
Controlling the Accuracy and Uncertainty Trade-off in RUL Prediction
with a Surrogate Wiener Propagation Model

Yingjun Denga,b,∗, Alessandro Di Bucchianicob, Mykola Pechenizkiyb

aCenter for Applied Mathematics, Tianjin University, No.92 Weijin Road, 300072 Tianjin, China
bDepartment of Mathematics and Computer Science, Eindhoven University of Technology, 5600MB Eindhoven, Netherlands

Abstract

In modern industrial systems, sensor data reflecting the system health state are commonly used for the
remaining useful lifetime (RUL) prediction, which are increasingly processed by modern deep learning based
approaches recently. But these deep learning models do not automatically provide uncertainty information
for the RUL prediction, hence this paper is motivated to introduce a novel approach that allows to control
trade-off between prediction performance and knowledge about the uncertainty of the RUL prediction. The
key aspect of our approach is to use a long short-term memory (LSTM) network as an expressive black-box
predictor and the Wiener process as a surrogate to model the propagation of prediction uncertainty. The
uncertainty propagation model is used to interactively train the RUL predictor. Our empirical results in
a turbofan engine degradation simulation use case show that the surrogate Wiener propagation model can
improve the near-failure prediction accuracy by sacrificing the far-to-failure prediction accuracy.

Keywords: Remaining useful lifetime, uncertainty propagation, recurrent neural network, long short-term
memory, Wiener process, surrogate modeling.
2010 MSC:

1. Introduction

Remaining useful lifetime (RUL) is a key perfor-
mance indicator in modern industrial systems, lead-
ing to automated decisions for maintenance, pro-
duction, and inventory [1, 2, 3]. Due to advances in5

sensor engineering and monitoring techniques, more
and more inspection data have become available.
These inspection data indirectly reflect the system
health state, which are commonly used for RUL
prediction.10

However in real-life applications, establishing
data-driven RUL predictors for industrial systems
faces several challenges. Common, well-known chal-
lenges are the following.

• High-dimensional, noisy inspection data come15

from various sensors at different positions, in-
cluding vibration, acceleration, temperature
[4], acoustic signals [5] etc..
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• Unknown failure mechanisms prevent the
degradation indicator extraction directly.20

• As run-to-failure tests need a long running pe-
riod and also a high economic cost, usually few
historical failure records exists.

In this paper we focus on the challenge of real-time
prediction in the common situation in which high-25

dimensional inspection data come sequentially and
all inspection data are associated to the same sys-
tem failure. In such cases recorded RUL values lin-
early decrease over time, and hence the RUL pre-
diction trained with RUL records fits better a linear30

propagation. However, black-box prediction mod-
els based on historical data do not automatically
yield linear trends and thus may have poor perfor-
mance. How to keep the rationale about prediction
propagation while facing the curse of dimensional-35

ity motivates our research in this paper.
Traditional RUL prediction models, like stochas-

tic processes [1, 6], mixed-effect physical models [7],
and proportional hazard rate models [8, 9] based on
manual feature engineering success in many scenar-40
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ios with scalar degradation data[1], but they usually
fail to perform well in high-dimensional, high veloc-
ity inspection data settings. This demand largely
drives recent advances in machine learning, espe-
cially in deep neural networks.45

Earlier trials based on artificial neural networks
(ANNs) [10, 11, 12, 13, 14, 15] with shallow struc-
tures did not yield satisfactory results, but recently
developed deep structures seem to be very promis-
ing. For instance, recurrent neural networks (RNN)50

and related variants [16, 17, 18] are introduced
as a standard way to process time-stamped sensor
readings, and convolutional neural networks (CNN)
[19, 20] showing excellent capability of representing
degradation have also become popular. In particu-55

lar, deep neural networks show a great success for
self-learning feature representation [21] and are be-
coming increasingly popular in reliability engineer-
ing.

A main drawback to using machine learning mod-60

els for RUL prediction is the lack of interpretability
and transparency. This difference with explainable
statistical and stochastic methods in traditional re-
liability engineering prevents the machine learn-
ing models to be widely applied when uncertainty65

quantification and decision analysis are needed.
More importantly, reliable uncertainty quantifica-
tion requires parametric probabilistic models and
it is not obvious how to connect these models with
RUL predictions based on machine learning meth-70

ods.
To address the above concern, in this paper we

refer to the idea of surrogate modeling to find a sim-
plified explainable model that approximates multi-
variate complex systems based on limited historical75

data [22]. The main contribution of this paper is
to introduce a latent Wiener process as the bridge
process between machine learning based RUL pre-
dictions and parametric probabilistic models for un-
certainty quantification. The modeling adopts a80

backward strategy to model the predictor’s output
rather than the forward strategy to model the pre-
dictor’s input. Our rationale is to first assume a
Wiener propagation model for the optimal output,
and then optimize the predictor to fit the surrogate85

Wiener model.
The use of an unobserved bridge process ap-

proach is widely adopted in surrogate modeling
[23, 24], or latent process modeling [25, 26] for hid-
den states. Specifically in the literature regarding90

RUL prediction, the surrogate modeling or latent
process modeling is commonly performed to find

the scalar degradation or health indicator of sys-
tems, which is called stochastic degradation model-
ing [27, 1]. In high-dimensional inspection scenar-95

ios, the scalar degradation indicator usually can-
not be directly observed, leading to the problem of
missing output labels during surrogate modeling.
Instead we do surrogate modeling for RUL predic-
tion in this paper, that can be evaluated directly100

by failure records. Moreover the idea of combining
machine learning with stochastic models has been
applied to other problems in lifetime analysis. E.g,
[28] use machine learning is used to learn the struc-
ture of Bayesian networks and apply the Bayesian105

networks for fault diagnosis in engineering while in
[29] proportional hazards models are combined with
neural networks.

