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Summary. Mediation analysis has been commonly used to study the effect of an exposure on

an outcome through a mediator. In this paper, we are interested in exploring the mediation

mechanism of microbiome, whose special features make the analysis challenging. We consider

the isometric logratio transformation of the relative abundance as the mediator variable.

Then, we present a de-biased Lasso estimate for the mediator of interest and derive its

standard error estimator, which can be used to develop a test procedure for the interested

mediation effect. Extensive simulation studies are conducted to assess the performance of

our method. We apply the proposed approach to test the mediation effect of human gut

microbiome between the dietary fiber intake and body mass index.

Keywords. Compositional mediators; High dimensional data; Isometric logratio transfor-

mation; Joint significance test; Mediation analysis.

1 Introduction

Mediation models were first proposed in the social science literature (Baron and Kenny,

1986) to study the effect of an intermediate variable, termed “mediator”, on the path from

an exposure to an outcome. There have been substantial recent interests in mediation anal-

ysis methodology developments and applications. For example, MacKinnon et al. (2002)

compared methods to test the significance of the mediation effect via Monte Carlo studies.

1Corresponding author. Email: lei.liu@wustl.edu (L. Liu)
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MacKinnon et al. (2004) proposed to use the distribution of product and resampling meth-

ods to test an indirect effect. Preacher and Hayes (2008) provided an overview of simple and

multiple mediation and explored three approaches to testing the mediation effect. Coffman

and Zhong (2012) presented marginal structural models with inverse propensity weighting

for assessing mediation. Boca et al. (2014) proposed a permutation approach to testing

multiple biological mediators simultaneously. Gu et al. (2014) proposed a state space mod-

eling approach to mediation analysis. Fritz et al. (2016) studied the combined effect of

measurement error and omitted confounders in the single-mediator model. More details on

mediation analysis are referred to the review by MacKinnon (2008) and Preacher (2015).

There is also a challenge in estimation and inferential procedures for mediation analysis in

the high dimensional setting. Zhang et al. (2016) estimated and tested the high-dimensional

mediation effects using the sure independent screening (SIS; Fan and Lv 2008) and minimax

concave penalty (MCP; Zhang 2010) techniques in the selective inference framework. How-

ever, if a mediator is screened out in the first stage, we are not able to make inference for

this mediator anymore. That is, inference is only considered for those selected variables; all

non-selected variables are treated as non-significant with p-values set to 1. Zhao and Luo

(2016) proposed a sparse high-dimensional mediation model by introducing a new penalty

called Pathway Lasso, but they could not conduct tests for mediation effects. Barfield et al.

(2017) examined the indirect effect under the null for genome-wide mediation analyses with

high-dimensional mediators via marginal models, while the family wise error rate (FWER;

Hochberg 1988) and false discovery rate (FDR; Benjamini and Hochberg 1995) for multiple

testing was not considered. Sampson et al. (2018) proposed a multiple comparison procedure

to control the FWER and FDR when testing multiple mediators. However, their procedure

is only based on marginal models and the selected markers may not all be true biological

mediators, which are called “probable mediators” but not “true mediators”. Of note, the

above literature cannot be adopted directly to make inference for a specific mediator in the

presence of high-dimensional nuisance confounders. We therefore propose an approach to

estimating and testing a mediator of interest among a large number of mediators via the

de-biased Lasso technique (Zhang and Zhang 2014).
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In this paper, we are interested in exploring the mediation mechanism of microbiome on

the path from exposure to the health outcome. Our motivating example is a human gut

microbiome study. Gut microbiota were obtained on 98 healthy subjects using fecal 16S

sequencing (Wu et al. 2011). We thus have the abundance (count) of each taxon in the

microbiome. Zhang et al. (2018) showed a significant negative association between the fiber

intake and body mass index (BMI). A question arises as whether the association between the

fiber intake and BMI is mediated by the gut microbiota. Of note, since the number of taxa

varied greatly across samples, these count data were transformed into compositions after

zero counts were replaced by 0.5 (Cao et al. 2018). Moreover, the number of taxa (1234)

considered is high-dimensional, and much larger than the number of samples (98), i.e., p ≫

n. The high-dimensional and compositional characteristic poses new challenges to existing

mediation analysis methods. To solve this issue, we first adopt the isometric logratio (ilr)

based transformation on compositional mediators, and refit these ilr transformed variables

via standard liner regression models. Next, we can apply our testing method of mediator

towards the first component in ilr variables, where the interpretation of the first ilr variable

is meaningful and straightforward (Hron et al. 2012).

