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Abstract

Let Pt be the (Neumann) diffusion semigroup Pt generated by a weighted Laplacian
on a complete connected Riemannian manifold M without boundary or with a convex
boundary. It is well known that the Bakry-Emery curvature is bounded below by a
positive constant λ > 0 if and only if

Wp(µ1Pt, µ2Pt) ≤ e−λtWp(µ1, µ2), t ≥ 0, p ≥ 1

holds for all probability measures µ1 and µ2 on M , where Wp is the Lp Wasserstein
distance induced by the Riemannian distance. In this paper, we prove the exponential
contraction

Wp(µ1Pt, µ2Pt) ≤ ce−λtWp(µ1, µ2), p ≥ 1, t ≥ 0

for some constants c, λ > 0 for a class of diffusion semigroups with negative curvature
where the constant c is essentially larger than 1. Similar results are derived for SDEs
with multiplicative noise by using explicit conditions on the coefficients, which are new
even for SDEs with additive noise.
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1 Introduction

Let M be a d-dimensional connected complete Riemannian manifold possibly with a convex
boundary ∂M . Let ρ be the Riemannian distance. Consider L = ∆ + Z for the Laplace-
Beltrami operator ∆ and some C1-vector field Z such that the (reflecting) diffusion process
generated by L is non-explosive. Then the associated Markov semigroup Pt is the (Neumann
if ∂M 6= ∅) semigroup generated by L onM . In particular, it is the case when the curvature
of L is bounded below; that is,

(1.1) RicZ := Ric−∇Z ≥ K

holds for some constant K ∈ R. Here and throughout the paper, we write T ≥ h for a (not
necessarily symmetric) 2-tensor T and a function h provided

T (X,X) ≥ h(x)|X|2, X ∈ TxM,x ∈M.

There exist many inequalities on Pt which are equivalent to the curvature condition (1.1),
see [5, 19, 22, 39] for details. In particular, for any constant K ∈ R, the Wasserstein distance
inequality

(1.2) Wp(µ1Pt, µ2Pt) ≤ e−KtWp(µ1, µ2), t ≥ 0, p ≥ 1, µ1, µ2 ∈ P(M)

is equivalent to the curvature condition (1.1). Here, P(M) is the class of all probability
measures on M ; Wp is the Lp-Warsserstein distance induced by ρ, i.e.,

Wp(µ1, µ2) := inf
π∈C (µ1,µ2)

‖ρ‖Lp(π), µ1, µ2 ∈ P(M),

where C (µ1, µ2) is the class of all couplings of µ1 and µ2; and for a Markov operator P on
Bb(M) (i.e. P is a positivity-preserving linear operator with P1 = 1),

(νP )(A) := ν(P1A), A ∈ B(M), ν ∈ P(M),

where ν(f) :=
∫

M
fdν for f ∈ L1(ν). In some references, νP is also denoted by P ∗ν. In

the sequel we will use P ∗
t to stand for the adjoint operator of Pt in L

2(µ) for the invariant
probability measure µ, hence adopt the notation νP rather than P ∗ν to avoid confusion.
When the curvature is positive (i.e. K > 0), (1.2) implies the Wp-exponential contraction of
Pt for p ≥ 1.

In this paper, we aim to consider the case when (1.1) only holds for some negative
constant K, and to prove the exponential contraction

(1.3) Wp(µ1Pt, µ2Pt) ≤ ce−λtWp(µ1, µ2), t ≥ 0, p ≥ 1, µ1, µ2 ∈ P(M)

for some constants c, λ > 0. It is crucial that the exponential rate λ is independent of p.
Due to the equivalence of (1.1) and (1.2), in the negative curvature case it is essential that
c > 1.
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According to [34], even when RicZ is unbounded below, i.e. RicZ goes to −∞ when
ρo := ρ(o, ·) → ∞ for a fixed o ∈ M , there may exist the log-Sobolev inequality which
implies the exponentially convergence of Pt in entropy. This suggests that (1.3) may also
hold for a class of diffusion semigroups with negative curvature.

Recently, some efforts have been made in this direction for M = R
d, see [10, 11, 17].

More precisely, let Pt be the diffusion semigroup for the solution to the following SDE on
R

d:
dXt =

√
2 dBt + b(Xt)dt,

where Bt is the d-dimensional Brownian motion and b : Rd → R
d is continuous. If there

exist constants K1, K2, r0 > 0 such that

(1.4) 〈b(x)− b(y), x− y〉 ≤ 1|x−y|≤r0(K1 +K2)|x− y|2 −K2|x− y|2, x, y ∈ R
d,

then due to [10, 11] we have

(1.5) W1(δxPt, δyPt) ≤ ce−λt|x− y|, x, y ∈ R
d, t ≥ 0

for some constants c, λ > 0, where δx is the Dirac measure at point x. Indeed, [10, 11]
proved the W1-exponential contraction with respect to a modified distance f(|x − y|) in
place of |x− y| as constructed in [7, 8] for estimates of the spectral gap using the coupling
by reflection. Under condition (1.4) the modified distance is comparable with the usual one
so that (1.5) follows. As mentioned in [11] that there is essential difficulty to prove (1.3) for
p > 1 even for this flat case.

In Luo and Wang [17] the estimate (1.5) was extended as

(1.6) Wp(δxPt, δyPt) ≤ ce−λt/p(|x− y|+ |x− y| 1p ), x, y ∈ R
d, t ≥ 0, p ≥ 1

for some constants c, λ > 0. Comparing with (1.3) which is equivalent to

Wp(δxPt, δyPt) ≤ ce−λt|x− y|, p ≥ 1, x, y ∈ R
d, t ≥ 0

according to [16] (see Proposition 3.1 below), (1.6) is less sharp for small |x−y| and/or large
p. It is open whether (1.4), or in the Riemannian setting that RicZ is uniformly positive
outside a compact domain, implies (1.3) for some constants c, λ > 0.

As in [15, 16], we will consider the Warsserstein distances induced by Young functions in
the class

N :=
{

Φ ∈ C1([0,∞); [0,∞)) : Φ′ is nonnegative and increasing,

Φ(0) = 0,Φ(r) > 0 for r > 0, lim
r→∞

Φ(r)

r
= ∞

}

.

For any Φ ∈ N and a measure ν on M , consider the gauge norm in LΦ(ν) :

‖f‖LΦ(ν) := inf
{

r > 0 : ν
(

Φ(r−1|f |)
)

≤ 1
}

, inf ∅ := ∞.

