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Abstract. We show that, if b ∈ L1(0,T ; L1
loc (R)) has spatial derivative in

the John-Nirenberg space BMO (R), then it generates a unique flow φ(t, ·)
which has an A∞(R) density for each time t ∈ [0,T ]. Our condition on the
map b is optimal and we also get a sharp quantitative estimate for the den-
sity. As a natural application we establish well-posedness for the Cauchy
problem of the transport equation in BMO (R).

1 Statement of main results

Given an integer n ≥ 1, a real T ≥ t > 0 and an evolutionary self-map b(t, ·) of Rn with

b ∈ L1(0,T ; L1
loc (Rn)),

consider the flow

φ(t, x) = x +

∫ t

0
b(r, φ(r, x)) dr.

We are motivated by the composition and transportation problems in BMO space to answer the
question:

What condition is needed on a vector field such that it generates a flow φ that preserves BMO
functions?

On Rn, n ≥ 2, the question has a satisfactory solution by the seminar work of Reimann [27] via
the following (Q)-condition

(Q) sup
(x,y,z)∈Rn×Rn×Rn, |y|=|z|>0

∣∣∣∣∣〈y, b(x + y) − b(x)〉
|y|2

−
〈z, b(x + z) − b(x)〉

|z|2

∣∣∣∣∣ < ∞
which is equivalent to the anti-conformal part

S Ab =
1
2

(Db + DbT ) −
div b

n
In×n
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is bounded - moreover (cf. [27]) -

S Ab ∈ L∞(Rn)⇒ Db ∈ BMO (Rn).

More precisely, [27] shows if b satisfies (Q) then it generates a unique flow φ(t, x), which at each
time t is a quasi-conformal mapping; see also [5]. By using the composition result on BMO by
Reimann [26], one sees that the flow φ preserves BMO; see [10] for an application of Reimann’s
result to the transportation.

However, less known is the situation on R. According to Jones [21], a homeomorphism φ :
R 7→ R preserves BMO, if and only if, φ′ is an A∞ weight. Recall that a non-negative locally
integrable function w is an A∞ weight, if

0 ≤ w ∈ A∞(Rn)⇔ [w]A∞(Rn) = sup
cubes I⊂Rn

(
1
|I|

∫
I
w dx

)
exp

(
−

1
|I|

∫
I
log w dx

)
< ∞.

Note that the Reimann’s (Q)-condition coincides with the Zygmund condition for a constant C > 0:

(Z) |b(x + y) + b(x − y) − 2b(x)| ≤ C|y| ∀ (x, y) ∈ R × R,

on the line. Reimann also [27] showed that for functions satisfying (Q) the induced flows are quasi-
symmetric mappings. Unfortunately, quasi-symmetric mappings are not necessarily absolutely
continuous in R and a function satisfying (Z) needs not be absolutely continuous (cf. [3, 27] and
[14]), in particular, this implies that the induced flows may do not have a density as A∞ weight.

In view of this, some more restrictions on b seem to be necessary for the generated flow to have
an A∞ density so that to preserve BMO functions. Moreover, we note that Reimann’s approach
[27] is rather intrinsic for the quasi-conformal /quasi-symmetric mappings, and in Rn, n ≥ 2, [27]
also obtained rather sharp estimate for the density (see also [5]), but in the line, it does not give
enough information on the density of the flow (as the flow may not be absolutely continuous).

In this paper, we show that if b′ is of BMO (R) then b generates a (unique) flow with A∞(R)
densities. To see this clearly, recall that

f ∈ BMO (Rn)⇔ ‖ f ‖BMO (Rn) = sup
cubes I⊂Rn

|I|−1
∫

I
| f − fI | dx < ∞,

where
fI = |I|−1

∫
I

f (x) dx

denotes the integral average of f over I whose Lebesgue measure is written as |I|. Since all constant
functions have zero BMO (Rn)-norm, and any constant does effect the flow, we make a modifica-
tion on BMO (Rn) functions f as

‖ f ‖∗ = ‖ f ‖BMO (Rn) +

∫
B(0,1)
| f | dx,

where B(0, 1) is the unit ball of Rn. Obviously,

f ∈ BMO (Rn)⇔ ‖ f ‖∗ < ∞,
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however, ‖ f ‖∗ is not comparable to ‖ f ‖BMO (Rn). In what follows,

∂

∂x
b(t, x) ∈ L1(0,T ; BMO(R))

stands for ∫ T

0

∥∥∥∥∥∥ ∂∂x
b(t, x)

∥∥∥∥∥∥
∗

dt < ∞.

Our first main result reads as follows.

Theorem 1.1. Let

(1.1) b(t, x) : [0,T ] × R 7→ R be in L1(0,T ; L1
loc (R)) with

∂b(t, x)
∂x

∈ L1(0,T ; BMO(R)).

Then there exists a unique flow φ(t, x) satisfying
∂

∂t
φ(t, x) = b(t, φ(t, x)) ∀ (t, x) ∈ [0,T ] × R;

φ(0, x) = x ∀ x ∈ R.

Moreover, for each t ∈ [0,T ], ∣∣∣∣∣ ∂∂x
φ(t, ·)

∣∣∣∣∣
is an A∞(R)-weight, and there exist constants C1, c > 0 such that

(1.2)
∥∥∥∥∥log

∣∣∣∣ ∂
∂x
φ(t, ·)

∣∣∣∣∥∥∥∥∥
BMO (R)

≤

∫ t

0
C1

∥∥∥∥∥ ∂∂x
b(s, ·)

∥∥∥∥∥
BMO (R)

ds

exp
(
−c

∫ t

0

∥∥∥∥∥ ∂∂x
b(s, ·)

∥∥∥∥∥
BMO (R)

ds
) .

Some remarks are in order. First, from the well-known fact that the logarithm of an A∞ weight
is a BMO function (see Lemma 2.4) and the formula

log
∣∣∣∣ ∂
∂x
φ(t, x)

∣∣∣∣ =

∫ t

0

∂

∂x
b(s, φ(s, x)) ds ∈ BMO (R),

we see that our condition (1.1) is critical, i.e., for each t,

x 7→
∂

∂x
b(t, x)

is necessarily a BMO (R)-function. Second, taking

b(x) = x log |x|
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for example, indicates that b generates a flow φ(t, x) with
φ(t, x) = signx |x|e

t

∂

∂x
φ(t, x) = et|x|e

t−1 ∈ A∞(R)∥∥∥∥∥log
∣∣∣∣ ∂
∂x
φ(t, x)

∣∣∣∣∥∥∥∥∥
BMO (R)

≤ (et − 1)‖ log |x|‖BMO (R) ≤ Ctet.

This implies that our estimate (1.2) is sharp.
For the proof, we shall first provide a version of the result in smooth setting, namely,

(1.3) b ∈ L1(0,T ; C1(R)) with
∂b(t, x)
∂x

∈ L1(0,T ; BMO (R)),

and then use the compactness argument based on development of non-smooth flows from [2, 9,
12, 13]. Note that since the Zygmund condition is satisfied for b, existence and uniqueness follow
already from Reimann [27]. The key of the proof is to establish (1.2), which even in the smooth
setting seems non-trivial. By the composition result of Jones [21], a homeomorphism φ preserves
BMO (R) if and only if φ′ is an A∞(R) weight. However, even we assume that b is smooth on R,
it seems mysteries to us whether one can prove the generated flow carries A∞(R) density directly
from (1.1).

In order to overcome the difficulties, we further consider the simpler case

(1.4) b ∈ L1(0,T ; C1(R)) with
∂b(t, x)
∂x

∈ L1(0,T ; L∞(R)),

where the generated flow carries A∞(R)-density following from the Cauchy-Lipschitz theory. Then
we observe that for a function v with small BMO (R)-norm, ev lies in the A∞(R) class with its norm
controlled by the BMO (R)-norm of v linearly. Then by using the flow with A∞(R)-density in the
smooth setting, a quantitative estimate of the norm of composition in BMO (R), and a bootstrap
argument, we succeed in showing (1.2) in the Lipschitz case (1.4). Finally a truncation argument
involving the Arzelá-Ascoli theorem allows us to pass to the case (1.3); see Section 3.