This paper is organized as follows. A Wiener
propagation model for prediction increments will110

be introduced in Section 2, where the joint density
to observe the prediction and the observation is ex-
pressed explicitly. In Section 3, the RUL predictor
and the Wiener propagation model will be jointly
trained based on negative likelihood loss functions.115

A long short-term memory network (LSTM) pre-
dictor will be specified in Section 4 and it will be
verified in a turbofan engine degradation simulation
use case. Conclusions will be given at the end.

2. Wiener Propagation Model120

2.1. Problem Setup

All inspection times are assumed to be non-
negative integers, unless otherwise specified. Con-
sider an unspecified stochastic system equipped
with m sensors. Each inspection at an integer time
s ∈ N returns a vector xs ∈ Rm. The system fails
at time τ ≥ 0. All inspection data observed in an
interval [s, t] are denoted by xs:t, and the RUL at
time t is denoted by rt = τ − t for t < s < τ . We
assume that an RUL predictor ϕ is available which
maps xs:t to an estimate of rt, say α[s:t],

ϕ : R(t−s+1)×m → R,

with ϕ(xs:t) = α[s:t], 0 ≤ s < t < τ. (1)

We will write αs instead of α[0:s] for short. Note
that for s ≥ τ there is no prediction needed, because
the failure has already occurred.

Since we deal with sequential RUL prediction, the125

predictor ϕ is assumed to have following properties
throughout this paper.
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1. The RUL predictors are stationary.

2. Differences between consecutive RUL predic-
tions are normally distributed with average de-
crease of one time unit, i.e.

ϕ(x0:s+1)− ϕ(x0:s) ∼ N (−1, σ2) (2)

for some σ > 0, where the notation N (µ, σ2)
denotes the normal distribution with mean130

µ and variance σ2, whose probability density
function is denoted by N (x;µ, σ2) for x ∈ R.

3. The predictor can iteratively update the old
prediction by new information.

These rough assumptions will be specified and135

deepened in a more rigorous setting in later discus-
sions. The first and second property lead to the
Wiener propagation modeling in this section. The
third iterative property fits well the LSTM predic-
tor [30] that will be discussed in Section 4. Without140

loss of generality, the available information in prac-
tice is set up as follows.

• Historical inspection data on N identical and
independent systems are observed with associ-
ated failure times {τi}Ni=1.145

• Suppose there are totally ni inspections for the
ith system until the failure time τi. The inspec-
tion data at time sij , j = 1, ..., ni are denoted
by xsij ; the associated RUL at time sij for the
ith system is observed by rsij = τi − sij .150

• Due to unsynchronized calendar times in differ-
ent systems, initial states in different systems
may be different.

As the stochastic system is considered, the pre-
diction αs depending on uncertain system states in155

(s, τ) cannot be almost surely accurate until the
failure happens. Hence the prediction uncertainty
exists and cannot be compressed. However a good
prediction can redistribute uncertainties at different
times and focus on the average prediction capacity.160

In the next section, what a good prediction looks
like will be discussed.

2.2. Uncertainty Propagation Modeling

Due to unobserved system uncertainties[31], the
system state xs are uncertain on different systems165

leading to the RUL prediction uncertainty. Suppose
the RUL prediction αs, s ∈ [0, τ) on an unspecified

system is given, this section contributes to the un-
certainty expression about αt − rt, at a previous
time s < t.170

In the real-time prediction at time s < t, the pre-
diction αt and the actual RUL rt are not actually
observed. Hence the modeling is divided into two
parts based on the existing prediction αs: predic-
tion propagation modeling for αt − αs, t > s and175

prediction error modeling αs − rs when rs is given.
In the following, the propagation modeling will be
done via a Wiener process, and the validation er-
ror αs− rs will be processed as normalized random
variables.180

2.2.1. An Illustrative RUL Predictor Under the
Scalar Wiener Degradation Process

Before proceeding to later discussions, let us re-
call some preliminary results on Wiener processes
in a classical degradation modeling view [27, 1, 32].185

Firstly, the inverse Gaussian distribution [33] is in-
troduced as follows.

Definition 2.1. The inverse Gaussian distribution
has a probability density function G(·;α, c) with pa-
rameters α > 0 and c > 0 given by

G(x;α, c) =

[
cα2

2πx3

]1/2

exp

{
−c(x− α)2

2x

}
, x > 0.

(3)
If a random variable X follows the inverse Gaussian
distribution denoted by X ∼ G(α, c), then

E(X) = α,Var(X) = α/c. (4)

It is noted that notations in Definition 2.1 are dif-
ferent from other definitions (e.g. [33]) to facilitate
later discussions.190

Now consider a scalar drifted Wiener process [34]
for the scalar inspection data scenario in (1). The
inspection data xt at time t ≥ 0 are observed from

Xt = −µt+ σWt, (5)

where X0 = x0 > 0, µ, σ > 0 and Wt is a standard
Wiener process [34].

As a standard way to model failures, the first pas-
sage time of Xt to reach the boundary 0 is adopted
as failure time,

Tx0 := inf
t≥0
{Xt ≤ 0|X0 = x0}. (6)

The probability distributions of Tx0 is explicitly
given by the following proposition.
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Proposition 2.2. With notations defined in (5)
and thereafter, given Xt = −µt + σWt, Tx =
inft≥0{Xt ≤ 0|X0 = x} follows the inverse Gaus-
sian distribution defined in (3)

Tx ∼ G(x/µ, µ2/σ2). (7)

Proof. It is a classical result that the first pas-195

sage time of a drifted Wiener process to a constant
boundary follows the inverse Gaussian distribution.
Hence the proof is omitted, and readers can refer
to other literature, e.g. Section 3.1.4, [34].

