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Abstract. We consider a class of jump measures on ultrametric spaces and the associated
non-local regular Dirichlet forms. We obtain equivalent conditions for certain heat kernel
upper and lower estimates in terms of the properties of the jump measure. In particular,
heat kernel estimates are given for quite degenerate/singular jump measures as shown in a
number of examples.
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1. Introduction and motivation

The purpose of this paper is to obtain upper and lower estimates of heat kernels of certain
jump type Dirichlet forms on ultrametric spaces. In particular, our results apply on such
well-known examples of ultrametric spaces as the fields Qp of p-adic numbers and their self-
products Qn

p . For general metric spaces most of these results are not known yet.

1.1. Jump type Dirichlet forms. Let (M,d) be a locally compact separable metric space
and µ be a Radon measure on M with full support. Let (E ,F) be a regular jump type
Dirichlet form in L2 (M,µ) with the jump kernel J (x, y), that is, for all f, g ∈ F ⊂ L2 we
have

E (f, g) =

∫∫

M×M
(f(x)− f(y)) (g(x)− g(y)) J(x, y)dµ(x)dµ(y). (1.1)

(see [14] for the theory of Dirichlet forms). The Dirichlet form has a generator L that is a non-
negative definite self-adjoint operator in L2 and the associated heat semigroup

{
e−tL

}
t≥0

.

The heat kernel pt(x, y) of (E ,F) (or of L) is the integral kernel of the heat operator Pt = e−tL

(should the former exist). Equivalently, pt (x, y) is the transition density of the associated
jump process.

Given a symmetric, non-negative, measurable function J on M ×M , one may ask if the
bilinear form (1.1) becomes a regular Dirichlet form with an appropriate domain F , whether
it admits the heat kernel and how to estimate the latter quantitatively.

For example, consider in Rn the jump kernel

J(x, y) = |x− y|−(n+β) ,

where β is a real parameter. If 0 < β < 2 then E is a regular Dirichlet form with the

generator const (−∆)β/2 (where ∆ is the Laplace operator), and the associated jump process
is the symmetric stable Levy process of the index β. In the case β = 1 we have

pt(x, y) =
cnt

(
t2 + |x− y|2

)n+1
2

with some cn > 0, which is the Cauchy distribution with the parameter t. For an arbitrary
0 < β < 2, the heat kernel of the symmetric stable process of index β admits the following
estimate:

pt(x, y) ≃
t

(
t1/β + |x− y|

)n+β
=

1

tn/β

(
1 +

|x− y|

t1/β

)−(n+β)

, (1.2)

where the sign ≃ means that the ratio of the two sides is bounded between two positive
constants. The estimate (1.2) is obtained by the subordination techniques from the heat
kernel of ∆.

Assume now that

J(x, y) ≃ |x− y|−(n+β) .

Then (1.2) is still true, which follows from a result of Chen and Kumagai [6]. One can ask,
under what conditions on an arbitrary metric measure space (M,d, µ) and a jump kernel J ,
the heat kernel of the associated Dirichlet form exists and satisfies the stable-like estimate

pt(x, y) ≃
1

tα/β

(
1 +

d(x, y)

t1/β

)−(α+β)

(1.3)

with some positive parameters α, β. If the Dirichlet form is conservative then the following
two conditions are necessary for (1.3) (see [6], [21], and [23]):

• the α-regularity: for any metric ball B (x, r), we have

µ (B (x, r)) ≃ rα. (V )
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• the jump kernel estimate:

J(x, y) ≃ d(x, y)−(α+β). (J)

It follows from (V ) that α is necessarily the Hausdorff dimension of M and µ ≃ Hα. The
value of the parameter β in (1.3) or (J) is called the index of the Dirichlet form or that of
the associated jump process.

Chen and Kumagai [5], [6] proved that if 0 < β < 2 then (V ) and (J) are also sufficient
for (1.3), that is,

(V )+(J) ⇔ (1.3).

There are many examples of fractal spaces where a jump kernel (J) generates a regular
Dirichlet form even with β > 2. Indeed, on large families of fractals there are diffusion
processes with the walk dimension β∗ > 2. By using the subordination techniques, one
obtains a jump process with any index β ∈ (0, β∗), in particular, β can be larger than 2 (see
[2], [17], [21]).

In the case of β > 2, in order to ensure the estimate (1.3), one needs on top of (V ) and
(J) one more quite complicated condition, which was established independently in [7], [8], [9]
(cutoff Sobolev inequality) and [19] (generalized capacity condition). One of the purposes of
this paper is to show that in the setting of ultrametric spaces one can manage without the
third condition for any β ∈ (0,+∞).

1.2. Ultrametric spaces. Let (M,d) be a metric space. The metric d is called an ultrametric
if it satisfies the ultrametric inequality

d(x, y) ≤ max{d(x, z), d(z, y)} for every x, y, z ∈ M. (1.4)

In this case (M,d) is called an ultrametric space.
Consider for any x ∈ M and r > 0 the metric ball

B (x, r) = {y ∈ M : d(x, y) ≤ r} .

It is easy to deduce from the ultrametric inequality (1.4) the following properties of the space
in question. These properties will be frequently used in what follows.

• Any two balls of the same radius are either disjoint or coincide. More generally, any
two balls are either disjoint or one contains the other. Consequently, the collection of
all distinct balls of the same radius r forms a partition of M .

• Every point inside a ball is its center. This implies that balls are not only closed sets
but also open. Consequently, the topological boundary of any ball is empty. One
more consequence is that any ultrametric space is totally disconnected.

• From any covering of a compact set by a family of balls there is a finite subcover that
consists of mutually disjoint balls.

A well-known example of an ultrametric space is the field Qp of p-adic numbers, where p
is a prime. Recall that Qp is defined as the closure of Q with respect to the p-adic norm ‖x‖p
that satisfies the ultrametric inequality

‖x+ y‖p ≤ max
{
‖x‖p , ‖y‖p

}
.

Hence, Qp with the metric ‖x− y‖p is an ultrametric space. Analysis on Qp and Qn
p was

developed, in particular, in [1], [3], [31], [32], [33].

1.3. Isotropic Dirichlet forms. Let (M,d) be an ultrametric space where all balls are
compact. Let µ be a Radon measure on M with full support. In [3], the authors introduced
an isotropic jump kernel on M given by

J(x, y) =

∫ ∞

d(x,y)

1

σ(r)

dσ(r)

µ(B(x, r))
, (1.5)

where σ is any cumulative probability distribution function on (0,∞) that is strictly monotone
increasing and left-continuous. This jump kernel determines a regular Dirichlet form that
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is referred to as isotropic Dirichlet form, and its heat kernel admits the following explicit
formula

pt(x, y) =

∫ ∞

d(x,y)

tσt−1(r)dσ(r)

µ(B(x, r))
. (1.6)

Assume that (M,d, µ) is Ahlfors α-regular, that is, it satisfies (V ). Choosing σ to be the
Fréchet distribution:

σ(r) = exp

(
−
( c
r

)β)
, (1.7)

where c, β > 0 are arbitrary, we obtain that the jump kernel (1.5) satisfies (J) and the heat
kernel (1.6) satisfies the stable-like estimate (1.3).

For example, let M = Qn
p where p is a prime and n ∈ Z+, and let µ be the Haar measure

on Qn
p . The space (Q

n
p , ‖·‖p , µ) is n-regular so that the isotropic heat kernel with the function

σ from (1.7) admits the estimate

pt(x, y) ≃
1

tn/β

(
1 +

‖x− y‖p

t1/β

)−(n+β)

. (1.8)

In this case the jump kernel in Qn
p can be computed exactly as follows

J(x, y) =
cn,p,β

‖x− y‖n+β
p

. (1.9)

The generator of the Dirichlet form associated with the jump kernel (1.9) coincides with
Taibleson operator introduced in [31] (see also [32], [3] and references therein).

Let (M,d) be a general metric space and µ be an α-regular measure on M . For any β > 0,
consider the following quadratic form in L2 (M,µ):

Eα,β (f, f) =

∫∫

M×M

(f(x)− f(y))2

d (x, y)α+β
dµ(x)dµ(y).

Define the walk dimension β∗ of M by

β∗ = sup {β > 0 : Eα,β extends to a regular Dirichlet form} . (1.10)

Note that β∗ is an invariant of the metric space (M,d) alone because α = dimH M and
µ ≃ Hα, where dimH M is the Hausdorff dimension of M . It is known that if M carries
a diffusion process {Xt} whose transition density satisfies a sub-Gaussian upper and lower
estimates, then the walk dimension of {Xt} (a parameter in sub-Gaussian estimates) must
be equal to β∗ (see [21]).

It follows from (1.10) that always β∗ ≥ 2 because for any β < 2, Lipschitz functions with
compact supports are in the domain of Eα,β.

If M is a Riemannian manifold then β∗ = 2, while on fractals typically β∗ > 2. On α-
regular ultrametric spaces, as it follows from the above construction of isotropic Dirichlet
forms, we have always β∗ = ∞. Hence, in the family of all α-regular metric spaces, manifolds
and ultrametric spaces are extremal opposite cases as far as the walk dimension is concerned.

However, these two extremal classes of metric spaces have something in common: both
manifolds and ultrametric spaces possess a priori rich classes of test functions with controlled
energy: on manifolds these are usual bump or tent functions, while on ultrametric spaces
these are indicators of balls, as we will see below. The existence of such classes of test
functions is vital for obtaining upper bounds of the heat kernel.

2. Statement of the main results

In this section we state the main results of this paper, while the proofs will be given in the
rest of the paper.

Throughout the paper, (M,d) is a locally compact separable ultrametric space and µ is a
Radon measure on M with full support. Denote by B (M) the set of all Borel functions on
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M . For any open set U ⊂ M , denote by C0(U) the space of all continuous functions f on M
with compact supports supp f ⊂ U .

2.1. Jump kernel and Dirichlet form. Throughout the paper we fix some parameter
R ∈ (0,diamM ] and a kernel J(x,E) on M×B(M) that satisfies the following two conditions:
for any r ∈

(
0, R

)
,

J(x,B(x, r)c) is a µ-locally integrable function of x ∈ M, (j.1)

and J is symmetric, that is, for all u, v ∈ B+(M),
∫

M

∫

M
u(x)v(y)J(x, dy)dµ(x) =

∫

M

∫

M
u(y)v (x)J(x, dy)dµ(x). (j.2)

For example, the kernel

J (x,E) =

∫

E
J(x, y)dµ(y)

satisfies (j.1) and (j.2) provided J (x, y) is a non-negative symmetric measurable function of
(x, y) ∈ M ×M such that

∫

K

∫

(Kr)
c
J(x, y)dµ(x)dµ(y) < ∞ (2.1)

for any compact set K ⊂ M and any r ∈
(
0, R

)
, where Kr is the r-neighborhood of K.

Any kernel J satisfying (j.1) and (j.2) determines a positive symmetric Radon measure j
on M ×M \ diag that is defined by

∫

M×M\diag
f(x, y)dj(x, y) =

∫

M

(∫

M
f(x, y)J(x, dy)

)
dµ(x),

for any f ∈ C0(M ×M \ diag).
Consider the following bilinear form (E ,Fmax) on L2(M,µ):

{
E(u, v) =

∫ ∫
M×M\diag (u(x)− u(y)) (v(x)− v(y)) dj(x, y)

Fmax =
{
u ∈ L2(M) : u is Borel measurable and E(u, u) < ∞

} . (2.2)

The argument in [14, Example 1.2.4, p. 14] shows that E is well-defined, that is, for any
u ∈ B (M),

u = 0 µ-a.e. ⇒ E(u, u) = 0.

We will prove below that, under conditions (j.1) and (j.2), (E ,Fmax) is a Dirichlet form, and
construct further a regular Dirichlet form (E ,F) with the domain F ⊂ Fmax.

Definition 2.1. A function f on M is said to be locally constant if, for any x ∈ M , there is
ε > 0 such that f ≡ const in B(x, ε).

Denote by D the space of all locally constant functions on M with compact supports.
Clearly, we have D ⊂ C0 (M) .

Since any ball is closed and open, the indicator function 1B of any compact ball B belongs
to D. Moreover, using properties of ultrametric balls, it is easy to verify that D consists of
finite linear combinations of indicator functions of compact balls:

D =

{
n∑

i=0

ci1Bi : n ∈ N, ci ∈ R, Bi is a compact ball

}
, (2.3)

where the balls {Bi}
n
i=0 can be chosen to be mutually disjoint (see the proof of Lemma 4.1).

Theorem 2.2. Assume (j.1) and (j.2) are satisfied.

(I) Then (E ,Fmax) is a Dirichlet form on L2(M) and D ⊂ Fmax.
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(II) Set

F := D
E1 , (2.4)

where the closure is taken with respect to the inner product E1 = E + (·, ·)L2 in F .
Then (E ,F) is a regular Dirichlet form on L2(M).

In particular, indicator functions 1B of compact balls B belong to F .
The proof of Theorem 2.2 is given in Section 4. Unless otherwise stated, in the rest of this

paper, (E ,F) is always referred to the regular Dirichlet form constructed in Theorem 2.2(II).
Let us emphasize that so far we have not made any additional assumption about µ.

2.2. Heat kernel estimates. Let us now state our main results about the heat kernel
estimates. For these results, we always assume the space M is proper, that is, all balls
B (x, r) in M are compact. In particular, we have µ (B (x, r)) < ∞.

Throughout the paper we fix positive reals α, β and R ∈ (0,diamM ]. Note that R could
be ∞ if diamM = ∞.

Definition 2.3. We say that the condition (V≤) is satisfied if, for all x ∈ M and r ∈ (0,∞),

µ(B(x, r)) ≤ Crα, (V≤)

for some constant C > 0. We say that the condition (V≥) is satisfied if, for all x ∈ M and all
r ∈ (0, R),

µ(B(x, r)) ≥ C−1rα. (V≥)

We say that (V ) is satisfied if both (V≤) and (V≥) are satisfied.

Let us emphasize that (V≤) is assumed to be true for all r > 0 while (V≥) should be
satisfied only for r ∈ (0, R). This convention allows us to cover compact ultrametric spaces
M .

Definition 2.4. We say that the tail condition (TJ) is satisfied if there exists C > 0 such
that, for any ball B = B(x, r) with x ∈ M and r ∈ (0, R),

J(x,Bc) ≤ Cr−β. (TJ)

Clearly, if (TJ) is satisfied then J satisfies (j.1) so that Theorem 2.2 applies.
For any measurable set A ⊂ M and any integrable function f on A, set

fA := −

∫

A
fdµ :=

1

µ (A)

∫

A
fdµ.

For any ball B = B (x0, r) and any λ > 0, set

λB = B (x0, λr) .

Since any point in the ball B can be used as its center, the notation λB is sensitive to the
choice of the center of B if λ < 1.

Definition 2.5. We say that the Poincaré inequality (PI) is satisfied if there exist κ ∈ (0, 1]
and C > 0 such that, for any ball B := B(x0, r) with x0 ∈ M and r ∈ (0, R), and for any
f ∈ F , ∫

κB
|f − fκB|

2dµ ≤ Crβ
∫

B

∫

B
(f(x)− f(y))2dj(x, y). (PI)

Definition 2.6. We say that the weak upper estimate (wUE) is satisfied, if the heat kernel
pt(x, y) exists and satisfies the following estimate

pt(x, y) ≤
C

tα/β

(
1 +

d(x, y) ∧R

t1/β

)−β

, (wUE)

for some C > 0, for all t ∈ (0, R
β
) and for µ-almost all x, y ∈ M .
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In particular, if R ≥ diamM then (wUE) is equivalent to

pt(x, y) ≤
C

tα/β

(
1 +

d(x, y)

t1/β

)−β

for all t ∈ (0, R
β
) and for µ-almost all x, y ∈ M .