3



In particular, we have ‖f‖LΦp(ν) = ‖f‖Lp(ν) for Φp(r) := rp, p ∈ (1,∞). This is the reason

why we do not take Φp(r) =
1
p
rp in the characterization of Legendre conjugates. We extend

the notion Φp to p = 1,∞ by letting Φ1(r) = r,Φ∞ = limp→∞Φp and ‖f‖LΦp(ν) = ‖f‖Lp(ν)

for all p ∈ [1,∞]. Now, let

WΦ(µ1, µ2) = inf
π∈C (µ1,µ2)

‖ρ‖LΦ(π), Φ ∈ ¯N := N ∪ {Φ1,Φ∞}.

In particular, WΦp
=Wp for p ∈ [1,∞]. We aim to prove the exponential decay

(1.7) WΦ(δxPt, δyPt) ≤ cΦ−1(1)e−λtρ(x, y), x, y ∈M, t ≥ 0,Φ ∈ N̄

when (1.1) only holds for a negative constant K, where Φ−1 is the inverse of Φ( 6= Φ∞) and
we set Φ−1

∞ (1) = 1 by convention.
To extend condition (1.4) to the Riemannian setting, consider the index

I(x, y) =

∫ ρ(x,y)

0

d−1
∑

i=1

{

|∇γ̇Ji|2 − 〈R(γ̇, Ji)γ̇, Ji〉
}

(γs)ds, x, y ∈M,

where ρ is the Riemannian distance, R is the curvature tensor; γ : [0, ρ(x, y)] → M is the
minimal geodesic from x to y with unit speed; {Ji}d−1

i=1 are Jacobi fields along γ such that

Ji(y) = Px,y Ji(x), i = 1, . . . , d− 1

holds for the parallel transform Px,y : TxM → TyM along the geodesic γ, and {γ̇(s), Ji(s) :
1 ≤ i ≤ d− 1} (s = 0, ρ(x, y)) is an orthonormal basis of the tangent space (at points x and
y, respectively).

Note that when (x, y) ∈ Cut(M), i.e. x is in the cut-locus of y, the minimal geodesic
may be not unique. As a convention in the literature, all conditions on the index I are given
outside Cut(M). We now extend condition (1.4) to the non-flat case as follows: for some
constants K1, K2 > 0,

IZ(x, y) := I(x, y) + 〈Z,∇ρ(·, y)〉(x) + 〈Z,∇ρ(x, ·, )〉(y)
≤

{

(K1 +K2)1{ρ(x,y)≤r0} −K2

}

ρ(x, y), x, y ∈M.
(1.8)

In the flat case we have I(x, y) = 0 and ρ(x, y) = |x− y|, so that this condition reduces back
to (1.4). Moreover, the curvature condition (1.1) is equivalent to

IZ(x, y) ≤ −Kρ(x, y), x, y ∈M,

so that (1.8) implies RicZ ≥ −(K1 +K2).

In the next section, we state our main results and present examples. With condition
(1.8) we first extend the main results of [10, 17] to the present Riemannian setting and
give the exponential convergence of Pt in W2. Under the ultracontractivity and condition
(1.1) for some K < 0, our the second result ensures the desired inequality (1.7). Finally,
we extend these results to SDEs with multiplicative noise by using explicit conditions on
the coefficients. To prove these results, we make some preparations in Section 3. Complete
proofs of the main results are addressed in Sections 4-6 respectively.
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2 Main Results and examples

We first consider the Riemannian setting, then extend to SDEs with multiplicative noise by
using explicit conditions on the coefficients instead of the less explicit curvature condition.

2.1 The Riemannian setting

We start with condition (1.8). Besides the extension of (1.6), this condition also implies
the hypercontractivity and the exponential convergence in W2 for the semigroup Pt. For
a measure µ and constants p, q ≥ 1, let ‖ · ‖Lp(µ)→Lq(µ) stand for the operator norm form
Lp(µ) to Lq(µ). Recall that Pt is called hypercontractive if it has a unique invariant prob-
ability measure µ and ‖Pt‖L2(µ)→L4(µ) = 1 holds for large t > 0. By interpolation theorem,
‖Pt‖L2(µ)→L4(µ) = 1 can be replaced by ‖Pt‖Lp(µ)→Lq(µ) = 1 for some ∞ > q > p > 1.

Theorem 2.1. Let (1.8) hold for some constants K1, K2 and r0 > 0. Then:

(1) There exist two constants c, λ > 0 such that for any Φ ∈ ¯N and x, y ∈M ,

(2.1) WΦ(δxPt, δyPt) ≤ inf
{

r > 0 : sup
s∈(0,1+ρ(x,y)]

Φ(r−1s)

s
≤ eλt

cρ(x, y)

}

, t ≥ 0.

In particular,

Wp(δxPt, δyPt) ≤ {ce−λt} 1

p (ρ(x, y) + ρ(x, y)
1

p ), p ≥ 1, t ≥ 0, x, y ∈M.

(2) Pt has a unique invariant probability measure µ and the log-Sobolev inequality

(2.2) µ(f 2 log f 2) ≤ Cµ(|∇f |2) + µ(f 2) logµ(f 2), f ∈ C1
b (M)

holds for some constant C > 0. Consequently, Pt is hypercontractive.

(3) There exist constants c, λ > 0 such that

(2.3) W2(νPt, µ) ≤ ce−λtW2(ν, µ), t ≥ 0, ν ∈ P(M).

To illustrate this result, we present below a consequence with explicit curvature conditions
in the spirit of [34]. These conditions allow RicZ to be negative everywhere, for instance,
when −C1 ≤ Ric ≤ −C2 and C2 > −∇Z ≥ δ for some constants C1 > C2 > δ > 0. As
indicated in Introduction that (1.8) implies RicZ ≥ −(K1+K2), so in the following corollary
we assume that RicZ is bounded below.

Corollary 2.2. Assume that RicZ is bounded below. Let ρo = ρ(o, ·) for a fixed point o ∈M .
If there exist constants σ > 0 and δ > σ(1 +

√
2)
√
d− 1 such that

(2.4) −∇Z ≥ −δ and Ric ≥ −σ2ρ2o outside a compact set,

then all assertions in Theorem 2.1 hold.
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Next, we introduce sufficient conditions for (1.7) which allow RicZ to be negative. Due
to technical reason, we will need the ultracontractivity of Pt, which is essentially stronger
than the hypercontractivity. We call Pt ultracontractive if ‖Pt‖L1(µ)→L∞(µ) <∞ for all t > 0.
The ultracontractivity implies that Pt has a density pt(x, y) with respect to µ (called heat
kernel) and

‖pt‖L∞(µ×µ) = ‖Pt‖L1(µ)→L∞(µ) <∞, t > 0.