One may wonder if a quantitative estimate of the A∞(R)-norm of∣∣∣∣∣ ∂∂x
φ(t, ·)

∣∣∣∣∣
can be established. Although we do not know a positive answer, we doubt it since a quantitative
bound for an A∞(R)-weight ev holds only for v with small BMO (R)-norm; see Lemma 2.3 and
Lemma 2.4 below. However, there is a nice result regarding homeomorphisms preserving Ap(R)-
weights by [20].

We next apply the result on flow to study the transportation problem in BMO space. Besides its
own interest, this problem and its dual equation also arise naturally from the study of conservation
laws (see [6] for instance). In [10] (somewhat related to [25]), a well-posedness of the Cauchy
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problem of the transport equation in BMO (Rn) has been established for n ≥ 2 and then pushed to
the case n = 1 in [29]. The main step over there is to use the hypothesis that

(t, x) 7→

S Ab(t, x) ∀ n ≥ 2
∂
∂xb(t, x) ∀ n = 1

belongs to L1(0,T ; L∞(Rn)) with a suitably small norm,

the quasi-conformal flows of [27] and the composition results obtained in [23, 26] for n ≥ 2 (cf.
[22, 28, 30]) and in [21] for n = 1. But nevertheless, as our second main result we utilize Theorem
(1.1) and [21, Theorem] to discover the following stronger well-posedness of the transport equation
in BMO (R).

Theorem 1.2. Let b(t, x) : [0,T ] × R 7→ R be in L1(0,T ; L1
loc (R)) and satisfy

∂b(t, x)
∂x

∈ L1(0,T ; BMO(R)).

Then for u0 ∈ BMO (R) there exists a unique solution u ∈ L∞(0,T ; BMO (R)) to the Cauchy
problem of the transport equation

(
∂u
∂t
− b · ∇u

)
(t, x) = 0 ∀ (t, x) ∈ (0,T ) × R;

u(0, x) = u0(x) ∀ x ∈ R.

Moreover, for each t ∈ [0,T ], it holds thatu(t, x) = u0(φ(t, x));
∂
∂tφ(t, x) = b(t, φ(t, x)),

and there exist C2, c > 0 such that

(1.5) ‖u‖BMO (R) ≤ C2‖u0‖BMO (R) exp
(
c
∫ t

0

∥∥∥∥∥ ∂∂x
b(s, ·)

∥∥∥∥∥
BMO (R)

ds
)
.

Based on the duality of Hardy space H1 and BMO by Fefferman and Stein [16], the above
theorem provides the existence of solutions in Hardy space H1 to the continuity equation

(
∂u
∂t
−
∂

∂t
(bu)

)
(t, x) = 0 ∀ (t, x) ∈ (0,T ) × R;

u(0, x) = u0(x) ∀ x ∈ R.

See [11] for a study of the equation in higher dimensions and a proof of uniqueness (cf. [11,
Theorem 3]).

Note that previously Mucha establish well-posedness of the transport equation in L∞(0,T ; L∞(Rn))
provided div b ∈ L1(0,T ; BMO) with compact support. The condition on the vector fields b has
been further relaxed in [8]. Nevertheless, let us point out that, the well-posedness in L∞(0,T ; L∞(Rn))
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requires much weaker condition on the vector fields b than in the space L∞(0,T ; BMO). Indeed,
given a map φ : Rn 7→ Rn, then φ preserves L∞ functions as soon as for any set E with measure ze-
ro, the pre-image φ−1(E) has measure zero. From our previous discussions, the a map φ preserves
BMO functions requires much finer regularity than this.

The paper is organized as follows. In Section 2, we recall and establish some results concerning
Muckenhoupt weights, BMO (R), and continuity estimates. In Section 3, we present the key a
priori estimation for the flow, i.e., the version of Theorem 1.1 in the smooth setting. In Section 4,
we verify the above main results.

Notation. In the above and below, C,C1,C2, ... and c, c1, c2, ... stand for positive constants.

2 Weights and bounded mean oscillation

For a locally integrable function f and an open interval I ⊂ R, we denote by fI the integral average
of f on I. We say that a locally integrable nonnegative function w belongs to the Muckenhoupt
Ap(R) class, 1 < p < ∞, if

[w]Ap(R) = sup
intervals I⊂R

(
1
|I|

∫
I
w dx

) (
1
|I|

∫
I
w

1
1−p dx

)p−1

< ∞,

and that w ∈ A∞(R), if

[w]A∞(R) = sup
intervals I⊂R

(
1
|I|

∫
I
w dx

)
exp

(
−

1
|I|

∫
I

(
log w

)
dx

)
< ∞.

Note that, if w > 0 a.e., then [w]A∞(R) ≥ 1 follows from the Jensen inequality: indeed

[w]A∞(R) ≥ wI exp
(
[− log w]I

)
≥ exp

(
(log w)I

)
exp

(
[− log w]I

)
= 1,

and similarly
[w]Ap(R) ≥ [w]A∞(R) ∀ p ∈ (1,∞).

We need the following quantitative version of reverse Hölder inequality for A∞(R)-weight from
[19]; see also [24].

Lemma 2.1. Let w ∈ A∞(R) and I ⊂ R be an arbitrary interval. Then there exits
τ > 0;

rw = 1 +
(
τ[w]A∞(R)

)−1
;

εw =
(
1 + τ[w]A∞(R)

)−1
,

such that 
(
|I|−1

∫
I
wrw dx

)1/rw
≤ 2|I|−1

∫
I
w dx;

w(E)
w(I) =

∫
E w(x) dx∫
I w(x) dx

≤ 2
(
|E|
|I|

)εw
for any measurable set E ⊂ I.
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By [21, Theorem], we know that an increasing homeomorphism ϕ of R preserves BMO if and
only if ϕ′ belongs to A∞(R). By using the previous lemma we deduce the following quantitative
version; see [1] for an explicit bound in terms of reverse Hölder index and [4, 15, 17] for related
results.

Lemma 2.2. Let ϕ be an increasing homeomorphism on R with ϕ′ ∈ A∞(R). Then there is C3 > 0
such that

‖ f ◦ ϕ−1‖BMO (R) ≤ C3[ϕ′]A∞(R)‖ f ‖BMO (R).

Proof. Recall that for a BMO (R)-function f , the John-Nirenberg inequality states that, for all
I ⊂ R, there exists c1, c2 > 0 such that

∣∣∣{x ∈ I : | f (x) − fI | > λ}
∣∣∣ ≤ c1|I| exp

(
−

c2λ

‖ f ‖BMO (R)

)
∀ λ > 0;

see [18] for instance.
Suppose that ϕ is an increasing homeomorphism of R with ϕ′ ∈ A∞(R). By [21, Theorem], we

have
f ◦ ϕ−1 ∈ BMO .

For every interval
I = (a, b) ⊂ R,

set
Eλ =

{
x ∈ I : | f ◦ ϕ−1(x) − fϕ−1(I)| > λ

}
.

Then
ϕ−1(Eλ) =

{
y ∈ ϕ−1(I) : | f (y) − fϕ−1(I)| > λ

}
,

and hence, by Lemma 2.1 and the John-Nirenberg inequality, we get

|Eλ|

|I|
≤ 2

(
|ϕ−1(Eλ)|
|ϕ−1(I)|

)εw

≤ 2c1 exp
(
−

c2εwλ

‖ f ‖BMO (R)

)
where εw =

(
1 + τ[ϕ′]A∞(R)

)−1
,

thereby via the Layer Cake representation we find

‖ f ◦ ϕ−1‖BMO (R) ≤ C(1 + τ[ϕ′]A∞(R))‖ f ‖BMO (R) ≤ C3[ϕ′]A∞(R)‖ f ‖BMO (R),

where we have used the fact that ϕ is an increasing homeomorphism on R with

[ϕ′]A∞(R) ≥ 1.

