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Abstract. Win [J. Graph Theory 6(1982), 489–492] conjectured that a graph G on n

vertices contains k disjoint perfect matchings, if the degree sum of any two nonadjacent

vertices is at least n+k−2, where n is even and n ≥ k+2. In this paper, we prove that

Win’s conjecture is true for k ≥ n/2, where n is sufficiently large. To show this result,

we prove a theorem on k-factor in a graph under some Ore-type condition. Our main

tools include Tutte’s k-factor theorem, the Karush-Kuhn-Tucker theorem on convex

optimization, and the solution to the longstanding 1-factor decomposition conjecture.

1. Introduction

To study the existence of a certain type of subgraphs in a graph is a common topic

in graph theory. Maybe the most well-known theorem is the one proved by Dirac [7] in

1952, which is stated as every graph on n vertices has a Hamilton cycle if every vertex of

the graph has degree at least n/2. Ore [15] extended Dirac’s theorem by considering the

degree sum of every pair of nonadjacent vertices in a graph. A graph G is said to be of

Ore-type-(k) if for every pair of nonadjacent vertices x, y, the degrees of x, y satisfy the

inequality d(x)+ d(y) ≥ |G|+ k. Ore [16] proved that a graph is Hamiltonian-connected

if it is of Ore-type-1. Graphs of Ore-type-k were studied by Roberts [17]. Since then,

plenty of research was conducted on different graph properties under Ore-type conditions

and the variants, such as k-linkedness [10, 13], an equitable coloring of a graph [12], k-

ordered Hamiltonicity [9], and etc. Our note mainly concerns on the existence of disjoint

perfect matchings in a graph under the Ore-type degree condition.

In 1982, Win [19] posed the following conjecture on disjoint perfect matchings in a

graph of Ore-type-(k − 2).

Conjecture 1.1 (Win [19]). Let n, k be two integers such that 1 ≤ k ≤ n− 2 and n be

even. Let G be a simple graph on n vertices. If G is of Ore-type-(k−2), then G contains

k disjoint perfect matchings.

For k = 1, Win’s conjecture is true by Ore’s theorem [15]. Win [19] further confirmed

the conjecture for k = 2, 3.
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On the other hand, the existence of perfect matchings in a graph is closely related to

the existence of Hamilton cycles in the same graph. It is an easy observation that every

Hamilton cycle in a graph corresponds to a pair of disjoint perfect matchings in the

graph, if the order of the graph is even. Egawa [8] proved that: Let k ≥ 2 be an integer

and G be a graph. If dG(x)+dG(y) ≥ |G| for all non-adjacent vertices x, y, δ(G) ≥ 2k+1,

and |G| ≥ 8(2k−2)2, then G has k-edge-disjoint Hamilton cycles. We say that a graph G

is a Fan 2k-type graph, if d(u, v) = 2 implies that max{d(u), d(v)} ≥ n/2+2k. Zhou [21]

conjectured that every 2k-connected Fan 2(k − 1)-type graph has k pairwise disjoint

Hamilton cycles, and also confirmed this conjecture for k = 1, 2. Later, the general case

k ≥ 3 was finally finished by Li [14]. One can easily obtain partial results on Win’s

conjecture from the results mentioned above.

However, to the best of our knowledge, Win’s conjecture is still wide open now. One

of our results concerns Win’s conjecture when k is large in compare with n.

Theorem 1.2. Win’s conjecture is true for sufficiently large even n, if k ≥ n/2.

In this paper, instead of proving Theorem 1.2 directly, we firstly prove our main result

which focuses on the existence of large k-factors.

Theorem 1.3. Let n and k be two integers such that n ≥ k + 1 ≥ n/2 + 1 and kn be

even. Let G be a graph on n vertices. If G is of Ore-type-(k − 2), then G contains a

k-factor.

With the help of Theorem 1.3, we will use the solution to 1-factor decomposition

conjecture to prove Theorem 1.2. Recall that the long-standing 1-factorization conjecture

states that every regular graph of sufficiently large degree has a 1-factorization. It was

first stated explicitly by Chetwynd and Hilton [4,5], and they also stated by Dirac, who

discussed it in the 1950s. Partial results were obtained by Chetwynd and Hilton [4, 5],

and Zhang and Zhu [20]. Recently, Csaba et al. [6] confirmed this conjecture for large

graphs. One of their main results in [6] is used for our proof of Theorem 1.2.