In references (see e.g. [9]), the ultracontractivity is also defined by ‖Pt‖L2(µ)→L∞(µ) <∞ for
t > 0. When Pt is symmetric in L2(µ) we have

(2.5) ‖Pt‖L1(µ)→L∞(µ) ≤ ‖Pt/2‖2L2(µ)→L∞(µ), t > 0,

so that these two definitions are equivalent. However, when Pt is non-symmetric, the former
might be stronger than the latter. The appearance of the ultracontractivity in our study is
very nature: by Theorem 2.3(1) we already have (1.7) for Φ = Φ1 (the weakest case), and
by the ultracontractivity we are able to deduce the inequality from Φ1 to Φ∞ (the strongest
case). On the other hand, the result also indicates that (1.7) implies the hypercontractivity
of Pt.

Theorem 2.3. Assume that RicZ is bounded below.

(1) If Pt is ultracontractive, then there exist constants c, λ > 0 such that for any Φ ∈ N̄ ,

(2.6) WΦ(δxPt, δyPt) ≤
c

Φ−1(1)
e−λtmin

{

ρ(x, y), GΦ(t)
}

, t > 0, x, y ∈M

holds for

GΦ(t) := inf
{

r > 0 : (µ× µ)
(

Φ
(

r−1ρ
)

)

≤ ‖Pt/2‖−2
L1(µ)→L∞(µ)

}

.

Consequently, for any p ∈ [1,∞], t ≥ 0 and µ1, µ2 ∈ P(M),

(2.7) Wp(µ1Pt, µ2Pt) ≤ ce−λt min
{

Wp(µ1, µ2), ‖ρ‖Lp(µ×µ)‖Pt/2‖
2

p

L1(µ)→L∞(µ)

}

.

(2) On the other hand, if there exist constants c, λ > 0 such that

(2.8) W∞(δxPt, δyPt) ≤ ce−λtρ(x, y), x, y ∈M, t ≥ 0,

then the log-Sobolev inequality (3.4) holds for c = 2c2

λ
, so that Pt is hypercontractive.

We note that in Theorem 2.3(1) we have ‖ρ‖Lp(µ×µ) < ∞ for p ∈ [1,∞). Indeed, since
RicZ is bounded below, by [23, Theorem 2.1] the ultracontractivity implies the super log-
Sobolev inequality (3.3) below, so that due to Herbst we have (µ×µ)(erρ2) <∞ for all r > 0
(see e.g. [1]). Therefore, GΦ(t) <∞ for t > 0 and Φ ∈ N satisfying

lim sup
r→∞

log Φ(r)

r2
<∞.
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In the symmetric case (i.e. Z = ∇V for some V ∈ C2(M)), explicit sufficient conditions
for the ultracontractivity have been introduced in [34] by using the dimension-free Harnack
inequality in the sense of [30]. Together with a suitable exponential estimate on the diffusion
process, this inequality implies ‖Pt‖L2(µ)→L∞(µ) <∞ for t > 0 and thus, Pt is ultracontractive
due to (2.5). The conditions can be formulated as

(2.9) −∇Z ≥ Ψ1 ◦ ρo and Ric ≥ −Ψ2 ◦ ρo hold outside a compact subset of M,

where Ψ1,Ψ2 : (0,∞) → (0,∞) are increasing functions such that

(2.10)

∫ ∞

1

ds
√
s
∫

√
s

0
Ψ1(u)du

<∞, lim
r→∞

min
{

Ψ1(r),
(
∫ r

0
Ψ1(s)ds)

2

Ψ1(r)

}

= ∞,

and for some constants θ ∈ (0, 1/(1 +
√
2)) and C > 0,

(2.11)
√

Ψ2(r + t)(d− 1) ≤ θ

∫ r

0

Ψ1(s)ds+
1

2

∫ t/2

0

Ψ1(s)ds+ C, r, t ≥ 0.

When Ric is bounded below, (2.11) as well as the second inequality in (2.9) hold for Ψ2

being a large enough constant. In general, since
∫ r

0
Ψ1(s)ds ≥ 2

∫ r/2

0
Ψ1(s)ds, (2.11) with

θ = 1
4
< 1

1+
√
2
follows from

√

Ψ2(r)(d− 1) ≤ 1

2
inf

t∈[0,r]

{
∫ t/2

0

Ψ1(s)ds+

∫ (r−t)/2

0

Ψ1(s)ds

}

+ C

=

∫ r/4

0

Ψ1(s)ds+ C, r ≥ 0.

(2.12)

Since (2.5) fails for non-symmetric semigroups, we apply the inequality

‖Pt‖L1(µ)→L∞(µ) ≤ ‖Pt/2‖L1(µ)→L2(µ)‖Pt/2‖L2(µ)→L∞(µ)

due to the semigroup property. So, to ensure the ultracontractivity, we need an additional
condition implying ‖Pt‖L1(µ)→L2(µ) <∞ (see Corollary 2.4(2) below).

To estimate GΦ(t) in (2.6) using Ψ1, we introduce

Λ1(r) :=
1√
r

∫

√
r

0

Ψ1(s)ds, Λ2(r) :=

∫ ∞

r

d s
√
s
∫

√
s

0
Ψ1(u)du

, r > 0.

Obviously, the inverse function Λ−1
2 exists on (0,∞), and since Λ1 is increasing with Λ1(∞) =

∞, we have
Λ−1

1 (r) := inf{s ≥ 0 : Λ1(s) ≥ r} <∞, r ≥ 0.

Corollary 2.4. Assume that (2.10) and (2.11) hold for some constants θ ∈ (0, 1/(1 +
√
2))

and C > 0.
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(1) If Pt is symmetric, i.e. Z = ∇V for some V ∈ C2(M), then there exist constants
c, λ > 0 such that (2.6) and (2.7) hold for

GΦ(t) := inf
{

λ > 0 : (µ× µ)
(

Φ(λ−1ρ)
)

≤ e−ct−1{1+Λ−1
1

(ct−1)−Λ−1
2

(c−1t)}
}

, t > 0.

(2) If Pt is non-symmetric but there exists continuous h ∈ C([0, 1]; [0,∞)) with h(r) > 0

for r > 0 such that
∫ 1

0
h(r)
r
dr <∞ and

H(θ) :=

∫ 1

0

θ

h(r)

{

1 + Λ−1
1

(

θ/h(r)
)

+ Λ−1
2

(

h(r)/θ
)

}

dr <∞, θ > 0,

then there exist constants c, λ > 0 such that (2.6) holds for

GΦ(t) := inf
{

λ > 0 : (µ× µ)
(

Φ(λ−1ρ)
)

≤ e−ct−1{1+Λ−1
1

(ct−1)−Λ−1
2

(c−1t)}−cH(ct−1)
}

.

To conclude this part, we present a simple example to illustrate Corollary 2.4.

