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Spectral radius and Hamiltonian properties of graphs, II

Jun Ge∗ and Bo Ning†

Abstract

In this paper, we first present spectral conditions for the existence of Cn−1 in graphs (2-

connected graphs) of order n, which are motivated by a conjecture of Erdős. Then we prove

spectral conditions for the existence of Hamilton cycles in balanced bipartite graphs. This

result presents a spectral analog of Moon-Moser’s theorem on Hamilton cycles in balanced

bipartite graphs, and extends a previous theorem due to Li and the second author for n

sufficiently large. We conclude this paper with two problems on tight spectral conditions for

the existence of long cycles of given lengths.

Keywords: spectral radius; Hamiltonicity; minimum degree; long cycle; balanced bipartite

graph
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1 Introduction

Throughout this paper, we only consider graphs which are simple, finite and undirected. Let

G = (V,E) be a graph of order n and size e(G). Let S ⊂ V (G). We use G − S to denote the

subgraph induced by V (G)\S. If S consists of only one element, say S = {u}, then we use G− u

instead of G − {u}. Let λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G) be all the eigenvalues of the adjacency

matrix A(G) of G. Denote by λ(G) := λ1(G) the spectral radius of G, q(G) the signless Laplacian

spectral radius of G, and δ(G) the minimum degree of G. Let G1 and G2 be two graphs. We use

G1 + G2 to denote the disjoint union of G1 and G2, and G1 ∨ G2 to denote the join of G1 and

G2. Following some notations in [18], for 1 ≤ k ≤ (n− 1)/2, we define Lk
n = K1 ∨ (Kk +Kn−k−1)

and Nk
n = Kk ∨ (Kn−2k + kK1). (Fig 1 illustrates L3

n and N3
n). Note that L1

n = N1
n. A graph G

is called Hamiltonian if it contains a spanning cycle, and is called pancyclic if it contains cycles of

lengths from 3 to v(G). The circumference of a graph refers to the length of a longest cycle in the

graph. For terminology and notations not defined here, we refer the reader to Bondy and Murty

[6].

Many graph theorists have investigated the relationship between the existence of Hamilton

cycles and paths in graphs and the eigenvalues of some associated matrices of graphs, for example,

∗School of Mathematical Sciences, Sichuan Normal University, Chengdu, 610066, Sichuan, P. R. China. Email:

mathsgejun@163.com
†Corresponding author. Center for Applied Mathematics, Tianjin University, Tianjin, 300072, P. R. China.

Email: bo.ning@tju.edu.cn.

1

http://arxiv.org/abs/1606.08530v4


 !"  !"

Fig. 1: L3
n (left) and N3

n (right).

see [7, 12, 29, 22, 18, 21, 23, 19, 20]. Among these results, the following one has received much

attention, which is a corollary of a theorem of Ore [25] and of Bondy [5], independently.

Theorem 1.1 (Fiedler and Nikiforov [12]). Let G be a graph of order n. If λ(G) > n− 2, then G

is Hamiltonian unless G = N1
n.

By introducing the minimum degree of a graph as a new parameter, Li and Ning [18] extended

Theorem 1.1 in some sense and obtained spectral analogs of a classical theorem of Erdős [10].

The following theorem is one of the central results in [18]: Let k ≥ 1 and G be a graph of order

n ≥ max{6k + 5, (k2 + 6k + 4)/2}. If δ(G) ≥ k and λ(G) ≥ λ(Nk
n), then G is Hamiltonian unless

G = Nk
n .

Since Kn−k ⊂ Nk
n and Kn−k ⊂ Lk

n, we have λ(L
k
n) > n−k−1 and λ(Nk

n ) > n−k−1. Nikiforov

[21] further strengthened Li and Ning’s theorem for a graph G of order n ≥ k3 +O(k) and k ≥ 2,

by providing a weaker condition that λ(G) ≥ n − k − 1. Later, the authors [13] sharpened the

result mentioned above for the order of graphs by almost a half.1

Since the spectral conditions for Cn are extensively studied, one can naturally consider similar

problems for the possible second longest cycle, that is, Cn−1. Indeed, our first part is motivated by

a conjecture of Erdős that says every graph of order n has a Cn−1 if its size is at least
(

n−2
2

)

+ 4,

which was confirmed by Bondy [2]. The edge number condition above is tight, since one can see

the graph K1 ∨ (K2 +Kn−3) has
(

n−2
2

)

+ 3 edges but contains no Cn−1.

Theorem 1.2. Let G be a graph of order n ≥ 15.

(1) If λ(G) > n− 3, then Cn−1 ⊆ G, unless G ⊆ K1 ∨ (Kn−3 +K2) or G ⊆ Λ (see Fig 2).

(2) If q(G) > 2n− 6, then Cn−1 ⊆ G, unless G ⊆ K1 ∨ (Kn−3 +K2) or G ⊆ Λ.

Fig. 2: The graph Λ.

By Lemma 3 in Section 3, Theorem 1.2 implies the following corollary immediately.

1For comments on this fact, see Chen and Zhang [8].
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Corollary 1. Let G be a graph of order n ≥ 15.

(1) If λ(G) ≥ λ(K1 ∨ (Kn−3 +K2)), then Cn−1 ⊆ G unless G = K1 ∨ (Kn−3 +K2).

(2) If q(G) ≥ q(K1 ∨ (Kn−3 +K2)), then Cn−1 ⊆ G unless G = K1 ∨ (Kn−3 +K2).

Considering that the extremal graphs in Corollary 1 contain a cut-vertex, we then consider

similar problems among 2-connected graphs. The answers are as follows.

Theorem 1.3. Let G be a 2-connected graph of order n ≥ 22.

(1) If λ(G) > n− 4, then Cn−1 ⊆ G unless G ⊆ K2 ∨ (Kn−5 + 3K1).