Now we turn to RUL prediction from observa-200

tion to the degradation process Xt, t ≥ 0. Sup-
pose until time s, the system is not failed with
the observation X0:s = x0:s. The RUL prediction
is naturally defined as the conditional expectation
R̂s := E(Tx0 − s|Xs = xs, Tx0 ≥ s). From the205

stationary and Markov property of Wiener process,
R̂s := E(Tx0 − s|Xs = xs, Tx0 ≥ s) ' Txs holds.

Moreover from Proposition 2.2, R̂s ' Txs ∼
G(xs/µ, µ

2/σ2). The value-oriented RUL predictor
ϕ in (1) can be naturally specified as the expecta-

tion of R̂s under the Wiener degradation setting,
and the associated prediction αs equals

αs := ϕ(x0:s) = E(R̂s) = E(Txs) =
xs

µ
. (8)

Hence with observation to (5), an illustrative pre-
dictor ϕ(x0:s) = xs/µ as a linear function of the
newest observation is presented. This also summa-210

rizes basic procedures of RUL prediction based on
verified stochastic degradation process [1].

However the above scalar scenario does not work
for general multi-dimensional inspection data in (1)
where the health indicator is hidden behind the in-215

spection data. This leads to the idea to introduce a
bridge process between RUL prediction and inspec-
tion data in the next subsection.

2.2.2. Surrogate Wiener Propagation Model

If a validation data-set is given, the prediction er-220

ror in the validation test shows the intrinsic uncer-
tainty caused by the predictor. Moreover the pre-
diction is more accurate, it is more possible to ob-
serve rs and αs simultaneously. Hence to model the
prediction uncertainty in a probabilistic view, the225

possibility to observe the prediction and the obser-
vation (rs, αs) simultaneously motivates later dis-
cussions. This possibility relationship can hardly be
revealed directly due to the unknown failure mech-
anism.230

In this paper a hidden bridge stochastic process
Ys observed by the prediction αs in (1) will be in-
troduced to model the joint possibility of (rs, αs).
From the backward-validation view, Ys = αs as a
prediction can be naturally evaluated by rs. From
the forward-prediction view, the RUL prediction R̂s
conditional on Ys = αs can be derived explicitly
by introducing Ys, which is observed by the actual
RUL rs. Hence,the possibility to observe (rs, αs) si-
multaneously can be expressed as the joint density
to observe R̂s = rs and Ys = αs,

possibility(rs, αs) = p
R̂s

(rs|Ys = αs)pYs(αs). (9)

The basic bridge idea is adopted widely in the liter-
ature under different settings. For instance, Bengio
et al. used the hidden Markov model as the bridge
process between acoustic signals and speech texts
in [26] , and Christophe et al. used Gamma pro-235

cess as the bridge process between the degradation
signal and the RUL prediction in [35].

The remaining of this section will reveal the hid-
den process Ys explicitly under moderate assump-
tions to specify the considered scenario.240

Assumption 2.3. 1. The system degrades grad-
ually.

2. The system failure is detected immediately and
perfectly.

3. Newer and more information contributes to245

less absolute prediction error.

Assumption 2.3 is ansatz to formulate later mod-
eling, but they are also proposed from observed
facts and general rationale in practical scenarios
where at least Wiener degradation processes are ap-250

plicable [32, 36]. Especially,

• Point 1) in Assumption 2.3 means that the sys-
tem degradation states have no large jumps
over time, for instance early-stage fatigue
cracks usually fits this assumption in practice255

(see illustrative examples in [37]).

• Point 2) in Assumption 2.3 means that failure
definition and detection are perfect, which fits
the case of hard failures leading to the imme-
diate system shutdown.260

• Point 3) in Assumption 2.3 is the rationale of
data-driven methodology to do RUL predic-
tion.

In the following we will introduce Wiener process
to model the RUL prediction propagation, which265
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is motivated by our real-world experience on gen-
eral prediction error analysis. Irrelevant to specific
prediction techniques, the RUL prediction usually
show following properties.

• Prediction errors are time-dependent and mu-270

tually dependent.

• Prediction errors at a time are Gaussian, or
normally distributed.

• RUL prediction as a time-to-event prediction
has a linear trend over time.275

The above rationale combining with Assumption
2.3 supports us to model the propagation for RUL
prediction via Wiener process [34] based on its nat-
ural relationship with white noises. Specifically re-
calling the RUL predictor (1), the contribution of280

xs:t to the prediction increment αt − αs is mod-
elled as the increment of a Wiener process in the
following assumption.

Assumption 2.4. 1. For two times t ≥ s, the
RUL prediction αt uses more data xs:t than αs,285

the information difference contributes to un-
certainty in the prediction increment αt − αs.
Hence the uncertainty of prediction increment
is assumed to be linearly related with t− s.

2. The prediction increment is memoryless, unbi-
ased and cumulating over the time difference.
Combining the last assumption, for t ≥ s ≥ 0
and c > 0, the prediction increment is assumed
to be observed from the increment of a Wiener
process, i.e.

αt − αs ' s− t+
Wt−s√

c
, (10)

where Ws is a standard Wiener process [34].290

3. As Wiener process follows the normal distribu-
tion, the RUL prediction increment αt−αs for
t ≥ s is independent with αs and normally dis-
tributed with mean s− t and variance (t−s)/c,

αt − αs ∼ N (s− t, (t− s)/c). (11)

If there is no uncertainty in the predictor ϕ, the
increment αt − αs as the RUL difference should be
exactly s − t. Hence (10) reasonably models the
cumulating uncertainty in αt−αs and the parame-
ter c controls the uncertainty propagation rate. It is295

also noted the increment modeling does not depend
on the calendar time, but only the time difference.
This leads to two different views on the forward
prediction in the calendar time and the backward
validation over the actual RUL respectively.300

2.2.3. Backward Validation

Directly from the propagation model (10) a nat-
ural backward validation model is implied by As-
sumption 2.4, leading to the following proposition.
This is designed for the post-failure analysis when305

failures are already observed.

