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Abstract

Given a connected graph G, the Randić index R(G) is the sum of (d(u)d(v))−1/2

over all edges {u, v} of G, where d(u) and d(v) are the degree of vertices u and v

respectively. Let q(G) be the largest eigenvalue of the signless Laplacian matrix of G

and n = |V (G)|. Hansen and Lucas (2010) made the following conjecture:

q(G)

R(G)
≤

{

4n−4

n 4 ≤ n ≤ 12
n

√

n−1
n ≥ 13

with equality if and only if G = Kn for 4 ≤ n ≤ 12 and G = Sn for n ≥ 13,

respectively. Deng et al. verified this conjecture for 4 ≤ n ≤ 11. In this paper, we

prove the conjecture for n ≥ 12.
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1 Introduction

For a connected graph G = (V,E), the Randić index R(G) is defined as

R(G) =
∑

{u,v}∈E(G)

1
√

d(u)d(v)
,

where d(u) and d(v) are the degree of vertices u and v respectively. This parameter was

introduced by the chemist Milan Randić [22] in 1975 under the name ‘branching index’.

Originally, it was used to measure the extent of branching of the carbon-atom skeleton

of saturated hydrocarbons. It was noticed that there is a good correlation between the

Randić index and several physico-chemical properties of alkanes: for example, boiling

points, enthalpies of formation, chromatographic retention times, etc. [12, 16, 17].

From the view of extremal graph theory, one may ask what are the minimum and

maximum values of the Randić index among a certain class of graphs and which graphs

from the given class of graphs attain the extremal values. Bollobás and Erdős [3] first

considered this kind of question. They proved that R(G) ≥
√
n− 1 for each graph with

n vertices and without isolated vertices. Moreover, the equality holds if and only G is

the star. After that, there are a lot of references in this vein, for example, [2, 4, 6, 11].

Bollobás, Erdős, and Sarkar [4] studied generalizations of the Randić index.
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Another direction of research is to ask the relationships between the Randić index and

other parameters of graphs. Hansen and Vukicević [14] studied the connections between

the Randić index and the chromatic number of graphs. Aouchiche, Hansen, and Zheng [1]

made a conjecture on the minimum values of R(G)
D(G) and R(G) −D(G) over all connected

graphs with the same number of vertices, where D(G) is the diameter of G. Li and Shi

[20] as well as Dvořák, Lidický, and Škrekovski [8] studied this conjecture before Yang and

Lu [23] finally resolved it. Another result is λ1(G) ≥ e(G)
R(G) which was proved by Favaron,

Mahéo, and Saclé [9]. Here λ1(G) is the largest eigenvalue of the adjacency matrix of G.

One may ask to prove similar results involving the Randić index and the spectral radius

of other matrices associated with a graph.

For a graph G, the signless Laplacian matrix Q is defined as D + A, where D is the

diagonal matrix of degrees in G and A is the adjacency matrix of G. Let q(G) be the

largest eigenvalue of Q. With the aid of AutoGraphiX system, Hansen and Lucas [13]

proposed the following two conjectures. The first one is on the difference between q(G)

and R(G). More precisely, they conjectured that if G is a connected graph on n ≥ 4

vertices, then q(G)−R(G) ≤ 3n
2 − 2 and equality holds for G = Kn. This conjecture was

proved by Deng, Balachandran, and Ayyaswamy [7]. The second one concerns the ratio

of q(G) to R(G).

Conjecture 1.1 (Hansen and Lucas [13]). Let G be a connected graph on n ≥ 4 vertices

with the largest signless Laplacian eigenvalue q(G) and Randić index R(G). Then

q(G)

R(G)
≤







4n−4
n 4 ≤ n ≤ 12

n√
n−1

n ≥ 13

with equality if and only if G = Kn for 4 ≤ n ≤ 12 and G = Sn for n ≥ 13, respectively.

Deng, Balachandran, and Ayyaswamy [7] were able to prove this conjecture for 4 ≤ n ≤
11 and established a nontrivial upper bound on q(G)

R(G) which is larger than the conjectured

one. We prove the conjecture for n ≥ 12. Namely, we prove the following theorem.

Theorem 1.2. For a connected graph G with n vertices, we have

q(G)

R(G)
≤







11
3 n = 12;
n√
n−1

n ≥ 13.

The equality holds if and only if G = K12 for n = 12 and G = Sn for n ≥ 13.