�

The following result is well-known; see [7, 18] for instance.
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Lemma 2.3. There exists α < 1 < β such that for
f ∈ BMO (R);
s ∈ R;
|s| ≤ α‖ f ‖−1

BMO (R),

it holds that
es f ∈ A2(R) with [es f ]A2(R) ≤ β

2.

Here it is perhaps appropriate to mention that the requirement

|s| ≤ α‖ f ‖−1
BMO (R)

is critical since
x 7→ f (x) = log |x|

is in BMO (R) but
x 7→ e− f (x) = |x|−1

is not a Muckenhoupt weight.

Lemma 2.4. If
0 ≤ w ∈ A∞(R)

then
‖ log w‖BMO (R) ≤ 2 log([w]A∞(R) + 1).

Conversely, if v ∈ BMO (R), then there exists a sufficiently small ε0 ∈ (0, 1] such that

‖v‖BMO (R) < ε0 ⇒ ev ∈ A∞(R) with [ev]A∞(R) ≤ 1 + C4‖v‖BMO (R).

Proof. On the one hand, for any 0 ≤ w ∈ A∞(R) we have∫
I

∣∣∣log w − (log w)I

∣∣∣ dx =

∫
I

[
log w − (log w)I

]
+ dx +

∫
I

[
log w − (log w)I

]
− dx

= 2
∫

I

[
log w − (log w)I

]
+ dx,

where [ f ]+ and [ f ]− denotes the positive and negative parts of f respectively. In virtue of Jensen’s
inequality we obtain

|I|−1
∫

I

∣∣∣log w − (log w)I

∣∣∣ dx = 2|I|−1
∫

I

[
log w − (log w)I

]
+ dx

≤ 2 log
(
|I|−1

∫
I
exp

[
log w − (log w)I

]
+ dx

)
≤ 2 log

(
|I|−1

∫
I
exp

[
log w − (log w)I

]
dx + 1

)
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≤ 2 log([w]A∞(R) + 1),

whence
‖ log w‖BMO (R) ≤ 2 log([w]A∞(R) + 1).

On the other hand, note that

[ev]A∞(R) =

(
sup

I=(a,b)⊂R
|I|−1

∫
I
ev(x) dx

)
exp ([−v]I) = sup

I=(a,b)⊂R
|I|−1

∫
I
ev(x)−vI dx.(2.1)

So, if v ∈ BMO (R), then the John-Nirenberg inequality gives

|{x ∈ I : |v(x) − vI | > λ}| ≤ c1|I| exp
(
−

c2λ

‖v‖BMO (R)

)
.

Inserting this into (2.1), we find that if

‖v‖BMO (R) < c2

then

|I|−1
∫

I
ev(x)−vI dx =

1
|I|

∫
x∈I: v(x)−vI<0

ev(x)−vI dx +
1
|I|

∫
x∈I: v(x)−vI≥0

ev(x)−vI dx

≤ 1 + c1

∫ ∞

0
exp

(
λ −

c2λ

‖v‖BMO (R)

)
dλ

≤ 1 +
c1‖v‖BMO (R)

c2 − ‖v‖BMO (R)
.

Accordingly,
‖v‖BMO (R) < 2−1c2 ⇒ [ev]A∞(R) ≤ 1 + 2c1c−1

2 ‖v‖BMO (R).

Letting
ε0 = min{1, 2−1c2}

yields the assertion. �

Proposition 2.5. Suppose that b ∈ L1
loc (R) has its derivative b′ ∈ BMO (R). Then b satisfies the

Zygmund condition with

|b(x + y) + b(x − y) − 2b(x)| ≤ 2|y|‖b′‖BMO (R) ∀ (x, y) ∈ R × R.

Proof. This follows from

|b(x + y) + b(x − y) − 2b(x)|

=

∣∣∣∣∣∣
∫ x+y

x
b′(z) dz −

∫ x

x−y
b′(z) dz

∣∣∣∣∣∣
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≤

∣∣∣∣∣∣
∫ x+y

x
b′(z) dz −

1
2

∫ x+y

x−y
b′(z) dz

∣∣∣∣∣∣ +

∣∣∣∣∣∣12
∫ x+y

x−y
b′(z) dz −

∫ x

x−y
b′(z) dz

∣∣∣∣∣∣
≤

∫ x+y

x

∣∣∣b′(z) − b′[x−y,x+y]

∣∣∣ dz +

∫ x

x−y

∣∣∣b′(z) − b′[x−y,x+y]

∣∣∣ dz

≤

∫ x+y

x−y

∣∣∣b′(z) − b′[x−y,x+y]

∣∣∣ dz

≤ 2|y|‖b′‖BMO (R).

�

Recall that for a BMO (R) function f we have

‖ f ‖∗ = ‖ f ‖BMO (R) +

∫
[−1,1]
| f | dx < ∞.

In what follows, for a positive constant C, denote by

log+ C = max{1, log C}.

Proposition 2.6. Suppose that b ∈ L1
loc (R) has its derivative b′ ∈ BMO (R). Then b satisfies

|b(x) − b(0)| ≤ C5‖b′‖∗|x|(1 + | log |x||) ∀ x ∈ R

and
|b(x + h) − b(x)| ≤ C5‖b′‖∗(log+

|x|)
(
|h|(1 + | log |h||)

)
∀ (x, h) ∈ R × R.

Proof. From [27, Proposition 5] and Proposition 2.5 it follows that if

y , 0; z , 0; x ∈ R,

then

(2.2)
∣∣∣∣∣ (y, b(x + y) − b(x))

|y|2
−

(z, b(x + z) − b(x))
|z|2

∣∣∣∣∣ ≤ 5‖b′‖BMO (R) +
‖b′‖BMO (R)

log 2

∣∣∣∣∣log
|y|
|z|

∣∣∣∣∣ .
Letting x = 0 and z = 1 in (2.2) gives the first inequality in Proposition 2.6 via

|b(y) − b(0)| ≤ |y|
(
|b(1) − b(0)| + 5‖b′‖BMO (R) +

‖b′‖BMO (R)

log 2

∣∣∣log |y|
∣∣∣)

≤ C5‖b′‖∗|y|(1 + | log |y|).

Also, by using structure of BMO (R) (cf. [18, Exercise 7.1.6]) we see that if x ∈ R then

|b(x + 1) − b(x)| =

∣∣∣∣∣∣
∫ x+1

x
b′ dy −

∫ 1

0
b′ dy

∣∣∣∣∣∣ +

∣∣∣∣∣∣
∫ 1

0
b′ dy

∣∣∣∣∣∣
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≤ 2(log+
|x|)‖b′‖BMO (R) +

∣∣∣∣∣∣
∫ 1

0
b′ dy

∣∣∣∣∣∣
≤ 2(log+

|x|)‖b′‖∗.

This, along with (2.2), derives the second inequality in Proposition 2.6 via

|b(x + h) − b(x)| ≤ |h|
(
|b(x + 1) − b(x)| + 5‖b′‖BMO (R) +

‖b′‖BMO (R)

log 2

∣∣∣log |h|
∣∣∣)

≤ C5‖b′‖∗(log+
|x|)|h|(1 + | log |h|).

�

3 Key a priori estimates for the flow

We say that φ is a forward flow associated to b if for each s ∈ [0,T ] and almost every x ∈ Rn the
map

t 7→ |b(t, φs(t, x))| belongs to L1(s,T )

and

φs(t, x) = x +

∫ t

s
b(r, φs(r, x)) dr.