(2) If q(G) > 2n− 8, then Cn−1 ⊆ G unless G ⊆ K2 ∨ (Kn−5 + 3K1).

The following corollary follows immediately.

Corollary 2. Let G be a 2-connected graph of order n ≥ 22.

(1) If λ(G) ≥ λ(K2 ∨ (Kn−5 + 3K1)), then Cn−1 ⊆ G unless G = K2 ∨ (Kn−5 + 3K1).

(2) If q(G) ≥ q(K2 ∨ (Kn−5 + 3K1)), then Cn−1 ⊆ G unless G = K2 ∨ (Kn−5 + 3K1).

In this paper, we also consider Hamilton cycles in balanced bipartite graphs. Here, a bipartite

graph is called balanced if its two partite sets X and Y have the same number of vertices. Denote

by Bk
n the graph obtained from Kn,n by deleting a Kk,n−k, where n ≥ 2k + 1. We will improve

another theorem of Li and Ning [18] on the spectral condition for Hamilton cycles in balanced

bipartite graphs.

Theorem 1.4. Let k ≥ 1. Let G be a balanced bipartite graph of order 2n with δ(G) ≥ k, where

n ≥ k3 + 2k + 4.

(1) If G is a proper subgraph of Bk
n, then λ(G) <

√

n(n− k).

(2) If λ(G) ≥
√

n(n− k), then G is Hamiltonian unless G = Bk
n.

Since λ(Bk
n) >

√

n(n− k), Theorem 1.4 extends the following theorem in [18] due to Li and

the second author (for n sufficiently large).

Theorem 1.5 (Li and Ning [18]). Let k ≥ 1. Let G be a balanced bipartite graph of order 2n,

where n ≥ (k + 1)2. If δ(G) ≥ k and λ(G) ≥ λ(Bk
n), then G is Hamiltonian unless G = Bk

n.

We organize this paper as follows. In Section 2, we list necessary preliminaries and prove two

structural lemmas. In Section 3, we introduce the Kelmans operation and list several spectral

inequalities which will be used in the proof of main theorems. In Section 4, we prove our main

results. We conclude this paper in the final section with two problems and some discussions.

2 Structural results

In this section, we list several structural theorems that we rely on.

Theorem 2.1 (Bondy). (i) [4] Let G be a Hamiltonian graph of order n. If e(G) ≥ n2

4 + 1, then

G is pancyclic. (ii) [3] Every graph of order n ≥ 4 and size e(G) ≥
(

n−2
2

)

+ 4 contains a Cn−1.

The following theorem is a corollary of a theorem of Erdős [10].
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Theorem 2.2 (Erdős [10]). Let G be a 2-connected graph of order n ≥ 13. If e(G) ≥
(

n−2
2

)

+ 5,

then G is Hamiltonian.

The next two theorems on Hamiltonian properties of graphs are also useful for us.

Theorem 2.3 (Ore [26]). Let G be a graph of order n. If e(G) ≥
(

n−1
2

)

+3, then G is Hamiltonian-

connected.

Theorem 2.4 (Li and Ning [18]). Let G be a graph of order n ≥ 6k+5, where k ≥ 1. If δ(G) ≥ k

and

e(G) >

(

n− k − 1

2

)

+ (k + 1)2,

then G is Hamiltonian unless G ⊆ Lk
n or G ⊆ Nk

n .

The following result was proved by Kopylov in [17] (see the last part of [17]), which was

originally conjectured by Woodall in [28].

Theorem 2.5 (Kopylov [17]). Let n ≥ c ≥ 5 and G be a 2-connected graph of order n with

circumference less than c. If the minimum degree δ(G) ≥ k ≥ 2, then

e(G) ≤ max

{

f(n, k, c), f
(

n,
⌊c− 1

2

⌋

, c
)

}

,

where f(n, k, c) =
(

c−k
2

)

+ k(n− c+ k).

The following two lemmas, which refine Theorem 2.1(ii), will play the central role in proving

Theorems 1.2 and 1.3.

Lemma 1. Let G be a graph of order n ≥ 15 and size e(G) ≥
(

n−2
2

)

. Then G contains a Cn−1,

unless G ⊆ K1 ∨ (Kn−3 +K2) or G ⊆ Λ.

Proof. We prove the lemma by contradiction. Suppose that G contains no Cn−1 and G * K1 ∨
(Kn−3 +K2), and G * Λ.

Suppose that G is Hamiltonian. Since e(G) ≥ (n−2)(n−3)
2 ≥ n2

4 + 1 when n ≥ 10, by Theorem

2.1(i), G is pancyclic, and thus Cn−1 ⊆ G, a contradiction. Hence G contains no Cn or Cn−1. So

the circumference of G is less than n− 1.

Suppose that G is 2-connected. By Theorem 2.5, e(G) ≤ max{f(n, 2, n−1), f(n, ⌊n
2 ⌋−1, n−1)}.

Since f(n, 2, n− 1) =
(

n−3
2

)

+6 and f(n, ⌊n
2 ⌋− 1, n− 1) =

(⌈n

2
⌉

2

)

+(⌊n
2 ⌋− 1)⌊n

2 ⌋, it is easy to check

by WolframAlpha (http://www.wolframalpha.com/) that

max{f(n, 2, n− 1), f(n, ⌊n
2
⌋ − 1, n− 1)} = f(n, 2, n− 1) =

(

n− 3

2

)

+ 6

when n ≥ 15. However, we have e(G) ≥
(

n−2
2

)

>
(

n−3
2

)

+ 6 when n ≥ 10, a contradiction. So G is

not 2-connected.

Suppose that G is disconnected. Let G = G1 ∪G2, where G1 ∩G2 = ∅ and v(G1) ≥ v(G2) ≥ 1.