For developments of the Randić index, we refer interested readers to excellent surveys,

for instance, Li and Gutman [18], Li and Shi [19], as well as Li, Shi, and Wang [21].

We follow the standard notation throughout this paper. For those not defined here,

we refer the reader to Bondy and Murty [5]. For a graph G = (V,E), the neighborhood

NG(v) of a vertex v is the set {u : u ∈ V (G) and {u, v} ∈ E(G)} and the degree dG(v) of a

vertex v is |NG(v)|. If the graph G is clear in the context, then we will drop the subscript

G. We will use e(G) to denote the number of edges in G.

The paper is organized as follows. In Section 2, we will collect several previous results

which are needed in the proof of the main theorem. Also, we will prove a number of

technical lemmas in Section 2. The proof of Theorem 1.2 will be given in Section 3.
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2 Preliminaries

We first recall two theorems which provide upper bounds for the largest eigenvalue of the

adjacency matrix and the signless Laplacian matrix of a graph respectively.

Theorem 2.1 (Hong [15]). Let G be a graph with n vertices and m edges. Let λ1 be the

largest eigenvalue of its adjacency matrix. If the minimum degree δ(G) ≥ 1, then

λ1 ≤
√
2m− n+ 1.

Theorem 2.2 (Feng and Yu [10]). Let G be a graph with n vertices and m edges. If q(G)

is the signless Laplacian spectral radius of G, then

q(G) ≤ 2m

n− 1
+ n− 2. (1)

For a vertex v of a graph G, we define m(v) as 1
d(v)

∑

u∈N(v) d(u). For a certain class

of graphs, the following theorem gives a better upper bound on q(G).

Theorem 2.3 (Feng and Yu [10]). For a connected graph G, we have

q(G) ≤ max{d(v) +m(v) : v ∈ V (G)}.

We will need the following lemma.

Lemma 2.4. For a connected graph G with n ≥ 4 vertices, if m = e(G) ≥ n and R(G) >√
n− 1 + 2m−2n+2

n
√
n−1

, then q(G)
R(G) <

n√
n−1

.

Proof. Recall Theorem 2.2. We have

q(G)

R(G)
<

2m
n−1 + n− 2

√
n− 1 + 2m−2n+2

n
√
n−1

.

We note
(√

n− 1 +
2m− 2n + 2

n
√
n− 1

)

n√
n− 1

=
√
n− 1 · n√

n− 1
+

2m− 2n+ 2

n
√
n− 1

· n√
n− 1

= n+
2m− 2n+ 2

n− 1

=
2m

n− 1
+ n− 2.

This lemma follows easily.

We recall the following lower bound for R(G).

Theorem 2.5 (Bollobás and Erdős [3]). Let G be a graph with n vertices. If δ(G) ≥ 1,

then R(G) ≥
√
n− 1 and the equality holds if and only if G = Sn.

If δ(G) ≥ 2, then we need the following better lower bound for R(G).

Theorem 2.6 (Delorme, Favaron, and Rautenbach [6]). Let G be a graph on n vertices.

If δ(G) ≥ 2, then

R(G) ≥
√

2(n − 1) +
1

n− 1
−

√

2

n− 1
. (2)
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A consequence of the theorem above is the following lemma.

Lemma 2.7. Let G be a connected graph with n ≥ 12 vertices and n + k edges, where

1 ≤ k ≤ 10. If δ(G) ≥ 2, then

R(G) >
√
n− 1 +

2(k + 1)

n
√
n− 1

.

Proof. Recall that n ≥ 12 and e(G) = n+ k, where 1 ≤ k ≤ 10. By Theorem 2.6, we have

R(G) ≥ 2n− 4√
2n − 2

+
1

n− 1
.

When n ≥ 9, we can verify

2n − 4√
2n− 2

+
1

n− 1
>

√
n− 1 +

2(k + 1)

n
√
n− 1

easily.

Among all unicyclic graphs, the minimum value of R(G) is also known.

Theorem 2.8 (Gao and Lu [11]). Let G be a unicyclic graph on n vertices. Then R(G)

attains its minimum value when G is S∗
n, where S∗

n is obtained from the star with n vertices

by adding an edge between leaves.

The following theorem allows us to compare the Randić index of a graph and that of

a related graph obtained by deleting a minimum degree vertex.