If the flow starts at s = 0, then we simply denote φ0(t, x) by φ(t, x).
Meanwhile, we say that φ̃ is a backward flow associated to b if for each t ∈ [0,T ] and almost

every x ∈ Rn the map
s 7→ |b(s, φ̃t(s, x))| belongs to L1(0, t)

and

φ̃t(s, x) = x −
∫ t

s
b(r, φ̃t(r, x)) dr.

Theorem 3.1. Let

b(t, x) : [0,T ] × R 7→ R be in L1(0,T ; C1(R)) with
∫ T

0

∥∥∥∥∥∥ ∂b(t, ·)
∂x

∥∥∥∥∥∥
L∞(R)

dt < ∞.

Then there exists a unique flow φ(t, x) satisfying
∂

∂t
φ(t, x) = b(t, φ(t, x)) ∀ (t, x) ∈ [0,T ] × R;

φ0(x) = x ∀ x ∈ R.

Moreover, for each t ∈ [0,T ], it holds that

∥∥∥∥∥log
∣∣∣∣ ∂
∂x
φ(t, x)

∣∣∣∣∥∥∥∥∥
BMO (R)

≤

∫ t

0
C6

∥∥∥∥∥ ∂∂x
b(s, )

∥∥∥∥∥
BMO (R)

ds

exp
(
−C7

∫ t

0

∥∥∥∥∥ ∂∂x
b(s, )

∥∥∥∥∥
BMO (R)

ds
) .
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Proof. The argument is divided into four steps.

Step 1 - initialing argument. Since

b(t, x) : [0,T ] × R 7→ R

satisfies
b ∈ L1(0,T ; C1(R)) with

∂b(t, x)
∂x

∈ L1(0,T ; L∞(R)),

the classical Cauchy-Lipschitz theory produces a unique flow φs(t, x) with
∂

∂t
φs(t, x) = b(t, φs(t, x)) ∀ (t, x) ∈ [s,T ] × R;

φs(s, x) = x ∀ x ∈ R.

Moreover, for each t ∈ [s,T ], φs(t, ·) is a bi-Lipschitz map on R. Differentiating the equation with
respect to the spatial direction, we have

∂

∂x

(
∂

∂t
φs(t, x)

)
=

(
∂

∂x
b(t, φs(t, x))

)
∂

∂x
φs(t, x);

∂

∂t
log

∣∣∣∣ ∂
∂x
φs(t, x)

∣∣∣∣ =
∂

∂x
b(t, φs(t, x)).

As φs(t, ·) is a bi-Lipschitz map on R for each t ∈ [s,T ], its x-derivative has lower and upper
bounds, i.e.,

e−
∫ t

s A(r) dr ≤

∣∣∣∣∣ ∂∂x
φs(t, x)

∣∣∣∣∣ ≤ e
∫ t

s A(r) dr,

where

A(r) =

∥∥∥∥∥∥ ∂∂x
b(r, ·)

∥∥∥∥∥∥
L∞(R)

.

In particular, this implies that for each t, the function∣∣∣∣∣ ∂∂x
φs(t, ·)

∣∣∣∣∣
is an A∞(R)-weight with [∣∣∣∣ ∂

∂x
φs(t, ·)

∣∣∣∣]
A∞(R)

≤ e2
∫ t

s A(r) dr.

Note that the same estimate holds for the backward flow φ̃t(s, x), which is the inverse of φs(t, x).
Upon applying Lemma 2.2, we achieve∥∥∥∥∥log

∣∣∣∣ ∂
∂x
φs(t, ·)

∣∣∣∣∥∥∥∥∥
BMO (R)

=

∥∥∥∥∥∥
∫ t

s

∂

∂x
b(r, φs(r, ·)) dr

∥∥∥∥∥∥
BMO (R)
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≤

∫ t

s

∥∥∥∥∥ ∂∂x
b(r, φs(r, ·))

∥∥∥∥∥
BMO (R)

dr(3.1)

≤

∫ t

s
C3

∥∥∥∥∥ ∂∂x
b(r, ·)

∥∥∥∥∥
BMO (R)

[
∂

∂x
φ̃r(s, ·)

]
A∞(R)

dr

≤

∫ t

s
C3

∥∥∥∥∥ ∂∂x
b(r, ·)

∥∥∥∥∥
BMO (R)

e2
∫ r

s A(z) dz dr.

Step 2 - starting from short time. By letting T0 > s ≥ 0 be small enough with∫ T0

s
C3

∥∥∥∥∥ ∂∂x
b(r, ·)

∥∥∥∥∥
BMO (R)

e2
∫ r

s A(z) dz dr < ε0,

where ε0 is as in Lemma 2.4, we utilize (3.1) to get

sup
s≤t≤T0

{∥∥∥∥∥log
∣∣∣∣ ∂
∂x
φs(t, ·)

∣∣∣∣∥∥∥∥∥
BMO (R)

,

∥∥∥∥∥log
∣∣∣∣ ∂
∂x
φ̃t(s, ·)

∣∣∣∣∥∥∥∥∥
BMO (R)

}
< ε0.

Hence, by applying Lemma 2.4, we see[∣∣∣∣ ∂
∂x
φs(t, ·)

∣∣∣∣]
A∞(R)

< 1 + C4

∥∥∥∥∥log
∣∣∣∣ ∂
∂x
φs(t, ·)

∣∣∣∣∥∥∥∥∥
BMO (R)

.

Inserting this estimate into (3.1), we conclude∥∥∥∥∥log
∣∣∣∣ ∂
∂x
φs(t, ·)

∣∣∣∣∥∥∥∥∥
BMO (R)

≤

∫ t

s
C3

∥∥∥∥∥ ∂∂x
b(r, ·)

∥∥∥∥∥
BMO (R)

[∣∣∣∣ ∂
∂x
φ̃r(s, ·)

∣∣∣∣]
A∞(R)

ds

≤

∫ t

s
C3

∥∥∥∥∥ ∂∂x
b(r, ·)

∥∥∥∥∥
BMO (R)

(
1 + C4

∥∥∥∥∥log
∣∣∣∣ ∂
∂x
φ̃r(s, ·)

∣∣∣∣∥∥∥∥∥
BMO (R)

)
ds.

Set

Is(t) = sup
s≤r≤t

{∥∥∥∥∥log
∣∣∣∣ ∂
∂x
φs(r, ·)

∣∣∣∣∥∥∥∥∥
BMO (R)

,

∥∥∥∥∥log
∣∣∣∣ ∂
∂x
φ̃r(s, ·)

∣∣∣∣∥∥∥∥∥
BMO (R)

}
.

The above estimates yield

Is(t) ≤
∫ t

s
C3

∥∥∥∥∥ ∂∂x
b(r, ·)

∥∥∥∥∥
BMO (R)

(1 + C4Is(r)) dr ∀ t ∈ [s,T0].

The Gronwall inequality then implies

(3.2) Is(t) ≤

∫ t

s
C3

∥∥∥∥∥ ∂∂x
b(r, ·)

∥∥∥∥∥
BMO (R)

dr

exp
(
−

∫ t

s
C3C4

∥∥∥∥∥ ∂∂x
b(r, ·)

∥∥∥∥∥
BMO (R)

dr
) ∀ t ∈ [s,T0].
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Step 3 - removing the dependence of Lipschitz constant. Let T1 ∈ (s,T ] obey

(3.3)
∫ T1

s
C3

∥∥∥∥∥ ∂∂x
b(r, ·)

∥∥∥∥∥
BMO (R)

dr exp
(
C3C4

∫ T1

s

∥∥∥∥∥ ∂∂x
b(r, ·)

∥∥∥∥∥
BMO (R)

dr
)
≤ 2−1ε0,

We claim that (3.2) holds for all t ∈ (s,T1].
If T1 ≤ T0, then the claim follows from (3.2).
Suppose now T0 < T1. Assume that for some t0 ∈ [T0,T1), (3.2) holds for all t ∈ (s, t0]. Then

Is(t0) ≤

∫ t0
s

C3

∥∥∥∥∥ ∂∂x
b(r, ·)

∥∥∥∥∥
BMO (R)

dr

exp
(
−

∫ t0
s

C3C4

∥∥∥∥∥ ∂∂x
b(r, ·)

∥∥∥∥∥
BMO (R)

dr
) ≤ 2−1ε0.

