of π′, i.e., j1 < j2 < j3

and π′j1 < π′j3 < π′j2 . Since π1 > π2 > · · · > πi, we have π′1 > π′2 > · · · > π′i, this yields
j2 ≥ i+ 1. We distinguish two cases.

(i) If j1 ≥ i+ 1, then πj1πj2πj3 is a 132-pattern of π as red(π′[i+1,n]) = red(π[i+1,n]).

(ii) If j1 ≤ i, we have π′j1 ≥ π′i. Let {πi+1−1, πi+2−1, · · · , πn−1} = {ai+1, ai+2, · · · , an},
where 0 = ai+1 < ai+2 < · · · < an, and let an+1 = n. Assume πi+1 − 1 = ar, πj2 − 1 = as
and πj3−1 = at. From Theorem 1(2) we know that π′i+1 = ar+1, π

′
j2

= as+1 and π′j3 = at+1.
It is not hard to see

at+1 = π′j3 > π′j1 ≥ π′i = πi − 1 > πi+1 − 1 = ar,

this yields t + 1 > r. Since π′j2 > π′j3 = at+1 ≥ ar+1 = π′i+1, we have j2 6= i + 1, then
i + 1 < j2 < j3. We claim that πi+1πj2πj3 = (ar + 1)(as + 1)(at + 1) is a 132-pattern of
π. Since t + 1 > r, we have at ≥ ar, then πj3 ≥ πi+1, thus πj3 > πi+1 as i + 1 < j3.
Because of red(π′[i+1,n]) = red(π[i+1,n]), i + 1 < j2 < j3 and π′j2 > π′j3 , we have πj2 > πj3 ,
thus πi+1 < πj3 < πj2 , and our claim is true. This completes our proof.

Define
Dn,i := {π ∈ Sn(132) | π1 > π2 > · · · > πi},

that is, Dn,i is the set of 132-avoiding permutations of length n starting with a decreasing
sequence of length i. In particular, Dn,1 = Sn(132). Define

Dn,i(k) := {π ∈ Sn(132) | k = π1 > π2 > · · · > πi},

it is clear that Dn,i =
⋃n
k=iDn,i(k). We have the following result.

Proposition 5. Let i ≤ k ≤ n− 1, then Fi is a bijection from Dn,i+1(k + 1) to Dn,i(k).

Proof. Let π = π1π2 · · · πn ∈ Dn,i+1(k + 1), that is, π1 = k + 1, π1 > π2 > · · · > πi+1, and
π is 132-avoiding. We are going to prove Fi(π) = π′1π

′
2 · · · π′n ∈ Dn,i(k). By definition we

have π′1 = k and π′1 > π′2 > · · · > π′i. By Proposition 4 we have Fi(π) is 132-avoiding.
Therefore, we have Fi(π) ∈ Dn,i(k).

On the other hand, let π′ = π′1π
′
2 · · · π′n ∈ Dn,i(k), that is, π′1 = k, π′1 > π′2 > · · · > π′i,

and π′ is 132-avoiding. Since k ≤ n − 1, we can define π := π1π2 · · · πn ∈ Sn, such that
πj = π′j+1 for 1 ≤ j ≤ i and red(π[i+1,n]) = red(π′[i+1,n]). It is obvious that Fi(π) = π′. Our

goal is to prove π ∈ Dn,i+1(k + 1). By definition we have π1 = k + 1, π1 > π2 > · · · > πi.
From Proposition 2 we know π is 132-avoiding. To achieve our goal, it is sufficient to
show πi > πi+1. Assume the contrary, that is, πi < πi+1. It is not hard to see that in
permutation π′ the entry πi+1 − 1 is on the right of π′i. From Theorem 1(2) we see that

π′i = πi − 1 < πi+1 − 1 < πi+1 ≤ π′i+1,

thus π′iπ
′
i+1(πi+1 − 1) is a 132-pattern of π′, a contradiction, and the proof follows.
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3.2 The operator F on permutations

In this subsection, we introduce the operator F on permutations, which is a specific kind
of the operators Fi.

For any permutation π, we define F (π) := FP (π)(π). Combining Proposition 2 and
Proposition 3 we obtain an elementary result of the operator F .

Proposition 6. For any permutation π, π is 132-avoiding if and only if F (π) is 132-
avoiding.

The operator F has another simple property.

Proposition 7. If π ∈ Sn(132), then the last entry of F (π) is n.

Proof. Let F (π) = π′ = π′1π
′
2 · · · π′n, we assume the contrary, that is π′j = n and j < n.