Theorem 2.9 (Hansen and Vukicević [14]). Let G be a graph with the Randić index R,

minimum degree δ and maximum degree ∆. If v is a vertex of G with degree δ, then

R(G)−R(G− v) ≥ 1

2

√

δ

∆
.

The following lemma will be useful for us later.

Lemma 2.10. Let G be a connected graph with n vertices and e(G) = n + k, where

1 ≤ k ≤ 10. Let v be a vertex with d(v) = 1. If

R(G− v) >
√
n− 2 +

2(k + 1)

(n− 1)
√
n− 2

,

then we have

R(G) >
√
n− 1 +

2(k + 1)

n
√
n− 1

.

Proof. Let v0 be a vertex with d(v0) = ∆. Recall v is a vertex with d(v) = 1 by the

assumption. Let H be the subgraph induced by V (G)− {v0, v} and

L :=
∑

{x,y}∈E(H)

1
√

dG(x)dG(y)
.

If ∆ = n− 1, then observe that

R(G− v) =

(

R(G)− 1√
n− 1

− L

)

·
√
n− 1√
n− 2

+ L.
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Thus,

R(G) = L+
1√
n− 1

+

√
n− 2√
n− 1

(R(G− v)− L)

=

√
n− 2√
n− 1

R(G− v) +
1√
n− 1

+

(

1−
√
n− 2√
n− 1

)

L

>

√
n− 2√
n− 1

(√
n− 2 +

2(k + 1)

(n− 1)
√
n− 2

)

+
1√
n− 1

=
√
n− 1 +

2(k + 1)

(n− 1)
√
n− 1

>
√
n− 1 +

2(k + 1)

n
√
n− 1

.

If ∆ ≤ n− 2, by Theorem 2.9, we have R(G) ≥ R(G− v) + 1
2

√

1
n−2 . Thus

R(G) ≥
√
n− 2 +

2(k + 1)

(n− 1)
√
n− 2

+
1

2

√

1

n− 2
>

√
n− 1 +

2(k + 1)

n
√
n− 1

.

The proof is complete.

We need the following proposition involving the vertex deletion.

Proposition 2.11. For a connected graph G, assume (v1, . . . , vs) is an ordered set of

vertices. Let G0 = G and Gi = Gi−1 − vi for 1 ≤ i ≤ s. If vi has degree one in Gi−1 for

each 1 ≤ i ≤ s, then we have

R(G) ≥
s−1
∑

i=0

1

2
√

∆(Gi)
+R(Gs).

Proof. Since we assume for each 1 ≤ i ≤ s, the vertex vi has degree one in Gi−1. If we

delete the vertex vi from Gi−1, then we have R(Gi−1) ≥ 1

2
√

∆(Gi−1)
+ R(Gi) by Theorem

2.9. Since this observation holds for all 1 ≤ i ≤ s, the proposition follows.

Lastly, we need the following theorem.

Theorem 2.12 (Favaron, Mahéo, and Saclé [9]). For any connected graph G with m

edges. If R is the Randić index and λ1 is the largest eigenvalue of its adjacency matrix,

then λ1 ≥ m
R .

3 Proof of the Main Theorem

The following lemma is the key ingredient in the course of proving the main theorem.

Lemma 3.1. Let G be a connected graph with n vertices and m edges. If n ≥ 15 and

n+ 8 ≤ m ≤ min{2n3/2,
(n
2

)

}, then

q(G)

R(G)
<

n√
n− 1

.
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Proof. We note 2n3/2 >
(n
2

)

when 15 ≤ n ≤ 17 and 2n3/2 <
(n
2

)

when n ≥ 18. We define

a function

f(m) =
m

√

2m− (n− 1)
−

√
n− 1− 2m− 2(n − 1)

n
√
n− 1

.

With the help of computer, one can check f(m) > 0 for 15 ≤ n ≤ 17 and n+8 ≤ m ≤
(

n
2

)

.

We assume n ≥ 18 for the rest of the proof and min{2n3/2,
(

n
2

)

} = 2n3/2 in this case. We

also consider a relevant function

g(m) = mn
√
n− 1− n(n− 1)

√

2m− (n− 1)− (2m− 2(n − 1))
√

2m− (n− 1).

