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Abstract

The famous Erdős-Gallai Theorem on the Turán number of paths states that every graph with

n vertices and m edges contains a path with at least 2m
n

edges. In this note, we first establish a

simple but novel extension of the Erdős-Gallai Theorem by proving that every graph G contains a

path with at least
(s+1)Ns+1(G)

Ns(G)
+ s− 1 edges, where Nj(G) denotes the number of j-cliques in G for

1 ≤ j ≤ ω(G). We also construct a family of graphs which shows our extension improves the estimate

given by Erdős-Gallai Theorem. Among applications, we show, for example, that the main results of

[20], which are on the maximum possible number of s-cliques in an n-vertex graph without a path

with l vertices (and without cycles of length at least c), can be easily deduced from this extension.

Indeed, to prove these results, Luo [20] generalized a classical theorem of Kopylov and established a

tight upper bound on the number of s-cliques in an n-vertex 2-connected graph with circumference

less than c. We prove a similar result for an n-vertex 2-connected graph with circumference less than

c and large minimum degree. We conclude this paper with an application of our results to a problem

from spectral extremal graph theory on consecutive lengths of cycles in graphs.
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1 The Erdős-Gallai Theorem and an extension

Let H be a family of graphs. The Turán number ex(n,H) is the largest possible number of edges in an

n-vertex graph G which contains no member of H as a subgraph. If H = {H}, then we write ex(n,H)

for ex(n,H). We use Pl to denote a path with l vertices. In this case, we say Pl is of length l − 1.

Erdős and Gallai [9] proved the following celebrated theorems on Turán numbers of cycles and paths.

Theorem 1.1 (Erdős and Gallai [9]). ex(n, C≥l) ≤
(l−1)(n−1)

2 , where l ≥ 3 and C≥l is the set of all cycles

of length at least l.

Theorem 1.2 (Erdős and Gallai [9]). ex(n, Pl) ≤
(l−2)n

2 , where l ≥ 2.

For the tightness of Theorem 1.1, one can check the graph consisting of n−1
l−2 cliques of size l−1 with a

common vertex, where n−1 is divisible by l−2. The tightness of Theorem 1.2 is shown by the graph with
n

l−1 disjoint Kl−1, where n is divisible by l− 1. For more improvements and extensions of Erdős-Gallai’s

theorems, see [4, 22, 19, 13, 23, 11, 5, 6]. We refer the reader to an excellent survey on related topics by

Füredi and Simonovits [14].

For a graph G, let ω(G) be the clique number of G, i.e., the size of a largest clique in G. For

1 ≤ j ≤ ω(G), we use Nj(G) to denote the number of copies of Kj in G. Recall Theorem 1.2 can be

rephrased as each graph contains a path of length at least 2N2

N1
. The main purpose of this note is to prove

the following extension of Theorem 1.2 and present several applications of this result. Since the proof is

very short, we prove it right after stating it.

Theorem 1.3. Let G be a graph. For each positive integer s with 1 ≤ s ≤ ω(G), there is a path of length

at least
(s+1)Ns+1(G)

Ns(G) + s− 1 in G.
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Proof. We prove the theorem by induction on s. The case of s = 1 is Theorem 1.2. Suppose it is true

for s = k − 1, where s ≤ ω(G) − 1. For each vertex x ∈ V (G), let Gx be the subgraph induced by

NG(x), and lx be the length of a longest path in Gx. By induction hypothesis, for each vertex x ∈ V (G)

with Nk−1(Gx) 6= 0, lx ≥ kNk(Gx)
Nk−1(Gx)

+ k − 2. Equivalently, (lx − k + 2)Nk−1(Gx) ≥ kNk(Gx). Let

lmax = max{lx : x ∈ V (G)}. Then

(lmax − k + 2)Nk−1(Gx) ≥ kNk(Gx) (1)

holds for each x. For i ∈ {k − 1, k}, let Vi := {x ∈ V (G) : Ni(Gx) 6= 0}. Summing inequality (1) over all

x ∈ Vk−1, we get

(lmax − k + 2)
∑

x∈Vk−1

Nk−1(Gx) ≥ k
∑

x∈Vk−1

Nk(Gx).

Note that
∑

x∈Vk−1
Nk−1(Gx) = kNk(G) and

∑

x∈Vk
Nk(Gx) = (k + 1)Nk+1(G). It is easy to observe

Vk ⊆ Vk−1. By definition, Nk(Gy) = 0 for each y ∈ Vk−1\Vk. Thus
∑

x∈Vk
Nk(Gx) =

∑

x∈Vk−1
Nk(Gx).

We get

kNk(G)(lmax − k + 2) ≥ k
∑

x∈Vk−1

Nk(Gx) = k
∑

x∈Vk

Nk(Gx) = k(k + 1)Nk+1(G).