Proposition 2.5. If the failure time has been ob-
served at time τ ≥ 0 with the actual RUL rs = τ−s
for s ∈ [0, τ ], the historical prediction αs under As-
sumption 2.4 is observation for a Wiener process310

rs + Wrs/
√
c where Ws is a standard Wiener pro-

cess, and c > 0 defined in (10).
Moreover, αs follows normal distribution with

mean rs and variance rs/c, i.e.

αs ∼ N (rs, rs/c). (12)

Proof. From Assumption 2.3, the failure is detected
immediately, so at the failure time τ the prediction
should be accurate such that ατ = rτ = 0. Fur-
thermore for two times τ > s ≥ 0, rτ − rs = s − τ
(11) leads to

ατ − αs ∼ N (rτ − rs, (rs − rτ )/c). (13)

And from the time reversal property of standard
Wiener process [34], (10) leads to

ατ − αs ' rτ − rs +
Wrs−rτ√

c
. (14)

Let ατ = rτ = 0, (12) and the corresponding pro-
cess comes naturally.

It is remarked that Propagation 2.5 is consistent315

with Assumption 2.3 for more accuracy when the
time is closer to the failure time.

2.2.4. Forward Prediction

Now consider the forward RUL prediction when
the system failure is not observed yet, and the tar-
get to estimate the prediction uncertainty when the
RUL prediction αs is given at time s. From Equa-
tion (10), for an unspecified system the RUL predic-
tion αs is observed from the drifted Wiener process
Ys,

Ys = −s+
1√
c
Ws, s ≥ 0 (15)

with the initial value Y0 = α0. The above mod-
eling predicts the value of αs, s ≥ 0 based on the320

initial prediction α0. More importantly, Ys glob-
ally describes the time-dependent uncertainty and
the dependence of the predictor ϕ in a probabilistic
way.
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• Now consider the failure prediction based on
Equation (15) at time 0 with Y0 = α0. Notic-
ing Assumption 2.3 implies ατ = 0, the failure
time can be naturally processed as the realiza-
tion of the first passage time for Ys to reach 0
based on (15),

Tα0
= inf
t≥0
{Yt ≤ 0|Y0 = α0}, α0 ≥ 0. (16)

If α0 < 0, the predicted failure time equals 0325

without uncertainty.

• When Ys = αs ≥ 0 is observed at time s > 0, it
implies that the system is not failed in the fail-
ure model(16), i.e. Tα0

≥ s. The RUL predic-
tion is updated by the conditional expectation
under the process (15),

R̂s = E(Tα0
−s|Ys = αs, Tα0

≥ s) ' Tαs , αs ≥ 0.
(17)

• From Proposition 2.2,

Tα0
∼ G(α0, c), and R̂s ∼ G(αs, c). (18)

The above hidden failure modeling is self-consistent
based on Ys. And the prediction uncertainty of αs
to fit the actual RUL is expressed in (18).

2.2.5. Joint-likelihood of Observation and Predic-330

tion

Recalling the target (9), the possibility to observe
rs and αs simultaneously is now explicitly modelled
by introducing the propagation model Ys (15) and
Assumption 2.5. This connection is described ex-335

plicitly via density functions of Ys and R̂s.

• For αs = ϕ(x0:s), Ys = αs is the initial value
for Yt, t ≥ s satisfying the propagation model
(15). And the density function of Ys is revealed
by the normal distribution based on Assump-
tion 2.5,

pYs(αs) = N (αs; rs,
rs
c

). (19)

For two inspection times t > s regarding
the same system with predictions αt and αs,
the independent increment and stationarity of
Wiener process leads to Yt−Ys ∼ N (s− t, (t−
s)/c) with the transition density

pYt(αt|Ys = αs) = N (αt;αs + s− t, (t− s)/c).
(20)

• At time s with the prediction αs, the condi-
tional expectation of R̂s in (18) describes the
RUL prediction based on Yt, t ≥ s. Hence the
density function to observe the actual RUL rs
is

p
R̂s

(rs|Ys = αs) = G(rs;αs, c). (21)

From (18), (19), (21), the following expression
summarizes the connection between rs and αs,

possibility(rs, αs) = p
R̂s,Ys

(rs, αs) (22)

= p
R̂s

(αs|Ys = αs)pYs(αs)

= G(rs;αs, c)N (αs; rs, rs/c).

(22) clearly shows the dependence between rs and
αs via the hidden process (15).

It is noted that RUL predictions based on sequen-
tial inspection data x0:s are mutually dependent
at different times in the same system due to the
common knowledge on historical inspection data.
Hence in this scenario for two times t > s, the possi-
bility to observe (rt, αt, αs) simultaneously at time
t models the joint prediction uncertainty. From the
Markov property of Ys,

possibility(rt, αt, αs) (23)

= p
R̂t

(rt|Yt = αt)pYt(αt|Ys = αs)pYs(αs)

= G(rt;αt, c)N (αt − αs; s− t,
t− s
c

)N (αs; rs,
rs
c

).

This treatment can be similarly applied to the sce-
nario that multiple dependent predictions exist.340

The above probabilistic understanding between
αs and rs leads to the predictor estimation via max-
imizing the likelihood in the next section.