The rest of this article is organized as follows. In Section 2, we apply our proposed

mediation analysis method of microbiome data based on the ilr transformation. In Section

3, we employ the de-biased Lasso technique, together with the joint significance test method

to evaluate the mediation effect of interest in the presence of a large number of nuisance

variables. In Section 4, some simulation studies are conducted to examine the performance

of our proposed method. In Section 5, we provide an application to the human microbiome

study. Some concluding remarks are given in Section 6.

2 Methodology

2.1 Traditional mediation model

The goal of mediation analysis is to investigate the effect of an exposure X on an outcome

Y through intermediate variables, referred to as “mediators” (Baron and Kenny 1986). In
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the literature, mediation analysis can be roughly divided into two categories: the structural

equation modeling framework (MacKinnon, 2008) and the counterfactual framework (Imai

et al., 2010). Below, our method belongs to the first category, which focuses on the following

regression equations:

Y = c∗ + γ∗X + Z′η∗ + ζ,

Y = c+ γX +M′β + Z′η + ϵ, (2.1)

Mk = ck + αkX + Z′θk + ek, k = 1, · · · , p.

Here Y is an outcome variable,X is an exposure,M = (M1, · · · ,Mp)
′ is a vector of mediators,

Z = (Z1, · · · , Zq)
′ represents the covariates such as age, sex and weight; γ∗ represents the

total effect of the exposure X on the outcome Y adjusting for the effects of covariates; αk

represents the relation between X and Mk; β = (β1, · · · , βp)
′ is the regression coefficient

vector with βk representing the relation between Mk and Y adjusting for the effects of X

and Z; γ represents the direct effect of X on Y adjusting for the effects of M and Z; η∗, η

and θk denote the regression coefficients of Z; c∗, c, and ck represent regression intercepts;

ζ, ϵ and ek are the error terms, k = 1, · · · , p. By (2.1), it is straightforward to deduce that

the total effect of X on Y can be written as γ∗ = γ+
∑p

i=1 αkβk. In this case, the term αkβk

denotes the mediation effect by Mk, k = 1, · · · , p. Following the framework of mediation

analysis, our basic task is to make inference on the product coefficient αkβk (MacKinnon,

2008) for k = 1, · · · , p.

2.2 Isometric logratio transformation for microbiome data

Suppose there are p taxa in the microbiome for each sample, whose relative abundances are

denoted by a vector M = (M1, · · · ,Mp)
′. The p-part composition M lies in a space termed

the “simplex” (Aitchison, 1986), which is given as

Sp =

{
x = (x1, · · · , xp)

′ : xk > 0, k = 1, · · · , p;
p∑

k=1

xk = 1

}
.

Compositions are subject to two constraints: the components are non-negative in (0, 1),

and sum up to one. Thus, classical regression models in the real Euclidean space cannot
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be used to analyze the relative abundance directly (Aitchison 1999). For example, Hron

et al. (2012) indicated that the naive approach for traditional regression with the original

explanatory variables would lead to misleading results, due to the fact that any p−1 variables

may contain the same information as all p variables.

One key point about the statistical analysis of M is to express it in orthonormal co-

ordinates with respect to the Aitchison geometry, then we can apply the well-established

statistical methods in the Euclidean space. For this purpose, Egozcue et al. (2003) suggest-

ed the isometric logratio (ilr) transformation technique by transforming the compositional

data from the simplex Sp to the Euclidean space Rp−1 in a distance preserving manner. We

can use the new ilr coordinates in a standard linear regression model. The details are given

below.

Step 1: Conduct ilr-based transformation on the compositional mediators M1, · · · ,Mp,

M̃k =

√
p− k

p− k + 1
ln

Mk

p−k

√∏p
j=k+1Mj

, k = 1, · · · , p− 1. (2.2)

Step 2: Refit a linear regression model as (2.1) in the Euclidean space.

Y = c+ γX + β1M̃1 + · · ·+ βp−1M̃p−1 + Z′η + ϵ, (2.3)

M̃k = ck + αkX + Z′θk + ek, k = 1, · · · , p− 1,

Step 3: Testing for mediation effect towards M̃1 based on the method in Section 3,

H0 : α1β1 = 0 vs. H1 : α1β1 ̸= 0.

2.3 Interpretation of the ilr-transformed variables

By (2.2), the ilr-transformed mediator M̃1 is a scaled sum of all logratios of the original com-

position part M1 and the other parts M2, · · · ,Mp, where the linear relationship is described

as

M̃1 =
1√

p(p− 1)

(
ln

M1

M2

+ · · ·+ ln
M1

Mp

)
=

1√
p(p− 1)

ln
M1

p−1

√∏p
j=2Mj

. (2.4)
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It is straightforward to realize that M̃1 is formed by a logratio between the compositional

part M1 and the geometric mean of the remaining parts in the composition. Therefore, the

ilr variable M̃1 represents a measure of dominance of the compositional part M1 with respect

to the other parts (Hron et al. 2012). In this case, the interpretation of the parameter β1

in (2.4) indicates how much the response variable Y changes in average by a unit change

of the M̃1, which is the logarithm of the ratio between M1 and the geometric mean of the

M2, · · · ,Mp in the composition. Due to the compositional framework with
∑p

i=1Mi = 1, it is

not feasible to simultaneously vary one composition and keep other compositions unchanged.