Example 2.1. Let M have non-positive sectional curvatures and a pole o ∈ M . Let
Z = Z0 − δ∇ρ2+ε

o outside a compact domain, where δ, ε > 0 are constants and Z0 is a C1

vector field with

(2.13) lim sup
ρo→∞

|∇Z0|
ρεo

< δ(1 + ε)(2 + ε).

Let Ψ2 : (0,∞) → (0,∞) be increasing such that

(2.14) Ric ≥ −Ψ2(ρo), lim
r→∞

Ψ2(r)

r2(1+ε)
= 0.

By (2.13), (2.14) and the Hessian comparison theorem, we see that (2.9), (2.10) and (2.12)
hold with Ψ1(r) = c1r

ε for some constant c1 > 0. According to Corollary 2.4, there exist
constants c, λ > 0 such that for any p ≥ 1,

Wp(µ1Pt, µ2Pt) ≤ ce−λtmin
{

Wp(µ1, µ2), ‖ρ‖Lp(µ×µ) exp
[ c

pt1+
2

ε

]}

, t > 0, µ1, µ2 ∈ P(M).

2.2 SDEs with multiplicative noise

Consider the following SDE on R
d:

(2.15) dXt = b(Xt)dt+
√
2σ(Xt)dBt,

where Bt is the m-dimensional Brownian motion, b : Rd → R
d and σ : Rd → R

d ⊗ R
m (the

space of d×m-matrices) are locally Lipshitz such that

‖σ‖2HS(x) + 〈b(x), x〉 ≤ C(1 + |x|2), x ∈ R
d

8



holds for some constant C > 0, where and in the following, ‖ · ‖HS and ‖ · ‖ denote the
Hilbert-Schmidt and the operator norms respectively. Then the SDE has a unique solution
{Xt(x)}t≥0 for every initial point x ∈ R

d. Let Pt be the associated Markov semigroup:

Ptf(x) := E[f(Xt(x))], t ≥ 0, x ∈ R
d, f ∈ Bb(R

d).

We intend to investigate the Wp-exponential contraction for p ∈ [1,∞). As mentioned in
Introduction that existing results only apply to p = 1 and σ = I, and as mentioned in [11, 17]
that there is essential difficulty to prove (1.3) for p > 1 even for σ = I. So, the present study
is non-trivial.

Corresponding to that (1.1) implies (1.2) in the Riemannian setting, we have the following
assertion.

Theorem 2.5. Let p ∈ [1,∞). If

(p− 2)|(σ(x)− σ(y))∗(x− y)|2
|x− y|2 + ‖σ(x)− σ(y)‖2HS + 〈b(x)− b(y), x− y〉

≤ −Kp|x− y|2, x 6= y ∈ R
d

(2.16)

holds for some constant Kp ∈ R, then

Wp(µ1Pt, µ2Pt) ≤ e−KptWp(µ1, µ2), t ≥ 0, µ1, µ2 ∈ P(Rd).

Note that this result does apply to p = ∞ when σ is non-constant. Next, as in the
Riemannian case, we intend to prove the exponential contraction in Wp when (2.16) only
holds for some negative constant Kp. To this end, we need the SDE to be non-degenerate.
The following result contains analogous assertions in Theorems 2.1 and 2.3, where the first
assertion extends (1.5) to the multiplicative noise setting.

Theorem 2.6. Assume that σσ∗ ≥ λ20I for some constant λ0 > 0.

(1) If there exist constants K1, K2, r0 > 0 such that Z and σ0 :=
√

σσ∗ − λ20I satisfy

‖σ0(x)− σ0(y)‖2HS − |(σ(x)− σ(y))∗(x− y)|2
|x− y|2 + 〈b(x)− b(y), x− y〉

≤
{

(K1 +K2)1{|x−y|≤r0} −K2

}

|x− y|2, x, y ∈ R
d,

(2.17)

then there exist constants c, λ > 0 such that

W1(µ1Pt, µ2Pt) ≤ ce−λtW1(µ1, µ2), t ≥ 0, µ1, µ2 ∈ P(Rd).

(2) Let Pt have a unique invariant probability measure µ such that the log-Sobolev inequality

(2.18) µ(f 2 log f 2) ≤ Cµ(|σ∗∇f |2), f ∈ C1
b (R

d), µ(f 2) = 1

holds for some constant C > 0. If there exists a constant K > 0 such that

(2.19) ‖σ(x)− σ(y)‖2HS + 〈b(x)− b(y), x− y〉 ≤ K|x− y|2, x, y ∈ R
d,

then (2.3) holds for some constants c, λ > 0 and M = R
d.

9



(3) Let Pt be ultracontractive and let (2.19) hold for some constant K > 0. Then there
exist a constant λ > 0 such that for any p ∈ [1,∞), condition (2.16) implies (2.7) for
some constant c = c(p) > 0, and all t ≥ 0, µ1, µ2 ∈ P(Rd).

According to [21, Lemma 3.3], we have

(2.20) ‖σ0(x)− σ0(y)‖2 ≤
1

4λ0
‖(σσ∗)(x)− (σσ∗)(y)‖2HS, x, y ∈ R

d.

Combining this with ‖ · ‖2HS ≤ d‖ · ‖2, we see that (2.17) follows from the following more
explicit condition:

d− 1

4λ0
‖(σσ∗)(x)− (σσ∗)(y)‖2HS + 〈b(x)− b(y), x− y〉

≤
{

(K1 +K2)1{|x−y|≤r0} −K2

}

|x− y|2, x, y ∈ R
d.

(2.21)

Note that conditions in Theorem 2.5 and Theorem 2.6(1) are explicit. To illustrate
Theorem 2.6(2)-(3), we present below sufficient conditions for the log-Sobolev inequality
(2.18) and the ultracontractivity of Pt. For a := σσ∗ and (gij)1≤i,j≤d := a−1, we introduce
the Christoffel symbols

Γk
ij :=

1

2

d
∑

m=1

(

∂igmj + ∂jgim − ∂mgij
)

akm, 1 ≤ i, j, k ≤ d,

and the matrix Γab:

(Γab)ij :=

d
∑

k,l=1

Γi
klakjbk, 1 ≤ i, j ≤ d.

Proposition 2.7. Let σ ∈ C2
b (R

d → R
d ⊗ R

d) such that a := σσ∗ ≥ αI for some constant
α > 0, and let b ∈ C1(Rd → R

d) such that

(2.22)
1

2
(Γab+∇ba)− (∇b)a ≥ −K0I

for some constant K0. If there exist constants c1, c2 > 0 and δ > 1 such that

(2.23) L| · |2 ≤ c1 − c2| · |2δ,

then Pt has a unique invariant probability measure µ and there exists a constant c > 0 such
that

‖Pt‖L1(µ)→L∞(µ) ≤ exp
[

c + ct−
δ

δ−1

]

, t > 0.