Set v(G1) = a ≥ n
2 and v(G2) = n − a. Obviously, e(G) ≤

(

a
2

)

+
(

n−a
2

)

, which implies that
(

a

2

)

+
(

n−a

2

)

≥
(

n−2
2

)

. That is, (a− 2)(a+ 2− n) ≥ −1. Since a ≥ n
2 > 7, we get a ≥ n− 2. Hence

(a, b) = (n− 2, 2) or (n− 1, 1).

4
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If (a, b) = (n− 2, 2), then G ⊆ Kn−2 +K2 ⊂ K1 ∨ (Kn−3 +K2), a contradiction.

If (a, b) = (n− 1, 1), then let us consider G1. Notice that, e(G1) = e(G) ≥
(

n−2
2

)

=
(

v(G1)−1
2

)

>
(

v(G1)−2
2

)

+ 4 when v(G1) ≥ 11 (n ≥ 12). By Theorem 2.4, G1 is either Hamiltonian, which

contradicts the fact that G contains no Cn−1; or G1 ⊆ K1 ∨ (Kn−3 + K1), which follows G ⊆
(K1 ∨ (Kn−3 +K1)) +K1 ⊂ K1 ∨ (Kn−3 +K2), also a contradiction.

Finally, consider the case that G is connected with a cut-vertex, say v. Let G = G1∪G2, where

V (G1) ∩ V (G2) = {v} and v(G1) ≥ v(G2) ≥ 2. Set v(G1) = a and v(G2) = b = n+ 1 − a, where

n+1
2 ≤ a ≤ n− 1. Thus, we have

(

a

2

)

+
(

n+1−a

2

)

≥
(

n−2
2

)

, which implies a2 − (n+1)a+3n− 3 ≥ 0.

That is, (a−3)(a−n+2) ≥ −3. If a < n−2, then (a−3)(a−n+2) ≤ 3−a ≤ 3− n+1
2 < −3 when

n ≥ 12, a contradiction. Thus, n− 2 ≤ a ≤ n− 1, which implies (a, b) = (n− 2, 3) or (n− 1, 2).

If (a, b) = (n− 2, 3), then G ⊆ K1 ∨ (Kn−3 +K2), a contradiction.

If (a, b) = (n − 1, 2), then e(G1) = e(G) − 1 ≥
(

n−2
2

)

− 1 =
(

v(G1)−1
2

)

− 1. Suppose that G1 is

2-connected. Since e(G1) ≥
(

v(G1)−1
2

)

− 1 ≥
(

v(G1)−2
2

)

+ 5 for v(G1) ≥ 13 (n ≥ 14), by Theorem

2.2, G1 is Hamiltonian. Thus, Cn−1 ⊆ G1 ⊆ G, a contradiction. So G1 contains a cut-vertex.

Let G1 = G11 ∪ G12, where V (G11) ∩ V (G12) = {w} and v(G11) ≥ v(G12) ≥ 2. Set v(G11) = s

and v(G12) = n − s, where n
2 ≤ s ≤ n − 2. Thus, we have

(

s

2

)

+
(

n−s

2

)

≥
(

n−2
2

)

− 1, which

implies s ≥ n − 2 − 4
s−2 . Since s ≥ n

2 > 7, we have s ≥ n − 2 − 4
5 . It follows that s ≥ n − 2.

So v(G11) = n − 2 and v(G12) = 2. Set V (G2) = {v, x} and V (G12) = {w, y}. If v = w, then

G ⊆ K1 ∨ (Kn−3 + 2K1) ⊂ K1 ∨ (Kn−3 + K2), a contradiction. Thus, v 6= w. If v = y, then

G ⊆ K1 ∨ (Kn−3 + 2K1), a contradiction. So {x, v} ∩ {y, w} = ∅. In this case, G ⊆ Λ.

The proof of Lemma 1 is complete.

Lemma 2. Let G be a 2-connected graph of order n ≥ 22 and size e(G) ≥
(

n−3
2

)

− 2. Then G

contains a Cn−1, unless G ⊆ K2 ∨ (Kn−5 + 3K1).

Proof. We prove the lemma by contradiction. Suppose G contains no Cn−1, and G * K2∨(Kn−5+

3K1). We shall first prove two claims.

Claim 1. G is not Hamiltonian.

Proof. Suppose that G is Hamiltonian. Notice that we have e(G) ≥
(

n−3
2

)

− 2 ≥ n2

4 + 1 when

n ≥ 14. By Theorem 2.1(i), G is pancyclic, and thus contains a Cn−1, a contradiction.

Claim 2. G contains a 2-cut.

Proof. Suppose that G is 3-connected. Then δ(G) ≥ 3. By Theorem 2.5, we have

e(G) ≤ max{f(n, 3, n− 1), f(n, ⌊n
2
⌋ − 1, n− 1)},

where f(n, k, c) =
(

c−k

2

)

+ k(n− c+ k).

Since f(n, 3, n− 1) =
(

n−4
2

)

+ 12 and f(n, ⌊n
2 ⌋ − 1, n− 1) =

(

⌈n

2
⌉

2

)

+ (⌊n
2 ⌋ − 1)⌊n

2 ⌋, it is easy to

check by WolframAlpha (http://www.wolframalpha.com/) that

max{f(n, 3, n− 1), f(n, ⌊n
2
⌋ − 1, n− 1)} = f(n, 3, n− 1) =

(

n− 4

2

)

+ 12

when n ≥ 22. However, we get e(G) ≥
(

n−3
2

)

− 2 >
(

n−4
2

)

+ 12 when n ≥ 19, a contradiction.

5
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Now we know G is 2-connected but not 3-connected, so G contains a 2-cut. This proves the

claim.