Theorem 1.4 (Csaba et al. [6]). Suppose that n is sufficiently large and even, and

D ≥ 2⌈n/4⌉ − 1. Then every D-regular graph G on n vertices has a decomposition into

perfect matchings.

The proof of our main theorem also uses a theorem of Katerinis and Woodall on k-

factor, and the Karush-Kuhn-Tucker theorem on convex optimization. We will introduce

all necessary terminology and additional results in the next section.

Now we give some necessary notation and terminology. Let G be a graph. We use

V (G) and E(G) to denote the vertex set and edge set of G, respectively, and denote by

|G| = |V (G)|. Let S, T be two disjoint subsets of V (G), EG(S, T ) be the set of edges

between S and T in G, and eG(S, T ) = |EG(S, T )|. When S consists of a single element,

say S = {v}, we use EG(v, T ) and eG(v, T ) instead of EG({v}, T ) and eG({v}, T ), re-

spectively. Let v ∈ V (G) and H be a subgraph of G. NG(v) is the set of neighbors of

v in G and dG(v) = |NG(v)|. Set NH(v) = NG(v) ∩ V (H) and dH(v) = |NH(v)|. When
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there is no danger of ambiguity, we use d(v) instead of dG(v) for short. Let S ⊂ V (G)

and let G − S denote the subgraph of G induced by V (G)\V (S). If S consists of only

one vertex, say S = {v}, we use G− v instead of G−{v}. For notation and terminology

not defined here, we refer the reader to Bondy and Murty [2].

The organization of our paper is as follows. In Section 2, we introduce necessary

preliminaries. In Section 3, we prove Theorems 1.2 and 1.3.

2. Some preliminaries

In this section, we first introduce some notation and terminology related to Tutte’s

k-factor theorem. For any pair of disjoint subsets S, T ⊂ V (G), a component C of

G− S − T is called a k-odd-component if

eG(V (C), T ) + k|V (C)| ≡ 1 (mod 2).

We usually use q(S, T ) to denote the number of components of G − S − T which are

k-odd components.

Tutte’s k-factor theorem is well known.

Theorem 2.1 (Tutte [18]). Let k be a positive integer. A graph G contains no k-factor

if and only if there exist disjoints subsets S, T ⊂ V (G), such that

η(S, T ) := k|S| − k|T |+
∑

x∈T

dG−S(x)− q(S, T ) ≤ −2.(2.1)

From Tutte’s theorem, Katerinis and Woodall [11] deduced the following. It shall play

an important role in our proof.

Theorem 2.2 (Katerinis and Woodall [11]). Let k ≥ 1 be an integer. If a graph G

contains no k-factor, then there exist two disjoint subsets S, T ⊂ V (G) such that there

holds (2.1), and

eG(v, T ) ≤ k − 1, and(2.2)

dG−S(v) ≥ k + 1 for all v ∈ U,(2.3)

where U denotes the union of all k-odd components of G− S − T .

Our proof also uses tools from optimization. An optimization problem of the form

(2.4)

{

min f(x),

s.t. gi(x) ≤ 0, for i = 1, · · · ,m

is called a convex optimization problem if the functions f, g1, . . . , gm : Rn → R are all

convex functions. We need the Karush-Kuhn-Tucker theorem on convex optimization.

The following one is a direct corollory of Theorem 4.3.8 in [1, pp.207].
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Theorem 2.3 (Karush-Kuhn-Tucker sufficient condition [1]). Let X be a nonempty open

set in Rn, and let f : Rn −→ R, gi : R
n −→ R for i = 1, · · · ,m. Consider Problem P:

(2.5)







min f(x),

s.t. gi(x) ≤ 0, for i = 1, · · · ,m

x ∈ X,

Let x be a local optimal solution. There exist scalars ui ≥ 0 for 1 ≤ i ≤ m such that

∇f(x) +
∑

i∈I

ui∇gi(x) = 0.(2.6)

The point satisfying (2.6) is called a KKT point. For convex optimal problems, the

KKT conditions are also sufficient for optimality (see [1, pp.773].).

Theorem 2.4. For the convex optimal problem (2.4), every KKT point is a global op-

timal solution.

The next result is a well-known result on convex function.