3. Predictor Training

Given the RUL predictor ϕ(·), a new parameter c345

is introduced to control the prediction uncertainty
in the last section. In this section, how to estimate
this new parameter on the given training data and
its role to improve the prediction loss will be inves-
tigated.350

3.1. Training Objectives

In the last section, a hidden propagation process
is introduced. The RUL prediction based on αs
is modelled via a latent Wiener degradation pro-
cess (15) and the RUL model (18). This section355
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contributes to jointly optimize the RUL prediction
(18) and the hidden process (15).

For an unspecified system at time s, the ac-
tual observation (x0:s, rs) forms an inspection-RUL
pair. Moreover a RUL prediction αs bridges the360

inspection and the RUL prediction, hence a triple
(x0:s, αs, rs) is constructed. Under the setting of
(22), the following discussions aim to maximize the
possibility to observe this triple.

From (1) and (15), two pending parameters Θ, c365

regarding the RUL prediction are to be estimated
under the following setting.

1. Suppose the prediction αs comes from a pre-
dictor ϕ with the pending vector parameter Θ,
i.e. αs = ϕ(x0:s; Θ).370

2. αs is the observation of Ys in (15) with the
pending parameter c.

3. From (18), the actual RUL rs is observation of

R̂s following the inverse Gaussian distribution,
i.e. R̂s ∼ G(αs, c).375

From (22), the optimization on Θ, c aims to bet-
ter describe actual RUL records, and to better fit
the hidden process (15). These two objectives are
different and dependent, which are connected by
the hidden process Ys in (15). Summarize all the380

above, the prediction can be evaluated by the joint
log-likelihood to observe αs = ϕ(x0:s; Θ) and rs
from (22). The prediction loss is naturally defined
as the negative log-likelihood.

• The prediction loss at time s with prediction
αs for the actual RUL rs without historical in-
spections is defined by

error(rs, αs; Θ, c) (24)

= −2[log p
R̂s

(rs|Ys = αs) + log pYs(αs)]

= −2[log G(rs;αs, c) + logN (αs; rs, rs/c)].

Here the constant 2 is introduced for compu-385

tation convenience without influence to opti-
mization.

• On the same system, if different predictions αsj
are given at sj , j = 1, ..., the loss function can
be set up based on (23) to tolerate the depen-

dence,

error(rsj+1
, αsj+1

, αsj , ...αs1 ; Θ, c) = (25)

− 2

[
log p

R̂sj+1

(rsj+1 |Ysj+1 = αsj+1) + log pYs1 (αs1)

+

j+1∑
i=2

log pYsi (αi|Ysi−1=αsi−1
)

]
, j = 1, 2...

(26)

For all available data specified in Section 1, the total
loss is defined as the average loss for all observed
inspection-RUL pairs {(x0:sij , rsij )}

ni
j=1, i = 1, ..., N390

which are denoted simply as Dtrain for training in
later discussions.

These data pairs contribute to the following pre-
diction loss function from (24) and (25) with the
notation ∆ij = si(j+1) − sij , αij = ϕ(x0:sij ; Θ),

Lp(Θ, c;Dtrain)

=
1

N

N∑
i=1

error(rsini , αini , ..., αi1; Θ, c) (27)

=
−2

N

N∑
i=1

[
log G(rsini ;ϕ(x0:sini

; Θ), c)

+ logN (ϕ(xsi1 ; Θ); rsi1 ,
rsi1
c

)

+

ni−1∑
j=1

logN (ϕ(xsi(j+1)
; Θ)− ϕ(xsij ; Θ);−∆ij ,

∆ij

c
)

]
Hence the optimal parameters Θ∗, c∗ can be solved
directly from the minimization problem on the
training data Dtrain,

(Θ∗, c∗) = arg min
Θ,c

Lp(Θ, c;Dtrain). (28)

When the pending vector parameter Θ consists of a
few elements, the above optimization problem can
be solved generally by self-designed optimization al-395

gorithms. However for a RUL predictor with thou-
sands and more pending parameters, e.g. a deep
neural network, to rewrite the optimization algo-
rithm on the predictor such that the new parameter
c can be tolerated is a waste of existing training ex-400

perience. Hence in the following, the optimization
will be discussed based on Θ and c respectively.

3.2. Loss Redefinition

With explicit density functions defined in (3), di-
rectly differentiating the loss function (27) with re-405

spect to c leads to Eq. (29).
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∂Lp(Θ, c;Dtrain)

∂c
=

1

N

N∑
i=1

[
− 1

c
+

(rsini − αini)
2

rsini
− 1

c
+

(αi1 − rsi1)2

rsi1

+

ni−1∑
j=1

(−1

c
+

(αi(j+1) − αij + ∆ij)
2

∆ij
)

]
. (29)

Let
∂Lp(Θ,c;Dtrain)

∂c = 0, naturally the unique op-
timal value of c regarding the pending Θ is returned
with notations αij and ∆ij in (27),

γ(Θ;Dtrain) = (30)∑N
i=1(ni + 1)∑N

i=1

[
(rsini

−αini )2

rsini
+

(αi1−rsi1 )2

rsi1
+
∑ni−1
j=1

(αi(j+1)−αij+∆ij)2

∆ij

] .
(31)

Hence for the optimal solution to (28),
Lp(Θ

∗, c∗;Dtrain) = Lp(Θ
∗, γ(Θ∗;Dtrain);Dtrain).

In this way, a modified loss function purely designed
for the RUL predictor ϕ(·; Θ) on the training data
Dtrain is derived,

Lm(Θ;Dtrain) = Lp(Θ, γ(Θ;Dtrain);Dtrain).
(32)

And the optimal value of Θ for ϕ(·; Θ) comes from
the following minimization problem.