We now introduce a simple example to illustrate Theorem 2.6.
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Example 2.2. Let σ ∈ C2
b (R

d → R
d ⊗ R

d) such that a := σσ∗ ≥ αI for some constant
α > 0. Let b(x) = −c0|x|θx for large |x|, where c0 > 0 and θ > 0 are constants. Obviously,
condition (2.19) holds. If

(2.24) lim
|x|→∞

|x| · ‖∇σ(x)‖ = 0,

then (2.22) holds for some constant K0. Moreover, it is easy to see that

L| · |2 ≤ c1 − c2|x|θ+2, λ > 0, x ∈ R
d

holds for some constants c1, c2 > 0. By Proposition 2.7 and Theorem 2.6(3), for any p ∈
[1,∞), there exist constants λ, c > 0 such that

Wp(µ1Pt, µ2Pt) ≤ ce−λt min
{

Wp(µ1, µ2), exp
[

ct−
θ+2

θ

]}

, t > 0, µ1, µ2 ∈ P(Rd).

3 Preparations

This section includes some propositions which will be used to prove the results introduced
in Section 2. We first recall a link between the Wasserstein distance and gradient estimates
due to [16], then deduce the hyperboundedness and the exponential convergence in entropy
from the log-Sobolev inequality for non-symmetric diffusion semigroups, and finally prove the
exponential contraction in gradient for ultracontractive semigroups in a general framework
including both diffusion and jump Markov semigroups.

3.1 Wasserstein distance and gradient inequalities

Let (E, ρ) be a geodesic Polish space, i.e. it is a Polish space and for any two different
points x, y ∈ E, there exists a continuous curve γ : [0, 1] → E such that γ0 = x, γ1 = y
and ρ(γs, γt) = |s− t|ρ(x, y) for s, t ∈ [0, 1]. Then for any f ∈ Lipb(E), the class of bounded
Lipschitz functions on E, the length of gradient

|∇f |(x) := lim sup
ρ(x,y)↓0

|f(x)− f(y)|
ρ(x, y)

, x ∈ E

is measurable. Moreover, let P (x, dy) be a Markov transition kernel and define the Markov
operator

Pf(x) :=

∫

E

f(y)P (x, dy), x ∈ E, f ∈ Bb(E).

For any Φ ∈ ¯N \ {Φ∞}, consider the Young norm induced by Φ with respect to P

(3.1) ‖f‖LΦ
∗
(P )(x) := sup

{

P (fg)(x) : g ∈ Bb(E), PΦ(|g|)(x) ≤ 1
}

, x ∈ E, f ∈ Bb(E),

and set ‖f‖LΦ∞

∗
(P )(x) = P |f |(x). Then ‖·‖

L
Φp
∗

= ‖·‖LΦq for p ∈ [1,∞], q = p
p−1

. The following

result follows from [16, Theorem 2.2, Remark 2 and Remark 3].
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Proposition 3.1 ([16]). For any constant C > 0 and Φ ∈ ¯N , the following statements are
equivalent to each other:

(1) |∇Pf | ≤ C‖∇f‖LΦ
∗
(P ) for f ∈ Lipb(E).

(2) WΦ(δxP, δyP ) ≤ Cρ(x, y), x, y ∈ E.

When Φ = Φp for p ∈ [1,∞], they are also equivalent to

(3) Wp(µ1P, µ2P ) ≤ CWp(µ1, µ2), µ1, µ2 ∈ P(E).

3.2 Hyperboundedness and exponential convergence in entropy

When Pt is symmetric, it is well known that the hyperbounddeness, exponential convergence
in entropy and the log-Sobolev inequality are equivalent each other, see [5, 33] and refer-
ences within. In the non-symmetric case, the log-Sobolev inequality implies the former two
properties if the generator L and the symmetric part of the Dirichlet form E satisfy

− µ((1 + log f)Lf) ≥ c0E
(
√

f,
√

f
)

and

− µ(f p−1Lf) =
c0(p− 1)

p2
E (f

p
2 , f

p
2 ), p > 1, f ∈ D

(3.2)

for some constant c0 > 0 and a reasonable class D of non-negative bounded functions, which
is stable under Pt and dense in Lp

+(µ) := {f ∈ Lp(µ) : f ≥ 0} for any p ≥ 1, see e.g. [13].
In applications, it may be not easy to figure out the class D such that (3.2) holds. But in
general this condition can be replaced by the following approximation formula Lemma 3.2
in the spirit of [24].

Now, consider the (Neumann) semigroup Pt generated by L := ∆+Z for a local bounded
vector field Z such that Pt has a unique invariant probability measure µ. Let

D0 =
{

f ∈ C∞
0 (M) : f satisfies the Neumann condition if ∂M 6= ∅

}

.

Then (L,D0) is dissipative (thus, closable) in L1(µ) with closure (L,D1(L)) generating Pt in
L1(µ), see e.g. [26] and references within. Let

D = {f ∈ D1(L) ∩ L∞(µ) : f ≥ 0}.

Lemma 3.2. Let f ∈ D and ψ ∈ C∞
b ([essµ inf f,∞)). There exists a sequence {fn}n≥1 ⊂ D0

with inf fn = inf f such that fn → f in Lm(µ) for any m ≥ 1, Lfn → Lf in L1(µ), and

µ(ψ(f)Lf) = − lim
n→∞

µ(ψ′(fn)|∇fn|2).

Proof. Since f ∈ D ⊂ D1(L)∩L∞(µ), there exists a uniformly bounded sequence {fn}n≥1 ⊂
D0 such that inf fn = essµ inf f and fn → f, Lfn → Lf in L1(µ). By the uniform bounded-
ness, fn → f in Lm(µ) for any m ≥ 1. Since ψ ∈ C∞

b ([inf fn,∞)),

gn :=

∫ fn

inf fn

ψ(s)ds ∈ Dc := {g + c : c ∈ R, g ∈ D0} ⊂ D1(L).
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This implies µ(Lgn) = 0 since µ is Pt-invariant. So, by the dominated convergence theorem,

µ(ψ(f)Lf) = lim
n→∞

µ(ψ(fn)Lfn) = lim
n→∞

µ(Lgn − ψ′(fn)|∇fn|2) = − lim
n→∞

µ(ψ′(fn)|∇fn|2).

Proposition 3.3. Let Z be a locally bounded vector field such that the (Neumann) semigroup
Pt generated by L := ∆ + Z has a unique invariant probability measure µ.