Definition 2.7. We say that near diagonal lower estimate (nLE) is satisfied if the heat
kernel pt(x, y) exists and satisfies the following estimate:

pt(x, y) ≥ ct−α/β, (nLE)

for some c, δ > 0, for all t ∈ (0, R
β
) and µ-almost all x, y ∈ M such that

d(x, y) ≤ δt1/β .

Our main result is the following theorem.

Theorem 2.8. Let M be a proper ultrametric space. If (V), (TJ) and (PI) are satisfied
then the heat kernel pt(x, y) of (E ,F) exists, is continuous jointly in t, x, y, Hölder continuous
jointly in x, y and satisfies (wUE) and (nLE).

Moreover, under the standing assumptions (V) and (TJ), the following equivalence takes
place:

(PI) ⇔ (wUE) + (nLE). (2.5)

Note also that the conditions (TJ) and (PI) can be satisfied for quite degenerate/singular
jump measures as will be shown by examples in Section 15.

Let us emphasize that similar results for general metric spaces are not known and, most
probably, they are not true without additional conditions. It would be interesting to obtain
a version of Theorem 2.8 for general metric spaces.

Remark 2.9. Let M be a Riemannian manifold with the geodesic distance d and the Rie-
mannian measure µ. Let (E ,F) be the classical local Dirichlet form

E (u, u) =

∫

M
|∇u|2 dµ.

Then, under the standing assumption (V ), the corresponding Poincaré inequality
∫

B
|f − fB|

2dµ ≤ Cr2
∫

B
|∇f |2 dµ,

is equivalent to the following Gaussian estimate of the heat kernel pt(x, y):

pt(x, y) ≍
C

tα/2
exp

(
−c

d(x, y)2

t

)

(see [16], [28], [29]). The equivalence (2.5) of Theorem 2.8 can be regarded as a version of
this result for ultrametric spaces.

The following stability result is an easy consequence of Theorem 2.8.

Corollary 2.10. Assume that (V) is satisfied. Let J (1) and J (2) be two kernels both satisfying

(j.1), (j.2). Let (E(1),F (1)), (E(2),F (2)) be two regular Dirichlet forms determined by J (1) and

J (2) respectively (as in Theorem 2.2). Assume that, for some C > 0,

C−1J (2) ≤ J (1) ≤ CJ (2).

If (E(1),F (1)) satisfies (TJ), (wUE) and (nLE), then (E(2),F (2)) also satisfies (TJ), (wUE)
and (nLE).
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In Section 15, we give examples with R = ∞ showing that, under the hypotheses (V ),
(TJ) and (PI) of Theorem 2.8, the estimate (wUE) cannot be improved to

pt (x, y) ≤
C

tα/β

(
1 +

d(x, y)

t1/β

)−(β+ε)

for any ε > 0. Similarly, the lower bound (nLE) cannot be improved to

pt (x, y) ≥
c

tα/β

(
1 +

d(x, y)

t1/β

)−N

for any N > 0. Hence, in an ultrametric space, the Poincaré inequality does not yield
matching upper and lower bounds. For the latter one needs stronger assumptions as below.

Definition 2.11. We say that the condition (J≤) is satisfied if the jump kernel J has the
form:

J (x, dy) = J(x, y)dµ(y), (2.6)

where J (x, y) is a symmetric function of x, y ∈ M such that, for all distinct x, y ∈ M ,

J(x, y) ≤ Cd(x, y)−(α+β). (J≤)

Similarly, we say that the condition (J≥) is satisfied if, for all distinct x, y ∈ M ,

J(x, y) ≥ C−1d(x, y)−(α+β). (J≥)

We say that the condition (J ) is satisfied if both (J≤) and (J≥) are satisfied, that is, if, for
all x, y ∈ M ,

J (x, y) ≃ d (x, y)−(α+β) . (J)

It is easy to see that

(V≤)+(J≤) ⇒ (TJ) (2.7)

(see [19, Prop. 6.4]) and

(V≥)+(J≥) ⇒ (PI) (2.8)

(see Lemma 3.1 and the argument after that).
Hence, (TJ) can be regarded as a weak version of the upper bound (J≤), and (PI) can be

regarded as a weak version of the lower bound (J≥).

Definition 2.12. We say that the optimal upper estimate (UE) is satisfied if the heat kernel
pt(x, y) exists and satisfies the following upper bound:

pt(x, y) ≤
C

tα/β

(
1 +

d(x, y)

t1/β

)−(α+β)

, (UE)

for some C > 0, for all t ∈ (0, R
β
) and for µ-almost all x, y ∈ M .

We say that the optimal lower estimate (LE) is satisfied if the heat kernel pt(x, y) exists
and satisfies the following lower bound:

pt(x, y) ≥
c

tα/β

(
1 +

d(x, y)

t1/β

)−(α+β)

, (LE)

for some c > 0, for all t ∈ (0, R
β
) and for µ-almost all x, y ∈ M .

We say that the heat kernel satisfies two-sided stable-like estimate if both (UE) and (LE)
are satisfied, that is, if

pt(x, y) ≃
1

tα/β

(
1 +

d(x, y)

t1/β

)−(α+β)

, (2.9)

for all t ∈ (0, R
β
) and µ-almost all x, y ∈ M.
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Corollary 2.13. Let (V) be satisfied and J have the form (2.6).
(a) We have

(J≤) + (PI) ⇔ (UE) + (nLE).

(b) If in addition (TJ) is satisfied then

(J≥) ⇔ (wUE) + (LE).

(c)We have

(J) ⇔ (2.9).

In all the cases (a), (b), (c), the heat kernel pt(x, y) exists, is continuous jointly in t, x, y
and Hölder continuous jointly in x, y.

Corollary 2.13(c) recovers the estimate (1.8) of [3] that was proved for the jump kernel
(1.9) in Qn

p . Corollary 2.13(c) can be deduced from the previously known results for general
metric spaces. Indeed, the case of an arbitrary β > 0 can be reduced to the case β = 1

by a simple change of distance function d̃ (x, y) = d (x, y)β (that is again a metric by the
ultrametric property), and then one can apply the results of [6] or [19] to obtain (2.9).
However, Theorem 2.8 and parts (a), (b) of Corollary 2.13 cannot be obtained in this way.

2.3. Structure of the paper. In Section 3 we give examples of ultrametric spaces and jump
kernels satisfying (TJ) and (PI). These examples show, in particular, that our results work
for highly anisotropic cases, in particular, the jump measure can vanish on very large area of
(M ×M) \diag. In Section 4 we prove Theorem 2.2 about construction of a regular Dirichlet
form.

The major part of the paper is devoted to the proof of Theorem 2.8. The proof of the key
implication

(V ) + (TJ) + (PI) ⇒ (wUE) + (nLE), (2.10)

is fulfilled in Sections 5–12.
In Section 13 we deduce (PI) from the heat kernel bounds (wUE) and (nLE), and in

Section 14 we conclude the proofs of Theorem 2.8 and Corollary 2.13 by combining the
results of the previous sections.

In Section 15 we give more examples to show that the heat kernel bounds (wUE) and
(nLE) of Theorem 2.8 are sharp in certain sense.

Let us now describe the main steps in the proof of the implication (2.10).
Step 1. We show that the Poincaré inequality (PI) implies the Nash inequality (Lemma

5.2). The latter yields by the well-known argument the existence of the heat kernel and
on-diagonal upper bound

pt (x, y) ≤ Ct−α/β, (2.11)

for all t ∈ (0, R
β
) and µ-a.a. x, y ∈ M (Lemma 5.5). One more consequence of the Nash

inequality is the Faber-Krahn inequality (Lemma 5.3).
The on-diagonal upper estimate (2.11) implies the upper bounds of the meat exit time

from balls: for any ball B of radius r ∈ (0, σR) (where σ ∈ (0, 1) is the same as in Lemma
5.3),

ess sup
B

GB1 ≤ Crβ, (2.12)

where GB is the Green operator in B (Lemma 10.2).
Step 2. This is the largest and most technical part of the proof. We first prove Lemma of

growth (Lemma 6.4) that is based on the Faber-Krahn inequality, and Lemma 7.2 where the
Poincaré inequality is used at full strength. These lemmas imply a weak Harnack inequality
for harmonic functions of (E ,F) (Lemma 8.1), that in turn yields the oscillation inequalities
for harmonic functions (Lemmas 9.1, 9.3, 9.4) and, consequently, the Hölder continuity of
harmonic functions.
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Step 3. The mean exit time estimate (2.12) implies that
∥∥GBf

∥∥
L∞ ≤ Crβ ‖f‖L∞ ,

which allows to extend the oscillation inequality to solutions u of Lu = f (Lemma 11.2).
Considering a function u (t, ·) = Ptf as the solution to Lu = −∂tu and estimating ‖∂tu‖L∞

by means of (2.11), we obtain the oscillation inequality and the Hölder continuity for Ptf
and, hence, also for the heat kernel (Lemma 12.1 and [19, Lemmas 5.10, 5.11, 5.12, 5.13]).

Step 4. Using one of the consequences of Lemma of growth, we obtain the lower bound
for the mean exit time in any ball B of radius r ∈ (0, R):

ess inf
B

GB1 ≥ crβ in B, (2.13)

(Lemma 10.4). The estimates (2.12) and (2.13) imply the following survival estimate: for
any ball B of radius r ∈ (0, R),

ess inf
B

PB
t 1 ≥ ε in B, provided t1/β ≤ δr (2.14)

(Lemma 10.6).
Step 5. The survival estimate (2.14) implies the on-diagonal lower bound

pt (x, x) ≥ ct−α/β ,

which together with the oscillation inequality yields the near diagonal lower estimate (nLE)
(Lemma 12.2).

Step 6. Here we prove the off-diagonal upper estimate (wUE). The main difficulty is in
obtaining the following estimate: for any ball B of radius r < R and any t > 0,

Pt1Bc ≤ C
t

rβ
. (2.15)

It is done by comparing Pt to a semigroupQt with a truncated jump kernel dj(ρ) = 1{d(x,y)≤ρ}dj
and observing that Qt does not propagate from the inside of any ball of radius ρ to the out-
side, which follows from the ultrametric property (Lemma 12.3). Combining (2.15) with the
on-diagonal upper bound (2.11), we obtain (wUE) (Lemma 12.6).

Notation. The letters C,C ′, c, c′, · · · denote positive constants whose values are unim-
portant and can change at any occurrence. However, the value of all such constants depends
only on the parameters in the hypotheses in question. The letters α, β and R denote the
global parameters that have the same meaning all over the paper except for Section 15.

The essential supremum and infimum are always taken with respect to the measure µ. We
use the expression “µ-almost all x, y ∈ M” as a shorthand for “µ × µ-almost all (x, y) ∈
M ×M”. We also use Lp as a shorthand for Lp (M,µ) .

3. Examples

In this section, we give an example of an ultrametric space (M,d) and a jump kernel J on
M ×M that satisfies (TJ) and (PI) but does not satisfy (J≤) or (J≥) (Proposition 3.5). The

idea is that we first take in M = Qp the jump kernel ‖x− y‖−(1+β)
p , that satisfies (J≤) and

(J≥), and then reduce it on some set N ⊂ M ×M to zero so that (J≥) is no longer valid,
whereas the Poincaré inequality (PI) still holds. The choice of the set N is quite subtle – we
use for that some arithmetic properties of Qp (see (3.8)).

Let (M,d) be so far any metric space with a measure µ that is finite and positive on all
balls. Let J(x, y) be a symmetric non-negative function on M×M , and let Φ be an increasing
positive function on (0,+∞). We say that J satisfies a Φ-Poincaré inequality if, for any ball
B in M of radius r and for any f ∈ L2 (B),

∫

B×B
(f(x)− f(y))2 J(x, y)dµ(x)dµ(y) ≥

1

Φ(r)

∫

B×B
(f(x)− f(y))2 dµ(x)dµ(y). (3.1)
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Lemma 3.1. The inequality (3.1) is equivalent to
∫

B×B
(f(x)− f(y))2 J(x, y)dµ(x)dµ(y) ≥

2µ (B)

Φ (r)

∫

B
(f − fB)

2 dµ. (3.2)

Clearly, if µ (B) ≃ rα and Φ (r) ≃ rα+β then (3.2) coincides with the Poincaré inequality
(PI).

Proof. Let us verify that the right hand sides of (3.1) and (3.2) coincide. We have
∫

B

∫

B
(f(x)− f(y))2 dµ(x)dµ(y) =

∫

B

∫

B

(
f(x)2 − 2f(x)f(y) + f(y)2

)
dµ(x)dµ(y)

= 2µ (B)

∫

B
f2dµ − 2

(∫

B
fdµ

)2

= 2µ (B)

(∫

B
f2dµ − f2

Bµ (B)

)

and ∫

B
(f − fB)

2 dµ =

∫

B
f2dµ − 2fB

∫

B
fdµ+ f2

Bµ (B) =

∫

B
f2dµ− f2

Bµ (B) ,

whence ∫

B×B
(f(x)− f(y))2 dµ(x)dµ(y) = 2µ (B)

∫

B
(f − fB)

2 dµ, (3.3)

which was to be proved. �

Remark 3.2. It is clear that if, for all x, y ∈ M ,

J(x, y) ≥
1

Φ(d(x, y))
,

then (3.1) holds because for all x, y ∈ B we have d(x, y) ≤ r and, hence, J(x, y) ≥ 1
Φ(r) .

Hence, also (3.2) holds. Consequently, (V≥) and (J≥) imply (PI).

Now let us fix a prime p, consider a finite field Fp := {0, 1, 2, · · · , p− 1} and the following
set

Mp := {x = {xk}k∈Z : xk ∈ Fp and xk = 0 for all k < −K for some K ∈ Z} ,

that consists of double sequences of elements of Fp that are vanishing near −∞. Consider
Mp as a linear space over Fp with linear operations

x+ y = {xk + yk}k∈Z and ax = {axk}k∈Z ,

for all x, y ∈ Mp and a ∈ Fp. Define in Mp the usual p-adic norm by

‖x‖p = p−n, where n := min{k ∈ Z : xk 6= 0}.

For all x, y ∈ Mp, set d(x, y) = ‖x − y‖p and observe that (Mp, d) is an ultrametric space.
Furthermore, (Mp, d) is obviously separable and every ball B (x, r) in Mp is compact. As a
metric space, Mp can be identified with Qp, but the operations in Mp are different from those
in Qp.

The Haar measure µ on Mp can be constructed as follows. For any n ∈ Z and for any ball
B of radius p−n, set

µ(B) := p−n. (3.4)

Since each ball of radius p−n is a disjoint union of p balls of radii p−(n+1), it is easy to see that
µ is σ-additive and σ-finite on the semi-ring of all balls in Mp. By Carathéodory’s extension
theorem, µ extends to a Borel measure on Mp. It follows easily from (3.4) that the measure
µ is 1-regular, that is,

µ(B(x, r)) ≃ r (3.5)

for all x ∈ Mp and r > 0.
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For any set A ⊂ Mp, any u ∈ Mp and a ∈ Fp, define the sets A+ u = {y + u : y ∈ A} and
aA = {ay : y ∈ A}.