Θ∗ = arg min
Θ

Lm(Θ;Dtrain). (33)

(28) is now converted to a normal supervised task410

for the predictor ϕ(·; Θ) with the new loss function
Lm(Θ;Dtrain). This loss function will be denoted
by Lm-loss in later discussions.

From a pure loss analysis view, the loss function
(32) introduces prediction-dependent measures at415

different time-steps between an input sequence and
an output sequence with following properties.

1. Strongly controlling at the end-time punishes
the end-prediction error.

2. Weakly controlling at the initial-time tolerates420

the initial prediction error, and the weakness
depends on the sequence length.

3. Controlling the error on prediction increment
instead of the direct prediction error at other
time-steps punishes the global propagation un-425

certainty.

3.3. Mini-Batch Training

In (25), it is revealed that sequential predictions
are not independent, such that the joint predic-
tion performance should not simply be measured430

by the uniform loss for every prediction like the
mean square error. Meanwhile in common real-
world tasks, not many inspection sequences from
independent systems are observed. Under-sampling
from limited sequences are essential for data aug-435

mentation in predictor training.

However common under-sampling techniques ig-
nore the statistical dependence in the same in-
spection sequence and also the data imbalance due
to variable lengths of inspection sequences. Sim-440

ple augmentation on the training data leads to
over-fitting and imbalance bias when data are not
enough for a complicated model.

To keep statistical independence and common
rationale in the predictor training, the under-445

sampling strategy is described as follows.

1. Randomly under-sample a fixed-length sub-
sequence from every inspection sequence to
form a data batch. In this way, statistical in-
dependence and data balance can be promised.450

2. Use mini-batch gradient descent algorithms for
the loss evaluated on the sampled data batch.
Reused data in different batches are not influ-
enced mutually due to the batch isolation and
gradient values are updated by the mean.455

3. Repeat sampling data batches for the mini-
batch gradient descent optimization until opti-
mization converges.

The optimization using mini-batch training for
(27) is illustrated in Algorithm 1. The parameter c460

for hidden process modeling interactively influences
the predictor design in Algorithm 1, and it is up-
dated by the validation on the data batch from (30).
For practical convenience, the convergence of opti-
mization is substituted in Algorithm 1 by searching465

the model with the smallest batch-loss when enough
training epochs are done.

The algorithm involves three components: batch-
based prediction , batch-loss evaluation, and
objective-correction. The optimization converges470

to the optimal values for Θ and c such that the
hidden process Ys in (15) and the RUL predictor
ϕ(·; Θ) in (1) are jointly established.
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Algorithm 1 Mini-Batch Training

Require:

1. Training data Dtrain;

2. Maximum number of training epochs M ∈
N.

Ensure: A RUL predictor ϕ(·; Θ∗) and c∗ to min-
imize the loss Lp(Θ, c;Dtrain) in (27).

1: Initiate i = 1, c1,Θ1;
2: for i ≤M do
3: Randomly under-sample a data batch Di

from Dtrain;
4: Update ci+1 = γ(Θi;Di) from (30) for c;
5: Update Θi+1 for Θ by gradient-descent

algorithms using the loss function
Lp(Θ, ci+1;Di);

6: i+ 1→ i.
7: end for
8: idx = arg mini=1,...,M Lp(Θi, ci;Di);
9: return Θidx → Θ∗, cidx → c∗.

4. Empirical Studies

4.1. Long Short-term Memory Predictor475

In previous discussions, the RUL predictor is not
specified and the Wiener propagation model is done
based on general model assumptions. In this sec-
tion, the empirical evaluation on a real case study
will be presented and the predictor ϕ is specified as480

an LSTM network [38].

4.1.1. Network Structure

Deep neural networks including CNN, RNN etc.,
are actively discussed in the literature due to their
self-learning capacity for feature representation.485

Moreover recently RNNs have been widely applied
to survival-related prediction [29, 39] because of
the sequential modeling capacity. LSTM network
[38, 30] as a special RNN for the RUL prediction in
(1) is set up as follows.490

Theoretically the predictor ϕ in (1) can process
an inspection sequence with any length. However
due to the memory limit and data balance dur-
ing training, a fixed-length η + 1, η ∈ N is always
adopted for the uniform input length. From the495

stationary assumption, time information of subse-
quences can be removed and an unspecified subse-
quence since any time is treated as starting from 0,
say x0:η.

1. For the sequentially coming input x0:η, the pre-
dictor ϕ iteratively updates the prediction and
returns α0:η based on two functions σh, σa for
pending parameters Θ := {θ0, θh, θa} in the
following way.

h0 = θ0; (34)

hi = σh(hi−1,xi; θh);

αi = ϕ(x0:i; Θ) = σa(hi; θa), i = 0, 1, ..., η.

2. To be called RNN, the function σh in (34)
should keep a linear chain rule in general. For
instance, with known activation functions σh,
σa and the matrix parameters {θj}5j=0, the Jor-
dan network [40] as a simple RNN is defined by

h0 = θ0; (35)

hi = σh(θ1αi−1 + θ2xi + θ3);

αi = σa(θ4hi + θ5), i = 0, 1, ..., η.