(1) If the super log-Sobolev inequality

(3.3) µ(f 2 log f 2) ≤ rµ(|∇f |2) + β(r), r > 0, f ∈ C1
b (M), µ(f 2) = 1.

holds for some β ∈ C((0,∞); (0,∞)), then for any constants q > p ≥ 1 and γ ∈
C((p, q); (0,∞)) such that t :=

∫ q

p
γ(r)
r
dr <∞, there holds

‖Pt‖Lp(µ)→Lq(µ) ≤ exp

[
∫ q

p

β(4γ(r)(1− r−1))

r2
dr

]

.

(2) If the log-Sobolev inequality

(3.4) µ(f 2 log f 2) ≤ Cµ(|∇f |2) + µ(f 2) logµ(f 2), f ∈ C1
b (M)

holds for some constant C > 0, then

µ((Ptg) logPtg) ≤ e−4t/Cµ(g log g), g ∈ Bb(M), g ≥ 0, µ(g) = 1.

Proof. (1) According to Lemma 3.2, for any f ∈ D and p > 1, there exists {fn}n≥1 ⊂ D0

such that fn → f
p
2 in Lm(µ) for all m ≥ 1, and

(3.5) − µ(f p−1Lf) =
4(p− 1)

p2
lim sup
n→∞

µ(|∇fn|2).

Applying (3.3) to fn and using (3.5), we obtain

pµ(f p log f) = lim
n→∞

µ(f 2
n log f

2
n) ≤ r lim inf

n→∞
µ(|∇fn|2) + β(r)

≤ rp2

4(p− 1)

(

− µ(f p−1Lf) +
4β(r)(p− 1)

rp2

)

, r > 0.

Set c(p) = rp
4(p−1)

, we have

4β(r)(p− 1)

rp2
=
β(4c(p)(1− p−1))

pc(p)
, p > 1,

so that the above inequality becomes

µ(f p log f) ≤ c(p)
(

− µ(f p−1Lf) + γ(p)
)

, p > 1, f ∈ D
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for γ(p) := β(4c(p)(1−p−1))
pc(p)

. Noting that D is Pt-invariant (i.e. PtD ⊂ D) and dense in Lp
+(µ)

for any p ≥ 1, the desired assertion follows from the proof of [13, Corollary 3.13].
(2) It suffices to prove for g ∈ D with inf g > 0. Applying Lemma 3.2 to f = Ptg and

ψ(s) = 1 + log s, and using (3.4), we obtain

d

dt
µ((Ptg) logPtg) = µ((1 + logPtg)LPtg) = −4 lim

n→∞
µ
(
∣

∣∇
√

fn

∣

∣

2)

≤ − 4

C
lim inf
n→∞

µ(fn log fn) = − 4

C
µ((Ptg) logPtg), t ≥ 0.

This implies the desired exponential estimate.

3.3 Exponential contraction in gradient

In this part, we consider a general framework including both diffusion and jump processes.
Let (E,F , µ) be a separable complete probability space, and let Pt be a Markov semigroup
on L2(µ) with µ as invariant probability measure. Let (L,D(L)) be the generator of Pt in
L2(µ). We assume that there exists an algebra A ⊂ D(L) such that

(i) 1 ∈ A , A is dense in L2(µ) and the algebra induced by

D := {Psf : s ≥ 0, f ∈ A }

is contained in D(L).

(ii) Γ(f, g) := 1
2
(L(fg)−fLg−gLf) gives rise to a non-degenerate positive definite bilinear

form on D × D ; i.e., for any f ∈ D , Γ(f, f) ≥ 0 and it equals to 0 if and only if f is
constant.

In particular, when Pt is the (Neumann) semigroup generated by L := ∆ + Z on M with
RicZ bounded below, the assumption holds for

A := {f + c : f ∈ C∞
0 (M) satisfying the Neumann condition if ∂M 6= ∅, c ∈ R}.

Under the above conditions,

E (f, g) := µ(Γ(f, g)), f, g ∈ A

is closable and the closure (E ,D(E )) is a conservative symmetric Dirichlet form. Although
Pt is not associated to (E ,D(E )) when it is non-symmetric, we have

(3.6)
d

dt
µ((Ptf)

2) = −2E (Ptf, Ptf), t ≥ 0, f ∈ D .

If ‖Pt‖L1(µ)→L∞(µ) <∞, then Pt has a heat kernel pt(x, y) with respect to µ, i.e.

Ptf =

∫

E

pt(·, y)f(y)µ(dy), f ∈ L2(µ),
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and
essµ×µ sup pt = ‖Pt‖L1(µ)→L∞(µ) <∞.

We consider the “gradient” length |∇Γf | =
√

Γ(f, f) induced by Γ. Note that for jump
processes the length is non-local and thus essentially different from the usual gradient length.
As shown below that estimates of |∇ΓPt| have a close link to functional inequalities of the
associated Dirichlet form.

Proposition 3.4. Assume that there exist t1 > 0 and η ∈ C([0,∞); (0,∞)) such that

(3.7) ‖Pt1‖L1(µ)→L∞(µ) <∞, |∇ΓPtf |2 ≤ η(t)Pt|∇Γf |2, t ≥ 0, f ∈ D .

Then there exist constants c, λ, t2 > 0 such that for any q ≥ 1 and ηq ∈ C([0,∞); (0,∞)),
the gradient estimate

(3.8) |∇ΓPtf |2 ≤ ηq(t)(Pt|∇Γf |q)
2

q , t ≥ 0, f ∈ D

implies

(3.9) ‖∇ΓPtf‖2L∞(µ) ≤
(

c sup
[0,t2]

ηq

)

e−λtessµ inf(Pt|∇Γf |q)
2

q , t ≥ t2, f ∈ D .

Proof. (a) We first prove

(3.10) E (Ptf, Ptf) ≤ Ce−λt
E (f, f), f ∈ D , t ≥ 0

for some constants C, λ > 0. By the second inequality in (3.7), for any t > 0 and f ∈ D we
have

d

ds
Ps(Pt−sf)

2 = 2Ps|∇ΓPt−sf |2 ≤ 2η(t− s)Pt|∇Γf |2, s ∈ [0, t].

Integrating both sides over [0, t] leads to

Ptf
2 ≤ (Ptf)

2 + C(t)Pt|∇Γf |2, C(t) := 2

∫ t

0

η(s)ds, t > 0.

Taking t = t1 and noting that µ is the invariant probability measure of Pt, we obtain

(3.11) µ(f 2) ≤ C(t1)E (f, f) + ‖Pt1‖21→∞µ(|f |)2, f ∈ D .