Lemma 3.3. For any a ∈ Fp \ {0} and u ∈ Mp, the map y 7→ ay + u preserves the metric d
and the measure µ. Consequently, for any nonnegative measurable function f on Mp,∫

Mp

f(y)dµ(y) =

∫

Mp

f(ay + u)dµ(y). (3.6)

Proof. For any y ∈ Mp we have ‖y‖p = ‖ay‖p because yk 6= 0 ⇔ ayk 6= 0. It follows that, for
all x, y ∈ Mp,

d (ax+ u, ay + u) = ‖ay − ax‖p = ‖y − x‖p = d (x, y) ,

so that the metric d is preserved by y 7→ ay + u. Let us show that the measure µ is also
preserved, that is, for any Borel set A ⊂ Mp,

µ(A) = µ(aA+ u). (3.7)

It suffices to prove this for A = B(x, r). Since by the first part aA + u is a ball of the same
radius r, (3.7) follows from the construction of the Haar measure. The identity (3.6) is a
consequence of (3.7). �

Define a function S : Mp 7→ Fp as follows: for any x ∈ Mp with ‖x‖p = p−n, set

S(x) = xn.

In other words, S (x) is equal to the non-zero digit xn of x with the smallest n. Define the
following subset N of Mp ×Mp:

N = {(x, y) ∈ Mp ×Mp : S(x) = S(x+ y) = 1 or S(y) = S(x+ y) = 1} . (3.8)

Fix some n ∈ Z and let w ∈ Mp be such that wn−1 = 1 and wk = 0 for all k < n − 1. We
claim that

B(w, p−n)×B(0, p−n) ⊂ N,

where 0 is the zero element of Mp. Indeed, if x ∈ B (w, p−n) and y ∈ B(0, p−n) then
xk − wk = yk = 0 for all k < n, which implies that the first non-zero component of x is
xn−1 = 1 and the same is true for x+y, whence S (x) = S (x+ y) = 1 and, hence, (x, y) ∈ N .

It follows that

(µ × µ)(N) ≥ µ
(
B(w, p−n)

)
µ
(
B(0, p−n)

)
= p−2n.

Since n ∈ Z is arbitrary, we see that (µ× µ)(N) = ∞.

Proposition 3.4. Let p > 2. Then the jump kernel

J(x, y) =
1Nc(x, y)

Φ(d(x, y))
=

{
0, (x, y) ∈ N,

1
Φ(d(x,y)) , (x, y) ∈ N c,

(3.9)

satisfies the 5Φ-Poincaré inequality.

Proof. Fix a ball B := B(w, r) ⊂ Mp. If (x, y) ∈ (B ×B) \N then 1Nc(x, y) = 1 and

(f(x)− f(y))2 J(x, y) =
1

Φ(d(x, y))
(f(x)− f(y))2

≥
1

Φ(r)
(f(x)− f(y))2 ,

which implies
∫

B×B
(f(x)− f(y))2 J(x, dy)dµ(x) =

∫

(B×B)\N
(f(x)− f(y))2 J(x, y)dµ(x)dµ(y)

≥
1

Φ(r)

∫

(B×B)\N
(f(x)− f(y))2 dµ(x)dµ(y).
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We will prove that
∫

(B×B)∩N

(f(x)− f(y))2 dµ(x)dµ(y) ≤ 4

∫

(B×B)\N

(f(x)− f(y))2 dµ(x)dµ(y), (3.10)

which will then imply that
∫

B×B
(f(x)− f(y))2 dµ(x)dµ(y) ≤ 5

∫

(B×B)\N
(f(x)− f(y))2 dµ(x)dµ(y)

and, hence,
∫

B×B
(f(x)− f(y))2 J(x, y)dµ(x)dµ(y) ≥

1

5Φ(r)

∫

B×B
(f(x)− f(y))2 dµ(x)dµ(y),

that is, the 5Φ-Poincaré inequality.
For any pair x, y ∈ Mp consider

z = z (x, y) :=
p+ 1

2
(x+ y) ∈ Mp,

where p+1
2 ∈ Fp since p > 2. Observe that

z − x =
p− 1

2
x+

p+ 1

2
y =

p+ 1

2
(y − x)

and, hence,

‖z − x‖p = ‖y − x‖p .

Consequently, if x, y belong to B then also z ∈ B because x can be regarded as a center of
B.

If (x, y) ∈ N then we have by (3.8)

S(z) = S(
p+ 1

2
(x+ y)) =

p+ 1

2
6= 1.

Therefore, no pair (·, z) can lie in N , and we conclude that

if (x, y) ∈ (B ×B) ∩N then (x, z), (y, z) ∈ (B ×B) \N. (3.11)

Next, we have, for all x, y and z = p+1
2 (x+ y),

(f(x)− f(y))2 ≤ 2 (f(x)− f(z))2 + 2 (f(y)− f(z))2 ,

and ∫

(B×B)∩N
(f(x)− f(y))2 dµ(x)dµ(y)

≤ 2

∫

Mp×Mp

1{(B×B)∩N}(x, y) (f(x)− f(z))2 dµ(x)dµ(y)

+ 2

∫

Mp×Mp

1{(B×B)∩N}(x, y) (f(y)− f(z))2 dµ(x)dµ(y). (3.12)

Furthermore, by (3.11) and Lemma 3.3 with a = p+1
2 and u = ax we have

∫

Mp×Mp

1{(B×B)∩N}(x, y) (f(x)− f(z))2 dµ(x)dµ(y)

≤

∫

Mp

(∫

Mp

1(B×B)\N (x, a(x+ y)) (f(x)− f(a(x+ y)))2 dµ(y)

)
dµ(x)

=

∫

Mp

(∫

Mp

1(B×B)\N (x, y) (f(x)− f(y))2 dµ(y)

)
dµ(x)
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=

∫

(B×B)\N
(f(x)− f(y))2 dµ(x)dµ(y).

Estimating similarly the integral in (3.12), we obtain (3.10), which finishes the proof. �

Set now Φ(r) = r1+β. The jump kernel J from (3.9) satisfies (PI) by Lemma 3.1 and
Proposition 3.4. By [19, Prop. 6.4], we have, for any α-regular space,

∫

B(x,r)c

dµ (y)

d (x, y)α+β
≤ Cr−β, (3.13)

that is, (J≤) implies (TJ). Clearly, J satisfies (J≤) and, hence, (TJ) but J obviously does
not satisfy (J≥).

Now we construct a new jump kernel J̃ ≥ J that satisfies (TJ) and (PI) but not (J≤) or
(J≥).

For any integer n ≥ 1, define the set En ⊂ Mp to consist of all sequences of the form

x = ...︸︷︷︸
k≥0

1...1︸︷︷︸
k=−1,...−n

0...0...︸ ︷︷ ︸
k<−n

that is, xk = 1 for k = −1, ...,−n, xk = 0 for all k < −n and xk is arbitrary for all k ≥ 0.
Similarly define a set Fn ⊂ Mp to consist of all the sequences

x = ...︸︷︷︸
k≥0

2...2︸︷︷︸
k=−1,...−n

0...0...︸ ︷︷ ︸
k<−n

.

Clearly, En and Fn are balls of radii 1, so that µ(En) = µ(Fn) = 1, and all the balls En, Fn,
n ≥ 1, are pairwise disjoint. It follows that also all the sets

(En × Fn), (Fn × En), n ≥ 1,

are pairwise disjoint in Mp ×Mp. Define

E =

∞⋃

n=1

(En × Fn) ∪ (Fn × En),

so that the set E is symmetric and (µ× µ) (E) = ∞.
It follows from the definition (3.8) of the setN that, for any n ≥ 1, the sets En×Fn and Fn×

En are disjoint with N . Indeed, if x ∈ En and y ∈ Fn then S (x+ y) = 3 6= 1 in Fp so that
(x, y) /∈ N . Consequently, the sets N and E are disjoint.

Let J(x, y) be the jump kernel from Proposition 3.4 with Φ(r) = r1+β, that is,

J (x, y) =
1

d (x, y)1+β
1Nc (x, y) .

Fix ε > 0 and define further the kernels

J0(x, y) :=
d(x, y)ε

d(x, y)1+β
1E(x, y) and J̃(x, y) := J(x, y) + J0(x, y).

Proposition 3.5. For any ε ∈ (0, 1), the jump kernel J̃ satisfies (TJ) and (PI) but neither
(J≥) nor (J≤).

Proof. As we have already mentioned, J̃ satisfies (PI) since J̃ ≥ J and J satisfies (PI).

Since both J and J0 vanish on N , we have J̃ = 0 on N so that J̃ does not satisfy (J≥).
To disprove (J≤) observe that d(x, y) = pn for all (x, y) ∈ En × Fn, which implies for such
pairs (x, y)

J̃(x, y)d (x, y)1+β ≥ J0(x, y)d(x, y)
1+β = d (x, y)ε = pεn,

that can be arbitrarily large.
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It remains to prove that J̃ satisfies (TJ). Since J satisfies (TJ), it suffices to prove that
J0 satisfies (TJ). By symmetry, it suffices to prove that, for any x ∈ En and r > 0,

∫

B(x,r)c
J0(x, y)dµ(y) ≤ Cr−β. (3.14)

Consider two cases.
(i) Let r ≥ 1. By the definition of E, we see that if x ∈ En and (x, y) ∈ E then y ∈ Fn.

Hence, we have, for x ∈ En,∫

B(x,r)c
J0(x, y)dµ(y) =

∫

B(x,r)c
1E (x, y)

dµ(y)

d(x, y)1+β−ε

≤

∫

B(x,r)c∩Fn

dµ(y)

d(x, y)1+β−ε
≤

µ(Fn)

r1+β−ε
≤

1

rβ
.

(ii) Let r < 1. By (i), (3.5) and (3.13), we obtain
∫

B(x,r)c
J0(x, y)dµ(y) ≤

∫

B(x,1)c
J0(x, y)dµ(y) +

∫

B(x,1)\B(x,r)

dµ (y)

d (x, y)1+β

≤ 1 +Cr−β ≤ (1 + C) r−β,

which finishes the proof. �

4. Construction of non-local Dirichlet forms

The purpose of this section is to prove Theorem 2.2.
For any open set Ω ⊂ M , we regard L2 (Ω) as a subset of L2 (M) by extending any function

f ∈ L2 (Ω) by constant zero outside Ω. Fix a kernel J(x,E) on M×B(M) satisfying (j.1) and
(j.2), and consider the bilinear form (E ,Fmax) on L2(M,µ) given by (2.2). Let F be defined
by (2.4). Recall that D denotes the space of all locally constant functions on M with compact
supports. Denote by D (Ω) the subspace of D that consists of functions with supports in Ω.

Lemma 4.1. Under the above hypotheses, the following are true.

(I) For any compact ball B, the indicator function 1B belongs to Fmax. Moreover, D ⊂
Fmax.

(II) For any open set Ω ⊂ M , D(Ω) is dense in C0(Ω) with respect to sup-norm and in
L2(Ω) with respect to L2-norm. In particular, D is dense in C0(M) and in L2(M).

Proof. (I). Denote φ = 1B for a ball of radius r and prove first that if B is compact and if
r < R then E(φ, φ) < ∞. Since φ(x) − φ(y) = 0 provided x, y are both in B or in Bc, we
obtain by (2.2) and (j.1)

E(φ, φ) =

∫

M

∫

M
(φ(x)− φ(y))2dj(x, y)

= 2

∫

B

∫

Bc

(φ(x)− φ(y))2dj(x, y)

= 2j(B,Bc) = 2

∫

B
J(x,B(x, r)c)dµ(x) < ∞, (4.1)

where we also use the property that B = B(x, r).
Let f be any function from D (in particular, f can be 1B for a compact ball B). Since f

is locally constant, for any x ∈ M , there exists rx ∈ (0, R) such that f = const in B(x, rx).
Since the family {B(x, rx)}x∈B is an open covering of supp f , there exists a finite subcovering
{B(xi, rxi)}

N
i=1. By the properties of ultrametric balls, we may further assume that all the

balls B(xi, rxi) are mutually disjoint. It follows that f is a finite linear combination of
functions 1B(xi,rxi)

(cf. (2.3)), which implies E (f, f) < ∞.

(II) Fix an open set Ω ⊂ M , a function f ∈ C0(Ω) and set K = supp f . Since f is
uniformly continuous, for any ε > 0 there exists r > 0 such that any ball B (x, r) with x ∈ K
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lies in V ⊂ Ω, where V is a precompact open set such that K ⊂ V ⊂ V ⊂ Ω, and the
oscillation of f in B (x, r) is bounded by ε. Choose a finite covering {B(xi, r)}

N
i=1 of K. As

above, we can assume that all the balls B(xi, r) are mutually disjoint. Clearly, the function

fε :=

N∑

i=1

f(xi)1B(xi,r)

belongs to D(Ω) and

sup |fε − f | < ε,

which proves that D(Ω) is dense in C0(Ω) in sup-norm. Since also

‖fε − f‖2L2 ≤ ε2
N∑

i=1

µ(B(xi, r)) ≤ ε2µ(V ),

D(Ω) is dense in C0(Ω) also in L2-norm, whence all the claims follow. �

Proof of Theorem 2.2. (I). Under conditions (j.1) and (j.2), it follows easily from (2.2) that
(E ,Fmax) is a bilinear, symmetric, non-negative and Markovian form. Moreover, by the
arguments in [14, Example 1.2.4, p. 14], (E ,Fmax) is also closed. It remains to show that
the domain Fmax is dense in L2(M). Indeed, by Lemma 4.1, D is a subset of Fmax and D is
dense in L2(M), whence also Fmax is dense in L2(M), and (E ,Fmax) is a Dirichlet form.

(II). By Lemma 4.1(II), F is dense in L2(M) so that (E ,F) is a Dirichlet form. To prove
the regularity of (E ,F), we need to verify that F ∩ C0(M) is dense in C0(M) in sup-norm
and in F in E1-norm. Since F ∩C0(M) contains D, the regularity of (E ,F) also follows from
Lemma 4.1(II). �

Corollary 4.2. Assume that (TJ) is satisfied. Then (E ,F) defined in (2.2) and (2.4) is a
regular Dirichlet form. Besides, for any compact ball B of radius r ∈ (0, R), the indicator
φ := 1B of B belongs to D ⊂ F and satisfies:

E(φ, φ) ≤ C
µ(B)

rβ
. (4.2)

Proof. Clearly, (TJ) implies (j.1), and the first claim follows from Theorem 2.2. By (4.1)
and (TJ), we obtain

E(φ, φ) = 2

∫

B
J(x,B(x, r)c)dµ(x) ≤ C

µ(B)

rβ
,

which proves the second claim. �

In the subsequent sections we will need also the following statement.

Proposition 4.3. Under the hypotheses of Theorem 2.2, for any open set A ⊂ M and for
any Borel function v ∈ F , that is non-negative on A, we have

∫

A
v(y)J(x, dy) ≤ ess sup

A
v

∫

A
J(x, dy), (4.3)

for µ-a.a. x ∈ M .

Proof. By [14, Lemma 4.5.4(i), p. 184] and [14, Theorem 4.2.1(ii), p. 161], the measure j
charges no part of M ×M \ diag whose projection on the factor M has capacity 0.

It follows that if

u = 0 q.e. in A

then ∫

M×A\diag
u (y)J (x, dy) dµ (x) = 0
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and, hence, ∫

A
u (y)J (x, dy) = 0

for µ-a.a. x ∈ M.
Hence, the function v in (4.3) can be replaced by its quasi-continuous version ṽ. Set

a = ess sup
A

v = ess sup
A

ṽ.