To be more specific, the working mechanism of microbiome (e.g., taxa) in human body is

complex and the composition of microbiome is dynamic. In practice, it may be reasonable

to research the “relative effect” of each composition rather than the “absolute effect” of

single composition. The ilr-variable M̃1 in (2.4) can play the role of “relative effect” from

the composition M1. In the literature, the above-mentioned interpretations with “relative

effect” of compositions have also been adopted in the fields of macroeconomics (Hr̊uzová et

al. 2016), epidemiology (Mert et al. 2018) and market shares (Morais et al. 2018), etc.

Based on the above clarification, if the hypothesis test H0 : α1β1 = 0 is rejected to-

wards the ilr-transformed mediator M̃1, we can say that the original composition M1 has

a significant mediation effect in comparison to the rest of compositions. In other words,

the mediation effect α1β1 of M̃1 can reflect the relative mediation transmission capacity

of the original composition M1 by expression (2.4). However, the remaining ilr-variables

M̃2, · · · , M̃p−1 from (2.2) are not easy to interpret, because the original composition part

M1 is not contained therein. Therefore, if we are interested in exploring the mediation

effects for other taxa Mℓ, ℓ ∈ {2, · · · , p}, we can reorder Mℓ to play the role of M1 as

(Mℓ,M1, · · · ,Mℓ−1,Mℓ+1, · · · ,Mp)
′, then run Steps 1-3 in Section 2.2 again to interpret the

corresponding mediation effect of composition Mℓ.

3 Inference on the ilr-transformed mediation effect

Motivated by the above compositional taxa data, we may face the problem to estimate and

test a specific mediator of interest in the presence of high dimensional mediators (Figure 1).
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Furthermore, as described in Section 2.2, the ilr transformation will be used for compositional

mediators. In this section, we will give the estimation and inference procedures for a specific

mediator after the ilr transformation.

Without loss of generality, assume we are interested in testing the first mediator M̃1. Here

α1β1 is the parameter of interest, and θ = (α2β2, · · · , αp−1βp−1)
′ is the vector of “nuisance”

parameters which need to be adjusted for. Our aim is to estimate α1β1 and construct the

p-value for testing H0 : α1β1 = 0 vs. H1 : α1β1 ̸= 0.

Denote (Xi, M̃i, Yi) as the triplet sample, where M̃i = (M̃i1, · · · , M̃i(p−1))
′ is the mediator

vector, i = 1, · · · , n. For α1, the ordinary least squares (OLS) estimator is denoted by α̂1,

and its corresponding variance estimate is σ̂2
α1
. As we know, the OLS estimator of β1 is

not unique when the number of mediators p is larger than the sample size n. To solve this

problem, we employ the de-biased Lasso technique (Zhang and Zhang 2014) to derive the

estimator of β1. For convenience, we assume the intercepts c and ck in (2.3) are zeros. Let

(γ̃, β̃, η̃) = argmin
γ,β

 1

2n

n∑
i=1

(
Yi − γXi −

p−1∑
j=1

βjM̃ij −
q∑

j=1

ηjZij

)2

+ λ

p−1∑
j=1

|βj|

 , (3.1)

where λ > 0 is the Lasso penalty parameter (Tibshirani, 1996). The de-biased Lasso esti-

mator of β1 is given by

β̂1 = β̃1 +

∑n
i=1 Ri(Yi − γ̃Xi −

∑p−1
j=1 β̃jM̃ij −

∑q
j=1 η̃jZij)∑n

i=1RiM̃i1

, (3.2)

where γ̃ and β̃ are defined in (3.1); Ri = M̃i1 − ϕ̂1Xi −
∑p−1

j=2 ϕ̂jM̃ij −
∑q

j=1 ϕ̂p−1+jZij

is the residual from a Lasso regression of M̃i1 versus Xi, Zi and M̃i, i = 1, · · · , n, and

ϕ̂ = (ϕ̂1, · · · , ϕ̂p+q−1)
′ is the Lasso solution from

ϕ̂ = argmin
ϕ

 1

2n

n∑
i=1

(
M̃i1 − ϕ1Xi −

p−1∑
j=2

ϕjM̃ij −
q∑

j=1

ϕp−1+jZij

)2

+ λ∗
p+q−1∑
j=1

|ϕi|

 ,

where λ∗ > 0 is the Lasso penalty parameter. From (3.2), β̂1 is Lasso plus a one-step bias

correction, and hence it is named “de-biased Lasso”.