To show f(m) > 0, it suffices to show g(m) > 0 for n + 8 ≤ m ≤ 2n3/2 and n ≥ 18 as

2m − (n − 1) > 0. Let A = mn
√
n− 1 and B = n(n − 1)

√

2m− (n− 1) + (2m − 2(n −
1))

√

2m− (n− 1) = (2m+ n2 − 3n+ 2)
√

2m− (n− 1). We define

h(m) = A2 −B2 = m2n2(n − 1) − (2m+ n2 − 3n+ 2)2(2m− (n− 1)).

It is equivalent to prove h(m) > 0 for n + 8 ≤ m ≤ 2n3/2 and n ≥ 18. We first show

h(n + 8) > 0 for n ≥ 18. We note

h(n+ 8) = 45n3 − 657n2 + 288n − 5508.

We can show 45n3 − 657n2 + 288n − 5508 > 0 when n = 18 directly. By taking the

derivative, we can prove that 45n3−657n2+288n−5508 is increasing when n ≥ 18, which

completes the proof of h(n+ 8) > 0 for all n ≥ 18.

We next show for fixed n ≥ 18, the function h(m) is increasing when n+8 ≤ m ≤ 2n3/2.

The derivative of h(m) satisfies

h′(m) = 2mn2(n− 1)− 4(n2 + 2m− 3n+ 2)(2m − n+ 1)− 2(n2 + 2m− 3n + 2)2.

It is enough to show h′(m) > 0 for n + 8 ≤ m ≤ 2n3/2 and n ≥ 18. Let l(m) = h′(m).

Taking derivative, we have

l′(m) = 2n3 − 18n2 − 48m+ 56n− 40.

Also, the second derivative l′′(m) = −48. Therefore, the function l(m) is concave down.

If we can show l(n + 8) > 0 and l(2n3/2) > 0 for n ≥ 18, then we establish l(m) > 0 for

all n+8 ≤ m ≤ 2n3/2. We notice l(n+8) = 14n3 − 154n2 +68n− 1872 > 0 when n ≥ 18.

We get

l(2n3/2) = 4n9/2 − 2n4 − 36n7/2 − 80n3 + 112n5/2 − 42n2 − 80n3/2 + 44n− 16.

One can confirm l(2n3/2) > 0 for n = 18 and l(2n3/2) is increasing when n ≥ 18 easily

by taking derivative. We already proved l(m) = h′(m) > 0 when n + 8 ≤ m ≤ 2n3/2 and

n ≥ 18. Combining with h(n + 8) > 0, we get h(m) > 0 when n + 8 ≤ m ≤ 2n3/2 and

n ≥ 18. Thus, f(m) > 0 for n ≥ 15 and n+ 8 ≤ m ≤ min{2n3/2,
(

n
2

)

}, that is,

m
√

2m− (n− 1)
>

√
n− 1− 2m− 2(n − 1)

n
√
n− 1

.

By Theorems 2.12 and 2.1, we have

R(G) ≥ m

λ1
≥ m

√

2m− (n− 1)
>

√
n− 1 +

2m− 2(n − 1)

n
√
n− 1

.
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By Lemma 2.4, we get
q(G)

R(G)
<

n√
n− 1

.

Similar to the lemma above, we can prove the following one.

Lemma 3.2. Let G be a connected graph with n vertices and m edges. If n = 13 and

24 ≤ m ≤ 78 =
(13
2

)

, or n = 14 and 23 ≤ m ≤ 91 =
(14
2

)

, then

q(G)

R(G)
<

n√
n− 1

.

We can show f(m) > 0 using computer very easily, which is sufficient to prove the

lemma by noticing Theorems 2.12, 2.1, and 2.4.

If a graph is relatively dense, then we can show the desired upper bound for q(G)
R(G) easily

by the following lemma.

Lemma 3.3. Let G be a connected graph with n vertices and m edges. If m ≥ 2n3/2, then

q(G)

R(G)
<

n√
n− 1

.

Proof. If m ≥ 2n3/2, then by the definition of R(G), we have

R(G) =
∑

xy∈E(G)

1
√

d(x)d(y)
≥ m

n− 1
≥ 2n3/2

n− 1
. (3)

Recall the well-known fact q(G) ≤ 2∆ ≤ 2(n − 1). Thus, we have

q(G)

R(G)
≤ (n− 1)2

n3/2
<

n√
n− 1

.

In the case of graphs with small maximum degree, the following lemma will prove the

main theorem.

Lemma 3.4. Let G be a connected graph with n vertices. If ∆(G) < n/2, then we have

q(G)

R(G)
<

n√
n− 1

.