Theorem 2.5. Let f(x) be a function on R, where R is a convex set. Suppose that f

is twice differentiable and f ′′ is continuous. Then f(x) is a convex function if and only

if its Hessian matrix is positive semi-definite on R.

For more information and details, we refer the reader to Boyd and Vandenberghe [3].

3. Proofs of Theorems 1.2 and 1.3.

In this section, we will present the proofs of Theorems 1.2 and 1.3.

Proof of Theorem 1.3. We prove Theorem 1.3 by contradiction. Suppose that G

contains no k-factors. By Theorem 2.2, we can choose disjoint S, T ⊂ V (G) satisfying

(2.1), (2.2), and (2.3). Define s := |S| and t := |T |. Let C1, . . . , Cq be all k-odd

components of G − S − T . So, for every vertex v ∈ V (Ci), dG−S(v) ≥ k + 1 and

eG(v, T ) ≤ k − 1, and this implies dCi
(v) ≥ 2. Thus, |Ci| ≥ 3.

Claim 1. G is k-connected, and hence, the minimum degree δ(G) ≥ k.

Proof. Let W be a cut-set of G and let C ′

1
, C ′

2
be two components of G − W . For

x ∈ V (C ′

1) and y ∈ V (C ′

2), one can see that xy /∈ E(G), and thus

n+ k − 2 ≤ d(x) + d(y) ≤ |C ′

1|+ |C ′

2| − 2 + 2|W |.

Notice that n ≥ |C ′

1|+ |C ′

2|+ |W |. Hence, |W | ≥ k, and moreover, δ(G) ≥ k. �

Now we show that T 6= ∅. Otherwise, by (2.1) and Claim 1, we have q(S, ∅) ≥ ks+2 ≥

k2 + 2. Thus, n ≥ |U |+ s+ t ≥ 3(k2 + 2) + k ≥ 3

4
n2 + 1

2
n+ 6, which is impossible.

Set h1 := min{dG−S(x) : x ∈ T}. Let u1 ∈ T such that dG−S(u1) = h1. Set

NT [u1] := (N(u1) ∩ T ) ∪ {u1}. For any vertex x ∈ V (G), let dT (x) = |NG(x) ∩ T |. If

T−NT [u1] 6= ∅, let h2 := min{dG−S(x) : x ∈ T−NT [u1]} and choose u2 ∈ T−NT [u1] such

that dG−S(u2) = h2. As in the proof of Lemma 2.2, we still denote U := C1∪C2 . . .∪Cq.
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Claim 2.

s+ h1 ≥ k.(3.1)

Proof. Since δ(G) ≥ k, s+ h1 ≥ dG(u1) ≥ k. �

In the following, we divide the proof into four cases.

Case 1. h1 ≥ k.

By (2.1), we have

q := q(S, T ) ≥ k|S| − k|T |+ 2 +
∑

x∈T

dG−S(x) ≥ k|S| − k|T |+ 2 + h1|T | ≥ ks+ 2 ≥ 2.

This means that G−S−T is disconnected. By Claim 1, s+ t ≥ k. Notice that k ≥ n/2.

Since |Ci| ≥ 3 for each i = 1, . . . , q, we infer that |U | ≥ 3q ≥ 3(ks + 2). If |S| ≥ 1, then

n = |G| ≥ |U |+ s+ t ≥ 3(k+ 2) + s+ t ≥ 4k +6 > n, a contradiction. Thus, S = ∅ and

t ≥ k. Since q ≥ 2, choose x ∈ V (C1) and y ∈ V (C2), and we have

n+ k − 2

≤ d(x) + d(y)

≤ |C1| − 1 + |NG(x) ∩ T |+ |C2| − 1 + |NG(y) ∩ T |

≤ |C1|+ |C2|+ 2k − 4 (by Theorem 2.2)

≤ n− t+ 2k − 4

≤ n+ k − 4,

a contradiction.

Thus, in the following, assume that

h1 ≤ k − 1.(3.2)

Case 2. T = NT [u1].