We choose G1 and G2 such that:

(i) G = G1 ∪G2 with V (G1) ∩ V (G2) = {u, v}, where {u, v} is a 2-cut;

(ii) v(G1)− v(G2) is as large as possible.

In the following, we call {G1, G2} a good pair, if it satisfies both (i) and (ii). Set v(G1) = a and

v(G2) = b. Then n+2
2 ≤ a ≤ n−1 and v(G2) = n+2−a. Hence

(

a

2

)

+
(

n+2−a

2

)

−1 ≥ e(G) ≥
(

n−3
2

)

−2.

Therefore, a2 − (n+ 2)a+ 5n− 4 ≥ 0, and hence,

(a− 5)(a− n+ 3) ≥ −11. (1)

Since n ≥ 22, n−4 ≥ n+2
2 . If a ≤ n−4, then (a−5)(a−(n−3)) ≤ ((n−4)−5)((n−4)−(n−3)) =

−(n − 9) < −11 when n ≥ 21, a contradiction to (1). Thus a ≥ n − 3, which implies that

(a, b) = (n− 3, 5), or (a, b) = (n− 2, 4), or (a, b) = (n− 1, 3).

Note that in the case (a, b) = (n− 3, 5) or (a, b) = (n− 2, 4), there are no vertices of degree two

in G, otherwise {G1, G2} is not a good pair.

Suppose that (a, b) = (n− 3, 5). Let V (G2)\{u, v} = {w1, w2, w3}. We obtain

e(G1) ≥ e(G)− e(G2) ≥
(

n− 3

2

)

− 2−
(

5

2

)

≥
(

n− 4

2

)

+ 3 =

(

v(G1)− 1

2

)

+ 3

when n ≥ 19. By Theorem 2.3, G1 is Hamiltonian-connected. Take any (u, v)-Hamilton path

in G1, say P1. We can see G2 − {u, v} is connected, otherwise there is a vertex of degree 2. If

G2 − {u, v} ∼= K3, since G is 2-connected, there exists (u, v)-Hamilton path in G2, say P2. Then

P1 ∪ P2 is a Hamilton cycle in G, a contradiction to Claim 1. If G2 − {u, v} ∼= P3, then suppose

G2 − {u, v} is the path w1w2w3. Since there is no vertex of degree 2 in G, u and v are neighbours

of both w1 and w3. Then vP1uw1w2w3v is a Hamilton cycle in G, a contradiction to Claim 1.

Suppose that (a, b) = (n − 2, 4). Let V (G2)\{u, v} = {w1, w2}. Since there is no vertex of

degree 2 in G, {w1u,w1v, w2u,w2v, w1w2} ⊂ E(G). Let H := G−w1. Then δ(H) ≥ 2. We obtain

e(H) = e(G)− 3 ≥
(

n− 3

2

)

− 5 >

(

n− 4

2

)

+ 9 =

(

v(H)− 3

2

)

+ 9

for n ≥ 19. By Theorem 2.4, H is Hamiltonian, unless H ⊆ L2
n−1 or H ⊆ N2

n−1. If H is

Hamiltonian, then Cn−1 ⊂ H ⊂ G, a contradiction. Next, we shall show that H * L2
n−1. Since

H = G − w1 and NG(w1) = {u, v, w2}, it is easy to prove H is 2-connected. But L2
n−1 contains

a cut-vertex. Hence H * L2
n−1, and it follows H ⊆ N2

n−1. Let {x1, x2} ⊂ V (H) such that x1, x2

are two vertices of degree 2 in N2
n−1. Since there is no vertex of degree 2 in G, x1 and x2 must

be neighbours of w1. Since NG(w1) = {u, v, w2}, {x1, x2} ∩ {u, v} 6= ∅. Hence at least one of u, v

has degree 3, say u. Furthermore, the neighbour of u in G other than w1 and w2 must not be v,

otherwise v is a cut-vertex in G, which contradicts the fact G is 2-connected. Let the neighbour

of u in G other than w1 and w2 be z. Since

e(G− {u,w1, w2}) = e(G)− 6 ≥
(

n− 3

2

)

− 8 ≥
(

n− 4

2

)

+ 3

6



for n ≥ 15, we obtain that G − {u,w1, w2} is Hamiltonian-connected by Theorem 2.3. Take a

(z, v)-Hamilton path P in G − {u,w1, w2}. We can see vPzuw1w2v is a Hamilton cycle in G, a

contradiction to Claim 1.

Finally, consider the case that (a, b) = (n−1, 3). Let V (G2) = {u, v, w} andH := (G−w)∪{uv}.
Then H is 2-connected. Moreover, e(H) ≥ e(G) − dG(w) ≥

(

n−3
2

)

− 4. When n ≥ 18, we have

e(H) >
(

v(H)−3
2

)

+ 9 =
(

n−4
2

)

+ 9. By Theorem 2.4, when v(H) ≥ 17 (that is, n ≥ 18), H is

Hamiltonian unless H ⊆ L2
n−1 or H ⊆ N2

n−1. Since H is 2-connected and L2
n−1 has a cut-vertex,

H * L2
n−2. Hence H is Hamiltonian or H ⊆ N2

n−1. Assume that H is Hamiltonian. If uv ∈ E(G),

then G contains a Cn−1, a contradiction. Thus, uv /∈ E(G). If the Hamilton cycle in H , say C,

does not pass through the edge uv, then it is also in G, a contradiction. Thus, C passes through

uv, and hence there is a (u, v)-Hamilton path in G1. Together with the path uwv, we can find a

Hamilton cycle in G, a contradiction. SoH ⊆ N2
n−1 = K2∨(Kn−5+2K1). Let {x1, x2} ⊆ V (N2

n−1)

such that each is of degree 2 and let {y1, y2} be the 2-cut in N2
n−1. Set V (H) = V (N2

n−1). Since

H is 2-connected, y1, y2 are still neighbors of x1, x2 in H . So, according to the locations of y1, y2,

we obtain the following subcases (in the sense of isomorphism): (1) If {u, v} = {y1, y2}, then

G ⊆ K2 ∨ (Kn−5 + 3K1), a contradiction; (2) If |{u, v} ∩ {y1, y2}| = 1, then G is a subgraph of Γ1

or Γ2 (see Fig 3); (3) If {u, v} ∩ {y1, y2} = ∅, then G is a subgraph of a graph in Ψ1, Ψ2, or Ψ3

(see Fig 3). By Proposition 2.1 (whose proof will be presented later), both subcases (2) and (3)

contain either a Cn−1 or a Cn, also a contradiction.