Proof. We note q(G) ≤ 2∆ < n and R(G) ≥
√
n− 1 by Theorem 2.5. We get q(G)

R(G) <
n√
n−1

.

With strong assumptions on the maximum degree and the number of edges of a graph,

we are able to establish the desired upper bound on q(G)
R(G) .

Lemma 3.5. Let G be a connected graph with n ≥ 13 vertices. If either of the following

cases holds:

(1) n/2 ≤ ∆ ≤ n− 4 and e(G) = n+ k for 1 ≤ k ≤ 10;

(2) ∆ = n− 3 and e(G) = n+ k for 1 ≤ k ≤ 7;

(3) ∆ = n− 2 and e(G) = n+ k for 1 ≤ k ≤ 4,

then
q(G)

R(G)
<

n√
n− 1

.

7



Proof. We use Theorem 2.3 to show q(G) ≤ n. For any vertex v ∈ V (G), let Sv =

V (G) \ ({v} ∪N(v)). We shall show

t(v) := d(v) +m(v) ≤ n

for each v ∈ V (G). We note 2(n + k) =
∑

w∈V (G) d(w) = dv +
∑

w∈N(v) dw +
∑

w∈Sv
dw.

Therefore, we have

t(v) = d(v) +
2(n + k)− d(v) −∑

u∈Sv
d(u)

d(v)

≤ d(v) +
2(n + k)− d(v) − (n− 1− d(v))

d(v)

= d(v) +
n+ 2k + 1

d(v)
.

Consider the function f(x) = x + n+2k+1
x . We know f(x) is increasing when x ∈

(
√
n+ 2k + 1,∞) and decreasing when x ∈ (1,

√
n+ 2k + 1). Furthermore, for any vertex

v with degree at least 4, we have

t(v) ≤ max

{

∆+
n+ 2k + 1

∆
, 4 +

n+ 2k + 1

4

}

≤ max

{

∆+
n+ 2k + 1

∆
, n

}

.

Here we note 4 + n+2k+1
4 ≤ n when 1 ≤ k ≤ 10 and n ≥ 13. Suppose (1) holds. When

n ≥ 13 and k ≤ 10, we have

(n − 4) ≥ ∆ ≥ n/2 >
√
n+ 21 ≥

√
n+ 2k + 1.

Thus

∆ +
n+ 2k + 1

∆
≤ (n− 4) +

n+ 21

n− 4
< n

when n ≥ 13. If (2) holds, then we get

∆ +
n+ 2k + 1

∆
≤ (n− 3) +

n+ 15

n− 3
< n

when n ≥ 13. If (3) holds, then we obtain

∆ +
n+ 2k + 1

∆
≤ (n− 2) +

n+ 9

n− 2
≤ n

when n ≥ 13.

Now we need only to consider the vertices with degree 1, or 2, or 3. If d(v) = 1, then

t(v) = d(v) + m(v) ≤ 1 + ∆ ≤ n. If d(v) = 2, then t(v) ≤ 2 + ∆ ≤ 2 + (n − 2) = n. If

d(v) = 3 and ∆ ≤ n − 3, then t(v) ≤ 3 + (n − 3) = n. We are left with d(v) = 3 and

∆ = n− 2, In this case, k ≤ 4. Therefore, t(v) ≤ 3 + n+9
3 ≤ n when n ≥ 13.

By Theorem 2.5, we have R(G) >
√
n− 1 if G is connected and e(G) ≥ n. Thus,

q(G)
R(G) <

n√
n−1

.

We need the following lemma for the case of n = 12.

Lemma 3.6. Let G be a connected graph with 12 vertices. If either of the following cases

holds:

(1) 6 ≤ ∆(G) ≤ 8 and e(G) = 12 + k for 1 ≤ k ≤ 8;

8



(2) ∆(G) = 9 and e(G) = 12 + k for 1 ≤ k ≤ 6;

(3) ∆(G) = 10 and e(G) = 12 + k for 1 ≤ k ≤ 3,

then
q(G)

R(G)
<

12√
11

.

The proof of the lemma is exactly the same as the one for proving Lemma 3.5 and it

is omitted here.

The next three lemmas will deal with those graphs with large maximum degree and

small number of edges.