Claim 3. For any i ∈ {1, . . . , q}, there exists wi ∈ V (Ci) such that wiu1 /∈ E(G)

Proof. Suppose that there exists j ∈ {1, . . . , q}, such that V (Cj) ⊂ NG−S(u1). Notice

that for x ∈ V (Cj), dG−S(x) ≥ k + 1, and NG−S(x) ⊂ V (Cj) ∪ T . Then by (3.2),

k − 1 ≥ h1 = dG−S(u1) ≥ |Cj|+ |T | − 1 ≥ dG−S(x) ≥ k + 1, a contradiction. �

Claim 4.

|Ci| ≥ k − h1 + 2.(3.3)

n ≥ s+ t+ q(k − h1 + 2).(3.4)

Proof. For each i ∈ {1, 2, . . . , q}, by Claim 3, there exists a vertex xi ∈ V (Ci) such that

xiu1 /∈ E(G). Since dT (xi) ≤ |T | − 1 = dT (u1) ≤ dG−S(u1) = h1, we have

|Ci| ≥ |NG(xi) ∩ V (Ci)|+ 1

= dG−S(xi)− dT (xi) + 1
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≥ (k + 1)− h1 + 1

= k − h1 + 2.

Moreover, by (3.3), we can get

n = |G| ≥ |S|+ |T |+

q
∑

i=1

|Ci| ≥ s+ t+ q(k − h1 + 2).

�

Claim 5. q = q(S, T ) ≥ 2.

Proof. By (3.2), the fact T = NT [u1], and the definition of u1, we infer

dT (u1) = t− 1 ≤ dG−S(u1) = h1 ≤ k − 1,

Thus, k ≥ h1 + 1 ≥ t. So,

q(S, T ) ≥ ks− kt+
∑

x∈T

dG−S(x) + 2

≥ ks− kt+ h1t+ 2(3.5)

≥ k(k − h1)− kt+ h1t+ 2

= (k − h1)(k − t) + 2

≥ 2.(3.6)

�

Claim 6.

s ≥ k + (q − 1)(k + 2− h1) + t− 2h1 − 1.(3.7)

Proof. For any i ∈ {1, . . . , q}, since wiu1 /∈ E(G), we have

d(wi) + d(u1) ≥ n+ k − 2.(3.8)

On the other hand, we obtain

dT (wi) ≤ t− 1 = dT (u1) ≤ dG−S(u1) = h1.

One can see that

d(wi) + d(u1) ≤ |Ci| − 1 + 2h1 + 2s.(3.9)

Combining (3.8) and (3.9), we can infer

n+ q(2h1 + 2s− 1)

≥

q
∑

i=1

|Ci|+ q(2h1 + 2s − 1) + s+ t

≥ q(n+ k − 2) + s+ t,
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that is,

(q − 1)n ≤ q(2h1 + 2s − 1− k + 2)− s− t.

By Claim 5, q ≥ 2. By (3.4), we have

(q − 1)(s + t+ q(k − h1 + 2)) ≤ q(2h1 + 2s− k + 1)− s− t.

This implies

(q − 1)(k + 2− h1) + s+ t ≤ 2h1 + 2s − k + 1,

and this proves the claim. �

By computation, we have

0 ≥ 2 + ks− kt+
∑

x∈T

dG−S(x)− q

≥ 2 + k(k + (q − 1)(k + 2− h1)− 2h1 − 1) + h1t− q (by (3.7))

= 2 + q(k(k + 2− h1)− 1)− k(3 + h1) + h1t

≥ 2 + (ks− kt+ h1t+ 2)(k(k + 2− h1)− 1)− k(3 + h1) + h1t (by (3.2) and (3.5))

≥ 2 + (ks− (k − h1)(h1 + 1) + 2)(k(k + 2− h1)− 1)

− k(3 + h1) + h1(h1 + 1)

≥ 2 + 2(k(k + 2− h1)− 1)− k(3 + h1) + h1(h1 + 1)

= 2k2 + k − 3kh1 + h21 + h1

≥ 3k,

where we have used the fact k(k+2−h1)−1 ≥ 3k−1 ≥ 0 in the third inequality above;

and (3.1), (3.2) and (3.5) in the fifth inequality above; and the fact f(h1) ≥ f(k − 1) in

the last step, where the function f(x) = −3kx+ x2 + x, x ≤ k − 1.

This contradiction completes the proof of the case.

Case 3. T 6= NT [u1] and h2 ≥ k.

Set p := |NT [u1]|. Recall that V (U) = V (C1 ∪ . . . ∪ Cq). We have

Claim 7. q(S, T ) ≥ 2, where the equality holds when h1 = k − 1, p = k and h2 = k.