By [14, Lemma 2.1.4, p. 70] we have

ṽ ≤ a q.e. in A,

which implies ∫

A
v(y)J(x, dy) =

∫

A
ṽ(y)J(x, dy) ≤ a

∫

A
J(x, dy).

�

5. Nash inequality

From this section, we start preparation for the proof of Theorem 2.8. From now on, we
always assume (M,d) is an ultrametric space that is proper and separable, and µ is a Radon
measure on M with full support. Let (E ,F) be the Dirichlet form defined by Theorem 2.2.
Other hypotheses will be stated explicitly.

Definition 5.1. We say the Nash inequality (Nash) holds for the Dirichlet form (E ,F) if
there exist positive constants ν and C such that

‖f‖
2(1+ν)
L2 ≤ C

(
E(f, f) +R

−β
‖f‖2L2

)
‖f‖2νL1 (Nash)

for all f ∈ F ∩ L1.

The following lemma was proved in [28, Theorem 2.1] for a local Dirichlet form on a
Riemannian manifold. We extend this result to non-local Dirichlet forms on ultrametric
spaces.

Lemma 5.2. We have (V) + (PI) ⇒ (Nash) where ν = β/α.

Proof. The proof is divided into three steps. For any f ∈ L1 (M) and s > 0, define a function
fs on M by

fs(x) :=
1

µ (B(x, s))

∫

B(x,s)
f(z)dµ(z).

Step I. Let us prove that, for any f ∈ L1 and for all s ∈ (0, R),

‖fs‖
2
L2 ≤ Cs−α‖f‖2L1 , (5.1)

where the constant C depends only on the constants in hypotheses. Indeed, for all z ∈ M ,
s > 0 and x ∈ B(z, s), we have B(x, s) = B(z, s) and, hence,

‖fs‖L1 ≤ ‖|f |s‖L1 =

∫

M

1

µ(B(x, s))

∫

B(x,s)
|f(z)|dµ(z)dµ(x)

=

∫

M
|f(z)|dµ(z)

∫

M

1B(z,s)(x)

µ(B(z, s))
dµ(x)

= ‖f‖L1 .

On the other hand, we have by (V≥),

‖fs‖L∞ ≤ Cs−α sup
x∈M

∫

B(x,s)
|f(z)|dµ(z) ≤ Cs−α‖f‖L1 .

It follows that
‖fs‖

2
L2 ≤ ‖fs‖L∞‖fs‖L1 ≤ Cs−α‖f‖2L1 ,
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which proves (5.1).
Step II. Let us prove that, for all f ∈ F ∩ L1 and s ∈ (0, κR),

‖f − fs‖
2
L2 ≤ CsβE(f, f), (5.2)

where κ is the constant from (PI), and C depends only on the constants in hypotheses.
Indeed, since all distinct balls of radii s in M are disjoint and M is separable, there exists a
(at most) countable family {Bi := B(xi, s)} of disjoint balls of radii s such that M = ⊔iBi.
Note that, for any x ∈ Bi, we have B(x, s) = Bi and, hence,

fs (x) = −

∫

B(x,s)
f dµ = −

∫

Bi

f dµ = fBi.

Hence, we obtain by (PI) that

‖f − fs‖
2
L2 =

∑

i

∫

Bi

|f − fs|
2dµ =

∑

i

∫

Bi

|f − fBi |
2dµ

≤ Csβ
∑

i

∫

(κ−1Bi)×(κ−1Bi)
(f(x)− f(y))2dj(x, y).

Each ball κ−1Bj is a disjoint union of at most N balls Bi where N depends on the constants
in (V ). It follows that, for each index i, there is at most N indices j so that Bi ⊂ κ−1Bj.
Hence, we obtain

‖f − fs‖
2
L2 ≤ CNsβ

∑

i

∫

Bi×M
(f(x)− f(y))2dj(x, y)

= CNsβ
∫

M×M
(f(x)− f(y))2dj(x, y),

which proves (5.2).
Step III. Now we can prove (Nash). Indeed, by (5.1) and (5.2), we have, for any

f ∈ F ∩ L1 and s ∈ (0, κR),

‖f‖2L2 ≤ 2‖f − fs‖
2
L2 + 2‖fs‖

2
L2 ≤ CsβE(f, f) + Cs−α‖f‖2L1 .

On the other hand, if s ∈ [κR,∞) (in the case R < ∞) then

‖f‖2L2 ≤ (s/
(
κR
)
)β‖f‖2L2 .

Combining the above two inequalities and assuming that C > 1, we obtain that, for any
s > 0,

‖f‖2L2 ≤ Csβ
(
E(f, f) +R

−β
‖f‖2L2

)
+Cs−α‖f‖2L1 .

Choosing s so that the two terms on the right hand side are equal, that is,

sα+β =
‖f‖2L1

E(f, f) +R
−β

‖f‖2
L2

,

we obtain

‖f‖2L2 ≤ 2Cs−α ‖f‖2L1 = 2C
(
E(f, f) +R

−β
‖f‖2L2

) α
α+β

‖f‖
2 β
α+β

L1 ,

which yields (Nash) with ν = β/α. �

Lemma 5.3. Assume that (V≤) and (Nash) hold with ν = β/α. Then there exists σ ∈ (0, 1)
such that, for any ball B ⊂ M of radius R ∈ (0, σR), for any measurable set E ⊂ B, and for
any function f ∈ F such that f = 0 a.e. in Ec, we have

‖f‖2L2 ≤ Cµ (E)ν E (f, f) . (5.3)
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Proof. Indeed, by Cauchy-Schwarz inequality,

‖f‖2L1 ≤ µ (E) ‖f‖2L2

whence by (Nash)

‖f‖
2(1+ν)
L2 ≤ C

(
E(f, f) +R

−β
‖f‖2L2

)
‖f‖2νL2µ (E)ν

whence

‖f‖2L2 ≤ CE(f, f)µ (E)ν + CR
−β

µ (E)ν ‖f‖2L2 .

Choosing σ so small that

CR
−β

µ (E)ν ≤ CR
−β

µ (B)α/β ≤ C ′

(
R

R

)β

≤ C ′σβ <
1

2
,

we obtain (5.3). �

The inequality (5.3) is called the Faber-Krahn inequality. It follows from Lemmas 5.2 and
5.3 that the hypotheses (V ) and (PI) imply the Faber-Krahn inequality (5.3) with ν = β/α
and for some σ ∈ (0, 1). This parameter σ will be used in the rest of this paper alongside with
α and β. Without loss of generality, we can assume that σ is small enough, in particular,
σ ≤ κ where κ is the parameter from (PI).

For a non-empty open set Ω ⊂ M , let F(Ω) be the closure of F ∩C0(Ω) in F with respect
to the norm E1(u, u) = E(u, u) + ‖u‖2L2 . It is well known (see [14]) that if (E ,F) is regular,

then (E ,F(Ω)) is a regular Dirichlet form on L2(Ω). Denote the corresponding generator,
heat semigroup and heat kernel (if it exists) respectively by LΩ, {PΩ

t } and pΩt (x, y).
Denote by λ1(Ω) the bottom of the spectrum of the operator LΩ in L2(Ω). It is known

that

λ1(Ω) = inf
f∈F(Ω)\{0}

E(f, f)

‖f‖2
L2

.

It follows from (5.3) that if Ω is contained in a ball B of radius R < σR then

λ1(Ω) ≥ cµ (Ω)−ν . (5.4)

Definition 5.4. We say that the condition (DUE) is satisfied if the heat kernel pt(x, y)
exists and satisfies the following diagonal upper estimate

pt(x, y) ≤
C

tα/β
, (DUE)

for any t ∈ (0, R
β
) and for µ-almost all x, y ∈ M .

A very useful consequence of the Nash inequality is stated in the next lemma.

Lemma 5.5. If (E ,F) satisfies (Nash) with ν = α/β then, for all t ∈ (0, R
β
),

‖Pt‖L2→L∞ ≤
C

tα/(2β)
. (5.5)

Consequently, (DUE) is satisfied.

For the proof see [4, Theorem 2.1] and [20, Lemma 3.7].
The converse is also true: (DUE) implies the ultracontractive estimate (5.5), while the

latter implies (Nash) (see [10]).
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6. Lemma of growth

The main result of this section is Lemma of growth (Lemma 6.4) and its consequences. A
similar lemma in general metric spaces was proved [19] but in the present setting we have
significant simplifications due to the ultrametric properties. In particular, we do not need to
use a generalized capacity condition as in [19].

Consider the space

F ′ := F + {const}

and extend E from F to F ′ as follows: for all u, v ∈ F and a, b ∈ R, set

E (u+ a, v + b) := E (u, v) .

Definition 6.1. Let Ω be an open subset ofM . We say that a function u ∈ F ′ is subharmonic
(resp. superharmonic) in Ω if

E(u, ϕ) ≤ 0 (resp. E(u, ϕ) ≥ 0) (6.1)

for any 0 ≤ ϕ ∈ F(Ω). A function u ∈ F ′ is called harmonic in Ω if it is both subharmonic
and superharmonic in Ω.

Let v be a Borel function on M . Define its tail TB (v) outside a ball B by

TB(v) := ess sup
x∈B

∫

Bc

|v(y)|J(x, dy). (6.2)

Lemma 6.2. Let B be a compact ball of radius R ∈ (0, R). Set

φ := 1B .

Then, for any v ∈ F ′ ∩ L∞, that is non-negative and subharmonic in B, we have

E(vφ, vφ) ≤ 2TB(v)

∫

B
vdµ. (6.3)

Proof. By Lemma 4.1, φ ∈ F (B). Hence, both vφ and vφ2 belong to F (B) (cf. [19,
Proposition 6.5 (i)-(ii)]). By a direct computation, we obtain the identity

E(vφ, vφ) = E(v, vφ2) +

∫

M×M
v(x)v(y) (φ(x)− φ(y))2 dj (6.4)

(see also [19, (3.19)]). Since vφ2 ∈ F(B), we conclude by the definition of subharmonic
functions, that

E(v, vφ2) ≤ 0.

Splitting the domain of the integration in (6.4) and using symmetrization and φ = 1B , we
obtain

E(vφ, vφ) ≤

(∫

B×B
+

∫

Bc×B
+

∫

B×Bc

+

∫

Bc×Bc

)
v(x)v(y) (φ(x)− φ(y))2 dj

= 2

∫

B×Bc

v(x)v(y) (φ(x)− φ(y))2 dj (by symmetrization)

≤ 2

∫

B
v(x)dµ(x) · ess sup

x∈B

∫

Bc

|v(y)|J(x, dy), (6.5)

which is equivalent to (6.3). �

Remark 6.3. In a setting of jump Dirichlet forms in general metric measure spaces, a similar
lemma was proved in [19, Lemma 3.10]. However, the proof in [19] is much more involved
because in general the indicator function 1B is not in F and, hence, one must use a cutoff
function φ of B in a larger ball. In order to do so, one has to assume an additional complicated
hypothesis: the generalized capacity condition, that we do not need in the ultrametric setting.
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Lemma 6.4 (Lemma of growth). Assume that (V), (TJ) and (PI) are satisfied. If a function
u ∈ F ′ ∩ L∞ is superharmonic and non-negative in a ball B of radius R ∈ (0, σR), and if,
for some a > 0,

µ(B ∩ {u < a})

µ(B)
≤ ε0

(
1 +

RβTB(u−)

a

)−α/β

, (6.6)

then

ess inf
B

u ≥
a

2
. (6.7)

Here ε0 ∈ (0, 1) is a constant that depends only on the constants in the hypotheses.

Recall that the tail function TB(v) was defined by (6.2). Observe also that if u ≥ 0 on
M then TB(u−) = 0 and the condition (6.6) simplifies. The statement of Lemma 6.4 means
the following: if the set {u < a} occupies in the ball B a small enough portion (where the
smallness is determined by the right hand side of (6.6)) then the set {u < a/2} ∩ B has
measure zero (see Fig. 1).

Figure 1. Level sets {u < a} and {u < a/2}

The notion of Lemma of growth was introduced by Landis [26], [27] in the context of elliptic
second order PDEs in Rn, where it was used in order to obtain the Hölder continuity and
the Harnack inequality for solutions. An earlier version of this type of argument goes back to
De Giorgi [11]. The proof of the Lemma of growth for the non-divergence form second order
elliptic and parabolic PDEs was a key part of the work of Krylov and Safonov [25].

Here we use the Lemma of growth for non-local operators that appeared in this form in
[19]. However, in the presence of an ultrametric, the statement and the proof noticeably
simplify.

The most essential part of the proof of Lemma 6.4 is contained in the following lemma.

Lemma 6.5. Assume that (V), (TJ) and (PI) are satisfied. Let a function u ∈ F ′ ∩ L∞ be
superharmonic and non-negative in a ball B of radius R ∈ (0, σR). Fix some 0 < a < b and
set

ma =
µ(B ∩ {u < a})

µ(B)
and mb =

µ(B ∩ {u < b})

µ(B)
.

Then

ma ≤ CA

(
b

b− a

)2

m
1+β/α
b , (6.8)

where

A := 1 +
RβTB(u−)

b
, (6.9)

and the constant C > 0 depends only on the constants in (V), (TJ) and (PI).
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Proof. Denote

m̃a := µ(B ∩ {u < a}) and m̃b := µ(B ∩ {u < b})

and consider the functions

φ := 1B and v := (b− u)+.

Since v ≥ b− a on the set {u < a}, we obtain

m̃a =

∫

B∩{u<a}
φ2dµ ≤

1

(b− a)2

∫

B
(φv)2dµ. (6.10)

Consider the set E = B ∩ {u < b} (see Fig. 2). Since φ = 0 outside B and v = 0 outside
{u < b}, we see that φv = 0 in Ec.

Figure 2. Set E = B ∩ {u < b}

Since φ ∈ F (B) and, hence, φv ∈ F (B), we conclude by the Faber-Krahn inequality (see
Lemmas 5.2, 5.3) that

∫

B
(φv)2dµ =

∫

E
(φv)2dµ ≤ E(φv, φv)µ (E)ν = E(φv, φv)m̃ν

b . (6.11)

Combining this inequality with (6.10), we obtain

m̃a ≤
E(φv, φv)

(b− a)2
m̃ν

b . (6.12)

Let us now estimate E(φv, φv) from above. Since u is superharmonic in B, the function b−u
is subharmonic in B. Then the function v = (b − u)+ is also subharmonic in B (cf. [19,
Lemma 3.2(ii)]). By Lemma 6.2, we have

E(vφ, vφ) ≤ 2TB(v)

∫

B
vdµ. (6.13)

Using v ≤ b1{u<b}, the definitions of E, v, m̃b, A, and the hypothesis (TJ), we obtain

E(vφ, vφ) ≤ 2TB(v)bµ(E) ≤ 2 (TB(b) + TB(u−)) bm̃b

≤ 2
(
CbR−β + TB(u−)

)
bm̃b ≤ CAb2R−βm̃b. (6.14)

Combining (6.12) and (6.14) yields

m̃a ≤ CA

(
b

b− a

)2

R−βm̃ν+1
b .

Finally, dividing this inequality by µ(B) ≃ Rα, we obtain (6.8), which finishes the proof. �
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As we see from the proof, Lemma 6.5 does not use (PI) directly, only its consequence – the
Faber-Krahn inequality in (6.11), whereas the hypothesis (TJ) is used explicitly in (6.14).
The ultrametric property was most essentially used via Lemma 6.2 in (6.13).

Proof of Lemma 6.4. Let u ∈ F ′ ∩ L∞ be superharmonic and non-negative in a ball B of
radius R < σR and let a > 0. Consider the following sequence

ak :=
1

2
(1 + 2−k)a, k = 0, 1, 2, ...,

so that a0 = a and ak ց 1
2a as k → ∞. Set also

mk :=
µ(B ∩ {u < ak})

µ(B)
.