Lemma 3.7. Let G be a connected graph with 13 vertices. If either of the following holds:

1. ∆(G) = 12 and e(G) = 13 + k for 1 ≤ k ≤ 10;

2. ∆(G) = 11 and e(G) = 13 + k for 5 ≤ k ≤ 10;

3. ∆(G) = 10, and e(G) = 13 + k for 8 ≤ k ≤ 10,

then we have

R(G) >
√
12 +

2(k + 1)

13
√
12

.

Proof. Since proofs of three cases are very similar, we will present the detailed proof of

Case 1 and sketch proofs of others. For each case, we will assume v0 is a vertex with the

maximum degree and NG(v0) = {v1, . . . , v∆}. If δ(G) ≥ 2, then Lemma 2.7 will complete

the proof. Thus, we assume G has at least one vertex with degree one in each case.

Case 1: ∆(G) = 12. We first consider the case of k = 1, i.e., e(G) = 14. Let H be the

subgraph induced by NG(v0). We have H is either a P3 together with 9 isolated vertices

or two disjoint edges together with 8 isolated vertices. For the former case, we have

R(G) =
9√
12

+
2√
2 · 12

+
1√
3 · 12

+
2√
2 · 3

>
√
12 +

4

13
√
12

.

For the latter case, we have

R(G) =
8√
12

+
4√
2 · 12

+
2√
2 · 2

>
√
12 +

4

13
√
12

.

Next assume 2 ≤ k ≤ 10. Recall that d(v0) = 12 and NG(v0) = {v1, . . . , v12}. Let

{v1, v2, . . . , vs} be the set of vertices with degree one in G.

When k = 10, we claim 1 ≤ s ≤ 6. Otherwise, s ≥ 7. Let G′ be the subgraph induced

by {vs+1, . . . , v12}. We have e(G′) = e(G)− d(v0) = 11. Since s ≥ 7, we have |V (G′)| ≤ 5.

However, G′ can have at most
(

5
2

)

= 10 edges, which is a contradiction. Repeating the

argument above, we can show s ≤ 7 when 6 ≤ k ≤ 9. Similarly, we have s ≤ 8 when

3 ≤ k ≤ 5. In the case of k = 2, we have s ≤ 9.

We next apply Proposition 2.11 to (v1, . . . , vs). We observe that dGi
(vi+1) = 1 and

∆(Gi) = 12 − i for 0 ≤ i ≤ s − 1. Moreover, |V (Gs)| = 13 − s and δ(Gs) ≥ 2. Recalling

Theorem 2.6, we have

R(G) ≥
s−1
∑

i=0

1

2
√
12− i

+
√

2(12 − s) +
1

12− s
−
√

2

12− s
. (4)
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Since we have proved an upper bound on s depending on the value of k, the inequality

s−1
∑

i=0

1

2
√
12− i

+
√

2(12 − s) +
1

12− s
−

√

2

12− s
>

√
12 +

2(k + 1)

13
√
12

(5)

can be verified using the computer for each k.

Case 2: ∆(G) = 11. Let {v12} = V (G)\({v0}∪N(v0)). We have two subcases depending

on the degree of v12.

Subcase 2.1: d(v12) = 1. Let G1 = G − v12. If {v1, . . . , vt} is the set of vertices of

degree one in G1, then we can prove an upper bound on s = t+1 depending on the value

of k by the same argument as Case 1. We apply Proposition 2.11 to (v12, v1, . . . , vs−1).

We observe ∆(Gi) ≤ 12− i for 0 ≤ i ≤ s− 1, |V (Gs)| = 13− s, and δ(Gs) ≥ 2. Therefore,

Inequalities (4) and (5) still hold for this case and we can prove the desired lower bound

for R(G) similarly.

Subcase 2.2: d(v12) ≥ 2. Let {v1, . . . , vs} be the set of vertices with degree one in G.

Repeating the argument for Case 1, we can get the asserted lower bound on R(G). Here,

we note ∆(Gi) ≤ 12 − i for 0 ≤ i ≤ s− 1 still holds when we apply Proposition 2.11. We

may have a smaller upper bound on s than the one in Case 1 for the same value of k,

which does not affect the result.

Case 3: ∆(G) = 10. Let {v11, v12} = V (G) \ ({v0} ∪N(v0)). We have two subcases.

Subcase 3.1: d(v11), d(v12) ≥ 2. Let {v1, . . . , vs} be the set of vertices with degree

one in G. We can repeat the argument in Subcase 2.2 to show the desired lower bound

for R(G).