It has been shown by Zhang and Zhang (2014) that (β̂1 − β1)/σβ1

D−→ N(0, 1), where β̂1

is the de-biased Lasso estimator in (3.2),
D−→ denotes convergence in distribution, and the
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estimation of the standard error is given as

σ̂β1 = n−1/2 σ̂ϵ

√∑n
i=1R

2
i /n

|
∑n

i=1RiM̃i1/n|
, (3.3)

where σ̂2
ϵ =

∑n
i=1(Yi − γ̃Xi −

∑p−1
j=1 β̃jM̃ij −

∑q
j=1 η̃jZij)

2/(n − ŝ) is based on the recom-

mendation of Reid et al. (2016), and ŝ is the number of nonzero coefficients in the Lasso

estimator β̃.

To test the mediation effect α1β1, we will adopt the joint significance test as in our

previous work (Zhang et al. 2016). Specifically, the p-value is given by Pjoint = max{Pa, Pb},

with Pa = 2(1 − Φ(|α̂1|/σ̂α1)) and Pb = 2(1 − Φ(|β̂1|/σ̂β1)), where Φ(x) is the distribution

function of N(0, 1); α̂1 and σ̂α1 are based on the OLS method; β̂1 and σ̂β1 are defined in

(3.2) and (3.3), respectively. Note that besides the joint significance test, other tests for the

indirect effect can be considered: (a) methods based on the distribution of the product of two

normal random variables, and (b) resampling methods. First, the product of the two normal

random variables is not normal, but a Bessel function of the second kind. However, even the

Bessel function does not work well in finite samples (MacKinnon et al. 2004). Moreover, the

resampling methods, e.g., the bias-corrected bootstrap, can provide better inference results,

at the price of computational burden.

Remarks : Sohn and Li (2019) proposed a compositional mediation framework to investi-

gate the mediated effect of gut microbiome between fat intake and body mass index (BMI).

There are three different aspects from our proposed method. First, Sohn and Li (2019)

established a compositional mediation model directly in the simplex space, while we use the

ilr-transformed mediators to construct a high-dimensional mediation model in the Euclidean

space. Second, Sohn and Li (2019) adopted the additive logratio (alr) transformation on the

composition M. They focused on understanding the mediation effect of individual composi-

tion, and we study the relative mediation effect denoted by a specific composition in contrast

to the rest of compositions. Third, Sohn and Li (2019) used the Sobel test (Sobel, 1982) to

identify the significant compositional mediators, while we employ the joint significance test

(MacKinnon et al., 2002) in our method.
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4 Simulation study

In this section, we conduct simulations to examine the performance of our proposed method.

Of note, the isometric logratio transformation (2.2) is needed for compositional data (Hron

et al. 2012). Without loss of generality, we will only focus on the performance of testing

the first ilr -transformed mediator via simulation. For this goal, we generate data from

Model (2.3) using R software, where the exposure X follows from N(0, 1.5), the covariate

Z follows from N(0, 2) and ϵ is generated from N(0, 1), together with c = 0, γ = 0.5,

η = 0.5, β = (β1, 0.25, 0.30, 0.35, 0.55, 0, · · · , 0)′ with p = 1234 (the dimension of taxa in

Section 5). Here we set β1 = 0, 0.15, 0.25, 0.35, respectively. For the mediators M̃k, we set

ck = 0, θk = 0.5, and α = (α1, 0.15, 0.25, 0.35, 0.55, 0, · · · , 0)′ with α1 = 0, 0.15, 0.25, 0.35,

respectively. We consider three cases for the generation of error term e = (e1, · · · , ep−1)
′ as

follows,

Case I: ei are independent and identically distributed t(5) random variables, i = 1, · · · , p−1;

Case II: e is generated from N(0,Σ), where Σ = (Σij) with Σij = 0.3|i−j| for all i, j =

1, · · · , p− 1.

Case III: e is generated from N(0,Σ), and Σ is the sample covariance matrix of the ilr-

transformed mediators M̃ in Section 5, where the M̃1 is corresponding to the taxon with ID

= 14531.

For comparison, we also fit the data using marginal regression Y = c+γX+β1M̃1+ηZ+ϵ

with only one mediator M̃1 (Naive). As pointed out by Preacher and Hayes (2008), multiple

mediators contribute to the outcome Y (as shown in Figure 1). Thus it is imperative to

adjust for other mediators in such analysis, especially given the potential correlations between

different mediators. Furthermore, it is not feasible to predict Y using only one mediator in

this naive model (Zhang et al. 2016).