Since
∂b(t, ·)
∂x

∈ L1(0,T ; L∞(R)),

We can choose t1 ∈ (t0,T1] such that

(3.4)
∫ t1

t0
C3

∥∥∥∥∥ ∂∂x
b(r, ·)

∥∥∥∥∥
BMO (R)

e2
∫ r

t0
A(z) dz dr < ε0

and

(3.5)

∫ t1
t0

C3

∥∥∥∥∥ ∂∂x
b(r, ·)

∥∥∥∥∥
BMO (R)

dr

exp
(
−

∫ t1
t0

C3C4

∥∥∥∥∥ ∂∂x
b(r, ·)

∥∥∥∥∥
BMO (R)

dr
) < ε0

2C3(1 + C42−1ε0)
.

The same argument as in proving (3.2) then implies that for t0 < t ≤ t1 it holds

It0(t) ≤

∫ t

t0
C3

∥∥∥∥∥ ∂∂x
b(r, ·)

∥∥∥∥∥
BMO (R)

dr

exp
(
−

∫ t

t0
C3C4

∥∥∥∥∥ ∂∂x
b(r, ·)

∥∥∥∥∥
BMO (R)

dr
) < ε0

2C3(1 + C42−1ε0)
.(3.6)

For any t ∈ (t0, t1], we have via the semigroup property of the flow that

φs(t, x) = φt0(t, φs(t0, x)).

By applying Lemma 2.2, Lemma 2.4 and (3.6), we find∥∥∥∥∥log
∣∣∣∣ ∂
∂x
φs(t, ·)

∣∣∣∣∥∥∥∥∥
BMO (R)

=

∥∥∥∥∥log
∣∣∣∣ ∂
∂x
φt0(t, φs(t0, ·))

∣∣∣∣∥∥∥∥∥
BMO (R)
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≤

∥∥∥∥∥log
∣∣∣∣ ∂
∂z
φt0(t, z)|z=φs(t0,·)

∣∣∣∣∥∥∥∥∥
BMO (R)

+

∥∥∥∥∥log
∣∣∣∣ ∂
∂x
φs(t0, ·)

∣∣∣∣∥∥∥∥∥
BMO (R)

≤ C3

∥∥∥∥∥log
∣∣∣∣ ∂
∂x
φt0(t, ·)

∣∣∣∣∥∥∥∥∥
BMO (R)

[
∂

∂x
φ̃t0(s, ·)

]
A∞(R)

+

∥∥∥∥∥log
∣∣∣∣ ∂
∂x
φs(t0, ·)

∣∣∣∣∥∥∥∥∥
BMO (R)

<
ε0C3(1 + C42−1ε0)
2C3(1 + C42−1ε0)

+
ε0

2
= ε0.

This derives

sup
s≤t≤t1

{∥∥∥∥∥log
∣∣∣∣ ∂
∂x
φs(t, ·)

∣∣∣∣∥∥∥∥∥
BMO (R)

,

∥∥∥∥∥log
∣∣∣∣ ∂
∂x
φ̃t(s, ·)

∣∣∣∣∥∥∥∥∥
BMO (R)

}
< ε0.

Using this estimate in Step 2, we further have the following estimate

sup
s≤t≤t1

{∥∥∥∥∥log
∣∣∣∣ ∂
∂x
φs(t, ·)

∣∣∣∣∥∥∥∥∥
BMO (R)

,

∥∥∥∥∥log
∣∣∣∣ ∂
∂x
φ̃t(s, ·)

∣∣∣∣∥∥∥∥∥
BMO (R)

}
≤

∫ t1

s
C3

∥∥∥∥∥ ∂∂x
b(s, ·)

∥∥∥∥∥
BMO (R)

exp
(
C3C4

∫ t1

s

∥∥∥∥∥ ∂∂x
b(s, ·)

∥∥∥∥∥
BMO (R)

ds
)

ds

< 2−1ε0,

which implies that (3.2) holds for all t ∈ (s, t1].
Since in (3.4) and (3.5) the extension of time only depends on b itself, we may iterate this

argument finite times and conclude that (3.2) holds for all t ∈ (s,T1].
Step 4 - completing argument. Since b satisfies

∂b(t, ·)
∂x

∈ L1(0,T ; L∞(R)),

we may choose a sequence of increasing numbers {Ti}i=1,··· ,k0 such that T1 = 0, Tk0 = T and

∫ Ti+1

Ti
C3

∥∥∥∥∥ ∂∂x
b(s, ·)

∥∥∥∥∥
BMO (R)

ds

exp
(
−

∫ Ti+1

Ti
C3C4

∥∥∥∥∥ ∂∂x
b(s, ·)

∥∥∥∥∥
BMO (R)

ds
) = 2−1ε0 ∀ i ∈ {1, ..., k0 − 2},

and ∫ Tk0

Tk0−1
C3

∥∥∥∥∥ ∂∂x
b(s, ·)

∥∥∥∥∥
BMO (R)

ds

exp
(
−

∫ Tk0

Tk0−1
C3C4

∥∥∥∥∥ ∂∂x
b(s, ·)

∥∥∥∥∥
BMO (R)

ds
) ≤ 2−1ε0
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If t ∈ (T1,T2], then Step 3 gives

(3.7)
∥∥∥∥∥log

∣∣∣∣ ∂
∂x
φ(t, ·)

∣∣∣∣∥∥∥∥∥
BMO (R)

≤

∫ t

0

C3

∥∥∥∥∥ ∂∂x
b(r, ·)

∥∥∥∥∥
BMO (R)

exp
(
−C3C4

∫ t

0

∥∥∥∥∥ ∂∂x
b(r, ·)

∥∥∥∥∥
BMO (R)

dr
) ds.

Suppose that t belongs to

some (Ti,Ti+1] with 2 ≤ i ≤ k0 − 1.

By using the semigroup property of the flow φ, we have

φ(t, x) = φTi(t, ·) ◦ φTi−1(Ti, ·) ◦ · · · φT1(T2, x).

By using Lemma 2.2, Lemma 2.4 and Step 3, we conclude∥∥∥∥∥log
∣∣∣∣ ∂
∂x
φ(t, ·)

∣∣∣∣∥∥∥∥∥
BMO (R)

=

∥∥∥∥∥log
∣∣∣∣ ∂
∂x
φT2(t, φT1(T2, ·))

∣∣∣∣∥∥∥∥∥
BMO (R)

≤

∥∥∥∥∥log
∣∣∣∣ ∂
∂z
φT2(t, z)|z=φT1 (T2,·)

∣∣∣∣∥∥∥∥∥
BMO (R)

+

∥∥∥∥∥log
∣∣∣∣ ∂
∂x
φT1(T2, ·)

∣∣∣∣∥∥∥∥∥
BMO (R)

≤ C3

∥∥∥∥∥log
∣∣∣∣ ∂
∂x
φT2(t, ·)

∣∣∣∣∥∥∥∥∥
BMO (R)

[∣∣∣∣ ∂
∂x
φ̃T2(T1, ·)

∣∣∣∣]
A∞(R)

+

∥∥∥∥∥log
∂

∂x
φT1(T2, ·)

∥∥∥∥∥
BMO (R)

≤ C3(1 + C42−1ε0)
∥∥∥∥∥log

∣∣∣∣ ∂
∂x
φT2(t, ·)

∣∣∣∣∥∥∥∥∥
BMO (R)

+ 2−1ε0

≤ C3(1 + C4)
∥∥∥∥∥log

∣∣∣∣ ∂
∂x
φT2(t, ·)

∣∣∣∣∥∥∥∥∥
BMO (R)

+ 1

≤
(
C3(1 + C4)

)2
∥∥∥∥∥log

∣∣∣∣ ∂
∂x
φT3(t, ·)

∣∣∣∣∥∥∥∥∥
BMO (R)

+ C3(1 + C4) + 1

≤ · · ·

≤
(
C3(1 + C4)

)i−1
∥∥∥∥∥log

∣∣∣∣ ∂
∂x
φTi(t, ·)

∣∣∣∣∥∥∥∥∥
BMO (R)

+

i−2∑
j=0

(
C3(1 + C4)

) j

≤
(
C3(1 + C4) + 1

)i
.