3. Allowing the activation function σh in (35)500

to be replaced by a composite of k activation
functions {σk}kj=1 leads to different variants of
RNN structures, e.g. LSTM and gated recur-
rent unit (GRU)[30]. Specifically for this mod-
ification, parameters in (35) are divided from505

(θ1, θ2, θ3) in σh to {(θ1j , θ2j , θ3j)}kj=1 for cor-

responding parameters in {σj}kj=1.
In this paper the LSTM unit [38] in the follow-
ing form is specifically considered,

h0 = θ0; (36)

fi = σ1(θ11xi + θ21hi−1 + θ31);

gi = σ2(θ12xi + θ22hi−1 + θ32);

oi = σ3(θ13xi + θ23hi−1 + θ33);

ei = fi ◦ ei−1 + gi ◦ σ4(θ14xi + θ24hi−1 + θ34);

hi = oi ◦ σ5(ei);

αi = σa(θ4hi + θ5), i = 0, 1, ..., η,

where the operator ◦ denotes the Hadamard
product. Moreover, σ1, σ2, σ3 are sigmoid func-
tion and σ4, σ5 are hyperbolic tangent function510

[38]. σa related to the output will be specified
as ReLu [41] in later discussions. Other choices
of activation functions are also possible [42].

4. From (36), {θ0, {(θ1j , θ2j , θ3j)}4j=1, θ4, θ5}
forms all trainable parameters Θ for the515

LSTM prediction ϕ(·; Θ). And the output
sequence α0:η forms the LSTM output.

For more discussions about RNN structures, read-
ers can refer to [30].
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Figure 1: Diagram of engine simulated in C-MAPSS (Fig. 1
in [4]).

RUL prediction is a special task with only520

non-negative observations. To promise the non-
negativeness of RUL prediction, the output layer
is set as a time-distributed dense layer with ReLu
activation [41], where ReLu is given by max(0, x)
with input x. This simply replaces the negative525

prediction with 0.
Later empirical tests on the LSTM predictor will

be done in a laptop workstation with the high-level
framework Keras [43] and the Tensorflow back-end
[44].530

4.2. Turbofan Engine Degradation Simulation Data

4.2.1. Available Data

Provided by NASA using the Commercial
Modular Aero-Propulsion System Simulation (C-
MAPSS), the turbofan engine degradation data for535

run-to-failure simulations [45, 4] will be considered
for empirical evaluation in this paper1.

The degradation data come from the simulation
of a turbofan engine (illustrated in Fig. 1) in the
C-MAPSS platform. In the NASA repository 4540

data-sets FD001 − 004 are presented, and a fifth
C-MAPSS data-set is made public in the PHM’08
data challenge [4]. Due to the high-variability
and high-dimensionality, these data are well-known
benchmarks in recent years to test RUL predictors545

in the high-dimensional scenario, and a good sum-
mary regarding recent studies on this data-set is
presented in [45].

In later experiments, data-sets labelled by
FD004 will be considered.550

• Every inspection returns a 24-dimensional vec-
tor consisting of 21 sensor readings and 3 op-
eration settings.

1Used data-sets are publicly available at the web site
of NASA (https://ti.arc.nasa.gov/tech/dash/groups/
pcoe/prognostic-data-repository/#turbofan).

• 249 run-to-failure sequences exist for train-
ing, consisting of 61249 different time-stamped555

inspection data. The maximal and minimal
number of inspection data in all sequences are
543 and 128 respectively.

• 248 randomly truncated sequences exist for
testing, labelled by actual RUL records at560

truncating times. The maximal and minimal
number of inspection data in all sequences are
486 and 19 respectively.

• Sequences from different run-to-failure tests
have different lengths.565

It is assumed that all engines are identical and
independent such that data from different engines
are independent.

4.2.2. Setup for LSTM Predictor

As described in (36), the LSTM predictor is set570

up as follows.

• The LSTM predictor has 127 time steps, 256
hidden units and 288001 trainable parameters.
Each time step accepts an inspection vector of
24 dimensions.575

• The LSTM has a mask input layer for input
sequences of shorter lengths than 127.

• The LSTM predictor has time distributed out-
puts of length 127.

• The RMSprop optimizer with initial learning580

rate 0.01 is adopted.

• To compare training results from the Lm-loss
derived in (32), the mean square error (MSE)
with equal weights to prediction errors at dif-
ferent time steps is considered.585

4.2.3. Batch Data Preparation

In a rigorous setting, existing 249 training se-
quences are not enough for the LSTM predictor
even each sequence consists of hundreds of sensor
readings.590

• All inspection data in the training sequences
and testing are pre-processed by the same scal-
ing and normalization.

• Training data batches consist of 249 sub-
sequences of length 127 from different training595

sequences, which are associated with the actual
RUL value at the end-time in the sub-sequence.
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• The testing data batch consists of 248 sub-
sequences of length 127 ending at truncating
times from different testing sequences, which600

are associated with the actual RUL value at
the end-time in the sub-sequence. The testing
data are denoted by Dtest.

• Due to random data batch selection, the train-
ing epoch is set to include 250 without actual605

meaning.

• The predictor training will be done for 100
epochs under different loss functions, and the
model reaching the minimal batch loss during
training is selected for later testing.610

4.3. Results and Discussions

During training, the LSTM predictor only ac-
cepts a 127 time-step inspection sequence, and the
prediction can slide over calendar time if the avail-
able inspection sequence is longer than 127 time-615

steps. As the length is not a network parameter, the
trained network weights can be copied to another
LSTM with longer time-steps such that the com-
plete sequence in the testing data can be evaluated.
Moreover the prediction models trained by the Lm-620

loss and MSE are called Wiener-hidden model and
the MSE-oriented model respectively in this sec-
tion.

4.3.1. Training Performance

Due to the random batch preparation strategy,625

no static training data are prepared to show the
training performance over time. However the pre-
dictor can still be roughly evaluated on the ran-
domly sampled data batch, whose losses over train-
ing epochs are illustrated in Figure 2.630

From Figure 2, the Wiener-hidden model con-
verges much quicker than the MSE-oriented model
for the Lm-loss and MAPE, while the MSE-oriented
model converges quicker if MSE loss is considered.
Moreover during 100 training epochs, the optimal635

MSE-oriented model has a significant difference
with the optimal Wiener-hidden model for the Lm-
loss and MAPE.