Proof. By (2.1), we have

q(S, T ) ≥ k|S| − k|T |+
∑

x∈T

dG−S(x) + 2

≥ ks− kt+ h1p+ h2(t− p) + 2.

By the hypothesis h2 ≥ k and t ≥ p, we obtain

ks− kt+ h1p+ h2(t− p) + 2 ≥ ks− (k − h1)p+ 2.(3.10)

By (3.1), s ≥ k − h1. Since s ≥ k − h1 and p ≤ h1 + 1, we obtain ks − (k − h1)p + 2 ≥

(k − h1)(k − h1 − 1) + 2. By (3.2), k ≥ h1 + 1. So, (k − h1)(k − h1 − 1) + 2 ≥ 2, and
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hence q(S, T ) ≥ 2. The condition when the equality holds can be deduced easily. This

proves the claim. �

Claim 8. Suppose there exists a vertex x ∈ V (U) such that xu1 /∈ E(G). Then

s ≥ k + 3(q − 1)− h1.(3.11)

Proof. Without loss of generality, assume that x ∈ V (Ci) for some i ∈ {1, . . . , q}. By

Lemma 2.2, one may see that |Ci| ≥ 3 for i = 1, . . . , q. So we obtain

n ≥ s+ t+ 3q.

We also have

n+ k − 2 ≤ d(x) + d(u1) ≤ (|Ci| − 1) + (t− 1) + s+ h1 + s = 2s+ t+ |Ci|+ h1 − 2.

One can see that

|Ci| ≤ n− s− t− 3(q − 1).

Thus, we have

n+ k − 2 ≤ s+ n+ h1 − 3(q − 1)− 2.

This proves the claim. �

Claim 9. V (U) ⊂ NG(u1).

Proof. Suppose not. By Claim 8, (3.11) holds. Thus,

0 ≥ 2 + ks− kt+
∑

x∈T

dG−S(x)− q

≥ 2 + k(3(q − 1) + k − h1)− kt+ h1p+ h2(t− p)− q (by (3.11))

≥ 2 + k(3(q − 1) + k − h1) + (h1 − k)(h1 + 1)− q

≥ k(3 + k − h1) + (h1 − k)(h1 + 1)

= h21 − (2k − 1)h1 + k2 + 2k

≥ 3k,

a contradiction. Notice that in the above, we have used the facts h2 ≥ k, t ≥ p, h1 ≤ k−1

and p ≤ h1 + 1 in the third step; and the facts that the function f(q) = 3k(q − 1) − q

is increasing and q ≥ 2 (by Claim 7) in the fourth step; and the fact that the function

f(h1) = h21 − (2k − 1)h1 + k2 + 2k is decreasing when h1 ≤ k − 1 in the last step.

The proof of this claim is complete. �

By Claim 9, V (U) ⊂ NG(u1). So, h1 ≥ 3q + p− 1. We have

0 ≥ 2 + ks− kt+
∑

x∈T

dG−S(x)− q

≥ 2 + k(k − h1)− kt+ h1p+ h2(t− p)− q (by the fact s+ h1 ≥ k)

≥ 2 + k(k − h1) + (h1 − k)p − q (by (3.10))
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≥ 2 + (k − h1)(k − p)− q

≥ 2 + (k − h1)(k − h1 + 3q − 1)− q

≥ (k − h1)(k − h1 + 5) (since q ≥ 2)

> 0,

a contradiction. This proves the case.

Case 4. 0 ≤ h1 ≤ h2 ≤ k − 1.

Since u1u2 /∈ E(G), it follows that

n+ k − 2 ≤ d(u1) + d(u2) ≤ h1 + h2 + 2s,

i.e.,

s ≥
1

2
(n+ k − 2− h1 − h2).(3.12)

Since |Ci| ≥ 3, one may see that

n ≥ s+ t+ 3q.(3.13)

We can get

0 ≥ ks− kt+ h1p+ h2(t− p) + 2− q

= ks− (k − h2)t+ (h1 − h2)p+ 2− q

≥ ks− (k − h2)(n − s− 3q) + (h1 − h2)p + 2− q (by (3.13))