Let δ0 > 0 obey
C3δ0eC3C4δ0 = 2−1ε0.

As 
ε0 ≤ 1;
δ0 < 1;
t ∈ (Ti,Ti+1],
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by our choice of {Ti} we find

(i − 1)δ0 <

∫ t

0

∥∥∥∥∥ ∂∂x
b(s, ·)

∥∥∥∥∥
BMO (R)

ds ≤ iδ0,

whence

∥∥∥∥∥log
∣∣∣∣ ∂
∂x
φ(t, ·)

∣∣∣∣∥∥∥∥∥
BMO (R)

≤

1
δ0

∫ t

0

∥∥∥∥∥ ∂∂x
b(s, ·)

∥∥∥∥∥
BMO (R)

ds

exp
(
−C

∫ t

0

∥∥∥∥∥ ∂∂x
b(s, ·)

∥∥∥∥∥
BMO (R)

ds
) .

This, together with (3.7), implies

∥∥∥∥∥log
∣∣∣∣ ∂
∂x
φ(t, ·)

∣∣∣∣∥∥∥∥∥
BMO (R)

≤

∫ t

0
C3
δ0

∥∥∥∥∥ ∂∂x
b(r, ·)

∥∥∥∥∥
BMO (R)

exp
(
−C

∫ t

0

∥∥∥∥∥ ∂∂x
b(r, ·)

∥∥∥∥∥
BMO (R)

dr
)

ds
,

as desired.
�

Rather surprisingly, the hypothesis∫ T

0

∥∥∥∥∥∥ ∂b(t, ·)
∂x

∥∥∥∥∥∥
L∞(R)

dt < ∞

in Theorem 3.1 can be replaced by a weaker one∫ T

0

∥∥∥∥∥∥ ∂b(t, ·)
∂x

∥∥∥∥∥∥
∗

dt < ∞

in the following assertion.

Theorem 3.2. Let

b(t, x) : [0,T ] × R 7→ R be in L1(0,T ; C1(R)) with
∫ T

0

∥∥∥∥∥∥ ∂b(t, ·)
∂x

∥∥∥∥∥∥
∗

dt < ∞.

Then there exists a unique flow φ(t, x) satisfying
∂

∂t
φ(t, x) = b(t, φ(t, x)) ∀ (t, x) ∈ [0,T ] × R;

φ0(x) = x ∀ x ∈ R.

Moreover

∥∥∥∥∥log
∣∣∣∣ ∂
∂x
φ(t, x)

∣∣∣∣∥∥∥∥∥
BMO (R)

≤

∫ t

0
2C6

∥∥∥∥∥ ∂∂x
b(s, )

∥∥∥∥∥
BMO (R)

ds

exp
(
−2C7

∫ t

0

∥∥∥∥∥ ∂∂x
b(s, )

∥∥∥∥∥
BMO (R)

ds
) ∀ t ∈ [0,T ].
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Proof. The existence and uniqueness has essentially been established in [27]. So it remains to
verify the last BMO (R)-size estimate.

For each (k, t) ∈ N × [0,T ] setvk(t, x) = min {max{−k, ∂xb(t, x)}, k} ;
bk(t, x) = b(t, 0) +

∫ x

0
vk(t, y) dy.

Then

(3.8)


∂xbk(t, ·) ∈ L1(0,T ; L∞(R));
‖vk(t, ·)‖BMO (R) ≤ 2‖∂xb(t, ·)‖BMO (R);
‖vk(t, ·)‖∗ ≤ 2‖∂xb(t, ·)‖∗.

In accordance with Propositions 2.5-2.6, we see that {bk} and b satisfy the Zygmund condition with
a uniform constant.

Let {φk, φ} be the unique flow pair generated by {bk(t, x), b(t, x)}. Then by [27, Proposition 4],
we see that φ(t, ·) and φk(t, ·) are locally Hölder continuous on R for each t ∈ [0,T ]. Moreover for
each compact set K ⊂ R, both φ(t, ·) and φk(t, ·) are Hölder continuous on K for each t ∈ [0,T ]
with the Hölder exponent and constant depending only on∫ t

0
‖∂xb(s, ·)‖∗ ds.

On the other hand, by the construction of bk and Proposition 2.6 we have

|bk(t, x) − b(t, 0)| ≤ C5‖vk(t, ·)‖∗|x|(1 + | log |x||) ≤ 2C5‖∂xb(t, ·)‖∗|x|(1 + | log |x||),

thereby getting that {
|φk(t, x)| : (t, x) ∈ [0,T ] × K

}
is uniformly bounded. Denote by

C8(K) := sup {|φk(t, x)| + |φ(t, x)| : (t, x, k) ∈ [0,T ] × K × N} .

Then it holds for each x ∈ K and all 0 ≤ s < t ≤ T that

|φk(t, x) − φk(s, x)| ≤
∫ t

s
|bk(r, φk(r, x))| dr

≤

∫ t

s

(
|b(r, 0)| + 2C5‖∂xb(r, ·)‖∗|C8(K)|(1 + | log |C8(K)||)

)
dr.

This, together with the previous discussion on the Hölder continuity in the spatial direction, implies
that {φk}k are equicontinuous on [0,T ]×K. Applying the Arzelá-Ascoli theorem, we conclude that
there is a subsequence of {φk}k, denoted by {φK,k}k, such that φK,k converges uniformly on [0,T ]×K.

By construction we have
bk(t, x)→ b(t, x) as k → ∞,
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thereby concluding that if (t, x) ∈ [0,T ] × K then

lim
k→∞

φK,k(t, x) = x + lim
k→∞

∫ t

0
bK,k(s, φK,k(s, x)) ds

= x + lim
k→∞

∫ t

0

∫ φK,k(s,x)

0
[vK,k(s, y) − ∂xb(s, y)] dy ds + lim

k→∞

∫ t

0
b(s, φK,k(s, x)) ds.

Since
|φk(s, x)| ≤ C8(K),

one has ∣∣∣∣∣∣
∫ t

0

∫ φK,k(s,x)

0
[vK,k(s, y) − ∂xb(s, y)] dy ds

∣∣∣∣∣∣ ≤
∫ T

0

∫ C8(K)

−C8(K)
|∂xb(s, y)| dy ds < ∞,

and hence the dominated convergence theorem and continuity of b(t, ·) guarantee

lim
k→∞

φK,k(t, x) = x +

∫ t

0
b(s, lim

k→∞
φK,k(s, x)) ds.

By choosing a sequence of increasing compacts K j such that R = ∪ jK j and passing to further
subsequences, we see that there is a subsequence of {φk}, still denoted by {φK,k}, such that φK,k(t, x)
converges on [0,T ] × R, and uniformly on any compact subset [0,T ] × K̃, and consequently,

lim
k→∞

φK,k(t, x) = x +

∫ t

0
b(s, lim

k→∞
φK,k(s, x)) ds, ∀ (t, x) ∈ [0,T ] × R.