The proof is complete.
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Fig. 3: Γ1, Γ2, Ψ1, Ψ2 and Ψ3.

Proposition 2.1. Let G be a graph of order n ≥ 21 and size e(G) ≥
(

n−3
2

)

− 2. Suppose that

the degrees of w, x1, x2 in G equal the degrees of those in Γi for i = 1, 2 and in Ψj for j = 1, 2, 3,

respectively. If G is a spanning subgraph of Ψ1 or Ψ2, then G is Hamiltonian. If G is a spanning

subgraph of Γ1, Γ2 or Ψ3, then G contains a Cn−1.
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Proof. (1) If G ⊆ Ψ1, then let us consider G− {w, x1, x2}. Since v(G − {w, x1, x2}) = n− 3 and

e(G− {w, x1, x2}) = e(G)− 6 ≥
(

n− 3

2

)

− 8 ≥
(

n− 4

2

)

+ 3

when n ≥ 15, we obtain that G− {w, x1, x2} is Hamiltonian-connected by Theorem 2.3. So there

is a (y1, y2)-Hamilton path P in G− {w, x1, x2}. Therefore y2Py1x1wx2y2 is a Hamilton cycle in

G.

(2) If G ⊆ Ψ2, then let us consider G−{w, x1, x2, y1}. Since v(G−{w, x1, x2, y1}) = n− 4 and

e(G− {w, x1, x2, y1}) = e(G)− 4− dG(y1) ≥
(

n− 3

2

)

− 2− 4− (n− 2) ≥
(

n− 5

2

)

+ 3

when n ≥ 16, we obtain that G − {w, x1, x2, y1} is Hamiltonian-connected by Theorem 2.3. So

there is a (u, y2)-Hamilton path P in G−{w, x1, x2, y1}. Therefore, y2Puwx1y1x2y2 is a Hamilton

cycle in G.

(3) If G ⊆ Γ1, we consider G− {w, x1, x2, y1}. Since v(G− {w, x1, x2, y1}) = n− 4 and

e(G− {w, x1, x2, y1}) = e(G)− 3− dG(y1) ≥
(

n− 3

2

)

− 2− 3− (n− 1) ≥
(

n− 5

2

)

+ 3

when n ≥ 16, we obtain that G − {w, x1, x2, y1} is Hamiltonian-connected by Theorem 2.3. So

there is a (u, y2)-Hamilton path P in G−{w, x1, x2, y1}. Therefore, y2Puwy1x1y2 is a Cn−1 in G.

(4) If G ⊆ Γ2, we consider G− {w, x1, x2}. Since v(G− {w, x1, x2}) = n− 3 and

e(G− {w, x1, x2}) = e(G)− 6 ≥
(

n− 3

2

)

− 8 ≥
(

n− 4

2

)

+ 3

when n ≥ 15, we obtain that G− {w, x1, x2} is Hamiltonian-connected by Theorem 2.3. So there

is a (y1, y2)-Hamilton path P in G− {w, x1, x2}. Therefore, y2Py1wx1y2 is a Cn−1 in G.

(5) If G ⊆ Ψ3, then we shall prove that there is a Cn−1 in G. First we claim that N(v)∩N(y1) 6=
∅, otherwise dG(v) + dG(y1) ≤ n, and it follows that

e(G) ≤ e(G− {w, x1, x2, v, y1}) + dG(v) + dG(y1) + 3 ≤
(

n− 5

2

)

+ n+ 3 <

(

n− 3

2

)

− 2

when n > 14, a contradiction. Hence there exists a vertex z ∈ N(v) ∩ N(y1). We consider the

graph G− {w, x1, x2, v, y1, z}. Since v(G − {w, x1, x2, v, y1, z}) = n− 6 and

e(G− {w, x1, x2, v, y1, z}) ≥ e(G)− 6− 3(n− 4) ≥
(

n− 3

2

)

− 3n+ 4 ≥
(

n− 7

2

)

+ 3

when n ≥ 21, we obtain that G − {w, x1, x2, v, y1, z} is Hamiltonian-connected by Theorem 2.3.

So there is a (u, y2)-Hamilton path P in G − {w, x1, x2, v, y1, z}. Therefore, y2Puwvzy1x1y2 is a

Cn−1 in G.

The proof is complete.

The following theorem will be used in the proof of Theorem 1.4.

Theorem 2.6 (Li and Ning [18]). Let G be a balanced bipartite graph of order 2n, where n ≥ 2k+1,

k ≥ 1. If δ(G) ≥ k and e(G) > n(n− k − 1) + (k + 1)2, then G is Hamiltonian unless G ⊆ Bk
n.

8



3 Spectral inequalities

First, we introduce the Kelmans operation [16]. Given a graph G and two specified vertices

u and v, we construct a new graph G[u → v] as follows: we delete all edges between u and

S := N(u)\(N(v) ∪ {v}) and add all edges between v and S. In notation, G[u → v] is defined as:

V (G[u → v]) = V (G) and E(G[u → v]) = (E(G)\{uw : w ∈ S}) ∪ {vw : w ∈ S}.