Applying the inequality (6.8) of Lemma 6.5 with a = ak and b = ak−1, we obtain, for any
k ≥ 1,

mk ≤ C

(
1 +

RβTB(u−)

ak−1

)(
ak−1

ak−1 − ak

)2

m
1+β/α
k−1 .

Since ak−1 ≥
1
2a and

ak−1

ak−1 − ak
=

1 + 2−(k−1)

2−(k−1) − 2−k
≤ 2k+1,

it follows that
mk ≤ CA · 4k ·mq

k−1, (6.15)

where

A = 1 +
RβTB(u−)

a
and q = 1 + β/α.

Iterating (6.15), we obtain

mk ≤ (CA)1+q+···+qk−1
· 4k+q(k−1)+···+qk−1

·mqk

0

≤
(
(CA)

1
q−1 · 4

q

(q−1)2 ·m0

)qk
, (6.16)

where in the second line we have used that

k + q(k − 1) + · · · + qk−1 =
qk+1 − (k + 1)q + k

(q − 1)2
≤

q

(q − 1)2
qk,

and C > 1. It follows from (6.16) and q > 1 that if

(CA)
1

q−1 · 4
q

(q−1)2 ·m0 ≤
1

2
, (6.17)

then
lim
k→∞

mk = 0. (6.18)

Clearly, (6.17) is equivalent to

m0 ≤ 2
− 2q

(q−1)2
−1

· (CA)
− 1

q−1 . (6.19)

Since 1
q−1 = α

β , we see that (6.19) is equivalent to the hypothesis (6.6) with

ε0 := 2
− 2q

(q−1)2
−1

C− 1
q−1 . (6.20)

Assuming that ε0 is defined by (6.20), we see that (6.17) is satisfied and, hence, we have
(6.18). It follows that

µ(B ∩ {u ≤
a

2
}) = 0,

which implies ess infB u ≥ a
2 , that is, (6.7). �

The following lemma is an easy consequence of Lemma 6.4.
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Lemma 6.6. Assume that (V ), (TJ) and (PI) are satisfied. Then, for any ball B of radius
R ∈ (0, σR), and for any non-negative function u ∈ F ′ ∩L∞ that is superharmonic in B, the
following is true:

ess inf
B

u ≥
ε0
2

(
−

∫

B

1

u
dµ

)−1

,

where ε0 is the same as in Lemma 6.4.

Proof. We will apply Lemma 6.4 with a suitable value of a. Indeed, for any a > 0, we have

µ(B ∩ {u < a}) = µ(B ∩ {
1

u
>

1

a
}) ≤ a

∫

B

1

u
dµ = aµ(B)−

∫

B

1

u
dµ.

Since u is non-negative, we have that RβTB(u−) = 0. Setting

a := ε0

(
−

∫

B

1

u
dµ

)−1

,

we obtain that the condition (6.6) of Lemma 6.4 is fulfilled. Hence, by Lemma 6.4, we
conclude that

ess inf
B

u ≥
a

2
=

ε0
2

(
−

∫

B

1

u
dµ

)−1

,

which was to be proved. �

7. Some auxiliary inequalities

In this section we prove some preparatory lemmas to be used in Sections 8 and 10. We
frequently use the notation

uλ := u+ λ

where u is a function on M and λ > 0 is a constant.

Lemma 7.1. Let a function u ∈ F ′ ∩ L∞ be non-negative in a ball B ⊂ M . Set φ := 1B.

Then, for any λ > 0, we have φ2

uλ
∈ F (B) and

E(u,
φ2

uλ
) +

1

2

∫

B×B

∣∣∣∣ln
uλ(y)

uλ(x)

∣∣∣∣
2

dj (x, y) ≤ 3E(φ, φ) + 2

∫

B×Bc

(uλ (y))−
uλ(x)

dj (x, y) , (7.1)

where in the last integral x ∈ B and y ∈ Bc. If in addition u is superharmonic in B then
∫

B×B

∣∣∣∣ln
uλ(y)

uλ(x)

∣∣∣∣
2

dj ≤ 6E (φ, φ) + 4

∫

B×Bc

(uλ(y))−
uλ(x)

dj. (7.2)

Proof. By [19, Lemma 3.7], for any φ ∈ F ∩C0 (B), we have φ2

uλ
∈ F ∩ L∞ and

E(u,
φ2

uλ
)+

1

2

∫

B×B

(
φ2(x) ∧ φ2(y)

) ∣∣∣∣ln
uλ(y)

uλ(x)

∣∣∣∣
2

dj (x, y)

≤ 3E(φ, φ) − 2

∫

B×Bc

uλ(y)
φ2(x)

uλ(x)
dj (x, y) .

Substituting φ = 1B ∈ F ∩ C0 (B) into this inequality, we obtain (7.1). Observe that
φ2

uλ
= φ φ2

uλ
∈ F (B) (cf. [14]).

If u is superharmonic in B then E(u, φ2

uλ
) ≥ 0 because φ2

uλ
∈ F (B) is non-negative. Hence,

(7.2) follows from (7.1). �

Lemma 7.2. Assume that (V), (TJ) and (PI) are satisfied. Let a function u ∈ F ′ ∩ L∞ be
non-negative and superharmonic in a ball B of radius R ∈ (0, R). Fix three positive numbers
a, b, λ and consider in B the function:

v :=

(
ln

a

uλ

)

+

∧ b.
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Then

−

∫

κB
−

∫

κB
(v(x) − v(y))2dµ(x)dµ(y) ≤ C

(
1 +

RβTB((uλ)−)

λ

)
, (7.3)

where κ is the constant from (PI) and C depends only on the constants in the hypotheses.

Proof. Let us extend v to Bc by setting v = 0 and show that v ∈ F (B). Indeed, the function
F (t) = ln a

|t|+λ is a bounded Lipschitz function on R. Therefore, F (u) ∈ F ∩L∞ and, hence,

1BF (u) ∈ F (B). Consequently, by the Markov property, v = (1BF (u))+∧b is also in F (B).
Applying the identity (3.3), the hypothesis (PI), and the obvious inequality

|v(x)− v(y)| ≤

∣∣∣∣ln
uλ(y)

uλ(x)

∣∣∣∣

that holds for all x, y ∈ B, we obtain

−

∫

κB
−

∫

κB
(v(x) − v(y))2dµ(x)dµ(y) =

2

µ(κB)

∫

κB
(v − vκB)

2dµ

≤
CRβ

µ(κB)

∫

B×B
(v(x)− v(y))2dj(x, y)

≤
CRβ

µ(κB)

∫

B×B

∣∣∣∣ln
uλ(y)

uλ(x)

∣∣∣∣
2

dj(x, y). (7.4)

Applying the inequality (7.2) of Lemma 7.1, estimating E (φ, φ) by Corollary 4.2, and using
uλ (x) ≥ λ in B, we obtain

∫

B×B

∣∣∣∣ln
uλ(y)

uλ(x)

∣∣∣∣
2

dj(x, y) ≤ C
µ (B)

Rβ
+ 4

∫

B×Bc

(uλ(y))−
uλ(x)

dj(x, y)

≤ C
µ (B)

Rβ
+ 4

µ (B)

λ
ess sup
x∈B

∫

Bc

(uλ(y))−J(x, dy)

≤ C
µ (B)

Rβ

(
1 +

Rβ

λ
TB((uλ)−)

)
. (7.5)

Combining (7.4) and (7.5), we obtain (7.3). �

Note that Lemma 7.2 is the only place in the entire proof where we use directly the
Poincaré inequality (PI) (except for Lemma 5.2, where we derive the Nash inequality from
(PI)). Through Lemma 7.2, (PI) is used in the derivation of the weak Harnack inequality
in the next section.

8. Weak Harnack inequality

Lemma 8.1. Assume that (V), (TJ) and (PI) are satisfied. Then, for any ball B of radius
R ∈ (0, σR), for any function u ∈ F ′ ∩ L∞ that is superharmonic and non-negative in B,
and for any a > 0, such that

µ(κB ∩ {u ≥ a})

µ(κB)
≥

1

2
(8.1)

and

RβTB(u−) ≤ εa, (8.2)

we have

ess inf
κB

u ≥ εa (8.3)

(see Fig. 3). Here ε ∈ (0, 1) is a constant that depends only on the constants in the hypotheses.
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Figure 3. Level sets {u ≥ a} and {u ≥ εa}

If u ≥ 0 on M then the condition (8.2) is trivially satisfied. A (strong) Harnack inequality
for non-negative harmonic functions (should it be true) would say that

ess inf
κB

u ≥ ε ess sup
κB

u.

In particular, for any a < ess supκB u, we would have (8.3). Thus, the hypothesis (8.1) could
have been relaxed in this case to µ (κB ∩ {u ≥ a}) > 0. Hence, Lemma 8.1 can be regarded
as a weak version of the Harnack inequality.

However, in the literature the term “weak Harnack inequality” is frequently used for a
stronger statement containing a lower bound of ess infκB u via some Lp-norm of u (see [15,
Theorem 8.18], [13, Section 1.3]). Our “weak Harnack inequality” is really “very weak”.

Proof of Lemma 8.1. Let λ, b be two positive parameters to be determined later. Consider
in B the function

v :=

(
ln

a+ λ

uλ

)

+

∧ b,

where uλ = u+ λ. Note that 0 ≤ v ≤ b and

v = 0 ⇔
a+ λ

uλ
≤ 1 ⇔ u ≥ a

v = b ⇔
a+ λ

uλ
≥ eb ⇔ uλ ≤ (a+ λ)e−b =: q.

We will apply Lemma 6.4 to uλ instead of u. For that, set

ω :=
µ(κB ∩ {u ≥ a})

µ(κB)
=

µ(κB ∩ {v = 0})

µ(κB)
(8.4)

and

m :=
µ(κB ∩ {uλ ≤ q})

µ(κB)
=

µ(κB ∩ {v = b})

µ(κB)
. (8.5)

By Lemma 6.4, if

m ≤ ε0

(
1 +

(κR)β TκB((uλ)−)

q

)−α/β

, (8.6)

then

ess inf
κB

uλ ≥
q

2
. (8.7)

Since u ≥ 0 in B, we have

A := RβTB(u−) ≥ (κR)β TκB

(
(uλ)−

)
.
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Hence, in order to have (8.6), it suffices to ensure that

m ≤ ε0

(
1 +

A

q

)−α/β

. (8.8)

Using (8.4), (8.5), and Lemma 7.2, we obtain

b2mω =
1

µ(κB)2

∫

κB∩{v=0}

∫

κB∩{v=b}
b2dµ(x)dµ(y)

=
1

µ(κB)2

∫

κB∩{v=0}

∫

κB∩{v=b}
(v(x)− v(y))2dµ(x)dµ(y)

≤ −

∫

κB
−

∫

κB
(v(x)− v(y))2dµ(x)dµ(y)

≤ C

(
1 +

RβTB((uλ)−)

λ

)
≤ C

(
1 +

A

λ

)
.

It follows that

m ≤
C

b2ω

(
1 +

A

λ

)
≤

2C

b2

(
1 +

A

λ

)
,

where we have used that ω ≥ 1/2, which is true by (8.1). Hence, the condition (8.8) will be
satisfied provided

2C

b2

(
1 +

A

λ

)
≤ ε0

(
1 +

A

q

)−α/β

that is equivalent to

b2 ≥
2C

ε0

(
1 +

A

λ

)(
1 +

A

q

)α/β

. (8.9)

Fix ε > 0 to be determined later, and specify the parameters λ, b as follows:

λ := εa, b := ln
1 + ε

4ε
.

Then we have

q = (a+ λ)e−b = 4εa,

and the inequality (8.9) is equivalent to

(
ln

1 + ε

4ε

)2

≥
2C

ε0

(
1 +

A

εa

)(
1 +

A

4εa

)α/β

. (8.10)

Since A ≤ εa by (8.2), the inequality (8.10) will follow from

(
ln

1 + ε

4ε

)2

≥
4C

ε0

(
5

4

)α/β

that can be achieved by choosing ε small enough. With this choice of ε we conclude that
(8.7) holds, which implies

ess inf
κB

u ≥
q

2
− λ = 2εa− εa = εa,

thus finishing the proof. �
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9. Oscillation properties for harmonic functions

Here we use the weak Harnack inequality of Lemma 8.1 in order to obtain Hölder estimates
for harmonic functions in Lemmas 9.3 and 9.4. In the case of local Dirichlet forms (and for
solutions of second order elliptic PDEs) this is quite simple as was demonstrated in [27,
Theorem 7.2]. The non-local case is much more involved because of the tail condition (8.2).
We use an enhanced version of the argument that originated from [12] and that was also
used in [19]. Earlier versions of this argument were used in [30] and [24]. The fact that a
stronger version of a weak Harnack inequality implies the Hölder continuity in the framework
of non-local operators in Rn was first observed in [13].

Given a ball B ⊂ M and a function u ∈ F ′ ∩ L∞ (M), set

m∗ = ess inf
B

u, m∗ = ess sup
B

u (9.1)

and define the following notations:

osc
B

u := m∗ −m∗

and

T ∗
B(u) := TB ((u−m∗)− + (m∗ − u)−) = ess sup

x∈B

∫

Bc

((u−m∗)− + (m∗ − u)−) J(x, dy).

It is easy to see that T ∗
B (u) is monotone decreasing with respect to B.

Lemma 9.1 (Oscillation inequality). Assume that (V), (TJ) and (PI) are satisfied. Let
u ∈ F ′ ∩ L∞ be harmonic in a ball B of radius R ∈ (0, σR). Then we have either

osc
κB

u ≤ (1− ε) osc
B

u, (9.2)

or
osc
B

u ≤ ε−1RβT ∗
B(u), (9.3)

where ε ∈ (0, 1) is a constant depending only on the constants from the hypotheses.

Proof. Let us use the notations (9.1). By adding to u a constant, we can assume without loss
of generality that m∗ +m∗ = 0, that is,

a := m∗ = −m∗.

Clearly, one of the sets κB ∩ {u ≥ 0} and κB ∩ {u ≤ 0} takes at least 1
2 of the measure of

κB. Without loss of generality, we can assume that this is the first one (otherwise change u
to −u), which is equivalent to

µ(κB ∩ {u+ a ≥ a})

µ(κB)
≥

1

2
. (9.4)

Since the function u + a belongs to F ′ ∩ L∞ and is non-negative and harmonic in B, we
conclude by Lemma 8.1 that if

RβTB((u+ a)−) ≤ εa, (9.5)

then
ess inf

κB
(u+ a) ≥ εa.

In this case we obtain

osc
κB

u = ess sup
κB

u− ess inf
κB

u ≤ a− (εa− a) =
(
1−

ε

2

)
2a =

(
1−

ε

2

)
osc
B

u.

On the other hand, if (9.5) fails then

RβT ∗
B(u) = RβTB((u+ a)− + (a− u)−) ≥ RβTB((u+ a)−) ≥ εa =

ε

2
osc
B

u.

Renaming ε/2 to ε, we obtain that one of the inequalities (9.2), (9.3) is satisfied. �
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Lemma 9.2. Let {Bj}
k
j=0 be a sequence of k + 1 balls such that Bj+1 ⊂ Bj for all j =

0, 1, ..., k − 1. For any function u ∈ F ′ ∩ L∞, the following inequality holds:

T ∗
Bk

(u) ≤
k−1∑

j=0

TBj (1)(osc
Bj

u− osc
Bk

u) + TB0(u) + TB0(1) ‖u‖L∞(B0)
. (9.6)

Proof. Denote

mj = ess inf
Bj

u, Mj = ess sup
Bj

u, Qj = osc
Bj

u = Mj −mj.