By the uniqueness, we see that

φ(t, x) = lim
k→∞

φK,k(t, x), ∀ (t, x) ∈ [0,T ] × R,

and the convergence is uniform on any compact set.
Since

b(t, x) ∈ L1(0,T ; C1(R)),

and so is any bk(t, x). Accordingly, the proof of Theorem 3.1 yields that if (t, x) ∈ [0,T ] × R then

log
∣∣∣∣ ∂
∂x
φ(t, x)

∣∣∣∣ =

∫ t

0

∂

∂x
b(s, φ(s, x)) ds

=

∫ t

0
lim
k→∞

vk(s, φk(s, x)) ds

= lim
k→∞

log
∣∣∣∣ ∂
∂x
φk(t, x)

∣∣∣∣.
By (3.8) and Theorem 3.1, we see that for each k ∈ N, it holds

∥∥∥∥∥log
∣∣∣∣ ∂
∂x
φk(t, x)

∣∣∣∣∥∥∥∥∥
BMO (R)

≤

∫ t

0
2C6

∥∥∥∥∥ ∂∂x
b(s, )

∥∥∥∥∥
BMO (R)

ds

exp
(
−2C7

∫ t

0

∥∥∥∥∥ ∂∂x
b(s, )

∥∥∥∥∥
BMO (R)

ds
) .
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By this, the weak-∗ compactness in BMO (R), and the pointwise convergence of

∂

∂x
φk(t, x),

we conclude that the last estimation holds also for

log
∣∣∣∣ ∂
∂x
φ(t, x)

∣∣∣∣,
thereby completing the proof. �

4 Proof of main results

Proof of Theorem 1.1. The argument consists of three steps.

Step 1 - an Orlicz space estimate. Let µ denote the Gaussian measure on R, i.e.,

µ(x) =
1
√

2π
exp

(
−
|x|2

2

)
,

and divµb denotes the distributional divergence of b with respect to µ. We say that a measurable
function

f ∈ Expµ(
L

log L
)

provided

‖ f ‖Expµ( L
log L ) = inf

{
λ > 0 :

∫
R

[
exp

(
| f (x)|/λ

1 + log+(| f (x)|/λ)

)
− 1

]
dµ ≤ 1

}
.

Let b(t, x) obey (1.1). Then

(4.1)

 b(t,x)
1+|x| log+ |x| ∈ L1(0,T ; L∞(R));
divµb(t, x) ∈ L1(0,T ; Expµ(

L
log L )).

As a matter of fact, the first estimate of (4.1) follows from Proposition 2.6 as

|b(t, x)|
1 + |x| log+

|x|
≤
|b(t, x) − b(t, 0) + b(t, 0)|

1 + |x| log+
|x|

≤ |b(t, 0)| + C
∥∥∥∥∥ ∂

∂x
b(t, ·)

∥∥∥∥∥
∗

.

To verify the second relation in (4.1), set

β(t) = |b(t, 0)| + C
∥∥∥∥∥ ∂

∂x
b(t, ·)

∥∥∥∥∥
BMO (R)

.

Noting that∫
R

exp
( c

∣∣∣xb(t, x)
∣∣∣

1 + log+(c
∣∣∣xb(t, x)

∣∣∣)
)

dµ(x) ≤
∫
R

exp
( c|x|(1 + |x| log+

|x|)β(t)
1 + log+(c|x|(1 + |x| log+

|x|)β(t))
)

dµ(x),
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we obtain ∥∥∥xb(t, x)
∥∥∥

Expµ( L
log L )
≤ Cβ(t).

On the other hand, for a BMO (R)-function f , we utilize the John-Nirenberg inequality:

|{x ∈ I : | f (x) − fI | > λ}| ≤ c1|I| exp
(
−

c2λ

‖ f ‖BMO (R)

)
∀ interval I ⊂ R

to obtain that if 
I = [x − r, x + 1];
(x, r) ∈ R × [1,∞);
γ(t) =

∥∥∥ ∂
∂xb(t, ·)

∥∥∥
∗

;
α = c2

(
2γ(t)

)−1
,

then
| fI | ≤ | fI − f[−1,1]| + | f[−1,1]| ≤ C(1 + log+

|x|)‖ f ‖∗,

and hence∫
R

exp
(
α

∣∣∣∣∣ ∂∂x
b(t, x)

∣∣∣∣∣) dµ(x)

≤

∫
[−1,1]

exp
(
α

∣∣∣∣∣ ∂∂x
b(t, x)

∣∣∣∣) dµ +

∞∑
k=1

( ∫
[2k−1,2k]

+

∫
[−2k ,−2k−1]

)
exp

(
α

∣∣∣∣∣ ∂∂x
b(t, x)

∣∣∣∣∣) dµ(x)

≤ e2αγ(t)
∞∑

k=0

α2ke−22k−1+ck

(
αγ(t)

c2 − αγ(t)

)
≤ C.

Consequently we achieve the desired inequality∥∥∥∥∥ ∂

∂x
b(t, ·)

∥∥∥∥∥
Expµ( L

log L )
≤

∥∥∥∥∥ ∂

∂x
b(t, ·)

∥∥∥∥∥
Expµ(L)

≤ C
∥∥∥∥∥ ∂

∂x
b(t, ·)

∥∥∥∥∥
∗

.

Step 2 - existence-uniqueness-size of flow. Under (1.1) we conclude via Proposition 2.5 for a.e.
t, that b is in the Zygmund class, which implies that the flow exists and is unique; see [27] for
instance.

Moreover, from Step 1 above it follows that b satisfies requirements from [9, Main Theorem]
and so that φ(t, x) is absolutely continuous and differentiable. Indeed, by using [9, Theorem 1.2]
and that b(t, ·) is in the Zygmund class, one can deduce that∣∣∣∣∣ ∂∂x

φ(t, ·)
∣∣∣∣∣ (1 + log+

∣∣∣∣∣ ∂∂x
φ(t, ·)

∣∣∣∣∣)q

∈ L1
loc (R)

for any q ∈ [1,∞). As ∂xb(t, x) ∈ BMO (R) is locally exponentially integrable, we deduce that

∂

∂t

(
∂

∂x
φ(t, x)

)
=

(
∂

∂z
b(t, z)|z=φ(s,x)

)
∂

∂x
φ(t, x)
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and

(4.2) log
∣∣∣∣∣ ∂∂x

φ(t, x)
∣∣∣∣∣ =

∫ t

0

∂

∂x
b(s, φ(s, x)) ds.

For ε > 0 and x ∈ R set 

0 ≤ ρ ∈ C∞c (R);
supp ρ ⊂ (−1, 1);∫
R
ρ(x) dx = 1;

ρε(x) = 1
ε
ρ
(

x
ε

)
;

bε(t, x) = b(t, ·) ∗ ρε(x).

Note that

∂

∂x
b(t, x) ∈ L1(0,T ; BMO (R))⇒

∂

∂x
bε(t, x) ∈ L1(0,T ; BMO (R)) ∩ L1(0,T ; C∞(R)).

Thus we have ∫ t

0

∥∥∥∥∥∥ ∂∂x
bε(s, ·)

∥∥∥∥∥∥
BMO (R)

ds ≤
∫ t

0

∥∥∥∥∥∥ ∂∂x
b(s, ·)

∥∥∥∥∥∥
BMO (R)

ds ∀ t ∈ (0,T ]

and so for any ε ∈ (0, 1) ∥∥∥∥∥∥ ∂∂x
bε(t, ·)

∥∥∥∥∥∥
∗

≤ 2

∥∥∥∥∥∥ ∂∂x
b(t, ·)

∥∥∥∥∥∥
∗

for a.e. t ∈ (0,T ].

Let φε(t, x) be the flow generated by bε , i.e.,

∂

∂t
φε(t, x) = bε(t, φε(t, x)).