From Proposition 6 we see that π′ is 132-avoiding. By the definition of F (π), it is easy to
see that in permutation π′ the entry n is on the right of π′P (π), i.e., j ≥ P (π) + 1. Because

of red(π′[P (π)+1,n]) = red(π[P (π)+1,n]) and πP (π)+1 = 1, we have π′P (π)+1 is a right-to-left
minimum of π′. Thus π′P (π)+1, n, π

′
n is a 132-pattern of π′, a contradiction, this completes

the proof.

For any permutation π ∈ Sn, define Fm(π) = F (Fm−1(π)), and F 0(π) = π. We call π
a F -sortable permutation if F k−1(π) = 123 · · ·n, where k is the first entry of π.

Example 2. Let π = 5321476, it is not hard to see F (π) = 4213576, F 2(π) = 3124576,
F 3(π) = 2134576, F 4(π) = 1234576. Thus π is not a F -sortable permutation.

Example 3. Let π = 5321467, it is not hard to see F (π) = 4213567, F 2(π) = 3124567,
F 3(π) = 2134567, F 4(π) = 1234567. So π is a F -sortable permutation.

It is natural to ask the following question: how can we decide whether a permutation
is F -sortable? Now we give an answer to this question.

Theorem 2. A permutation is F -sortable if and only if it is 132-avoiding.

Proof. Let π = π1π2 · · · πn ∈ Sn, and suppose π1 = k. First we assume π contains a
132-pattern. From Proposition 6 we have F k−1(π) contains a 132-pattern, thus π is not a
F -sortable permutation.

Now we assume π is 132-avoiding. We use induction on π1 = k to prove π is F -sortable.
When k = 1, we have π = 12 · · ·n and F 0(π) = π = 12 · · ·n, the initial case being trivial.
Assume the statement is true for k−1, and prove it for k, k > 1. By Proposition 6 we have
F (π) = π′1π

′
2 · · · π′n is 132-avoiding with π′1 = k − 1. Applying the induction hypothesis,

we have F k−1(π) = F k−2(F (π)) = 123 · · ·n, so π is F -sortable, completing the proof.
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3.3 A characterization of Fi in terms of a series of swaps of two
entries

In this subsection, we will show that the operators Fi can be characterized by a series of
swaps of two entries. In order to achieve this goal, let us first introduce the operators fi
on permutations.

Given π = π1π2 · · · πn ∈ Sn, if πi is not a right-to-left minimum of π, let πs =
max{πt | t > i, πt < πi}, and define

fi(π) := π1 · · · πi−1πsπi+1 · · · πs−1πiπs+1 · · · πn,

in other words, fi(π) is obtained from π by interchanging πi and πs, where πs is the
maximum entry which is on the right of πi and which is less than πi in permutation π.
We call πs the fi-selected entry of π. If πi is a right-to-left minimum of π, we define
fi(π) = ∞. For instance, f1(41523) = 31524, f2(41523) = ∞, f3(41523) = 41325,
f4(41523) =∞, f5(41523) =∞.

Note that for any π ∈ Sn, we have fn(π) =∞ since the last entry of π is a right-to-left
minimum. By convention, we set f0(π) = π for each permutation π.

Two key properties of the operators fi are given by Proposition 8 and Proposition 9.

Proposition 8. Let π ∈ Sn and 1 ≤ i ≤ n, if fi(π) 6=∞, then INV(fi(π)) = INV(π)− 1.

Proof. Let πs be the fi-selected entry of π = π1π2 · · · πn, we claim that if i < m < s, then
πm > πi or πm < πs. Assume the contrary, i.e., πs < πm < πi, then in permutation π, πm
is an entry which is on the right of πi and which is less than πi but πm > πs, contradicting
the choice of πs, and our claim is true. Then proving INV(fi(π)) = INV(π)− 1 is easy.

Proposition 9. Let π ∈ Sn and 1 ≤ i ≤ n, if fi(π) 6= ∞, then red(fi(π)[i+1,n]) =

red(π[i+1,n]).

Proof. Assume πs is the fi-selected entry of π = π1π2 · · · πn. Let {πi+1, πi+2, · · · , πn} =
{bi+1, bi+2, · · · , bn}, where bi+1 < bi+2 < · · · < bn. By convention, we let bn+1 = n + 1.
Assume πs = bj, according to the choice of πs we see that bj < πi < bj+1, this implies
red(fi(π)[i+1,n]) = red(π[i+1,n]).