Subcase 3.2: Either d(v11) = 1 or d(v12) = 1. We assume d(v11) = 1. Let G1 =

G− v11.

If dG1
(v12) = 1, then we define G2 = G1 − v12. Let {v1, . . . , vt} be the set of vertices

with degree one in G2. We can use the argument in Case 1 to show an upper bound on

s + 2 depending on the value of k. We apply Proposition 2.11 with (v11, v12, v1, . . . , vt).

We still have ∆(Gi) ≤ 12− i for 0 ≤ i ≤ s− 1. Therefore, Inequalities (4) and (5) are true

and the claimed lower bound for R(G) follows.

If dG1
(v12) ≥ 2, then we can use the argument for Subcase 2.1 to complete the proof

of this lemma.

We will need the following lemma for n = 12.

Lemma 3.8. Let G be a connected graph with 12 vertices. If either of the following holds:

1. ∆(G) = 11 and e(G) = 12 + k for 1 ≤ k ≤ 8;

2. ∆(G) = 10 and e(G) = 12 + k for 4 ≤ k ≤ 8;

3. ∆(G) = 9, and e(G) = 12 + k for 7 ≤ k ≤ 8,

then we have

R(G) >
√
11 +

2(k + 1)

12
√
11

.

We skip the proof here because it uses the same argument as the proof of Lemma 3.7.

The next lemma is in the same sprit of Lemma 3.7.
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Lemma 3.9. Let G be a connected graph with n ≥ 13 vertices. If either of the following

holds:

1. ∆(G) = n− 1 and e(G) = n+ k for 1 ≤ k ≤ 10;

2. ∆(G) = n− 2 and e(G) = n+ k for 5 ≤ k ≤ 10;

3. ∆(G) = n− 3, and e(G) = n+ k for 8 ≤ k ≤ 10,

then we have

R(G) >
√
n− 1 +

2(k + 1)

n
√
n− 1

.

Proof. We prove the lemma by induction on n. The base case n = 13 is given by Lemma

3.7. We assume the lemma holds for |V (G)| = n. For the inductive step where |V (G)| =
n+ 1 , if δ(G) ≥ 2, then the lemma follows from Theorem 2.7. Thus we assume G has at

least one vertex with degree one. We assume further v0 is a vertex with maximum degree.

We have three cases.

Case 1: ∆(G) = |V (G)| − 1 = n. Let v1 ∈ NG(v0) be a vertex with degree one. If

we define G′ = G − v1, then we have |V (G′)| = n and ∆(G′) = |V (G)′| − 1. We have

R(G′) >
√
n− 1 + 2(k+1)

n
√
n−1

by the inductive hypothesis. Lemma 2.10 completes the proof

of this case.

Case 2: ∆(G) = |V (G)|−2 = n−1. Assume {vn} = V (G)\ ({v0}∪N(v0)). If d(vn) = 1,

then we let G′ = G − vn. We get V (G′) = n and ∆(G′) = |V (G′)| − 1. If d(vn) ≥ 2,

then let v1 ∈ N(v0) such that d(v1) = 1. Set G′ = G − v1. We have V (G′) = n and

∆(G′) ≥ |V (G′)| − 2. In either case, we have R(G′) >
√
n− 1 + 2(k+1)

n
√
n−1

by the inductive

hypothesis. The inductive step then follows from Lemma 2.10.

Case 3: ∆(G) = |V (G)| − 3 = n− 2. Assume {vn−1, vn} = V (G) \ ({v0} ∪N(v0)). If one

of vn−1 and vn has degree one, say vn, then we let G′ = G − vn. We observe V (G′) = n

and ∆(G′) = |V (G′)| − 2. If d(vn−1), d(vn) ≥ 2, then let v1 ∈ N(v0) such that d(v1) = 1.

Set G′ = G − v1. We have V (G′) = n and ∆(G′) ≥ |V (G′)| − 3. In either case, the

inductive hypothesis gives R(G′) >
√
n− 1 + 2(k+1)

n
√
n−1

. We can prove the inductive step by

using Lemma 2.10.

The combination of Lemma 3.9 and Lemma 2.4 yields the next lemma.