So lmax ≥
(k+1)Nk+1(G)

Nk(G) +k− 2. This implies that there exists a vertex v such that Gv contains a path Pv

of length at least (k+1)Nk+1(G)
Nk(G) + k − 2. Therefore, there is a path of length at least (k+1)Nk+1(G)

Nk(G) + k − 1

in G. The proof is complete.

The following family of graphs shows that our extension improves the estimate given by Theorem 1.2.

Let G be an n-vertex graph which consists of a Kn−2 and two pendant edges sharing an endpoint from

the Kn−2. Theorem 1.2 implies that G contains a path of length at least 2N2(G)
N1(G) = n − 5 + 10

n ; while

Theorem 1.3 tells us that G contains a path of length at least (n−2)Nn−2(G)
Nn−3(G) + n − 4 = n − 3, where we

choose s = n− 3.

For two graphs G and H , we write G∨H for their join which satisfies V (G∨H) = V (G)∪ V (H) and

E(G ∨ H) = E(G) ∪ E(H) ∪ {xy : x ∈ V (G), y ∈ V (H)}. The proof of Theorem 1.3 implicitly implies

the following result.

Theorem 1.4. Let k be an integer with ω(G) ≥ k ≥ 2. If G is a graph with Nk(G) 6= 0, then G contains

a subgraph Pl ∨K1, where l ≥
(k+1)Nk+1(G)

Nk(G) + k− 1. In particular, G contains cycles of lengths from 3 to
⌈

(k+1)Nk+1(G)
Nk(G)

⌉

+ k.

2 Short proofs of two theorems of Luo

Before we present applications of Theorems 1.3 and 1.4 to the generalized Turán number, we recall a few

definitions. Let T be a graph and H be a family of graphs. The generalized Turán number ex(n, T,H)

is the maximum possible number of copies of T in an n-vertex graph which is H-free for each H ∈ H.

When H = {H}, we write ex(n, T,H) instead of ex(n, T, {H}). If T = K2, then ex(n,K2, H) = ex(n,H)

is the classical Turán number of H .

The generalized Turán number has received a lot of attention recently. There are several notable and

nice papers concerning the generalized Turán number ex(n, T,H) (see [8, 3, 15, 14, 1, 20, 10]). Erdős [8]

first determined ex(n,Kt,Kr) for all t < r. Bollobás and Győri [3] determined the order of magnitude

of ex(n,C3, C5). Their estimate was improved by Alon and Shikhelman [1] and recently by Ergemlidze

et al. [10]. Alon and Shikhelman obtained a number of results on ex(n, T,H) for different T and H and

posed several open problems in [1].

Luo [20] recently proved upper bounds for ex(n,Ks, C≥l) and ex(n,Ks, Pl) which are generalizations

of Theorem 1.1 and Theorem 1.2.

Theorem 2.1 (Luo [20]). ex(n,Ks, C≥l) ≤
n−1
l−2

(

l−1
s

)

, where l ≥ 3 and s ≥ 2.

Theorem 2.2 (Luo [20]). ex(n,Ks, Pl) ≤
n

l−1

(

l−1
s

)

, where l ≥ 2 and s ≥ 2.
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Luo’s result turned out to be useful for investigating Turán-type problems in hypergraphs. For

example, Győri, Methuku, Salia, Tompkins, and Vizer [16] applied Theorem 2.1 to study the maximum

number of hyperedges in a connected r-uniform n-vertex hypergraph without a Berge path of length k.

We next give very short proofs of Theorems 2.1 and 2.2 by applying Theorems 1.4 and 1.3 respectively.

A short proof of Theorem 2.1. Let c be the length of a longest cycle in G. By Theorem 1.4 and

the condition in Theorem 2.1, we have kNk(G)
Nk−1(G) + k − 1 ≤ c ≤ l − 1, where 3 ≤ k ≤ s. This implies

Nk(G) ≤ l−k
k Nk−1(G) holds for 3 ≤ k ≤ s. We apply the inequality recursively and get

Ns(G) ≤
(l − s)(l − s+ 1) · · · (l − 3)

s(s− 1) · · · 3
N2(G).

By Theorem 1.1, we have N2(G) ≤ (n−1)(l−1)
2 , and thus Ns(G) ≤ n−1

l−2

(

l−1
s

)

. This completes the proof. �

A short proof of Theorem 2.2. Since G is Pl-free, the length of a longest path P in G is at most l−2.

By Theorem 1.3, we have l − 2 ≥ kNk(G)
Nk−1(G) + k − 2 whenever 2 ≤ k ≤ s. It follows Nk(G) ≤ l−k

k Nk−1(G)

for 2 ≤ k ≤ s. Recursively applying this inequality, we get

Ns(G) ≤
(l − s)(l − s+ 1) · · · (l − 2)

s(s− 1) · · · 2
N1(G) =

n

l − 1

(

l − 1

s

)

.