Given π ∈ Sn, for 0 ≤ i ≤ n, we define

f(i)(π) := fi ◦ fi−1 · · · ◦ f2 ◦ f1 ◦ f0(π),

where f ◦g(x) denotes the composition f(g(x)). In other words, f(i)(π) = fi(f(i−1)(π)) for
1 ≤ i ≤ n. We define fi(∞) =∞ for any i. Note that f(0)(π) = π 6=∞ and f(n)(π) =∞,
so we can define

p(π) := max{i | f(i)(π) 6=∞, 0 ≤ i ≤ n}.
By definition we can see that f(i)(π) 6=∞ for i ≤ p(π), and f(i)(π) =∞ for i > p(π).
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Example 4. Let π = 45213, f(0)(π) = 45213, f(1)(π) = f1(45213) = 35214, f(2)(π) =
f2(35214) = 34215, f(3)(π) = f3(34215) = 34125, f(4)(π) = f4(34125) =∞, f(5)(π) =∞,
and clearly p(π) = 3.

The operators f(i) on permutations have the following two properties, they can be
easily proved by Proposition 8 and Proposition 9 respectively.

Proposition 10. Let π ∈ Skn, we have f(i)(π) ∈ Sk−in for 0 ≤ i ≤ p(π).

Proposition 11. Let π ∈ Sn, we have red(f(i)(π)[i+1,n]) = red(π[i+1,n]) for 0 ≤ i ≤ p(π).

Now we are in a position to give a characterization of the operator Fi by a series of
swaps of two entries, that is the content of the following theorem.

Theorem 3. Let π ∈ Sn, we have P (π) = p(π), and Fi(π) = f(i)(π) for 0 ≤ i ≤ P (π).

Proof. If P (π) = 0, i.e., π1 = 1, we have P (π) = p(π) = 0, and F0(π) = f(0)(π) = π, the
theorem is proved. We assume P (π) > 0 below.

First we proceed to prove the statement that for 0 ≤ i ≤ P (π), we have f(i)(π) 6= ∞
and Fi(π) = f(i)(π). We use induction on i to prove the statement. When i = 0,
it is trivially true. Assume our statement is true for i, and prove it for i + 1, where
0 ≤ i ≤ P (π) − 1. Given π = π1π2 · · · πn, by the induction hypothesis we have Fi(π) =
f(i)(π) := π′ = π′1π

′
2 · · · π′n. Let {πi+1−1, πi+2−1, · · · , πn−1} = {ai+1, ai+2, · · · , an}, where

0 = ai+1 < ai+2 < · · · < an, and let an+1 = n. Suppose πi+1− 1 = am, from Theorem 1(2)
we see π′i+1 = am+1. Since i ≤ P (π) − 1, we have am 6= 0. Since {π′i+1, π

′
i+2, · · · , π′n} =

{ai+2, · · · , an, an+1}, we have {π′i+2, π
′
i+3, · · · , π′n} = {ai+2, · · · , am, am+2, · · · , an+1}, then

in permutation π′, am is the maximum entry which is on the right of π′i+1 and which
is less than π′i+1 = am+1, i.e., the fi+1-selected entry of π′ is am = πi+1 − 1, this yield-
s f(i+1)(π)[1,i+1] = Fi+1(π)[1,i+1]. From Proposition 11, we have red(f(i+1)(π)[i+2,n]) =
red(π[i+2,n]) = red(Fi+1(π)[i+2,n]), combining this with f(i+1)(π)[1,i+1] = Fi+1(π)[1,i+1] leads

to f(i+1)(π) = Fi+1(π), completing the induction proof.

Now we proceed to prove p(π) = P (π). From the above argument we find p(π) ≥ P (π),
and FP (π)(π) = f(P (π))(π) := π′. Since 1 is in the position P (π) + 1 of π, and 1 is a right-
to-left minimum of π, we have the (P (π) + 1)-th entry of π′ is a right-to-left minimum of
π′ as red(π′[P (π)+1,n]) = red(π[P (π)+1,n]). Thus, f(P (π)+1)(π) = fP (π)+1(π

′) = ∞, therefore,

p(π) = P (π), and the proof follows.

4 Application I: Catalan’s triangle in 132-avoiding per-

mutations and Dyck paths

In this section we are going to use the operators introduced in the previous section to ob-
tain some new objects in 132-avoiding permutations and Dyck paths that are enumerated
by the entries in Catalan’s triangle.
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Given π = π1π2 · · · πn ∈ Sn(132), assume F (π) = π′1π
′
2 · · · π′n−1n (by Proposition 7),

we define φ(π) := π′1π
′
2 · · · π′n−1, i.e., φ(π) is obtained from F (π) by deleting the entry n.