Of note, since we are only interested in 1 mediator (the first one), no multiple testing

adjustment is needed in all three settings. Also, Pa, the p-value for exposure-mediator

association is the same in these methods. So only Pb, the p-value from the mediator to the

outcome is different, which impact the overall p-value in the joint significance test. For the

estimation of α1, β1 and α1β1, we report the bias (BIAS) given by the sample mean of the
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estimate minus the true value, and the mean standard error (MSE) of the estimate in Tables

1 - 3. We report the size and power of the test methods in Tables 4-6. All results are based

on 1000 replications with sample size n = 100 and 300, respectively.

It can be seen from Tables 1 - 3 that our method is unbiased in both cases. In contrast, the

Naive method is unbiased only in Case I with independent mediators, and biased in the case of

correlated mediators (Cases II and III) towards the estimation of β1. The estimation results

of α1 from our method and the Naive approach are exactly the same, since these two methods

consider the same exposure-mediator association. Moreover, the BIAS and MSE of α̂1 do not

rely on the true value of parameter α1, because we employ the ordinary least squares (OLS) to

estimate α1. Thus, the BIAS and MSE of α̂1 are exactly the same with different values of α1.

Similarly, β̂1 for the naive method does not vary with β1. However, β̂1 changes with β1 for our

proposed method. Finally, α̂1β̂1−α1β1 = (α̂1−α1)β̂1+α1(β̂1−β1) = (β̂1−β1)α̂1+β1(α̂1−α1)

varies with different α1 and β1 for both methods.

From Tables 5-6, the Naive estimate has inflated size when the mediators are correlated

in the case of (α1, β1) = (0.15, 0), which will result in too many false discoveries. Thus, the

Naive method is not appropriate for estimating and testing the mediator M̃1. For (α1 = 0,

β1 ̸= 0) or (α1 ̸= 0, β1 = 0), the sizes of our method are close to 0.05. For α1 = β1 = 0,

the sizes are more conservative, which is a common fact in mediation analysis. For example,

such an effect is observed even in the single mediator model (MacKinnon et al. 2002).

5 Application to gut microbiome data

In this section, we apply our test procedure to a human gut microbiome data set, which

includes 98 healthy subjects who were not on antibiotics for 3 months prior to data collection

(Wu et al. 2011). The subjects’ long-term diet information was gathered by food frequency

questionnaire and converted to intake amounts of different nutrient categories. In this study,

we consider the fiber intake assessed by percent calories from dietary fiber (square-root

transformed as in Zhang et al. 2018) as the exposure. Body mass index (BMI) was measured

as the outcome. The fiber intake demonstrates a significant negative association with BMI,

and the gut microbiota is associated with both fiber intake and BMI (Zhang et al. 2018). It
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is of great clinical significance to know whether the association between the fiber intake and

BMI is mediated by the gut microbiota.

In between exposure and outcome, subjects’ stool samples were collected and the DNA

samples were analyzed by Roche 454 pyrosequencing of 16S rDNA gene segments. We thus

have the abundance (count) of each taxon in the microbiome. Of note, the number of taxa in

the microbiome data set is high-dimensional, and sparse as the absence of many taxa across

samples (Mandal et al. 2015). Similar to Bokulich et al. (2013) and Yun et al. (2017),

we removed a taxon if it appears in fewer than 8% of the samples, leaving 1234 taxa in 98

samples (p ≫ n). Next, since the number of sequencing reads varied greatly across samples,

these count data were transformed into compositions after zero counts were replaced by

the maximum rounding error 0.5 (Lin et al. 2014; Cao et al. 2018). Thus, the potential

mediators (M) are compositional abundances of 1234 taxa. To remove the compositional

effects, we calculated the isometric logratio transformed M̃ as in (2.2). For analysis, X and

M̃ are further standardized with mean 0 and variance 1.

We evaluate the mediation tests on individual taxon abundance one by one using the

proposed approach in Section 3, where three taxa are significant with p-values smaller than

0.05. In Table 7, we give the estimates, standard errors and p-values for those potential sig-

nificant mediators. More specifically, Trompette et al. (2014) found that dietary fermentable

fiber content changed the composition of the gut microbiota, in particular by altering the

ratio of Firmicutes to Bacteroidetes. Moreover, Ismail et al. (2011) suggested that the pro-

portions of the Firmicutes and Bacteroidetes may play an important role in the pathogenesis

of obesity.

To adjust for multiple testing, we apply the FDR control. None of the taxa is signifi-

cant under the FDR control, which is in line with the conclusion of Zhang et al. (2018).