Set

v = (u−mk)− + (Mk − u)− = (mk − u)+ + (u−Mk)+

so that T ∗
Bk

(u) = TBk
(v). Let us first prove that, for any j = 0, ..., k − 1,

TBj+1 (v) ≤ (Qj −Qk)TBj+1(1) + TBj (v) (9.7)

(Fig. 4). Since Bc
j+1 is the union of Bj \Bj+1 and Bc

j , we have

TBj+1 (v) ≤ ess sup
x∈Bj+1

∫

Bj\Bj+1

v(y)J(x, dy) + ess sup
x∈Bj

∫

Bc
j

v(y)J(x, dy). (9.8)

Figure 4.

Let us verify that

v ≤ Qj −Qk µ-a.e. in Bj. (9.9)

Indeed, in the set {mk ≤ u ≤ Mk} we have v = 0 and (9.9) is trivial. In the set {u < mk}∩Bj

we have

v = mk − u ≤ mk −mj ≤ (mk −mj) + (Mj −Mk) = Qj −Qk.

The same argument works in the set {u > Mk} ∩Bj as in this case

v = u−Mk ≤ Mj −Mk ≤ Qj −Qk.

Using (9.9) and (4.3) we obtain, for µ-a.a. x ∈ Bj+1,
∫

Bj\Bj+1

v(y)J(x, dy) ≤ (Qj −Qk)

∫

Bc
j+1

J(x, dy) ≤ (Qj −Qk)TBj+1(1). (9.10)

Substituting this into (9.8), we obtain (9.7).
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Iterating (9.7), we obtain

T ∗
Bk

(u) = TBk
(v) ≤

k−1∑

j=0

(Qj −Qk)TBj+1(1) + TB0 (v) .

Observing that

v ≤ |u|+max{|mk| , |Mk|} ≤ |u|+ ‖u‖L∞(B0)
,

and, hence,

TB0 (v) ≤ TB0 (u) + TB0(1) ‖u‖L∞(B0)
,

we obtain (9.6). �

In the rest of this section we use the notation Br := B(x0, r) assuming that x0 is a fixed
point on M .

Lemma 9.3 (Iterated Oscillation Inequality). Assume that (V), (TJ) and (PI) are satisfied.
For any function u ∈ F ′ ∩ L∞ that is harmonic in a ball BR of radius R ∈ (0, σR), the
following inequality holds for any non-negative integer k:

osc
B

q−kR

u ≤ C0q
−γkA, (9.11)

where q > 1, C0 > 1 and 0 < γ < 1 are constants depending on the hypotheses and

A := RβTBR
(u) + ‖u‖L∞(BR). (9.12)

Proof. In this proof all constants are important and will be denoted by designated letters.
The letter ε denotes the constant from Lemma 9.1, C is reserved for the constant from (TJ),
and C0 is the constant from (9.11).

Fix a large number q > 1 to be specified below and set, for any non-negative integer k,

Rk = q−kR and Qk = osc
BRk

u.

The inequality (9.11) is equivalent to

Qk ≤ C0q
−γkA, (9.13)

that will be proved by induction in k, where γ > 0 is a small number and C0 is a large
number, to be chosen below.

For k = 0 and k = 1 we have

Q1 ≤ Q0 = osc
BR

u ≤ 2 ‖u‖L∞(BR) ≤ 2A = 2qγ
(
q−γA

)
,

so that (9.13) holds provided C0 ≥ 2qγ . Let us make the inductive step from ≤ k to k + 1,
assuming k ≥ 1.

Taking q so big that q−1 ≤ κ, we obtain by Lemma 9.1, that

either Qk+1 ≤ (1− ε)Qk or Qk ≤ ε−1Rβ
kT

∗
BRk

(u).

Assuming first that Qk+1 ≤ (1− ε)Qk, we obtain by the inductive hypothesis

Qk+1 ≤ (1− ε)C0q
−γkA = (1− ε)qγC0q

−γ(k+1)A ≤ C0q
−γ(k+1)A,

provided

(1− ε)qγ ≤ 1. (9.14)

After we specify below a large enough q, we can always choose γ > 0 so small that (9.14) is
satisfied. Thus, we complete the inductive step in this case.

Consider now the second case, that is, let

Qk ≤ ε−1Rβ
kT

∗
Bk

(u). (9.15)
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By Lemma 9.2, we have

T ∗
BRk

(u) ≤

k−1∑

j=0

(Qj −Qk)TBRj+1
(1) + TBR

(u) + TBR
(1) ‖u‖L∞(BR) .

Clearly,

TBR
(u) + TBR

(1) ‖u‖L∞(BR) ≤ TBR
(u) + CR−β ‖u‖L∞(BR) = CAR−β,

and, by (TJ), we have

TBRj
(1) ≤ CR−β

j = CqβjR−β.

It follows that

T ∗
BRk

(u) ≤ C
k−1∑

j=0

(Qj −Qk) q
β(j+1)R−β + CAR−β,

whence

Rβ
kT

∗
BRk

(u) ≤ C

k−1∑

j=0

(Qj −Qk) q
β(j−k+1) + CAq−βk

≤ C




k−1∑

j=0

Qjq
β(j−k+1) −Qk +Aq−βk


 ,

where we have used that
∑k−1

j=0 q
β(j−k+1) ≥ 1. By the inductive hypothesis we have

Qj ≤ C0q
−γjA, j = 0, 1, . . . , k. (9.16)

Substituting into the previous estimate and assuming γ < β, we obtain

Rβ
kT

∗
BRk

(u) ≤ C


C0q

−β(k−1)
k−1∑

j=0

q(β−γ)jA−Qk +Aq−βk




≤ C

(
C0q

−β(k−1) q(β−γ)k

qβ−γ − 1
A−Qk +Aq−βk

)

= C

(
C0q

βq−γkA

qβ−γ − 1
−Qk +Aq−βk

)
.

Combining with (9.15), we obtain

Qk ≤ ε−1C

(
C0q

βq−γkA

qβ−γ − 1
−Qk +Aq−βk

)
,

whence

Qk ≤
C

C + ε

(
C0q

βq−γk

qβ−γ − 1
+ q−βk

)
A

≤
C

C + ε

(
qγ

1− q−(β−γ)
+

1

C0

)
C0q

−γkA. (9.17)

In order to complete the inductive step, it suffices to verify that

Qk ≤ C0q
−(k+1)γA

because Qk+1 ≤ Qk. Clearly, this will follow from (9.17) provided

C

C + ε

(
qγ

1− q−(β−γ)
+

1

C0

)
qγ ≤ 1. (9.18)
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Assuming that γ < β/2, (9.18) will follow from

q2γ

1− q−β/2
+

qγ

C0
≤ 1 +

ε

C
. (9.19)

Clearly, by choosing first q large enough, then γ > 0 small enough, and then C0 large enough,
we achieve both (9.14) and (9.19), thus finishing the proof. �

Lemma 9.4 (Oscillation Lemma). Assume that (V), (TJ) and (PI) are satisfied. Let u ∈
F ′ ∩ L∞ be harmonic in a ball BR = B(x0, R) with R < σR. Then, for any ρ ∈ (0, R],

osc
Bρ

u ≤ C
( ρ

R

)γ (
RβTBR

(|u|) + ‖u‖L∞(BR)

)
, (9.20)

where γ > 0 is the constant from Lemma 9.3 and C depends only on the constants from the
hypotheses.

Proof. We use the notation from Lemma 9.3. Since ρ ∈ (0, R], there exists an integer k ≥ 0
such that

q−(k+1) <
ρ

R
≤ q−k.

Hence, by Lemma 9.3,

osc
Bρ

u ≤ osc
B

R/qk

u ≤ C0q
−kγA = C0q

γ(q−(k+1))γA ≤ C0q
γ
( ρ

R

)γ
A,

which is exactly (9.20) with C = C0q
γ . �

10. Conditions (E) and (S)

Recall that, for any open set Ω ⊂ M , (E ,F (Ω)) is a regular Dirichlet form in L2 (Ω),

LΩ is its generator, and PΩ
t = e−tLΩ

is the corresponding heat semigroup acting in L2 (Ω)
(see Section 7). By the functional calculus, for any f ∈ L2(Ω), the function t 7→ PΩ

t f is a
continuous mapping from [0,∞) to L2(Ω). Hence, it can be integrated in t on any bounded
time interval [0, T ] as an L2-valued function. Assuming further that f ≥ 0, we can let T → ∞
and define the Green operator GΩ by

GΩf =

∫ ∞

0
PΩ
t f dt := lim

T→∞

∫ T

0
PΩ
t f dt

where the limit is understood a.e.. Note that the function GΩf takes values in [0,+∞]. By
the monotonicity of GΩf in f , we can extend the operator GΩ to all non-negative measurable
functions f , in particular, to f ≡ 1.

Definition 10.1. We say that the condition (E≤) holds if there exist σ ∈ (0, 1) and C > 0
such that, for any ball B of radius r ∈ (0, σR),

ess sup
B

GB1 ≤ Crβ. (E≤)

We say that the condition (E≥) holds
1 if, for any ball B of radius r ∈ (0, R),

ess inf
B

GB1 ≥ C−1rβ. (E≥)

We say that the condition (E ) holds if both (E≤) and (E≥) are satisfied.

In what follows, the parameter σ in the above definition will coincide with the parameter
σ in the Faber-Krahn inequality (cf. Lemma 5.3).

1On an arbitrary metric space, the condition (E≥) should look as follows:

ess inf
εB

G
B1 ≥ C

−1
r
β
,

where ε > 0 is small enough, to ensure that the points where we estimate GB1 from below are far enough
from Bc. However, in ultra-metric space, the distance from any point of B to Bc is at least r, so we can take
ε = 1.
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Lemma 10.2. We have

(V≤) + (Nash) ⇒ (E≤)

where ν and σ are the same as in Lemma 5.3.

Proof. Let B be a ball of radius r ∈
(
0, σR

)
. Let us first prove that, for all t ≥ 1

3r
β,

∥∥PB
t

∥∥
L2→L∞ ≤

C

rα/2
.

Indeed, if t < R
β
then, by the inequality (5.5) of Lemma 5.5,

‖PB
t ‖L2→L∞ ≤ ‖Pt‖L2→L∞ ≤

C

tα/(2β)
≤

C ′

rα/2
.

The same inequality holds also for t ≥ R
β
as
∥∥PB

t

∥∥
L2→L∞ is monotone decreasing in t.

Next, we have by (5.4) and (V≤)

λ1(B) ≥ cµ (B)−β/α ≥ cr−β.

Hence, by the spectral theory of self-adjoint operators, we obtain, for all t > 0,

‖PB
t ‖L2→L2 ≤ e−λ1(B)t ≤ e−cr−βt.

It follows that, for all t ≥ rβ,

‖PB
t ‖L1→L∞ ≤ ‖PB

t/3‖L1→L2‖PB
t/3‖L2→L2‖PB

t/3‖L2→L∞

= ‖PB
t/3‖

2
L2→L∞‖PB

t/3‖L2→L2

≤
C

rα
e−cr−βt.

Consequently, we have, for all t ≥ rβ,

∥∥PB
t 1B

∥∥
L∞ ≤

C

rα
e−cr−βt ‖1B‖L1 =

C

rα
e−cr−βtµ (B) ≤ Ce−cr−βt.

For any nonnegative f ∈ L1(B), we obtain

(GB1B , f) =

∫ ∞

0
(PB

t 1B , f)dt ≤

∫ rβ

0
(1B , f)dt+

∫ ∞

rβ
(PB

t 1B , f)dt

≤

∫ rβ

0
‖f‖L1 dt+

∫ ∞

rβ
Ce−cr−βt‖f‖L1dt

≤C ′rβ‖f‖L1

where C ′ = 1 + C
∫∞
1 e−csds. Since 0 ≤ f ∈ L1(B) is arbitrary, we obtain (E≤). �

Lemma 10.3 ([19, Lemma 5.1]). If GΩ1 ∈ L∞(Ω) then, for any f ∈ L2(Ω), the function
GΩf belongs to F(Ω) and satisfies the identity

E(GΩf, ϕ) = (f, ϕ) ∀ϕ ∈ F(Ω).

If in addition f ≥ 0 then GΩf is superharmonic in Ω.

Lemma 10.4. We have

(V ) + (TJ) + (PI) ⇒ (E≥).

Proof. By Lemmas 5.2 and 10.2, we have (E≤). Let B be a ball of radius r ∈ (0, R). We
need to prove that

ess inf
B

GB1 ≥ crβ. (10.1)
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Assume first that r ∈
(
0, σR

)
. By (E≤) we have GB1 ∈ L∞. Hence, by Lemma 10.3, the

function u := GB1 is superharmonic in B. Since u ≥ 0 in M , we obtain by Lemma 6.6 that

ess inf
B

u ≥ c

(
−

∫

B

1

u
dµ

)−1

. (10.2)

Recall that the function φ := 1B belongs to F(B) (cf. Lemma 4.1). For any λ > 0, set

uλ = u+ λ. Since φ2

uλ
∈ F(B) (cf. [19, Propostion 6.5(iii)]), we obtain by Lemma 10.3
∫

B

1

uλ
dµ = (1B ,

φ2

uλ
) = E(GB1,

φ2

uλ
) = E(u,

φ2

uλ
).

Since uλ ≥ 0 on M , we obtain by Lemma 7.1 and (4.2)

E(u,
φ2

uλ
) ≤ 3E(φ, φ) ≤ C

µ (B)

rβ
.

Combining the two previous lines, dividing by µ (B) and letting λ → 0, we obtain

−

∫

B

1

u
dµ ≤ Cr−β,

which together with (10.2) proves (10.1).
Now let r ∈ [σR,R) (in the case R < ∞). For any ball B′ ⊂ B of radius r′ = 1

2σR, we
have by the first part of the proof that

GB1 ≥ GB′

1 ≥ c
(
r′
)β

≥ c′rβ a.e. in B′.

Since B can be covered by a countable family of balls of radii r′, we obtain (10.1), which was
to be proved. �

Definition 10.5. We say that a survival condition (S) is satisfied if there exist constants
ε, δ > 0 such that, for any ball B ⊂ M of radius r ∈ (0, R), the following inequality holds:

ess inf
B

PB
t 1 ≥ ε, (S)

provided t1/β ≤ δr.

Lemma 10.6. We have (E ) ⇒ (S).

Proof. Let us first prove that, for any ball B with
∥∥GB1

∥∥
L∞ < ∞ and for any t > 0,

PB
t 1(x) ≥

GB1(x) − t

‖GB1‖L∞

for µ-a.a. x ∈ B. (10.3)

Indeed, we have

GB1 =

(∫ t

0
+

∫ ∞

t

)
PB
s 1 ds

=

∫ t

0
PB
s 1 ds +

∫ ∞

0
PB
t PB

τ 1 dτ

≤ t+ PB
t

(
GB1

)
≤ t+

∥∥GB1
∥∥
L∞ PB

t 1,

whence (10.3) follows.
Let now B be a ball of radius r ∈

(
0, R

)
. If r < σR then by (E ) we have GB1 ≃ rβ a.e. in

B. Substituting into (10.3), we obtain PB
t 1 ≥ ε a.e. in B for all t ≤ (δr)β with small enough

ε, δ > 0. If r ∈ [σR,R) then we obtain (S) by covering of B by smaller balls as in the proof
of Lemma 10.4. �

A version of Lemma 10.6 for general metric spaces was proved in [19, Lemma 5.6], but the
present proof is simpler.
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11. Oscillation inequality for Lu = f

We apply the oscillation inequalities for harmonic functions in Section 9 to prove the Hölder
continuity of the solutions to the equation Lu = f for f ∈ L2.