Since D(E ) is the closure of D under the E1-norm, this inequality also holds for f ∈ D(E ).
By condition (ii), the symmetric Dirichlet form is irreducible. So, according to [38, Corollary
1.2] the defective Poincaré inequality (3.11) implies the Poincaré inequality

(3.12) µ(f 2) ≤ 1

λ
E (f, f) + µ(f)2, f ∈ D(E )

for some constant λ > 0. By (3.6) and that D is dense in L2(µ), the Poincaré inequality is
equivalent to

(3.13) ‖Ptf − µ(f)‖2 ≤ e−λt‖f − µ(f)‖2, t ≥ 0, f ∈ L2(µ).
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On the other hand, by the second inequality in (3.7), for any t > 0 and f ∈ D we have

d

ds
Ps(Pt−sf)

2 = 2Ps|∇ΓPt−sf |2 ≥
2

η(s)
|∇ΓPtf |2, s ∈ [0, t].

So,

|∇ΓPtf |2 ≤
Ptf

2 − (Ptf)
2

2
∫ t

0
η(s)−1ds

, t > 0, f ∈ D .

Using Ptf − µ(f) to replace f and integrating with respect to µ, we obtain

E (P2tf, P2tf) ≤
‖Ptf − µ(f)‖22
2
∫ t

0
η(s)−1ds

, t > 0, f ∈ D .

Combining this with (3.13) and (3.12) we arrive at

E (Ptf, Ptf) ≤ c1e
−λt

E (f, f), t ≥ 1, f ∈ D

for some constant c1 > 0; that is, (3.10) holds for t > 1. Finally, (3.7) implies (3.10) for
t ∈ [0, 1].

(b) Next, we intend to find out a constant t0 ≥ t1 such that

(3.14)
1

2
≤ pt ≤ 2, (µ× µ)-a.e., t ≥ t0.

Indeed, by (3.13) and the first inequality in (3.7), we obtain

∣

∣

∣

∣

∫

E

(pt+2t1(·, y)− 1)f(y)µ(dy)

∣

∣

∣

∣

= |Pt1(Pt+t1f − µ(f))|

≤ c0µ(|Pt+t1f − µ(f)|) ≤ c0e
−λt‖Pt1f − µ(f)‖2 ≤ c20e

−λtµ(|f |), µ-a.e., t ≥ 0,

where c0 := ‖Pt1‖L1(µ)→L∞(µ). This implies the desired assertion for t0 > 0 such that c20e
−λt0 ≤

1
2
.
(c) Finally, combining (3.7), (3.14), (3.10) and (3.12), we obtain

‖∇ΓPt+2t0f‖2L∞(µ) ≤ c1‖Pt0 |∇ΓPt+t0f |2‖L∞(µ) ≤ 2c1E (Pt+t0f, Pt+t0f)

≤ c2e
−λt

E (Pt0f, Pt0f) ≤ c2ηq(t0)e
−λtµ

(

(Pt0 |∇Γf |q)
2

q

)

≤ c3ηq(t0)e
−λtessµ inf(Pt+2t0 |∇Γf |q)

2

q

for some constants c1, c2, c3 > 0. Then (3.9) holds for t2 = 2t0.

4 Proof of Theorem 2.1

The first assertion is a generalization of the main result in [17] where M = R
d is considered.

As in [17], the key point of the proof is to construct a coupling by parallel transform for long
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distance but by reflection for short distance. The only difference is that we are working on
a non-flat Riemannian manifold for which the curvature term appears in calculations. Since
Itô’s formula of the distance process has been well developed for couplings by both parallel
displacement and reflection, the proof is also straightforward.

The proofs of the other two assertions are based on the log-Sobolev inequality and the
log-Harnack inequality derived in [23] and [36] respectively for bounded below RicZ .

Proof of Theorem 2.1. (a) For two different points x, y ∈ M , let Px,y : TxM → TyM be the
parallel displacement along the minimal geodesic γ : [0, ρ(x, y)] → M from x to y, and let
Mx,y := Px,y − 2〈·, γ̇0〉γ̇ρ(x,y) : TxM → TyM be the mirror reflection. Both maps are smooth
in (x, y) outside the cut-locus Cut(M). According to [14] and [29], the appearance of the
cut-locus and/or a convex boundary helps for the success of coupling, i.e. it makes the
distance between two marginal processes smaller. So, for simplicity, we may and do assume
that both the cut-locus and the boundary are empty, see [2, Section 3] or [33, Chapter 2] for
details.

Now, let Xt solve the SDE

dIXt =
√
2utdBt + Z(Xt)dt, X0 = x,

where dI denotes the Itô differential introduced in [12] on Riemannian manifolds, Bt is the
d-dimensional Brownian motion, and ut is the horizontal lift ofXt to the frame bundle O(M).
Then Xt is a diffusion process generated by L. To construct the coupling by reflection for
short distance and parallel displacement for long distance, we introduce a cut-off function
h ∈ C1([0,∞)) which is decreasing such that h(r) = 1 for r ≤ r0, h(r) = 0 for r ≥
r0 + 1, and

√
1− h2 is also in C1, see e.g. [40, (3.1)] for a concrete example. To construct

the coupling in the above spirit, we split the noise into two parts, i.e. to replace dBt by
h(ρ(Xt, Yt))dB

′
t +

√

1− h(ρ(Xt, Yt))2dB
′′
t for two independent Brownian motions B′

t and
B′′

t , then make reflection for the B′
t part and parallel displacement for the B′′

t part. More
precisely, let (Xt, Yt) solve the following SDE on M ×M for (X0, Y0) = (x, y):

dIXt =
√
2
(

h(ρ(Xt, Yt))utdB
′
t +

√

1− h(ρ(Xt, Yt))2utdB
′′
t

)

+ Z(Xt)dt,

dIYt =
√
2
(

h(ρ(Xt, Yt))MXt,Yt
utdB

′
t +

√

1− h(ρ(Xt, Yt))2PXt,Yt
utdB

′′
t

)

+ Z(Yt)dt.

Since the coefficients of the SDE are at least C1 outside the diagonal {(z, z) : z ∈M}, it has
a unique solution up to the coupling time

T := inf{t ≥ 0 : Xt = Yt}.
We then let Xt = Yt for t ≥ T as usual. By the second variational formula and the index
lemma (see e.g. the proof of [34, Lemma 2.3] and [29, (2.4)]), the process ρt := ρ(Xt, Yt)
satisfies

dρt ≤ 2
√
2h(ρt)dbt + IZ(Xt, Yt)dt, t ≤ T

for some one-dimensional Brownian motion bt. Thus, by condition (1.8),

(4.1) dρt ≤ 2
√
2h(ρt)dbt +

{

(K1 +K2)1{ρt≤r0} −K2

}

ρtdt, t ≤ T.
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Since h(ρt) = 0 for ρt ≥ r0 + 1 while dρt < 0 when ρt ≥ r0 + 1, this implies

(4.2) ρt ≤ (r0 + 1) ∨ ρ0 ≤ 1 + r0 + ρ(x, y).