Although none of the associations survived multiple testing correction, the identified nomi-

nally significant taxa, coupled with strong biological evidence, justified a future large sample

study.
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6 Conclusion and remarks

In this paper, we have proposed an approach to estimating and testing a specific media-

tor of interest adjusting for other high-dimensional mediators and confounded covariates.

Furthermore, we can employ the proposed method for high-dimensional compositional data

based on the ilr transformation. The simulation and real data application indicate that the

proposed method is feasible in practice.

A closely related topic is to study the combined or overall effects of high-dimensional

mediators altogether rather than a specific mediator in the presence of high-dimensional

confounders. For example, Huang and Pan (2016) proposed a transformation model us-

ing spectral decomposition to evaluates the combined mediation effects of high-dimensional

continuous mediators. Chén et al. (2017) introduced a novel direction of mediation (DM)

approach by linearly combining potential mediators into a smaller number of orthogonal

components in the high-dimensional setting, where the components are ranked by the pro-

portion of the likelihood. Zhang et al. (2018) proposed a distance-based approach for testing

the overall mediation effect of the human microbiome with multiple mediators.

For the application to microbiome data, we have considered the high-dimensional and

compositional nature of bacterial taxa. Moreover, the microbiome data are structured in

the sense that bacterial taxa are related to each other by a phylogenetic tree (Tang et al.

2017; Wang and Zhao 2017). The adaption of our method to the tree-guided strategy merits

further consideration. In addition, since the microbiome data are correlated to each other,

we could employ the elastic net (Zou and Hastie, 2005) penalized criterion in (3.2). The

theoretical properties of this elastic net based approach needs further careful research.

Another feature of the microbiome data is the presence of zero values. In the Application

we simply replaced zero values by 0.5. More rigorous consideration to dealing with zeros in

compositional data using nonparametric imputation was given by Mart́ın-Fernández et al.

(2003). Furthermore, when there are a large portion of zero values, two part models, e.g.,

Chen and Li (2016) and Chai et al. (2018), can be used to separately model the odds of the

presence of zero values and the amount of positive values.

As mentioned before, it is of interest to consider the multiple testing problem when the
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target is a set of mediators rather than a single mediator. Here a possible solution is to

use Sampson et al. (2018)’s multiple comparison procedure by replacing the p-value for

mediator-outcome association with our de-biased Lasso based p-value in Section 3. We will

study this topic in the future research.

Of note, in the joint significance test procedure, the calculation of Pa originates from the

ordinary least squares estimation for linear models, and that of Pb is derived from de-biased

lasso, which is also not based on the normal distribution assumption for the outcome variable

and ilr-transformed mediators (Zhang and Zhang, 2014). As pointed out by one reviewer,

it is desirable to consider more robust inference method, which could be a topic for further

research.

Finally, in this paper we adopted the structural equation modeling approach for mediation

analysis. The counterfactual approach, originated from causal inference, can be used to define

a causal effect. Examples of counterfactual mediation analysis include VanderWeele (2009,

2016) and Imai et al. (2010). These approaches can decompose the total effect into direct

and indirect effects without linear assumptions. Their application to the microbiome data

analysis should be further pursued.
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confounders.
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Table 1.

BIAS and MSE (in parenthesis) for the estimators with Case I†.

Proposed Naive

(α1, β1) α̂1 β̂1 α̂1β̂1 α̂1 β̂1 α̂1β̂1

n = 100 (0, 0) -0.0025 0.0034 0.0008 -0.0025 0.0012 0.0002

(0.0878) (0.0902) (0.0072) (0.0878) (0.1135) (0.0093)

(0.15, 0) -0.0025 0.0223 0.0042 -0.0025 0.0012 0.0004

(0.0878) (0.1351) (0.0251) (0.0878) (0.1135) (0.0197)

(0, 0.15) -0.0025 -0.0641 0.0010 -0.0025 0.0012 -0.0002

(0.0878) (0.1079) (0.0110) (0.0878) (0.1135) (0.0161)

(0.15,0.15) -0.0025 -0.0380 -0.0047 -0.0025 0.0012 0.0001

(0.0878) (0.1529) (0.0301) (0.0878) (0.1135) (0.0239)

(0.25,0.25) -0.0025 -0.0419 -0.0098 -0.0025 0.0012 -0.0001

(0.0878) (0.1573) (0.0475) (0.0878) (0.1135) (0.0377)

(0.35,0.35) -0.0025 -0.0346 -0.0119 -0.0025 0.0012 -0.0002

(0.0878) (0.1681) (0.0693) (0.0878) (0.1135) (0.0519)

n = 300 (0, 0) -0.0013 0.0027 0.0002 -0.0013 -0.0005 0.0001

(0.0494) (0.0384) (0.0020) (0.0494) (0.0635) (0.0031)