It is straightforward to see the following result from Proposition 6.

Lemma 1. Let π ∈ Sn(132), we have φ(π) ∈ Sn−1(132).

Define
Cn(p) := {π ∈ Sn(132) | πp = 1}.

Lemma 2. We have φ is a bijection from Cn(p) to
⋃
i≤p Cn−1(i).

Proof. Let π = π1π2 · · · πn ∈ Cn(p), that is, π is 132-avoiding and πp = 1. We first
prove φ(π) ∈

⋃
i≤p Cn−1(i). Suppose φ(π) = π′1π

′
2 · · · π′n−1, by Lemma 1 we have φ(π) ∈

Sn−1(132). In order to prove φ(π) ∈
⋃
i≤p Cn−1(i), it suffices to show p1(φ(π)) ≤ p1(π) = p.

Since πp = 1, it is obvious that πj > 1 for j ≥ p + 1. From Theorem 1(2) we see that
π′j ≥ πj > 1 for j ≥ p+ 1, this implies p1(φ(π)) ≤ p.

On the other hand, let π′ = π′1π
′
2 · · · π′n−1 ∈ Cn−1(i), i ≤ p. Since π′ avoids 132-pattern

and π′i = 1, we have π′iπ
′
i+1 · · · π′n−1 is an increasing sequence, so π′p is a right-to-left

minimum of π′ as i ≤ p. Let π′′ = π′1π
′
2 · · · π′n−1n, we can see that π′′ is 132-avoiding

and π′p is a right-to-left minimum of π′′. Define π := π1 · · · πp−1πp · · · πn ∈ Sn so that
π1 · · · πp−1 = (π′1 + 1) · · · (π′p−1 + 1) and red(π[p,n]) = red(π′′[p,n]). It is easy to see that

F (π) = π′′ and φ(π) = π′. Our goal is to prove π ∈ Cn(p). Since F (π) = π′′ is 132-
avoiding, we have π is 132-avoiding by Proposition 6. Since π′p is a right-to-left minimum
of π′′, then πp is a right-to-left minimum of π. Combining this with the fact πj ≥ 2 for
j ≤ p− 1, we have πp = 1, this proves π ∈ Cn(p). Therefore φ has an inverse and must be
a bijection.

Theorem 4. |Cn(p)| = C(n− 1, p− 1).

Proof. We use induction on n. When n = 1, there is only one choice for p, i.e., p = 1.
Clearly Cn(p) = {1} and C(n− 1, p− 1) = C(0, 0) = 1, so our theorem is true for n = 1.
Now assume our theorem is true for n − 1, and prove it for n. By Lemma 2 and the
induction hypothesis, we have

|Cn(p)| =
∑
i≤p

|Cn−1(i)|

=
∑
i≤p

C(n− 2, i− 1)

= C(n− 1, p− 1), ( by (1.2) )

completing the induction proof.
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Define
C̃n(k) := {π ∈ Sn(132) | π1 = k}.

It is not hard to see that, π avoids 132-pattern if and only if π−1, the inverse permutation
of π, avoids 132-pattern. The following result of Desantis et al. [7] that we have already
mentioned in the introduction can be obtained from Theorem 4 immediately.

Corollary 1 (Desantis et al. [7]). |C̃n(k)| = C(n− 1, k − 1).

Theorem 4 and Corollary 1 tell us that both the distribution of the first entry and
the position of the minimum in 132-avoiding permutations of given length are Catalan’s
distribution.

Example 5. We list below all permutations in S5(132).

S5(132) = {12345, 21345, 23145, 23415, 23451, 31245, 32145, 32415, 32451,

34125, 34215, 34251, 34512, 34521, 41235, 42135, 42315, 43125,

43215, 42351, 43521, 43251, 45231, 45321, 43512, 45213, 45312,

45123, 51234, 52134, 52314, 52341, 53124, 53214, 53241, 53412,

53421, 54123, 54213, 54231, 54312, 54321}.

There are 1, 4, 9, 14, 14 permutations with first entries being 1, 2, 3, 4, 5 respectively in
S5(132), there are 1, 4, 9, 14, 14 permutations for which the positions of 1 are 1, 2, 3, 4, 5
respectively in S5(132). The numbers 1, 4, 9, 14, 14 are the fifth row (n = 4) of Catalan’s
triangle (see Table 1).