Definition 11.1. For a non-empty open set Ω ⊂ M and f ∈ L2(Ω), we say that a function
u ∈ F solves weakly the equation

Lu = f in Ω,

if, for any φ ∈ F(Ω),

E(u, φ) = (f, φ).

We continue using the notation Br = B (x0, r) where x0 ∈ M is fixed.

Lemma 11.2. Assume that (V), (TJ) and (PI) are satisfied. Let Ω be any open subset
of M . Let f ∈ L2 ∩ L∞(Ω) and assume that a function u ∈ F ∩ L∞ solves the equation
Lu = f weakly in Ω. Then, for any ball Br = B(x0, r) ⊂ Ω of radius r ∈ (0, σR) and for any
0 < ρ ≤ r, we have

osc
Bρ

u ≤ C
(ρ
r

)γ
‖u‖L∞(M) + Crβ‖f‖L∞(Br), (11.1)

where positive constants σ,γ, C depend only on the constants in the hypotheses.

Proof. By (E≤) and r < σR we have
∥∥GB1

∥∥
L∞ < ∞. By Lemma 10.3, the function w =

GBf belongs to F(B) and solves the equation Lw = f weakly in B. Clearly, the function
v := u−GBf belongs F ∩L∞ and is harmonic in B (cf. [19, Prop. 5.8]). Hence, by Lemma
9.4,

osc
Bρ

v ≤ C
(ρ
r

)γ (
rβTBr(v) + ‖v‖L∞(Br)

)
. (11.2)

Using (TJ) and (4.3), we obtain

rβTBr (v) = rβ ess sup
x∈Br

∫

Bc
r

|v| J(x, dy) ≤ C‖v‖L∞(M). (11.3)

Clearly, we have

‖v‖L∞(M) ≤ ‖u‖L∞(M) +
∥∥GBrf

∥∥
L∞(M)

= ‖u‖L∞(M) +
∥∥GBrf

∥∥
L∞(Br)

.

Combining the above three lines, we obtain

osc
Bρ

v ≤ C
(ρ
r

)γ (
‖u‖L∞(M) +

∥∥GBrf
∥∥
L∞(Br)

)
. (11.4)

By (E≤), we have

∥∥GBrf
∥∥
L∞(Br)

≤
∥∥GB1

∥∥
L∞ ‖f‖L∞(Br)

≤ Crβ ‖f‖L∞(Br)
.

Combining this with (11.4), we obtain

osc
Bρ

u ≤ osc
Bρ

v + osc
Bρ

GBrf

≤ C
(ρ
r

)γ (
‖u‖L∞(M) +

∥∥GBrf
∥∥
L∞(Br)

)
+ 2

∥∥GBrf
∥∥
L∞(Br)

≤ C
(ρ
r

)γ
‖u‖L∞(M) + Crβ ‖f‖L∞(Br)

,

which proves (11.1). �
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12. Heat kernel

12.1. Existence and the Hölder continuity of the heat kernel. Let the hypotheses
(V ), (TJ) and (PI) be satisfied. By the results of Section 5, the heat kernel pt (x, y) exists
and satisfies the diagonal upper bound (DUE). The same argument applies to any open set
Ω ⊂ M so that the heat kernel pΩt (x, y) exists and satisfies the same upper bound.

For any f ∈ L1 ∩ L2 (Ω), the function ut = PΩ
t f satisfies for any t > 0 the equation

Lut = −∂tu in Ω understood weakly as above. Lemma 5.5 and the duality argument yield
an upper bound of ‖ut‖L∞ via ‖f‖L1(Ω), which implies by the standard argument of the

spectral theory also an upper bound for ‖∂tu‖L∞ (see [19, Lemma 5.10]). Combining with
Lemma 11.2, one obtains an oscillation inequality for ut, which implies the same for the heat
kernel. In particular, one obtains the Hölder continuity of the heat kernel. This argument has
been carried out in details in [19, Lemmas 5.10, 5.11, 5.12, 5.13] and results in the following
statement.

Lemma 12.1. Assume that (V), (TJ) and (PI) are satisfied.
For any non-empty open set Ω ⊂ M , there exists the heat kernel pΩt (x, y) that is jointly

continuous in (x, y, t) ∈ Ω × Ω × (0,∞) and locally Hölder continuous in (x, y). Besides, it

satisfies the following upper bound for all x, y ∈ Ω and t ∈ (0, R
β
)

pΩt (x, y) ≤
C

tα/β
. (12.1)

In the case Ω = M , the heat kernel pt(x, y) satisfies the following estimate, for all x, y, y′ ∈ M

and t ∈ (0, R
β
)

∣∣pt(x, y)− pt(x, y
′)
∣∣ ≤ C

tα/β

(
d(y, y′)

t1/β

)θ

, (12.2)

where θ = βγ
β+γ , γ is the constant from Lemma 11.2, and C depends only on the constants in

the hypotheses.

12.2. Near-diagonal lower estimate.

Lemma 12.2. We have (V) + (TJ) + (PI) ⇒ (nLE).

Proof. By Lemma 12.1, there is a continuous heat kernel pt(x, y). Fix t < (δR)β and set

r = δ−1t1/β where δ is the constant from (S). Using the semigroup identity and (S), we
obtain, for any x ∈ M ,

p2t (x, x) =

∫

M
pt (x, y)

2 dµ (y) ≥

∫

B
pt (x, y)

2 dµ (y)

≥
1

µ (B)

(∫

B
pt (x, y) dµ (x)

)2

≥

(
PB
t 1 (x)

)2

µ (B)

≥
ε2

µ (B)
≃ r−α ≃ t−α/β.

It follows that
pt (x, x) ≥ ct−α/β , (12.3)

for all x ∈ M and for all t < δ′R
β
, for some c, δ′ > 0.

By (12.2), we have, for all t < R
β
and x, y ∈ M ,

|pt (x, x)− pt (x, y)| ≤ Ct−α/β

(
d(x, y)

t1/β

)θ

.

In particular, if d (x, y) ≤ δt1/β with small enough δ, then

|pt (x, x)− pt (x, y)| ≤
c

2
t−α/β ,
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whence
pt (x, y) ≥ c′t−α/β (12.4)

where c′ = c/2. Hence, we have proved this inequality provided t < δ′R
β
and d (x, y) ≤ δt1/β .

In order to complete the proof of (nLE), we need to extend (12.4) to all t < R
β
that is,

to achieve δ′ = 1. We have, for any t < δ′R
β
,

p2t (x, x) ≥

∫

B(x,δt1/β)
p2t (x, y) dµ (y) ≥

(
c′t−α/β

)2
c
(
δt1/β

)α
= c′′ (2t)−α/β .

Hence, renaming 2t to t, we see that (12.3) holds for all t < 2δ′R
β
. Setting δ′′ = min (1, 2δ′)

and repeating the above argument with (12.2), we obtain that (12.4) holds for all t < δ′′R
β
.

Iterating this argument, we obtain (12.4) for all t < R
β
. �

A similar argument was carried out in [19, Sect. 5.6] in the setting of general metric spaces.

12.3. Weak upper estimate. In this section we prove the implication

(V ) + (TJ ) + (PI ) ⇒ (wUE) (12.5)

of Theorem 2.8. Let us fix an arbitrary ρ ∈ (0,∞) and define the following truncated bilinear
form:

E(ρ)(f, g) :=

∫ ∫

M×M\diag

(f(x)− f(y))(g(x) − g(y))dj(ρ)(x, y),

where
dj(ρ)(x, y) := 1{d(x,y)≤ρ}dj(x, y).

As always, we assume that dj (x, y) = J (x, dy) dµ(x) where J satisfies (j.1) and (j.2). Using

the same argument as in [23, Propositions 4.1 and 4.2], we conclude that the form (E(ρ),F) is

closable and its closure (E(ρ),F (ρ)) is a regular Dirichlet form on L2(M). Moreover, F∩C0(M)
is the core of the Dirichlet form (E(ρ),F (ρ)).

By [23, Proposition 4.6], we have the following estimate: for any nonnegative f ∈ L∞(M)
and for all t > 0,

‖Ptf −Qtf‖L∞ ≤ 2t‖f‖L∞ sup
x∈M

J(x,B(x, ρ)c). (12.6)

Lemma 12.3. For any ball B = B (x, ρ) of radius ρ and any t > 0, we have

Qt1B = 1B (12.7)

and
Qt1Bc = 1Bc .

Proof. Consider the killed heat semigroupQB
t . It is generated by the Dirichlet form (E(ρ),F (ρ) (B)).

In particular, for f ∈ F ∩ C0 (B) we have

E(ρ) (f, f) =

∫

M×M
(f (x)− f (y))2 dj(ρ) (x, y)

=

∫

B×B
(f (x)− f (y))2 1{d(x,y)≤ρ}dj (x, y) ,

where we can replace M×M by B×B because of the following observation: if both x, y ∈ Bc

then f (x) = f (y) = 0 while if one of x, y is in B and the other is in Bc then d (x, y) > ρ and,

hence, 1{d(x,y)≤ρ} = 0. Hence, the Dirichlet form (E(ρ),F (ρ) (B)) has no killing part. Since B

is compact, we conclude that (E(ρ),F (ρ) (B)) is conservative, that is, for all t > 0,

QB
t 1B = 1B .

It follows that
Qt1B ≥ 1B (12.8)
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whence
(Qt1B ,1) ≥ (1B ,1) = µ (B) . (12.9)

Since also
(Qt1B ,1) = (1B , Qt1) ≤ (1B ,1) = µ (B) ,

we see that, in fact, equality is attained in (12.9) and, hence, in (12.8), which proves (12.7).
Since M is a disjoint union of all distinct balls of radius ρ, it follows from (12.7) that

Qt1 = 1. Finally, we have

Qt1Bc = Qt1−Qt1B = 1− 1B = 1Bc .

�

Corollary 12.4. If (TJ) is satisfied then, for any ball B of radius r ∈ (0, R) and for any
t > 0,

Pt1Bc ≤ C
t

rβ
in B. (12.10)

Proof. Choose ρ = r. Setting f = 1Bc in (12.6), using that by Lemma 12.3 Qt1Bc = 0 in B,
and applying (TJ), we obtain

Pt1Bc ≤ 2t sup
x∈M

J(x,B(x, r)c) ≤ C
t

rβ
in B,

which was to be proved. �

Remark 12.5. In fact, we have (12.10)⇔(TJ), since (TJ) follows from (12.10) by dividing
by t and letting t → 0.

Now we can prove the implication (12.5).

Lemma 12.6. (V) + (TJ) + (PI) ⇒ (wUE).

Proof. Under the conditions (V ), (TJ) and (PI ), by Lemma 12.1, the heat kernel pt (x, y)
exists, is continuous and satisfies the estimate

pt(x, y) ≤
C

tα/β
, (12.11)

for all x, y ∈ M and t ∈ (0, R
β
). It suffices to prove that the heat kernel satisfies also

pt (x, y) ≤
C

tα/β
t

(
d (x, y) ∧R

)β , (12.12)

which together with (12.11) will imply (wUE).
By Corollary 12.4, we have (12.10). Since Pt1B(x,r)c is monotone decreasing in r, it follows

from (12.10) that, for all r > 0 and t > 0,

Pt1B(x,r)c ≤
Ct

(
r ∧R

)β in B (x, r) . (12.13)

Now fix t ∈ (0, R
β
), x, y ∈ M and set r := 1

2d(x, y). It suffices to prove (12.12) in the case

r > t1/β. By semigroup property of pt(x, y), (12.11) and (12.13), we have

pt(x, y) =

∫

M
pt/2(x, z)pt/2(z, y)dµ(z)

≤

(∫

B(x,r)c
+

∫

B(y,r)c

)
pt/2(x, z)pt/2(z, y)dµ(z)

≤ sup
y,z∈M

pt/2(z, y) · Pt/21B(x,r)c (x) + sup
x,z∈M

pt/2(x, z) · Pt/21B(y,r)c (y)

≤
C

tα/β
·

t
(
r ∧R

)β ,



ULTRAMETRIC SPACES 39

which finishes the proof. �

13. Derivation of (PI ) from heat kernel estimates

Definition 13.1. We say that the localized lower estimate (LLE) is satisfied if there exist
c > 0 and ε ∈ (0, 1) such that, for any ball B of radius r ∈ (0, R), the heat kernel pBt (x, y)

exists and satisfies for any t1/β ≤ εr the following inequality:

pBt (x, y) ≥ ct−α/β for µ-a.a. x, y ∈ B such that d (x, y) ≤ εt1/β . (LLE)

Lemma 13.2. We have (wUE) + (nLE) ⇒ (LLE).

Proof. Since (wUE) implies (DUE) and, hence, (Nash), applying (Nash) in any open set
Ω ⊂ M , we obtain by Lemma 5.5 that pΩt exists for any Ω.

Let ε ∈ (0, 1) be a small enough number to be determined later. By [22, Thm. 5.1] with
ρ = ∞, we have, for any t > 0 and for µ-a.a. x, y ∈ B,

pt(x, y) ≤ pBt (x, y) + sup
t/2<s≤t

ess sup
z∈Kc

ps(x, z) + sup
t/2<s≤t

ess sup
z∈Kc

ps(y, z), (13.1)

where K is any compact subset of B. Since B is compact, we can take here K = B. Note
that, for any t1/β ≤ εr and for all x ∈ B, z ∈ Bc, we have

d(x, z) ∧R ≥ r ∧R = r ≥ ε−1t1/β.

By (wUE), we have, for any s ∈ [t/2, t] and µ-a.a. x ∈ B, z ∈ Bc that

ps(x, z) ≤
C

sα/β

(
1 +

d(x, z) ∧R

s1/β

)−β

≤
C

(t/2)α/β

(
1 +

ε−1t1/β

t1/β

)−β

≤ C ′εβt−α/β.

Estimating in the same way ps (y, z) in (13.1), we obtain, for any t1/β ≤ εr and µ-a.a. x, y ∈ B
that

pBt (x, y) ≥ pt(x, y)− Cεβt−α/β. (13.2)

Let δ be the constant from (nLE). Assuming that ε ≤ δ and applying (nLE), we obtain

that, for all t1/β ≤ εr and for µ-a.a. x, y ∈ B such that d (x, y) ≤ εt1/β ,

pt (x, y) ≥ ct−α/β .

Substituting into (13.2), we obtain

pBt (x, y) ≥ ct−α/β − Cεβt−α/β = (c− Cεβ)t−α/β .

Finally, choosing ε small enough, we obtain (LLE). �

Proposition 13.3. Let B be a ball such that

ess sup
x∈B

J (x,Bc) < ∞. (13.3)

Set {
E(u, v) =

∫∫
B×B\diag(u(x)− u(y))(v(x) − v(y))dj (x, y) ,

F = F (B) .

Then, for all u ∈ F ,

E1 (u, u) := E (u, v) + (u, v)L2 ≃ E1 (u, u) . (13.4)

Consequently, (E ,F) is a regular Dirichlet form in L2(B).
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Proof. Clearly, if J satisfies (j.1) and (j.2), then any kernel of the form

ϕ (x, y) J (x, dy)

with a bounded non-negative symmetric Borel function ϕ also satisfies (j.1) and (j.2). In
particular, this is the case for ϕ (x, y) = 1B×B . Consequently, E is well-defined on Fmax (cf.
(2.2)).