(0.15, 0) -0.0013 0.0105 0.0016 -0.0013 -0.0005 -0.0001

(0.0494) (0.0391) (0.0061) (0.0494) (0.0635) (0.0099)

(0, 0.15) -0.0013 -0.0193 0.0001 -0.0013 -0.0005 -0.0002

(0.0494) (0.0495) (0.0068) (0.0494) (0.0635) (0.0079)

(0.15,0.15) -0.0013 -0.0076 -0.0012 -0.0013 -0.0005 -0.0003

(0.0494) (0.0502) (0.0106) (0.0494) (0.0635) (0.0123)

(0.25,0.25) -0.0013 -0.0058 -0.0017 -0.0013 -0.0005 -0.0005

(0.0494) (0.0505) (0.0178) (0.0494) (0.0635) (0.0202)

(0.35,0.35) -0.0013 -0.0043 -0.0019 -0.0013 -0.0005 -0.0006

(0.0494) (0.0505) (0.0249) (0.0494) (0.0635) (0.0281)

† “Naive” is the marginal regression method. For the linear model Y = Xα + ϵ, the bias of the OLS estimator α̂ − α = (X′X)−1X′ϵ;

thus, BIAS(α̂1) = α̂1 − α1 does not depend on the true value of α1 for both methods. The same conclusion holds for β̂1 for the naive method

but not for our proposed method. However, α̂1β̂1 − α1β1 = (α̂1 − α1)β̂1 + α1(β̂1 − β1) = (β̂1 − β1)α̂1 + β1(α̂1 − α1) varies with different α1

and β1 for both methods.
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Table 2.

BIAS and MSE (in parenthesis) for the estimators with Case II†.

Proposed Naive

(α1, β1) α̂1 β̂1 α̂1β̂1 α̂1 β̂1 α̂1β̂1

n = 100 (0, 0) -0.0014 0.0172 0.0005 -0.0014 0.1048 0.0002

(0.0680) (0.1053) (0.0076) (0.0680) (0.1434) (0.0120)

(0.15, 0) -0.0014 0.0334 0.0053 -0.0014 0.1048 0.0159

(0.0680) (0.1095) (0.0186) (0.0680) (0.1434) (0.0241)

(0, 0.15) -0.0014 -0.0457 0.0006 -0.0014 0.1048 0.0001

(0.0680) (0.1232) (0.0109) (0.0680) (0.1434) (0.0200)

(0.15,0.15) -0.0014 -0.0215 -0.0029 -0.0014 0.1048 0.0157

(0.0680) (0.1325) (0.0242) (0.0680) (0.1434) (0.0292)

(0.25,0.25) -0.0014 -0.0252 -0.0061 -0.0014 0.1048 0.0260

(0.0680) (0.1527) (0.0429) (0.0680) (0.1434) (0.0444)

(0.35,0.35) -0.0014 -0.0170 -0.0060 -0.0014 0.1048 0.0364

(0.0680) (0.1611) (0.0621) (0.0680) (0.1434) (0.0600)

n = 300 (0, 0) -0.0001 0.0089 0.0001 -0.0001 0.1161 -0.0001

(0.0395) (0.0499) (0.0019) (0.0395) (0.0779) (0.0055)

(0.15, 0) -0.0001 0.0191 0.0029 -0.0001 0.1161 0.0173

(0.0395) (0.0508) (0.0079) (0.0395) (0.0779) (0.0126)

(0, 0.15) -0.0001 -0.0132 0.0002 -0.0001 0.1161 -0.0001

(0.0395) (0.0618) (0.0057) (0.0395) (0.0779) (0.0110)

(0.15,0.15) -0.0001 0.0020 0.0003 -0.0001 0.1161 0.0173

(0.0395) (0.0628) (0.0115) (0.0395) (0.0779) (0.0157)

(0.25,0.25) -0.0001 0.0045 0.0011 -0.0001 0.1161 0.0289

(0.0395) (0.0640) (0.0191) (0.0395) (0.0779) (0.0240)

(0.35,0.35) -0.0001 0.0070 0.0024 -0.0001 0.1161 0.0405

(0.0395) (0.0639) (0.0266) (0.0395) (0.0779) (0.0325)

† Please refer to the footnotes in Table 1.
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Table 3.

BIAS and MSE (in parenthesis) for the estimators with Case III†.