Define
Cn(k, p) := {π ∈ Sn(132) | π1 = k, πp = 1},

that is,
Cn(k, p) = C̃n(k) ∩ Cn(p).

Since both C̃n(k) and Cn(p) are enumerated by the entries in Catalan’s triangle, it is nature
to ask whether Cn(k, p) is enumerated by the entries in Catalan’s triangle as well. The
answer to the question is in the negative. But adding a restriction on the set Cn(k, p) will
do the job. Define

C−n (k, p) := {π ∈ Sn(132) | π1 = k, πp = 1, πn 6= n},

we have the following theorem.

Theorem 5. |C−n (k, p)| = C(n− 2, k + p− n− 2) for n ≥ 2.

In order to prove the theorem, we need two lemmas.

Lemma 3. Let 2 ≤ k ≤ n, we have φ is a bijection from C−n (k, n) to C̃n−1(k − 1), and
therefore |C−n (k, n)| = C(n− 2, k − 2).
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Proof. Let π = π1π2 · · · πn ∈ C−n (k, n), i.e., π1 = k, πn = 1 and π is 132-avoiding. Since

φ(π) ∈ Sn−1(132) and the first entry of φ(π) is k − 1, we have φ(π) ∈ C̃n−1(k − 1). It is
not hard to see φ has an inverse and must be a bijection.

Lemma 4. Let 2 ≤ k ≤ n and p < n, we have φ is a bijection from C−n (k, p) to⋃
i≤p C

−
n−1(k − 1, i), and therefore |C−n (k, p)| =

∑
i≤p |C

−
n−1(k − 1, i)|.

Proof. Let π = π1π2 · · · πn ∈ C−n (k, p), assume φ(π) = π′1π
′
2 · · · π′n−1. We are going to show

φ(π) ∈
⋃
i≤p C

−
n−1(k − 1, i). To this end, it will suffice to show the following four facts:

(i) φ(π) is 132-avoiding;

(ii) π′1 = π1 − 1;

(iii) p1(π
′) ≤ p1(π) = p;

(iv) π′n−1 6= n− 1.

(i) and (ii) are clear. The proof of (iii) is the same as that in the proof of Lemma 2.
Now we prove (iv). Assume πj = n, where j 6= n. We claim that j ≤ P (π). Otherwise,
if j > P (π), then 1, n, πn is a 132-pattern of π, a contradiction, and our claim is true.
By our claim we have π′j = n − 1. Since j ≤ P (π) = p − 1 < n − 1, then π′n−1 6= n − 1,
completing the proof of (iv). By a same argument as that in the proof of Lemma 2, we
see that φ has an inverse and must be a bijection.

Proof of Theorem 5. We first prove our theorem for the case of k = 1. In this case, we
have p = 1, thus C(n − 2, k + p − n − 2) = C(n − 2,−n) = 0. Clearly, 12 · · ·n is the
only 132-avoiding permutation for which the first entry is 1, then we have C−n (1, 1) = ∅ as
12 · · ·n /∈ C−n (1, 1). Therefore, our theorem is true for k = 1.

Let us prove our theorem by induction on n. When n = 2, if k = 1, we have already
proved it. If k = 2, there is only one choice for p, i.e., p = 2. In this case, we have
C(n − 2, p + k − n − 2) = C(0, 0) = 1, and it is easy to see C−2 (2, 2) = {21}, so our
theorem is true for k = 2, and the initial case of n = 2 is true. Now assume our theorem
is true for n− 1, and prove it for n. Since we have already proved it for k = 1, we assume
k ≥ 2 below. If p = n, by Lemma 3, we have |C−n (k, n)| = C(n− 2, k− 2), completing the
induction proof. If p < n, by Lemma 4 and the induction hypothesis, we have

|C−n (k, p)| =
∑
i≤p

|C−n−1(k − 1, i)|

=
∑
i≤p

C(n− 3, k + i− n− 2)

= C(n− 2, k + p− n− 2), ( by (1.2) )

completing the induction proof.
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Remark 1. Theorem 5 tells us that, for given k the distribution of the position of 1 in

C̃−n (k) := {π ∈ Sn(132) | π1 = k, πn 6= n}

is Catalan’s distribution. Similarly, for given p the distribution of the first entry in

C−n (p) := {π ∈ Sn(132) | πp = 1, πn 6= n}

is Catalan’s distribution as well.