This completes the proof. �

3 An extension of Luo’s theorem

In order to prove Theorems 2.1 and 2.2, Luo [20] extended some classical theorems due to Kopylov [18].

Let H(n, k, c) be a graph obtained from Kc−k by connecting each vertex of a set of n− (c− k) isolated

vertices to the same k vertices choosing from Kc−k. Let fs(n, k, c) be the number of Ks in H(n, k, c).

Namely, fs(n, k, c) =
(

c−k
s

)

+
(

k
s−1

)

(n− (c− k)). When s = 2, it equals the number of edges in H(n, k, c).

The circumference of a graph G is the length of a longest cycle in G. Improving Theorem 1.1, Kopylov

[18] proved the following.

Theorem 3.1 (Kopylov [18]). Let n ≥ c ≥ 5 and G be a 2-connected graph on n vertices with circum-

ference less than c. Then N2(G) ≤ max{f2(n, 2, c), f2(n, ⌊
c−1
2 ⌋, c)}.

Kopylov’s theorem was reproved by Fan, Lv, and Wang in [12] who indeed proved a slightly stronger

result with the aid of another result of Woodall [23]. In the same paper [23], Woodall posed a conjecture

which is a generalization of a previous result on nonhamiltonian graphs due to Erdős [7].

Conjecture 1 (Woodall [23]). 1 Let n ≥ c ≥ 5. If G is a 2-connected graph on n vertices with circum-

ference less than c and minimum degree δ(G) ≥ k, then N2(G) ≤ max{f2(n, k, c), f2(n, ⌊
c−1
2 ⌋, c)}.

One can easily find that Kopylov’s theorem confirmed Woodall’s conjecture for k = 2.

Generalizing Kopylov’s result, Luo [20] proved the following theorem.

Theorem 3.2 (Luo [20]). Let n ≥ c ≥ 5 and s ≥ 2. If G is a 2-connected graph on n vertices with

circumference less than c, then Ns(G) ≤ max{fs(n, 2, c), fs(n, ⌊
c−1
2 ⌋, c)}.

We present an extension of Theorem 3.2, which is in the spirit of Kopylov’s remark (see the footnote).

Theorem 3.3. Let n ≥ c ≥ 5 and s ≥ 2. If G is a 2-connected graph on n vertices with circumference

less than c and minimum degree δ(G) ≥ k ≥ 2, then Ns(G) ≤ max{fs(n, k, c), fs(n, ⌊
c−1
2 ⌋, c)}.

To prove Theorem 3.3, we need the following lemma whose proof is omitted in [18]. We would like

to mention that this generalizes Bondy’s lemma on longest cycles whose proof is implicit in the proof of

Lemma 1 in [4].

1It should be mentioned that, in the last part of the paper of Kopylov, he wrote a sentence as follows: “we remark that

a proof of Woodall’s conjecture can be obtained by a minor modification of the solution to Problem D.” (quoted from [18]).
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Lemma 1 (Kopylov [18]). Let G be a 2-connected n-vertex graph with a path P of m edges with endpoints

x and y. For v ∈ V (G), let dP (v) = |N(v) ∩ V (P )|. Then G contains a cycle of length at least

min{m+ 1, dP (x) + dP (y)}.

We also need a definition from Kopylov [18].

Definition 1 (α-disintegration of a graph, Kopylov [18]). Let G be a graph and α be a natural number.

Delete all vertices of degree at most α from G; for the resulting graph G′, we again delete all vertices of

degree at most α from G′. We keep running this process until we finally get a graph, denoted by H(G;α),

such that all vertices are of degree larger than α.

Our proof is very similar to Kopylov’s proof [18] of Theorem 3.1 and the proof of Theorem 3.2 in [20].

We only give the sketch and omit the details. We split the proof into five steps.

A sketch of the proof of Theorem 3.3. Let G be a counterexample such that G is edge maximal,

i.e., adding each nonedge creates a cycle of length at least c. Thus each pair of nonadjacent vertices is

connected by a path of length at least c− 1. Let t = ⌊ c−1
2 ⌋ and H = H(G; t).

Claim 1 ([20]). H is not empty.

Proof: Suppose not. For the first n− t vertices in the process of getting H(G; t), each of them has degree

at most t and then it is contained in at most (n − t)
(

t
s−1

)

copies of Ks. The number of copies of Ks in

the subgraph induced by the last t vertices is bounded from above by
(

t
s

)

. Thus we have the following

upper bound on Ns(G):

Ns(G) ≤ (n− t)

(

t

s− 1

)

+

(

t

s

)

≤ fs(n, t, c),

which is a contradiction.