Proposed Naive

(α1, β1) α̂1 β̂1 α̂1β̂1 α̂1 β̂1 α̂1β̂1

n = 100 (0, 0) -0.0012 0.0295 0.0005 -0.0012 -0.0898 0.0003

(0.0660) (0.2250) (0.0147) (0.0660) (0.1375) (0.0112)

(0.15, 0) -0.0012 0.0469 0.0072 -0.0012 -0.0898 -0.0131

(0.0660) (0.2183) (0.0351) (0.0660) (0.1375) (0.0235)

(0, 0.15) -0.0012 -0.0283 0.0004 -0.0012 -0.0898 0.0002

(0.0660) (0.2359) (0.0175) (0.0660) (0.1375) (0.0101)

(0.15,0.15) -0.0012 -0.0036 -0.0003 -0.0012 -0.0898 -0.0133

(0.0660) (0.2345) (0.0393) (0.0660) (0.1375) (0.0233)

(0.25,0.25) -0.0012 -0.0109 -0.0024 -0.0012 -0.0898 -0.0224

(0.0660) (0.2471) (0.0656) (0.0660) (0.1375) (0.0376)

(0.35,0.35) -0.0012 -0.0030 -0.0009 -0.0012 -0.0898 -0.0315

(0.0660) (0.2498) (0.0918) (0.0660) (0.1375) (0.0525)

n = 300 (0, 0) 0.0005 0.0178 -0.0001 0.0005 -0.0852 -0.0001

(0.0406) (0.0693) (0.0030) (0.0406) (0.0741) (0.0046)

(0.15, 0) 0.0005 0.0272 0.0039 0.0005 -0.0852 -0.0129

(0.0406) (0.0698) (0.0108) (0.0406) (0.0741) (0.0119)

(0, 0.15) 0.0005 -0.0310 0.0001 0.0005 -0.0852 0.0001

(0.0406) (0.0828) (0.0057) (0.0406) (0.0741) (0.0040)

(0.15,0.15) 0.0005 -0.0058 -0.0010 0.0005 -0.0852 -0.0128

(0.0406) (0.0880) (0.0146) (0.0406) (0.0741) (0.0116)

(0.25,0.25) 0.0005 0.0038 0.0009 0.0005 -0.0852 -0.0213

(0.0406) (0.0900) (0.0244) (0.0406) (0.0741) (0.0197)

(0.35,0.35) 0.0005 0.0121 0.0042 0.0005 -0.0852 -0.0297

(0.0406) (0.0891) (0.0338) (0.0406) (0.0741) (0.0280)

† Please refer to the footnotes in Table 1.
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Table 4.

Size and power at significance level 0.05 with Case I†.

n = 100 n = 300

(α1, β1) Proposed Naive Proposed Naive

(0, 0) 0.003 0.002 0.003 0.005

(0.15, 0) 0.026 0.022 0.044 0.034

(0, 0.15) 0.011 0.014 0.039 0.030

(0.15, 0.15) 0.169 0.123 0.761 0.549

(0.25, 0.25) 0.581 0.480 0.999 0.977

(0.35, 0.35) 0.901 0.843 1 1

† “Naive” is the marginal regression method.
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Table 5.

Size and power at significance level 0.05 with Case II†.

n = 100 n = 300

(α1, β1) Proposed Naive Proposed Naive

(0, 0) 0.003 0.003 0.001 0.012

(0.15, 0) 0.036 0.065 0.054 0.308

(0, 0.15) 0.008 0.026 0.028 0.043

(0.15, 0.15) 0.201 0.278 0.750 0.901

(0.25, 0.25) 0.591 0.680 0.988 0.995

(0.35, 0.35) 0.883 0.898 1 1

† “Naive” is the marginal regression method.
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Table 6.

Size and power at significance level 0.05 with Case III†.

n = 100 n = 300

(α1, β1) Proposed Naive Proposed Naive

(0, 0) 0.004 0.006 0.001 0.011

(0.15, 0) 0.048 0.054 0.023 0.184

(0, 0.15) 0.006 0.004 0.011 0.008

(0.15, 0.15) 0.108 0.061 0.377 0.127

(0.25, 0.25) 0.331 0.199 0.824 0.588

(0.35, 0.35) 0.529 0.499 0.984 0.936

† “Naive” is the marginal regression method.
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Table 7.

Estimates and p-values of potential mediating taxa (Unadjusted p-value < 0.05)†.

ID Phylum Class Order Family Genus α̂ β̂ Pjoint

(SE) (SE)

14477 F C C* V Other -0.2305 1.2412 0.0202

(0.0993) (0.4252)

10485 F C C* V M -0.2258 1.4136 0.0231

(0.0994) (0.4516)

6167 B B B* B** B*** -0.2258 2.4668 0.0231

(0.0994) (0.7434)

† Pjoint = max{Pa, Pb}; “F” denotes Firmicutes; “C” denotes Clostridia; “C*” denotes Clostridiales;“V” denotes Veillonellaceae; “M”

denotes Megasphaera; “B” denotes Bacteroidetes; “B*” denotes Bacteroidales; “B**” denotes Bacteroidaceae; “B***” denotes Bacteroides.
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