So far we have given some applications of the operator F , now let us give an application
of the operators Fi. Recall that, for i ≤ k ≤ n,

Dn,i(k) = {π ∈ Sn(132) | k = π1 > π2 > · · · > πi},

by using the operators Fi we can obtain the cardinality of Dn,i(k), which is given by the
following theorem.

Theorem 6. |Dn,i(k)| = C(n− 1, k − i).

Proof. By Proposition 5, we see that Fi−1 is a bijection from Dn,i(k) to Dn,i−1(k−1), Fi−2
is a bijection from Dn,i−1(k−1) to Dn,i−2(k−2), · · · , F1 is a bijection from Dn,2(k+2− i)
to Dn,1(k+1−i), note that Dn,1(k+1−i) = C̃n(k+1−i). Define Hi−1 := F1◦F2◦· · ·◦Fi−1,
thus Hi−1 is a bijection form Dn,i(k) to C̃n(k + 1 − i). Combining this with Corollary 1,

we find |Dn,i(k)| = |C̃n(k + 1− i)| = C(n− 1, k − i).

Recall that,
Dn,i = {π ∈ Sn(132) | π1 > π2 > · · · > πi},

the cardinality of Dn,i is given by the following theorem.

Theorem 7. |Dn,i| = C(n, n− i).

Proof. From Theorem 6 and the fact Dn,i =
⋃n
k=iDn,i(k), we have

|Dn,i| =
n∑
k=i

|Dn,i(k)| =
n∑
k=i

C(n− 1, k − i) = C(n, n− i),

as desired.

Remark 2. From Theorem 7 we see |Sn(132)| = |Dn,1| = C(n, n − 1) = Cn. Therefore,
Theorem 7 is a refinement of the fact that |Sn(132)| = Cn.

We conclude this section with four objects in Dyck paths that are enumerated by the
entries in Catalan’s triangle.
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Theorem 8. (1) The number of Dyck paths of length 2n with the last peak at height k is
equal to C(n− 1, n− k).

(2) The number of reducible Dyck paths of length 2n with the first peak at height k and
the last peak at height p is equal to C(n− 2, n− k − p).

(3) The number of Dyck paths of length 2n for which the first peak is at height k and
the first i peaks are all up-peaks is equal to C(n− 1, n− k − i).

(4) The number of Dyck paths of length 2n for which the first i peaks are all up-peaks
is equal to C(n, n− i− 1).

Proof. It is not hard to see that under the Krattenthaler’s bijection (see Introduction),
(1), (2), (3), (4) of Theorem 8 coincide with Theorem 4, Theorem 5, Theorem 6, Theorem
7 respectively.

Remark 3. We point out that, (1) of Theorem 8 is due to Deutsch [8] that we have
mentioned in Introduction. While (2), (3), (4) of Theorem 8 seem to be new.

5 Application II: an algorithm to generate Skn+1 from

Skn for n ≥ k + 1

Recall that Skn is the set of all permutations on the set {1, 2, · · · , n} with k inversions, in
this section we are going to give an algorithm to generate the set Skn+1 from the set Skn
for n ≥ k + 1.

To state our result, we need the following notations. Let π = π1π2 · · · πn, we denote
π + 1 := (π1 + 1)(π2 + 1) · · · (πn + 1). Let P be a set of some permutations, define

P(+) := {ω ∈ P | the minimum of ω precedes the maximum of ω},
P(−) := {ω ∈ P | the maximum of ω precedes the minimum of ω}.

It is obvious that P = P(+) ∪ P(−), and P(+) ∩ P(−) = ∅.

Given π = π1π2 · · · πn ∈ Sn, for 1 ≤ i ≤ n, we define Ii(π) to be the permuta-
tion obtained from π by inserting the entry 0 after the ith entry of π, i.e., Ii(π) =
π1 · · · πi0πi+1 · · · πn; for i = 0, we define I0(π) = 0π1π2 · · · πn. It is obvious that for

π ∈ Sn, Ii(π) is a permutation of {0, 1, · · · , n}. Let Ĩi(π) := Ii(π) + 1. Thus, for any

π ∈ Sn, we have Ĩi(π) ∈ Sn+1. Define

Fπ := {Ĩi(Fi(π)) | 0 ≤ i ≤ P (π)}.

Now we are ready to state and prove the main result of this section.