Then Theorem 3.2 is utilized to imply

∥∥∥∥∥log
∣∣∣∣ ∂
∂x
φε(t, ·)

∣∣∣∣∥∥∥∥∥
BMO (R)

≤

∫ t

0
2C6

∥∥∥∥∥ ∂∂x
bε(s, ·)

∥∥∥∥∥
BMO (R)

ds

exp
(
−2C7

∫ t

0

∥∥∥∥∥ ∂∂x
bε(s, ·)

∥∥∥∥∥
BMO (R)

ds
)

≤

∫ t

0
2C6

∥∥∥∥∥ ∂∂x
b(s, ·)

∥∥∥∥∥
BMO (R)

ds

exp
(
−2C7

∫ t

0

∥∥∥∥∥ ∂∂x
b(s, ·)

∥∥∥∥∥
BMO (R)

ds
) ∀ ε > 0.

The proof of [9, Main Theorem] infers that, up to a subsequence {εk}k∈N,

lim
k→∞

φεk(t, x) = φ(t, x) ∀ t ∈ (0,T ].
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From this, (4.2) and the weak-∗ compactness in BMO (R), we conclude that ∂
∂xφ is the weak-∗ limit

of ∂
∂xφεk for each t ∈ (0,T ]. This implies

∥∥∥∥∥log
∣∣∣∣ ∂
∂x
φ(t, ·)

∣∣∣∣∥∥∥∥∥
BMO (R)

≤

∫ t

0
2C6

∥∥∥∥∥ ∂∂x
b(s, ·)

∥∥∥∥∥
BMO (R)

ds

exp
(
−2C7

∫ t

0

∥∥∥∥∥ ∂∂x
b(s, ·)

∥∥∥∥∥
BMO (R)

ds
) ,

namely, the size estimate (1.2) holds.

Step 3 - A∞(R) density of flow. It remains to show that for each t ∈ [0,T ],∣∣∣∣∣ ∂∂x
φ(t, ·)

∣∣∣∣∣
is an A∞(R)-weight. But, from Theorem 1.2 (to be proved later on), we see that

u0 ∈ BMO (R)⇒ u0 ◦ φ(t, ·) ∈ BMO (R) ∀ t ∈ (0,T ].

Then we apply [21, Theorem] to conclude that for each t ∈ [0,T ],∣∣∣∣∣ ∂∂x
φ(t, x)

∣∣∣∣∣
is an A∞(R)-weight.

�

Proof of Theorem 1.2. The argument consists of three steps.

Step 1 - existence of solution. Let φ be the flow generated by b, i.e.,
∂

∂t
φ(t, x) = b(t, φ(t, x)) ∀ (t, x) ∈ (0,T ] × R;

φ0(x) = x ∀ x ∈ R.

Then the same proof of [10, Theorem 1] derives that u0 ◦ φ is a solution to the transport equation.

Step 2 - size of solution. Let ε0 be the same as in Lemma 2.4, and

δ0 > 0 & 2C6δ0e2C7δ0 = 2−1ε0.

We choose a sequence of increasing numbers

0 = T0 < T1 < · · · < Tk0 = T

such that ∫ Ti

Ti−1
2C6

∥∥∥∥∥ ∂∂x
b(s, ·)

∥∥∥∥∥
BMO (R)

ds

exp
(
−

∫ Ti

Ti−1
2C7

∥∥∥∥∥ ∂∂x
b(s, ·)

∥∥∥∥∥
BMO (R)

ds
) = 2−1ε0 ∀ i ∈ {1, ..., k0 − 1},
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and ∫ Tk0

Tk0−1
2C6

∥∥∥∥∥ ∂∂x
b(s, ·)

∥∥∥∥∥
BMO (R)

ds

exp
(
−

∫ Tk0

Tk0−1
2C7

∥∥∥∥∥ ∂∂x
b(s, ·)

∥∥∥∥∥
BMO (R)

ds
) ≤ 2−1ε0.

Suppose that t belongs to

some (Ti,Ti+1] where i = 0, ..., k0 − 1.

If i = 0, then by Lemma 2.2 and Lemma 2.4, we obtain

‖u(t, ·)‖BMO (R) ≤ C3‖u0‖BMO (R)

(
1 + C4

∥∥∥∥∥log
∣∣∣∣ ∂
∂x
φ̃t(0, ·)

∣∣∣∣∥∥∥∥∥
BMO (R)

)

≤ C3‖u0‖BMO (R)

1 +

2C4C6

∫ t

0

∥∥∥∥∥ ∂∂x
b(s, ·)

∥∥∥∥∥
BMO (R)

ds

exp
(
−

∫ t

0
2C7

∥∥∥∥∥ ∂∂x
b(s, ·)

∥∥∥∥∥
BMO (R)

ds
)
(4.3)

≤ C3‖u0‖BMO (R) exp
(∫ t

0
C

∥∥∥∥∥ ∂∂x
b(s, ·)

∥∥∥∥∥
BMO (R)

ds
)
.

Suppose next i ≥ 1. By the semigroup property of the flow, we may write

u(t, x) = u0 ◦ φTi(t, ·) ◦ · · · ◦ φT0(T1, x).

By Theorem 1.1, we have

(4.4)
∥∥∥∥∥log

∣∣∣∣ ∂
∂x
φ̃t(Ti, ·)

∣∣∣∣∥∥∥∥∥
BMO (R)

≤

∫ t

Ti
2C6

∥∥∥∥∥ ∂∂x
b(s, ·)

∥∥∥∥∥
BMO (R)

ds

exp
(
−2C7

∫ t

Ti

∥∥∥∥∥ ∂∂x
b(s, ·)

∥∥∥∥∥
BMO (R)

ds
) ≤ 2−1ε0 ∀ t ∈ (Ti,Ti+1].

A combination of (4.4) and Lemma 2.4 derives
∣∣∣∣∣ ∂∂x

φ̃t(Ti, ·)
∣∣∣∣∣ ∈ A∞(R);[∣∣∣∣ ∂

∂x
φ̃t(Ti, ·)

∣∣∣∣]
A∞(R)

≤ 1 + C4

∥∥∥∥∥log
∣∣∣∣ ∂
∂x
φ̃t(Ti, ·)

∣∣∣∣∥∥∥∥∥
BMO (R)

.

Then Lemma 2.2 implies∥∥∥v ◦ φTi(t, ·)
∥∥∥

BMO (R)
≤ C3‖v‖BMO (R)

(
1 + C4

∥∥∥∥∥log
∣∣∣∣ ∂
∂x
φ̃Ti(t, ·)

∣∣∣∣∥∥∥∥∥
BMO (R)

)
∀ v ∈ BMO (R).

Upon repeating this argument for i times more, we gain

‖u(t, ·)‖BMO (R) =
∥∥∥u0 ◦ φTi(t, ·) ◦ · · · ◦ φT0(T1, ·)

∥∥∥
BMO (R)
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≤ Ci+1
3 ‖u0‖BMO (R)

∏i
j=1

(
1 + C4

∥∥∥∥∥log
∣∣∣∣ ∂
∂x
φ̃T j(T j−1, ·)

∣∣∣∣∥∥∥∥∥
BMO (R)

)
(
1 + C4

∥∥∥∥∥log
∣∣∣∣ ∂
∂x
φ̃Ti(t, ·)

∣∣∣∣∥∥∥∥∥
BMO (R)

)−1

≤ Ci+1
3

(
1 + C42−1ε0

)i+1
‖u0‖BMO (R)

≤ ‖u0‖BMO (R) exp
(
C

∫ t

0

∥∥∥∥∥ ∂∂x
b(s, ·)

∥∥∥∥∥
BMO (R)

ds
)
,

where in the last inequality we have used

iδ0 <

∫ t

0

∥∥∥∥∥ ∂∂x
b(s, ·)

∥∥∥∥∥
BMO (R)

ds ≤ (i + 1)δ0.

This, together with (4.3), gives the desired size estimate.

Step 3 - uniqueness of solution. This follows easily as an application of the renormalized
property of solutions established by DiPerna-Lions [13] and the well-posedness of solutions in
L∞(0,T ; L∞(R)) established in [8]; see the proof of [10, Thoerem 1] for instance. �
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