We call it the Kelmans operation (from u to v).

Csikvári [9] proved that the Kelmans operation does not decrease the spectral radius of a graph.

Theorem 3.1 (Csikvári [9]). Let G be a graph and u, v be two vertices of G. Let G′ = G[u → v].

Then λ(G′) ≥ λ(G).

Li and Ning [18] proved a signless spectral radius version.

Theorem 3.2 (Li and Ning [18]). Let G be a graph and u, v be two vertices of G. Let G′ = G[u →
v]. Then q(G′) ≥ q(G).

Generally speaking, we use these two theorems to determine the extremal graphs, if we already

have turned the original problems into similar ones under the condition of number of edges.

The next result helps us to determine the extremal graphs with the help of the two theorems

above.

Lemma 3. λ(K1 ∨ (Kn−3 +K2)) > λ(Λ) and q(K1 ∨ (Kn−3 +K2)) > q(Λ).

Proof. LetG′ := Λ[u → v] (see Fig 2 for the vertices u, v and the graph Λ). ThenG′ = K1∨(Kn−3+

2K1). By Theorems 3.1 and 3.2, we obtain λ(K1 ∨ (Kn−3 + 2K1)) ≥ λ(Λ) and q(K1 ∨ (Kn−3 +

2K1)) ≥ q(Λ), respectively. Since K1 ∨ (Kn−3 +2K1) ⊂ K1 ∨ (Kn−3 +K2) and K1 ∨ (Kn−3 +K2)

is connected, Lemma 3 is proved.

Finally, we need several inequalities below on spectral radius or signless spectral radius in

terms of number of edges and vertices for graphs or bipartite graphs. We mainly use them to get

a sufficient condition in terms of number of edges for each problem.

Theorem 3.3 (Nosal [24], Bhattacharya, Friedland, and Peled [1]). Let G be a bipartite graph.

Then λ(G) ≤
√

e(G).

Theorem 3.4 (Hong [14]). Let G be a graph of order n. If δ(G) ≥ 1, then

λ(G) ≤
√

2e(G)− n+ 1.

Theorem 3.5 (Hong, Shu, and Fang [15]). Let G be a connected graph of order n and size e(G).

If minimum degree δ(G) ≥ k ≥ 1, then

λ(G) ≤ k − 1 +
√

(k + 1)2 + 4(2e(G)− kn)

2
.

Theorem 3.6 (Feng and Yu [11]). Let G be a graph of order n. Then

q(G) ≤ 2e(G)

n− 1
+ n− 2.

9



4 Proofs

Proof of Theorem 1.2(1). Suppose that δ(G) ≥ 1. Then by Theorem 3.4 and the assumption,

we obtain
√

2e(G)− n+ 1 ≥ λ(G) > n− 3,

which implies that 2e(G) > (n− 2)(n− 3) + 2. That is,

e(G) ≥
(

n− 2

2

)

+ 2. (2)

By Lemma 1, G contains a Cn−1, or G ⊆ K1 ∨ (Kn−3 +K2), or G ⊆ Λ.

Now we turn to the case that G contains isolated vertices. Since the maximum degree △(G) ≥
λ(G) > n − 3, we have △(G) ≥ n − 2, which follows G contains exactly one isolated vertex, say

u. Let H = G − u. Then δ(H) ≥ 1 and v(H) = n − 1. Again, by Theorem 3.4, we obtain
√

2e(H)− v(H) + 1 =
√

2e(G)− n+ 2 > n− 3. We get 2e(G) > n2− 5n+7 = (n− 2)(n− 3)+1.

Thus, e(G) ≥
(

n−2
2

)

+ 1. By Lemma 1, G contains a Cn−1, or G ⊆ K1 ∨ (Kn−3 +K2), or G ⊆ Λ.

The proof is complete. �

Proof of Theorem 1.2(2). Recall Theorem 3.6. We obtain 2e(G)
n−1 + n − 2 ≥ q(G) > 2n − 6,

which follows 2e(G) > (n − 1)(n − 4). Since 2e(G) and (n − 1)(n − 4) are both even, we deduce

that 2e(G) ≥ (n − 1)(n − 4) + 2, that is, e(G) ≥
(

n−2
2

)

. By Lemma 1, G contains a Cn−1, or

G ⊆ K1 ∨ (Kn−3 +K2), or G ⊆ Λ. The proof is complete. �

Proof of Theorem 1.3(1). Since G is 2-connected, we get δ(G) ≥ 2. By Theorem 3.5, we have

λ(G) ≤ 1+
√

9+4(2e(G)−2n)

2 . Hence
1+

√
9+4(2e(G)−2n)

2 > n−4, which follows that 2e(G) > (n−3)(n−
4) + 6. That is, e(G) >

(

n−3
2

)

+ 3. By Lemma 2, G contains a Cn−1, or G ⊆ K2 ∨ (Kn−5 + 3K1).

The proof is complete. �

Proof of Theorem 1.3(2). By Theorem 3.6, we obtain 2e(G)
n−1 + n − 2 ≥ q(G) > 2n − 8, which

follows 2e(G) > (n − 1)(n − 6). Since 2e(G) and (n − 1)(n − 6) are both even, we infer that

2e(G) ≥ (n − 1)(n − 6) + 2, that is, e(G) ≥
(

n−3
2

)

− 2. By Lemma 2, G contains a Cn−1, or

G ⊆ K2 ∨ (Kn−5 + 3K1). The proof is complete. �

Proof of Theorem 1.4(1). Write W for the set of vertices of Bk
n of degree k. Let X = N(W ),

Y = N(X)−W , and Z = N(Y )−X (see Fig 4). Note that |W | = |X | = k and |Y | = |Z| = n− k.