It is easy to see that the form (E ,F) is bilinear, symmetric, non-negative and Markovian.
By definition, F is dense in L2 (B). Hence, the fact that (E ,F) is closed and regular will
follow from (13.4).

For all u, v ∈ F , we compute E (u, v)−E(u, v) by splitting the domain of integration M×M
into the union of B×B, B×Bc, Bc×B, Bc×Bc and using symmetry of the jump measure,
as follows:

E(u, v)− E(u, v) =

(∫

B×Bc

+

∫

Bc×B
+

∫

Bc×Bc

)
(u(x)− u(y))(v(x) − v(y))J(x, dy)dµ(x)

= 2

∫

x∈B

∫

y∈Bc

u(x)v(x)J(x, dy)dµ(x)

= 2

∫

B
u(x)v(x)J(x,Bc)dµ(x) (13.5)

≤ C ‖u‖L2 ‖v‖L2 ,

where C = 2ess supx∈B J (x,Bc) < ∞. It follows that, for any u ∈ F ,

E (u, u) ≤ E (u, u) ≤ E (u, u) + C ‖u‖2L2 (13.6)

and, hence,
E1 (u, u) ≤ E1(u, u) ≤ (C + 1) E1 (u, u) ,

whence (13.4) follows. �

Lemma 13.4. (Comparison principle) Let (E ,F) be a Dirichlet form, λ > 0 and u ∈ F .
Suppose that

Eλ(u, v) := E(u, v) + (u, v)L2 ≥ 0 for all 0 ≤ v ∈ F .

Then u ≥ 0.

Proof. Indeed, take v = Gλf with 0 ≤ f ∈ L2. Then we have 0 ≤ v ∈ F and then

(u, f) = Eλ(u,Gλf) = Eλ(u, v) ≥ 0.

Since f is arbitrary, we can conclude that u ≥ 0. �

Proposition 13.5. Let B ⊂ M be a ball. Let (E ,F) be the regular Dirichlet form from
Proposition 13.3 and let {P t}t≥0 be its heat semigroup. Then, for all non-negative functions
f ∈ L2(B) and for all t > 0, we have

P tf ≥ PB
t f in B.

Proof. We denote the resolvents of (E ,F(B)) and (E ,F) by GB
λ and Gλ, respectively. Fix

0 ≤ f ∈ L2(B) and λ > 0. Since F = F (B), both functions u = GB
λ f and u = Gλf belong

to F . For any v ∈ F , we have

Eλ(u, v) = (f, v)L2(B) = Eλ(u, v),

which together with (13.5) yields

Eλ(u− u, v) = Eλ(u, v)− Eλ(u, v)

= Eλ(u, v) − Eλ(u, v)

= E(u, v) − E(u, v)

= 2

∫

B
u(x)v(x)J(x,Bc)dµ(x) ≥ 0.
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Hence, by Lemma 13.4, we conclude that u− u ≥ 0 in B, that is,

Gλf ≥ GB
λ f in B.

Since this is true for all λ > 0, applying the formula [14, (1.3.5)], we obtain

P tf = lim
λ→∞

e−tλ
∞∑

n=0

(tλ)n

n!
(λGλ)

nf ≥ lim
λ→∞

e−tλ
∞∑

n=0

(tλ)n

n!
(λGB

λ )
nf = PB

t f.

�

Lemma 13.6. We have (V) + (wUE) + (nLE) ⇒ (PI).

Proof. Let B = B (x0, r) ⊂ M be a ball of radius r ∈ (0, R). Consider the heat semigroup{
P t

}
in B defined as above. Let us show that it has a heat kernel pt (x, y). Indeed, by

(wUE), we have, for all t < R
β
and µ-a.a. x, y ∈ M ,

pt (x, y) ≤ Ct−α/β.

By [4, Thm. 2.1], we have the Nash inequality

‖f‖
2(1+ν)
L2 ≤ C

(
E(f, f) +R

−β
‖f‖2L2

)
‖f‖2νL1

for all f ∈ F ∩ L1, where ν = β/α. By (13.6), we obtain, for all f ∈ F ∩ L1,

‖f‖
2(1+ν)
L2 ≤ C

(
E(f, f) +

(
1 +R

−β
)
‖f‖2L2

)
‖f‖2νL1 .

Applying again [4, Thm. 2.1] and [20, Cor. 3.8], we conclude that the heat semigroup
{
P t

}

has a heat kernel that we denote by pt (x, y). It follows from Proposition 13.5 that, for all
t > 0 and µ-a.a. x, y ∈ B,

pt (x, y) ≥ pBt (x, y) .

By Lemma 13.2, we have the lower bound (LLE) for pBt , which implies the same lower bound
for pt (x, y), that is,

pt (x, y) ≥ ct−α/β , (13.7)

for all t1/β ≤ εr and µ-a.a. x, y ∈ B such that d (x, y) ≤ εt1/β . Choose here

t = (εr)β .

It follows from (13.7) that, for this t,

pt (x, y) ≥ cr−α, (13.8)

for µ-a.a. x, y ∈ B
(
x0, ε

2r
)
.

For any f ∈ F , we have by [14, eq. (1.3.17)]

E(f, f) ≥
1

t

(
f − P tf, f

)
≥

1

2t

∫

B

∫

B
pt (x, y) (f (x)− f (y))2 dµ (x) dµ (y) ,

which together with (13.8) implies that

E(f, f) ≥
c

rα+β

∫

B(x0,ε2r)

∫

B(x0,ε2r)
(f(x)− f(y))2dµ (x) dµ (y) .

Using the definition of E , we rewrite this inequality in the form
∫

B(x0,ε2r)

∫

B(x0,ε2r)
(f(x)− f(y))2dµ(x)dµ(y) ≤ Crα+β

∫

B

∫

B
(f(x)− f(y))2dj(x, y), (13.9)

where f is any function from F = F (B) . Let now f be any function from F ∩ L∞ (M).
Applying (13.9) to the function f1B ∈ F (B) (cf. Lemma 4.1), we conclude that (13.9) holds
also for all f ∈ F ∩ L∞ (M). By a standard approximation argument, it follows that (13.9)
holds also for all f ∈ F , which proves (PI) with κ = ε2. �
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14. Completion of proof of the main results

Proof of Theorem 2.8. Assume that (V ), (TJ) and (PI) are satisfied. By Lemma 12.1, (E ,F)
has a Hölder continuous heat kernel pt(x, y). The heat kernel satisfies the upper bound (wUE)
by Lemma 12.6, and the lower bound (nLE) by Lemma 12.2.

Conversely, if (V ), (wUE) and (nLE) are satisfied, then we obtain (PI) by Lemma 13.6,
which completes the proof. �

Proof of Corollary 2.13. By Lemmas 5.2, 10.2, 10.4, 10.6, we obtain condition (S). By [18,
Lemma 4.6], conditions (V ) and (S) imply that (E ,F) is conservative.

(a) Note that (wUE) implies (DUE). By Theorem 2.8, it suffices to prove the following
implications:

(V≥) + (DUE) + (J≤) + (S) ⇒ (UE), (14.1)

and

(UE) ⇒ (J≤),

which follow from [23, Theorem 2.1] and the first implication of [18, Lemma 4.9], respectively.
Although the implication (14.1) was derived under the assumption that R = ∞, its proof
also works for R < ∞ (see also [18, Sect. 4.4, proof of Thm. 2.9]).

(b) By Theorem 2.8, it suffices to prove the following implications:

(nLE) + (V≥) + (J≥) + (S) ⇒ (LE),

and

(LE) ⇒ (J≥),

which follow from [18, Theorem 2.8] and the first implication of [18, Lemma 4.9], respectively.
�

15. Optimality of heat kernel bounds under (TJ) and (PI)

In this section we give examples to show that, under the conditions (V ), (PI) and (TJ),
the heat kernel estimates (wUE) and (nLE) are sharp in certain sense.

Fix a positive integer n, a sequence of positive reals {αi}
n
i=1 and a positive real β. Let

(Mi, di, µi), 1 ≤ i ≤ n, be n ultrametric spaces satisfying the conditions

µ(Bi(x, r)) ≃ rαi , for all x ∈ Mi, r > 0.

For example, Mi can be taken to be Qp with the distance di (x, y) = ‖x− y‖1/αi
p and the

Haar measure µi.
For each 1 ≤ i ≤ n, consider on Mi the jump kernel

Ji(x, y) =
1

di(x, y)αi+β
.

Since this jump kernel satisfies (TJ) (cf. (3.13)), it determines by Corollary 4.2 a regular

Dirichlet form (Ei,Fi) with the jump kernel Ji. By Theorem 2.8, the heat kernel p
(i)
t (x, y) of

(Ei,Fi) satisfies (UE) and (LE):

p
(i)
t (x, y) ≃

1

tαi/β

(
1 +

d(x, y)

t1/β

)−(αi+β)

.

Now let us consider the product space M := M1×M2× ...×Mn equipped with the metric
d and the product measure µ as follows:

d(x, y) := max
1≤i≤n

{di(xi, yi)}, µ := µ1 × µ2 × · · · × µn,

where x = (x1, x2, · · · , xn) and y = (y1, y2, · · · , yn). Clearly, (M,d) is an ultrametric space
and µ satisfies

µ(x, r) ≃ rα, for all x ∈ M, r > 0,
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where

α = α1 + α2 + · · ·+ αn. (15.1)

Consider the jump measure J (x, dy) on M that is defined on non-negative continuous func-
tions f on M by

∫

M
f (y) J (x, dy) =

n∑

i=1

∫

Mi

f (x1, ..., xi−1, yi, xi+1, ..., xn) Ji (xi, yi) dµi (yi) . (15.2)

Let us verify that the jump measure J satisfies (TJ). Indeed, since each Ji satisfies (TJ), we
obtain using (15.2) and

B(x, r) = B1(x1, r)×B2(x2, r)× · · · ×Bn(xn, r), (15.3)

that

J(x,B(x, r)c) =

∫

M
1B(x,r)c (y)J (x, dy)

=

n∑

i=1

∫

Mi

1B(x,r)c (x1, ..., xi−1, yi, xi+1, ..., xn)Ji (xi, yi) dµi (yi)

=

n∑

i=1

∫

Mi

1Bi(xi,r)c(yi)Ji (xi, yi) dµi (yi)

=
n∑

i=1

∫

Bi(xi,r)c
Ji (xi, yi) dµi (yi) ≤

n∑

i=1

Ci

rβ
=

C

rβ
.

Hence, by Theorem 2.2, the jump measure J determines a regular Dirichlet form (E ,F) with
the jump measure J . Clearly, we have

E(f, f) :=

n∑

i=1

∫

M

∫

Mi

(f(x1, · · · , xi−1, xi, xi+1, · · · , xn)− f(x1, · · · , xi−1, yi, xi+1, · · · , xn))
2

× Ji (xi, yi) dµi(yi)dµ(x),

for any f ∈ L2 (M,µ). The generator of (E ,F) is given by

Lf (x) =

∫

M
(f (x)− f (y))J (x, dy)

=
n∑

i=1

∫

Mi

(f(x1, · · · , xi−1, xi, xi+1, · · · , xn)− f(x1, · · · , xi−1, yi, xi+1, · · · , xn))

×Ji (xi, yi) dµi (yi)

=
n∑

i=1

Lif (x) ,

where Li is the generator of (Ei,Fi) acting on the component xi of x. It follows that

e−tL =

n∏

i=1

e−tLi

and, consequently, the heat kernel pt(x, y) of (E ,F) satisfies:

pt(x, y) =
n∏

i=1

p
(i)
t (xi, yi) ≃

1

tα/β

n∏

i=1

(
1 +

di(xi, yi)

t1/β

)−(αi+β)

. (15.4)

By a direct computation, we see the following.
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(i) pt(x, y) satisfies (wUE), since by (15.4)

pt(x, y) ≤
C

tα/β

(
1 +

maxi di(xi, yi)

t1/β

)−β

=
C

tα/β

(
1 +

d(x, y)

t1/β

)−β

.

(ii) pt(x, y) satisfies (nLE). Indeed, for any x, y ∈ M and t > 0 with d(x, y) ≤ t1/β , we

have also di (xi, yi) ≤ t1/β and, hence,

pt(x, y) ≥
c

tα/β

n∏

i=1

(
1 +

di(xi, yi)

t1/β

)−(αi+β)

≥
c

tα/β

n∏

i=1

(1 + 1)−(αi+β) =
c′

tα/β
.

By Theorem 2.8, we conclude that (E ,F) satisfies also (PI).
Hence, the ultrametric space M with the reference measure µ and the jump measure J

satisfies (V ), (PI), (TJ) with parameters α, β and R = ∞. Note that α and β can take arbi-
trary positive values. Even if we fix α and β, there are still “hidden” parameters n, α1, ..., αn

with the only constraint (15.1), and they can be varied to obtain desired properties of M .
Let us show that (wUE) is optimal in the sense that the exponent β cannot be replaced

by any larger number. More precisely, let us show that, for any ε > 0, there is a choice of
“hidden” parameters such that, in some range of the variables (t, x, y),

pt(x, y) ≥
c

tα/β

(
1 +

d(x, y)

t1/β

)−(β+ε)

,

while d(x,y)

t1/β
can take arbitrarily large values. Indeed, we can assume that ε is small enough

and set α1 = ε, while α2, ..., αn should only satisfy (15.1). Set

E := {(t, x, y) ∈ R+ ×M ×M : di(xi, yi) ≤ t1/β < d1 (x1, x1) , 2 ≤ i ≤ n}.

Then, for any (t, x, y) ∈ E, we have

d(x, y) = max
1≤i≤n

{di(xi, yi)} = d1(x1, y1),

and hence, by (15.4),

pt(x, y) ≥
c

tα/β

n∏

i=1

(
1 +

di(xi, yi)

t1/β

)−(αi+β)

≥
c

tα/β

(
1 +

d(x, y)

t1/β

)−(α1+β) n∏

i=2

(1 + 1)−(αi+β)

=
c′

tα/β

(
1 +

d(x, y)

t1/β

)−(β+ε)

,

which was to be proved.
Now let us show that (nLE) is optimal in the following sense: for any large number N > 0,

there is a choice of “hidden” parameters such that, in some range of the variables (t, x, y),

pt(x, y) ≤
C

tα/β

(
1 +

d(x, y)

t1/β

)−N

, (15.5)

while d(x,y)

t1/β
can be arbitrarily large. Indeed, set

F := {(x, y) ∈ M ×M :
1

2
d1 (x1, y1) ≤ di(xi, yi) ≤ d1 (x1, y1) , 2 ≤ i ≤ n}.

Then, for all t > 0 and (x, y) ∈ F ,

d (x, y) = d1 (x1, y1) and di(xi, yi) ≥
d(x, y)

2
, 2 ≤ i ≤ n.
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Hence, we obtain by (15.4) that, for all t > 0 and (x, y) ∈ F ,

pt(x, y) ≤
C

tα/β

n∏

i=1

(
1 +

di(xi, yi)

t1/β

)−(αi+β)

≤
C

tα/β

n∏

i=1

(
1 +

d(x, y)

2t1/β

)−(αi+β)

=
C

tα/β

(
1 +

d(x, y)

2t1/β

)−(α+nβ)

≤
C ′

tα/β

(
1 +

d(x, y)

t1/β

)−(α+nβ)

.

Choosing n large enough such that α+ nβ > N we obtain (15.5).
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