Theorem 9. For 0 ≤ k ≤
(
n
2

)
, we have Skn+1(+) =

⋃
π∈Skn
Fπ, where Fπ ∩ Fπ′ = ∅ for

π 6= π′.
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Proof. Let π ∈ Skn and let 0 ≤ i ≤ P (π), from Proposition 1 we know Fi(π) ∈ Sk−in , thus

Ĩi(Fi(π)) ∈ Skn+1. By the definition of Fi, we see that in permutation Fi(π), the entry
n is on the right of the ith entry, this implies 0 precedes n in Ii(Fi(π)), equivalently, 1

precedes n+ 1 in Ĩi(Fi(π)), so Ĩi(Fi(π)) ∈ Skn+1(+). This yields
⋃
π∈Skn
Fπ ⊆ Skn+1(+).

On the other hand, let π̃ ∈ Skn+1(+), assume π̃−1 = π1π2 · · · πi0πi+1 · · · πn and assume
πk = n, where k ≥ i+1. Let π = π1π2 · · · πn, then π ∈ Sk−in . Define π′ := π′1π

′
2 · · · · · · π′n ∈

Sn so that π′j = πj + 1, 1 ≤ j ≤ i, and red(π′[i+1,n]) = red(π[i+1,n]). (π′ is well-defined since

k ≥ i+ 1). It is easy to see that Fi(π
′) = π, and Ĩi(Fi(π

′)) = π̃. Since π ∈ Sk−in , we have
π′ ∈ Skn by Proposition 1. From the above argument we see that Skn+1(+) ⊆

⋃
π∈Skn
Fπ.

Combining this with the result of the previous paragraph, we have Skn+1(+) =
⋃
π∈Skn
Fπ.

Now we prove Fπ ∩ Fπ′ = ∅ for π 6= π′. Assume the contrary, suppose Fπ ∩ Fπ′ = ω,
and suppose ω = Ĩj(Fj(π)) = Ĩk(Fk(π

′)). It is clear that j = k, then Fj(π) = Fj(π
′), this

implies π = π′, a contradiction, and the proof follows.

Corollary 2. For n ≥ k + 1, we have Skn+1 =
⋃
π∈Skn
Fπ, where Fπ ∩ Fπ′ = ∅ for π 6= π′.

Proof. We proceed to prove Skn+1(−) = ∅. Otherwise, take ω ∈ Skn+1(−), so 1 is on
the right of n + 1, this yields INV(ω) ≥ n > k, a contradiction. Therefore we have
Skn+1 = Skn+1(+), and the proof follows from Theorem 9 immediately.

In order to give an algorithm to generate the set Skn+1(+) from the set Skn, it is better
to use the operators f(i) which are equivalent to the operators Fi by Theorem 3.

An algorithm to generate the set Skn+1(+) from the set Skn.

Input: The set Skn.

Output: The set Skn+1(+).

Step 0. Set Skn+1(+) = ∅.

Step 1. If Skn = ∅, stop; If Skn 6= ∅ , take π ∈ Skn, set Skn = Skn−{π}, and set i = 0.

Step 2. If i > P (π), return to Step 1; If i ≤ P (π), set π = fi(π), then set

Skn+1(+) = Skn+1(+) ∪ Ĩi(π), and set i = i+ 1, return to Step 2.

Proof. By Theorem 3 and Theorem 9, we have

Skn+1(+) =
⋃
π∈Skn

Fπ =
⋃
π∈Skn

P (π)⋃
i=0

{Ĩi(f(i)(π))}.

It is clear that Step 2 corresponds
⋃P (π)
i=0 {Ĩi(f(i)(π))} for given π ∈ Skn, Step 1 means that

π ranges over all permutations in Skn.
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Remark 4. From Corollary 2 we can see that when n ≥ k+1 the set Skn+1(+) we obtained
by the above algorithm is actually the set Skn+1.

Example 6. Let n = 4, k = 2, it is easy to verify S2
4 = {3124, 2314, 2143, 1342, 1423}. In

Figure 1, we illustrate the above algorithm to generate the set S2
5 (+) = F3124∪ F2314∪

F2143∪ F1342∪ F1423. Since n ≥ k + 1, by Corollary 2 we have S2
5 = S2

5 (+) = {14235,
31245, 13425, 21435, 23145, 13254, 21354, 12453, 12534}.
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0f
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







Figure 1. An example illustrating our algorithm

Recall that, p1(π) is the position of 1 in π, i.e., p1(π) = P (π) + 1. It is easy to see
that |Fπ| = P (π) + 1 = p1(π). From Theorem 9 we have the following corollary directly.