 !"#$%&'($)* !"#$%&'($)* +,!"#$%&'($)* +,!"#$%&'($)*

Fig. 4: X, Y , Z, and W in Bk
n.
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Claim 1. λ(G) ≤ λ(Bk
n − e), where e = uv, u ∈ Y , v ∈ Z.

For any proper subgraph G of Bk
n, since δ(G) ≥ k, G must contain all the edges incident to

W . Thus, either G ⊆ G1 := Bk
n − e1, where e1 = uv ∈ E(X,Y ), or G ⊆ G2 := Bk

n − e2, where

e2 = uv ∈ E(Y, Z). So λ(G) ≤ max{λ(G1), λ(G2)}
Recall {u, v} ⊂ X ∪ Y ∪ Z. By symmetry, there are two cases: (i) u ∈ X , v ∈ Y ; (ii) u ∈ Y ,

v ∈ Z.

Let u′ be a vertex in X , v′ be a vertex in Y , and w′ be a vertex in Z. Then (Bk
n − u′v′)[w′ →

u′] = Bk
n − v′w′. By Theorem 3.1, λ(Bk

n − v′w′) ≥ λ(Bk
n − u′v′). We have proved Claim 1.

Claim 2. λ(Bk
n − e) <

√

n(n− k), where e = uv, u ∈ Y , v ∈ Z.

We prove the claim by contradiction. Let G′ = Bk
n − e, where e = uv, u ∈ Y , v ∈ Z. Set

λ := λ(G′). Let x = (x1, . . . , x2n) be a positive unit eigenvector to λ. Suppose that

λ(G′) ≥
√

n(n− k). (3)

Let

w := xi, i ∈ W,

x := xi, i ∈ X,

y := xi, i ∈ Y \{u},

z := xi, i ∈ Z\{v},

s := xu,

t := xv.

Note that the 2n eigenequations of G′ are reduced to the following six types:

λw = kx, (4)

λx = kw + (n− k − 1)y + s, (5)

λy = kx+ (n− k − 1)z + t, (6)

λz = (n− k − 1)y + s, (7)

λs = kx+ (n− k − 1)z, (8)

λt = (n− k − 1)y. (9)

From (6) and (8) we have

λy − λs = [kx+ t+ (n− k − 1)z]− [kx+ (n− k − 1)z] ,

that is,

t = λ(y − s). (10)

From (7) and (9) we have

λz − λt = (n− k − 1)y + s− (n− k − 1)y,

11



that is,

s = λ(z − t). (11)

By putting (10) into (11), we obtain

s = λ [z − λ(y − s)] =
λ2y − λz

λ2 − 1
. (12)

Hence

t = λ(y − s) = λ

(

y − λ2y − λz

λ2 − 1

)

=
λ2z − λy

λ2 − 1
. (13)

By using (12), equation (7) becomes

λz = (n− k − 1)y +
λ2y − λz

λ2 − 1
,

from which it follows that

z =
λ2 − 1

λ3

(

n− k +
1

λ2 − 1

)

y. (14)

Since 4 < n− k = λ(Kn−k,n−k) < λ < λ(Kn,n) = n, we obtain

z <
λ2 − 1

λ3

(

λ+
1

λ2 − 1

)

y =
λ3 − λ+ 1

λ3
· y < y.

Let f(x) = x2−1
x3 . Then f ′(x) = 3−x2

x4 < 0 when x >
√
3. So λ2−1

λ3 decreases when λ >
√
3, which

follows

z =
λ2 − 1

λ3
(n− k)y +

y

λ3

>
n2 − 1

n3
(n− k)y +

y

n3

=
n3 − kn2 − n+ k + 1

n3
· y

>
n3 − kn2 − n

n3
· y

=

(

1− k

n
− 1

n2

)

y.

Therefore,
(

1− k

n
− 1

n2

)

y < z < y. (15)

Note that if we remove all edges between W and X and add the edge uv to G′, we obtain the

graph Kn,n−k + kK1. Let x
′′ be the restriction of x to Kn,n−k. We find that

〈A(Kn,n−k)x
′′,x′′〉 = 〈A(G′)x,x〉+ 2st− 2k2wx = λ+ 2(st− k2wx).

Since ‖x′′‖ < 1, 〈A(Kn,n−k)x
′′,x′′〉 < λ(Kn,n−k) =

√

n(n− k), that is,

λ+ 2(st− k2wx) <
√

n(n− k). (16)

Recall that λ ≥
√

n(n− k) (see (3)). This assumption, together with (16) yields st−k2wx < 0.

Recall that λw = kx (see (4)). We rewrite it by

λ(st− k2wx) = λst− k3x2 < 0,
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that is,

λst < k3x2. (17)

Noting (15), we have

λs = λ · λ
2y − λz

λ2 − 1
> λ · λ

2y − λy

λ2 − 1
=

λ2

λ+ 1
· y > (λ− 1)y > (n− k − 1)y ≥ (k3 + k + 3)y,

and

t =
λ2z − λy

λ2 − 1
> z − y

λ− 1
>

[(

1− k

n
− 1

n2

)

y − y

n− k − 1

]

=

(

1− k

n
− 1

n2
− 1

n− k − 1

)

y

>

(

1− k

n
− 1

2n
− 3

2n

)

y =

(

1− k + 2

n

)

y ≥
(

1− k + 2

k3 + 2k + 4

)

y.

Thus, we can estimate the left side of the inequality in (17) as follows:

λst > (k3 + k + 3)

(

1− k + 2

k3 + 2k + 4

)

y2

=
k3(k3 + 2k + 5) + (k + 2)(k + 3)

k3 + 2k + 4
· y2

> k3y2.