≥ (2k − h2)s− (k − h2)n + q(3(k − h2)− 1) + (h1 − h2)(h1 + 1) + 2 (since p ≤ h1 + 1, h1 ≤ h2)

≥ (2k − h2)s− (k − h2)n + (h1 − h2)(h1 + 1) + 2,

i.e.,

0 ≥ (2k − h2)s− (k − h2)n+ (h1 − h2)(h1 + 1) + 2.(3.14)

First suppose that

h1 − h2 ≥ k + 2− n.(3.15)

One can see that

0 ≥
1

2
(2k − h2)(n + k − 2− h1 − h2)− (k − h2)n+ (h1 − h2)(h1 + 1) + 2 (by (3.12))

= h21 − h1(k − 1 +
h2
2
) +

h22
2

+
1

2
(n− 3k)h2 + k2 − 2k + 2

≥ h21 − h1(k − 1 +
h2
2
) +

h2
2

2
+

1

2
((k + 2 + h2 − h1)− 3k) h2 + k2 − 2k + 2 (by (3.15))

= h21 − h1(k − 1 + h2) + h22 + (−k + 1)h2 + k2 − 2k + 2,

i.e.,

0 ≥ h21 − h1(k − 1 + h2) + h22 + (−k + 1)h2 + k2 − 2k + 2.(3.16)
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Let f(h1, h2, k) = h21 − h1(k − 1 + h2) + h22 + (−k + 1)h2 + k2 − 2k + 2. Consider the

following non-linear programming problem:

(3.17)















min f(h1, h2, k),

s.t. h1 − h2 ≤ 0,

h2 ≤ k − 1,

−h1 ≤ 0,

The Hessian matrix of the function f(h1, h2, k) is

M =





2 −1 −1

−1 2 −1

−1 −1 2



 .

Note that M is a positive semi-definite matrix. By Theoerem 2.5, f(h1, h2, k) is a convex

function. Thus (3.17) is a convex optimization problem. Its Lagrangian function is

L(h, λ) =h21 − h1(k − 1 + h2) + h22 + (−k + 1)h2 + k2 − 2k + 2 + λ1(h1 − h2)

+ λ2(h2 − k + 1) + λ3(−h1).

Hence the Karush-Kuhn-Tucker condition of (3.17) is

(3.18)



































2h1 − (k − 1 + h2) + λ1 − λ3 = 0,

−h1 + 2h2 + (−k + 1)− λ1 + λ2 = 0,

−h1 − h2 + 2k − 2− λ2 = 0,

λ1(h1 − h2) = 0,

λ2(h2 − k + 1) = 0,

λ3h1 = 0.

It is easy to see that h1 = h2 = k − 1 and λ1 = λ2 = λ3 = 0 is a solution of the

equation (3.18). For a convex optimization problem, by Theorem 2.3, every solution

satisfying its KKT condition is also its optimum solution. Thus, we have

f(h1, h2, k) ≥ f(k − 1, k − 1, k) = 1,

contradicting (3.16).

Finally, suppose that

h2 − h1 > n− k − 2.

By (3.14) and (3.1), one can see that

0 ≥ (2k − h2)s − (k − h2)n+ (h1 − h2)(h1 + 1) + 2

≥ (2k − h2)(k − h1)− (k − h2)n+ (h1 − h2)(h1 + 1) + 2

= h21 − (2k − 1)h1 + 2k2 − kn+ 2 + h2(n− k − 1)

≥ h21 − (2k − 1)h1 + 2k2 − kn+ 2 + (n− k − 1)2 + (n− k − 1)h1

= h21 − (3k − n)h1 + 2k2 − kn+ 2 + (n− k − 1)2

≥ −
1

4
(3k − n)2 + 2k2 − kn+ 2 + (n− k − 1)2
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= −
1

4
(n− k)2 + (n− k − 1)2 + 2

=
3

4
(n− k)2 − 2(n − k) + 3

> 0,

a contradiction. This completes the proof of Theorem 1.3. �

Proof of Theorem 1.2. By Theorem 1.3, G contains a k-factor, denoted by H, where

k ≥ n/2 ≥ 2⌈n/4⌉ − 1. Obviously, H is k-regular. Since the order of G is sufficiently

large, the order of H is also sufficiently large. By Theorem 1.4, H can be decomposed

into k disjoint perfect matchings. The proof of Theorem 1.2 is completed. �
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