4.3.2. Point-wise Testing Performance

For the sequence−RUL pair in the testing data,640

the point-wise prediction performance can be eval-
uated by the last output from the LSTM predic-
tor. Comparing the Wiener-hidden prediction with

Figure 2: Different losses over training epoches: Lm-loss in
(32), MSE and MAPE.

the MSE-oriented prediction, the necessity of in-
troducing the Wiener propagation model is illus-645

trated in Figure 3. The Wiener-hidden prediction
shows more accuracy at a near-failure time, but its
prediction accuracy at a far-to-failure time is sac-
rificed. Hence by introducing the Wiener propaga-
tion model, predictions over calendar time are well650

controlled and the prediction uncertainty over cal-
endar time is redistributed.

As the training data come from run-to-failure
tests, fewer data exist at the far-to-failure time.
Hence the prediction is naturally under-trained at655

a far-to-failure time due to lack of data. This also
explains why the sample variance visually increases
over the actual RUL.

As some testing sequences are shorter than the
length of LSTM predictor, so predictions with less660

input data show an exceptional increased uncer-
tainty near failure times in Figure 3.

At the end, the LSTM output at the truncat-
ing time on the testing data is evaluated by met-
rics as in Table 1. In Table 1, 5 different metrics665

are considered: MSE, mean absolute error(MAE),
MAPE, the uncertainty propagation rate estimated
from (30), and the Lm-loss defined in (32). It is
remarked that these metrics measured the point-
wise performance of the LSTM predictor, while the670

sequence-level prediction uncertainty is not actually
considered. This is a trade-off to allow a uniform-
length input sequence.

From a pure accuracy view, the MSE-oriented
prediction without punishment over time as in the675

MSE and MAE outperforms the Wiener-hidden
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Figure 3: Actual v.s. predicted RUL at the truncating time
for the testing data batch.

Loss metric MSE prediction Wiener prediction
MSE 942.22 1354.21
MAE 25.25 27.50
MAPE 70.08 53.93
γ(Θ∗;Dtest) 0.0116 2.98
Lm(Θ∗;Dtest) 799.47 199.31

Table 1: The LSTM output at the truncating time on the
testing data under different losses. Θ∗ represents the LSTM
predictor’s parameters, and γ(Θ∗;Dtest) represents the es-
timate of the uncertainty propagation rate c by (30).

prediction. However when time-related punishment
is introduced as in MAPE and Lm-loss, the Wiener-
hidden prediction outperforms the MSE-oriented
prediction.680

4.3.3. Propagation Analysis for Sequential RUL
Prediction

The testing performance is evaluated in the last
sub-section in a point-wise way, this sub-section
continues to test the sequence-level prediction on685

the testing data.

The increments of LSTM output sequences for
the MSE-oriented model and Wiener-hidden model
are illustrated in Figure 4. From the comparison,
the Wiener-hidden prediction increments visually690

show stationary, independent, and Gaussian dis-
tributed properties (∼ N (0, 1)) as modelled in the
Wiener propagation model, while the MSE-oriented
prediction increments lose control and shows a large
range (−50 to 75) . It is also noted that the testing695

sequences are truncated within 200 time-steps to
failures, which are located in the best performance

(a) Wiener-hidden prediction

(b) MSE-oriented prediction

Figure 4: Increments at neighbored time-steps for the
Wiener-hidden and MSE-oriented prediction over the actual
RUL for the testing data batch.

period from Figure 3.

Moreover the prediction sequences for all test-
ing sequences are completely produced in Figure700

5 for the Wiener-hidden model and the MSE-
oriented model. It is interesting to observe that the
sequence-level variety is comparable with the linear
propagated variance of Wiener process, where the
increasing trend is significant. Also compared with705

the MSE-oriented prediction, the Wiener-hidden
predictions are visually more ”peaky” at near-
failure times and more ”wide-spreaded” at far-to-
failure times. Hence we concludes that the Wiener
propagation model improves the near-failure pre-710

diction accuracy by sacrificing the far-to-failure pre-
diction accuracy.
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(a) Wiener-hidden prediction

(b) MSE-oriented prediction

Figure 5: Prediction sequences over the actual RUL for the
testing data, respectively from the Wiener-hidden and MSE-
oriented models .

5. Conclusions

To control the trade-off between accuracy and
uncertainty for the sequential RUL prediction in715

a high-dimensional inspection scenario, this paper
provided a combined framework for machine learn-
ing RUL predictors and stochastic process model-
ing. This allows us to make an explicit trade-off be-
tween prediction performance and knowledge about720

the uncertainty of the predictions. Compared with
existing techniques for RUL prediction, conclusive
remarks are given as follows.

• The problem setup in this paper is moved from
conventional point-wise RUL prediction to a725

new scope of sequential prediction. Hence in-
stead of considering the ”average” prediction
performance, the path-dependent ”bias” over
prediction sequences is introduced and mod-
elled by the drifted Wiener process. Our work730

shows a great potential to be integrated into
predictive maintenance, where real-time main-
tenance decisions are made sequentially and se-

quential prediction is more applicable.

• The methodology of surrogate modeling to pro-735

cess prediction uncertainty instead of observa-
tion uncertainty indirectly solves the difficult
modeling problem for high-dimensional inspec-
tion data. An uncertainty propagation mod-
eling framework is newly proposed for data-740

driven RUL predictors, moreover interactive
training between the surrogate model and the
RUL predictor is proposed and realized.

• The near-failure prediction accuracy can be
improved by relaxing the control for far-to-745

failure prediction accuracy, which is verified
from the empirical results in a case study and
also the theoretical uncertainty control of un-
certainty propagation model.
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