Lemma 3.10. Let G be a connected graph with n ≥ 13 vertices. If either of the following

holds:

1. ∆(G) = n− 1 and e(G) = n+ k for 1 ≤ k ≤ 10;

2. ∆(G) = n− 2 and e(G) = n+ k for 5 ≤ k ≤ 10;

3. ∆(G) = n− 3, and e(G) = n+ k for 8 ≤ k ≤ 10,

then we have
q(G)

R(G)
<

n√
n− 1

.

We are now ready to prove the main theorem.

Proof of Theorem 1.2. If e(G) = n − 1, then G is a tree. We have q(G) = n and

R(G) ≥
√
n− 1 by Theorem 2.5. Thus, q(G)

R(G) ≤ n√
n−1

. If e(G) = n, then Theorem 2.8

11



implies R(G) ≥ R(S∗
n) =

n−3√
n−1

+
√

2
n−1 +

1
2 >

√
n− 1 + 2

n
√
n−1

when n ≥ 12. By Lemma

2.4, we have q(G)
R(G) < n√

n−1
. For n = 12, we note 12√

11
< 11

3 . For the rest of the proof, we

assume e(G) = n+ k with k ≥ 1. We first prove the second part of the theorem, namely,

n ≥ 13. We shall consider the following three cases depending on the range of e(G).

Case 1: e(G) ≥ 2n3/2. We get q(G)
R(G) <

n√
n−1

by Lemma 3.3.

Case 2: n+ 11 ≤ e(G) ≤ min{2n3/2,
(

n
2

)

}. In this case, q(G)
R(G) <

n√
n−1

is given by Lemma

3.2 and Lemma 3.1.

Case 3: n+ 1 ≤ e(G) ≤ n+ 10. We consider the following subcases depending on ∆(G).

We claim q(G)
R(G) <

n√
n−1

for each subcase.

Subcase 3.1: ∆(G) = n− 1. Part 1 of Lemma 3.10 proves the claim.

Subcase 3.2: ∆(G) = n − 2. The case of n + 1 ≤ e(G) ≤ n + 4 is proved by Part 3

of Lemma 3.5 and the case of n+ 5 ≤ e(G) ≤ n+ 10 is proved by Part 2 of Lemma 3.10.

Subcase 3.3: ∆(G) = n− 3. Part 2 of Lemma 3.5 proves the case of n+ 1 ≤ e(G) ≤
n+ 7 and Part 3 of Lemma 3.10 proves the case of n+ 8 ≤ e(G) ≤ n+ 10.

Subcase 3.4: n/2 ≤ ∆(G) ≤ n− 4. Part 1 of Lemma 3.5 implies the claim.

Subcase 3.5: ∆(G) < n/2. Lemma 3.4 gives us the claim.

From the argument for e(G) ≥ n and n ≥ 13, we get q(G)
R(G) < n√

n−1
when e(G) ≥ n.

Therefore, q(G)
R(G) = n√

n−1
can only occur for e(G) = n − 1. By Theorem 2.5, we get the

equality holds if and only if G is a star when n ≥ 13.

We are left with the case where n = 12. We shall use the function g(m) from the proof

of Theorem 10 in [7]. Specialized to n = 12, we get

g(m) =

(

2m
11 + 10

)√
2m− 11

m
.

Let m = e(G). With the help of computer, we get g(m) < 11
3 for 21 ≤ m ≤

(

12
2

)

− 1 = 65

and g(66) = 11
3 . Equivalently, q(G)

R(G) < 11
3 when 21 ≤ m ≤ 65. We need only to prove the

case of m = 12 + k for 1 ≤ k ≤ 8. Recall Lemmas 2.4, 3.4, 3.6, and 3.8. Repeating the

case analysis above, we can show q(G)
R(G) < 12√

11
< 11

3 when 13 ≤ e(G) ≤ 20. We already

have proved q(G)
R(G) < 11

3 when e(G) ∈ {n − 1, n}. Therefore, q(G)
R(G) = 11

3 may hold only for

e(G) = 66, which turns out to be true because G = K12.

We have completed the proof of the main theorem.
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[4] B. Bollobás, P. Erdős, and A. Sarkar, Extremal graphs for weights, Discrete Math.,

200 (1999), 5–19.

[5] J. A. Bondy and U. S. R Murty, Graph Theory, Graduate Texts in Mathematics, 244.

Springer, New York, 2008. xii+651 pp. ISBN: 978-1-84628-969-9.

[6] C. Delorme, O. Favaron, and D. Rautenbach, On the Randić index, Discrete Math.,
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