Claim 2 ([18]). H is a clique.

The main differences come from Claims 3 and 4, whose proofs need the minimum degree condition

and a new function.

Claim 3. Let r = |V (H)|. Then k ≤ c− r ≤ t.

Proof: As H = H(G; t) is a clique, r ≥ t + 2. We first claim r ≤ c − k, where δ(G) ≥ k. Suppose

r ≥ c − k + 1. If x ∈ V (G) \ V (H), then x is not adjacent to at least one vertex in H . Otherwise,

x ∈ H . We pick x ∈ V (G) \ V (H) and y ∈ V (H) satisfying the following two conditions: (a) x and y

are not adjacent; and (b) a longest path in G from x to y contains the largest number of edges among

such nonadjacent pairs. Let P be a longest path in G from x to y. Clearly, |V (P )| ≥ c as G is edge

maximal. We next show NG(x) ⊆ V (P ). Suppose not. Let z ∈ NG(x) and z /∈ V (P ). If z and y are

not adjacent, then there is a longer path from z to y, a contradiction to the selection of x and y. If

z and y are adjacent, then there is a cycle of length at least c + 1, a contradiction to the assumption

of G. Similarly, we can show NH(y) ⊆ V (P ). By Lemma 1, there is a cycle with length at least

min{c, dP (x)+ dP (y)} ≥ min{c, k+ c− k} = c, a contradiction. Thus r ≤ c− k. Recall t+2 ≤ r ≤ c− k.

We get k ≤ c− r ≤ c− t− 2 ≤ t. This proves Claim 3.

Claim 4. Let H ′ = H(G; c− r). Then H 6= H ′.

Proof: Suppose H = H ′. We next show an upper bound on Ns(G). Firstly, the number of Ks contained

in V (H ′) = V (H) is at most
(

r
s

)

. Secondly, since each vertex from V (G)\V (H ′) has degree at most c−r,

the number of Ks containing a vertex from V (G) \ V (H ′) is upper bounded by (n− r)
(

c−r
s−1

)

. Therefore,

Ns(G) ≤ (n− r)

(

c− r

s− 1

)

+

(

r

s

)

= fs(n, c− r, c) ≤ max{fs(n, k, c), fs(n, t, c)},

as the function fs(n, x, c) is convex for x ∈ [k, t] and k ≤ c− r ≤ t. This is a contradiction. This proves

Claim 4.

Claim 5. G contains a cycle of length at least c.
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The proof of the claim above is the same as Kopylov’s proof and we skip it. The proof of Theorem

3.3 is complete. �

Similar to Theorem 3.3, we have the following result and skip the details of the proof.

Theorem 3.4. If G is an n-vertex connected graph containing no Pl and having minimum degree δ(G) ≥

k, where n ≥ l ≥ 4, then Ns(G) ≤ max{fs(n, k, l− 1), fs(n, ⌊
l
2⌋ − 1, l − 1)}.

4 Consecutive lengths of cycles

For a graph G, let µ(G) be the largest eigenvalue of the adjacency matrix. Nikiforov [21] proved the

following: If G is a graph of sufficiently large order n and the spectral radius µ(G) >
√

⌊n2/4⌋, then G

contains a cycle of length t for every t ≤ n/320. We slightly improve Nikiforov’s result as follows.

Theorem 4.1. Let G be a graph of sufficiently large order n with µ(G) >
√

⌊n2/4⌋. Then G contains a

cycle of length t for every t ≤ n/160.

Notice that Theorem 1.4 implies the following fact:

Fact 1. A graph G contains all cycles of length t ∈ [3, l], where l = ⌈ 3N3(G)
N2(G) ⌉+ 2.

A sketch of the proof of Theorem 4.1. Compared with the original proof in [21], the improvement

comes from the fact mentioned above. In [21], it is shown that for n sufficiently large, there exists an

induced subgraph H ⊂ G with |H | > n/2 satisfying one of the following conditions:

(i) µ(H) > (1/2 + 1/80)|H |;

(ii) µ(H) > |H |/2 and δ(H) > 2|H |/5.

For case (i), it is shown in [21] that N3(H) ≥ 1
960 |H |3. In this case, if e(H) = N2(H) > |H|2

4 , then a

theorem of Bollobás [2] implies there are cycles of lengths from 3 to |H|
2 in H . Thus there are cycles

of length t for each 3 ≤ t ≤ n
4 . We assume e(H) ≤ |H|2

4 . By Fact 1, H contains all cycles of length

l ∈ [3, 3|H|3/960
|H|2/4 ]. Since 3|H|3/960

|H|2/4 ≥ 1
160n, we proved the result for the case (i). The proof for case (ii)

follows from Nikiforov’s the original proof (see PP. 1497 in [21]).
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