Together with (17), we have

y2 < x2. (18)

From (4), (5), (12) and (14), we have
(

λ− k2

λ

)

x = (n− k − 1)y + s

= (n− k − 1)y +
λ2y − λz

λ2 − 1

= (n− k)y +
y − λ · λ2−1

λ3

(

n− k + 1
λ2−1

)

y

λ2 − 1

= (n− k)y − n− k − 1

λ2
y

< (n− k)y.

Since

n ≥ k3 + 2k + 4 = (k3 + k) + k + 4 ≥ 2
√
k3 · k + k + 4 = 2k2 + k + 4 >

3

2
k2 +

1

2
k +

1

24
,

we have

n− k

2
− 1

12
=

√

n2 − kn− 1

6

[

n−
(

3

2
k2 +

1

2
k +

1

24

)]

<
√

n(n− k).

Therefore, we obtain

n− k < n− k

2
− 1

12
<
√

n(n− k) ≤ λ < λ(Kn,n) = n. (19)

Note that k3 + k + 4 > 3k2 for all k ≥ 1, hence λ > n − k ≥ k3 + k + 4 > 3k2, and it follows

k2

λ
< 1

3 . Therefore,

x2 <

(

n− k

λ− k2

λ

)2

y2 <

(

n− k

n− k
2 − 1

12 − 1
3

)2

y2 < y2,
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contradicting (18). Now we have proved Claim 2.

Together with Claims 1 and 2, the proof is complete. �

Proof of Theorem 1.4(2) By the initial condition and Theorem 3.3,
√

n(n− k) ≤ λ(G) ≤
√

e(G). Thus, we obtain

e(G) ≥ n(n− k) > n(n− k − 1) + (k + 1)2

when n ≥ (k + 1)2 + 1. Notice that k3 + 2k + 2 ≥ (k + 1)2 + 1 when k ≥ 1. By Theorem 2.6, G is

Hamiltonian or G ⊆ Bk
n. By Theorem 1.8, G is Hamiltonian or G = Bk

n. The proof is complete. �

5 Concluding remarks

We suggest the following general problems.

Problem 1. Let G be a connected graph of order n. Let s be an integer with s ≥ 1. Suppose

that λ(G) > λ(K1 ∨ (Ks +Kn−s−1)), where n is sufficiently large compared to s. Does G contain

a Cn−s+1?

Problem 2. Let G be a connected graph of order n. Let s be an integer with s ≥ 1. Suppose

that q(G) > q(K1 ∨ (Ks +Kn−s−1)), where n is sufficiently large compared to s. Does G contain

a Cn−s+1?

Affirmative answers to these problems will give tight spectral conditions for the existence of

cycle Cl, where l is large. One can easily find that Theorems 1.1 and 1.2 give affirmative solutions

to Problem 1 for the cases s = 1 and s = 2, respectively. Theorem 1.2 solves Problem 2 when

s = 2.

Moreover, we can also consider spectral conditions for consecutive cycles. In this spirit, Theo-

rems 1.1 and 1.2 can be extended as follows, respectively.

Theorem 5.1. Let G be a graph of order n ≥ 5. If λ(G) > n − 2, then G is pancyclic unless

G = N1
n.

Theorem 5.2. Let G be a graph of order n ≥ 15. If λ(G) > λ(K1 ∨ (K2 + Kn−3)) or q(G) >

q(K1 ∨ (K2 +Kn−3)), then G contains a cycle Cl for each l such that 3 ≤ l ≤ n− 1.

The main ingredient of the proofs comes from a classical theorem proved by Woodall [27].

Theorem 5.3 (Woodall [27]). Let G be a graph of order n ≥ 2k+3, where k ≥ 0 is an integer. If

e(G) ≥
(

n− k − 1

2

)

+

(

k + 2

2

)

+ 1,

then G contains a Cl for each l such that 3 ≤ l ≤ n− k.

Proof of Theorem 5.1. Since ∆(G) ≥ λ(G) > n − 2, we obtain ∆(G) ≥ n − 1, which implies

that G is connected. By Theorem 3.4, we get
√

2e(G)− n+ 1 > n − 2. We infer that 2e(G) ≥
n2 − 3n + 4 ≥ n2 − 5n + 14 for n ≥ 5. This implies that e(G) ≥

(

n−2
2

)

+
(

3
2

)

+ 1 for n ≥ 5.

By Theorem 5.3, G contains all cycles Cl, where 3 ≤ l ≤ n − 1. By Theorem 1.1, G contains a
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Hamilton cycle or G = N1
n. So G contains all cycles of length from 3 to n. The proof is complete.

�

Proof of Theorem 5.2. If λ(G) > λ(K1 ∨ (K2 + Kn−3)), then ∆(G) ≥ λ(G) > n − 3. If

q(G) > q(K1 ∨ (K2 +Kn−3)), then 2∆(G) ≥ q(G) > 2(n − 3). In each case, we deduce ∆(G) >

(n − 3), which implies that ∆(G) ≥ n − 2. It follows that G contains at most one isolated

vertex. If G is connected, then by Theorem 3.4, we get
√

2e(G)− n+ 1 > n − 3. We infer that

2e(G) ≥ n2 − 5n+ 8. If G is not connected, let v be the isolated vertex and G′ := G− v, then we

have
√

2e(G′)− v(G′) + 1 > n− 3, that is 2e(G) ≥ n2 − 5n+ 8. Since n2 − 5n+ 8 ≥ n2 − 6n+ 23

for n ≥ 15, this implies that e(G) ≥
(

n−3
2

)

+
(

4
2

)

+ 1 for n ≥ 15. By Theorem 5.3, G contains all

cycles Cl, where 3 ≤ l ≤ n− 2. By Corollary 1, G contains a Cn−1. The proof is complete. �
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