Corollary 3. For 0 ≤ k ≤
(
n
2

)
, we have

Skn+1(+) =
∑
π∈Skn

p1(π),

where Skn+1(+) is the cardinality of Skn+1(+). In particular, for n ≥ k + 1, we have

Skn+1 =
∑
π∈Skn

p1(π).
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Now let us generalize the case of n ≥ k + 1 of Corollary 3 by using our algorithm m
times, m ≥ 1.

Theorem 10. Let n ≥ k + 1, m ≥ 1, we have

Skn+m =
∑
π∈Skn

(
p1(π) +m− 1

m

)
.

Proof. Given π ∈ Skn, let M1(π) = Fπ ⊆ Skn+1, M2(π) = {Fπ′ | π′ ∈ M1(π)} ⊆ Skn+2, · · · ,
Mm(π) = {Fπ′ | π′ ∈ Mm−1(π)} ⊆ Skn+m. We claim that there are

(
p1(π)+m−1−i

m−1

)
permu-

tations in Mm(π) for which the entry 1 is in position i, where 1 ≤ i ≤ p1(π). We use
induction on m. When m = 1, M1(π) = Fπ, it is clear that there is exactly one permuta-
tion in M1(π) for which the entry 1 is in position i, 1 ≤ i ≤ p1(π). Note that when m = 1,(
p1(π)+m−1−i

m−1

)
= 1 for 1 ≤ i ≤ p1(π). Thus our claim is true for m = 1. Suppose our claim

is true for m and prove it for m+1. Note that Mm+1(π) = {Fπ′ | π′ ∈Mm(π)} ⊆ Skn+m+1,
it is not hard to see that the number of permutations in Mm+1(π) for which the entry 1 is
in position i is equal to the number of permutations in Mm(π) for which the entry 1 is in
position at least i. Combining this with the induction hypothesis, we find that there are(

p1(π) +m− 1− i
m− 1

)
+

(
p1(π) +m− 1− (i+ 1)

m− 1

)
+ · · ·+

(
m− 1

m− 1

)
permutations in Mm+1(π) for which the entry 1 is in position i. It is easy to see that the
above summation is

(
p1(π)+m−i

m

)
, and the induction proof of our claim is completed. From

our claim, we find

|Mm(π)| =
p1(π)∑
i=1

(
p1(π) +m− 1− i

m− 1

)
=

(
p1(π) +m− 1

m

)
,

thus we have

Skn+m =
∑
π∈Skn

|Mm(π)| =
∑
π∈Skn

(
p1(π) +m− 1

m

)
.

Example 7. Let n = 4, k = 2, we know that S2
4 = {3124, 2314, 2143, 1342, 1423}. Obvi-

ously, p1(3124) = 2, p1(2314) = 3, p1(2143) = 2, p1(1342) = 1, p1(1423) = 1. By Theorem
10 we have S2

5 = 2+3+2+1+1 = 9, S2
6 = 3+6+3+1+1 = 14, S2

7 = 4+10+4+1+1 = 20.

We point out that, if we know the set Skn, n ≥ k + 1, using our algorithm m times we
can generate the set Skn+m, and we can know its cardinality Skn+m from Theorem 10.

We conclude this section by discussing the time complexity of our algorithm for fixed
k and n ≥ k + 1. The following result due to Margolius [13] gives an asymptotic formula
for Skn when n ≥ k.

19



Lemma 5 (Margolius). Let n ≥ k, we have

Skn =
Q2k−1√
kπ

2n(1 +O(n−1)),

where Q =
∏∞

j=1(1−
1
2j

) ≈ 0.2887880951.

Given π ∈ Skn, for any i, 1 ≤ i ≤ P (π) < n, it is clear that the time complexity of
finding the fi-selected entry of π is O(n). Thus, the time complexity of generating the set⋃P (π)
i=0 {Ĩi(f(i)(π))} is at most O(n2), combining this with Lemma 5, we see that the time

complexity of our algorithm to generate the set Skn+1 from the set Skn is at most O(2nn2),
where k is fixed and n ≥ k + 1.

Note that, a natural algorithm to generate the set Skn+1 is using the brute force
(
n+1
2

)
way of counting the number of inversions for each permutation in Skn+1 and then checking
to see if they are equal to k, the time complexity of this algorithm is O

(
(n+ 1)!n2

)
. Then

we can see that, for the case of n ≥ k+ 1, if we know the set Skn, using our algorithm will
reduce the time complexity O

(
(n+ 1)!n2

)
to O(2nn2).
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