On the other hand, since h(ρt) = 1 for ρt ≤ r0, as observed in [17] we have

(4.3) Eρt ≤ ce−λtρ(x, y), t ≥ 0

for some constants c, λ > 0. Indeed, let

ρ̄t = ερt + 1− e−Nρt , N =
r0
2
(K1 +K2), ε = Ne−Nr0 .

Then

ερt ≤ ρ̄t ≤ (N + ε)ρt,
4N2

r(εeNr +N)
≥ K1 +K2 for r ∈ (0, r0],

so that (4.1) and Itô’s formula lead to

dρ̄t ≤ 2
√
2(ε+Ne−Nρt)h(ρt)dbt

+ (ε+Ne−Nρt)
{

(K1 +K2)1{ρt≤r0} −K2 −
4N2

ρt(εeNρt +N
1{ρt≤r0}

}

ρtdt

≤ 2
√
2(ε+Ne−Nρt)h(ρt)dbt − c1ρ̄tdt, t ≤ T

for some constant c1. This implies Eρ̄t ≤ ρ̄0e
−c1t. Then (4.3) holds for some constants

c, λ > 0. Combining (4.2) with (4.3) we arrive at

EΦ(ρt/r) ≤ sup
s∈(0,1+r0+ρ0]

Φ(s/r)

s
Eρt ≤ ce−λtρ(x, y) sup

s∈(0,1+r0+ρ0]

Φ(s/r)

s
.

So,

WΦ(δxPt, δyPt) ≤ ‖ρt‖LΦ(P) = inf
{

r > 0 : EΦ(ρt/r) ≤ 1
}

≤ inf
{

r > 0 : sup
s∈(0,1+ρ(x,y)]

Φ( s
r
)

s
≤ eλt

cρ(x, y)

}

,

which proves (2.1). Therefore, the proof of (1) is finished since the second inequality therein
is a simple consequence of (2.1).

(b) According to the proofs of [34, Proposition 3.1 and Theorem 1.1], our conditions
imply that Pt is hyperbounded; that is, ‖Pt‖2→4 < ∞ holds for some t > 0. Since (1.8)
implies RicZ ≥ −(K1 +K2), by the hyperboundedness and [23, Theorem 2.1], we have the
defective log-Sobolev inequality

µ(f 2 log f 2) ≤ C1µ(|∇f |2) + C2, f ∈ C1
b (M), µ(f 2) = 1

for some constants C1, C2 > 0. Since the symmetric Dirichlet form E (f, g) := µ(〈∇f,∇g〉)
with domainH1,2(µ) is irreducible, according to [38] (see also [18]), the log-Sobolev inequality
(3.4) holds for some constant C > 0, so that (2) is proved.
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(c) According to [25, Theorem 1.10] (see [4, 32, 20] for the case without boundary), the
log-Sobolev inequality implies the Talagrand inequality

(4.4) W2(fµ, µ)
2 ≤ C

2
µ(f log f), f ≥ 0, µ(f) = 1.

Next, let P ∗
t be the adjoint of Pt in L2(µ). By Proposition 3.3 for P ∗

t in place of Pt, the
log-Sobolev inequality implies

(4.5) µ((P ∗
t f) logP

∗
t f) ≤ e−4t/Cµ(f log f), t ≥ 0, f ≥ 0, µ(f) = 1.

Moreover, according to [36, Theorem 1.1], the curvature condition RicZ ≥ −(K1+K2) =: −K
is equivalent to the log-Harnack inequality

Pt(log f)(x) ≤ logPtf(y) +
Kρ(x, y)2

2(1− e−2Kt)
, t ≥ 0, x, y ∈M, 0 ≤ f ∈ Bb(M).

By [39, Proposition 1.4.4(3)], this implies

(4.6) µ((P ∗
t f) logP

∗
t f) ≤

K

2(1− e−2Kt)
W2(fµ, µ)

2, f ≥ 0, µ(f) = 1, t > 0.

Combining (4.4), (4.5) and (4.6), we obtain

W2((fµ)P1+t, µ)
2 =W2((P

∗
1+tf)µ, µ)

2 ≤ C

2
µ((P ∗

1+tf) logP
∗
1+tf)

≤ C

2
e−4t/Cµ((P ∗

1 f) logP
∗
1 f) ≤ c1e

−4t/CW2(fµ, µ)
2, t ≥ 0, f ≥ 0, µ(f) = 1

(4.7)

for some constant c1 > 0. Noting that RicZ ≥ −K implies |∇Ptf | ≤ eKtPt|∇f | (see e.g.
[36]), by Proposition 3.1 we have

W2((fµ)Pt, µ) = W2((fµ)Pt, µPt) ≤ c2W2(fµ, µ), t ∈ [0, 1], f ≥ 0, µ(f) = 1.

Combining with (4.7) yields

W2((fµ)Pt, µ) ≤ ce−λtW2(fµ, µ), t ≥ 0, f ≥ 0, µ(f) = 1

for some constants c, λ > 0. Therefore, the proof of (3) is finished.

5 Proof of Theorem 2.3 and Corollary 2.4

Proof of Theorem 2.3. (1) Since RicZ ≥ −K for some constant K ≥ 0, we have (see e.g.
[36])

|∇Ptf | ≤ eKtPt|∇f |, f ∈ C1
b (M).
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Combining this with Proposition 3.4 for q = 1 and noting that Pt|∇f | is continuous, we
obtain

|∇Ptf | ≤ c0e
−λtPt|∇f |, t ≥ t0, f ∈ C1

b (M)

for some constants c0, λ, t0 > 0. Obviously, (3.1) implies

‖ · ‖L1(Pt) ≤
‖ · ‖LΦ

∗
(Pt)

Φ−1(1)
, Φ ∈ ¯N .

Then
|∇Ptf | ≤

c0
Φ−1(1)

e−λt‖∇f‖LΦ
∗
(Pt), t ≥ 0,Φ ∈ N̄ , f ∈ C1

b (M).

According to Proposition 3.1, this is equivalent to

(5.1) WΦ(δxPt, δyPt) ≤ c0Φ
−1(1)e−λtρ(x, y), t ≥ 0, x, y ∈M.

On the other hand, noting that

C (δxPt, δyPt) ∋ πt := (δxPt)× (δyPt) ≤ ‖Pt‖2L1(µ)→L∞(µ)(µ× µ),

we obtain
WΦ(δxPt, δyPt) ≤ ‖ρ‖LΦ(πt) ≤ GΦ(2t), t > 0.

Combining this with (5.1) and the semigroup property, we arrive at

WΦ(δxPt, δyPt) ≤
c0

Φ−1(1)
e−λt/2WΦ(δxPt/2, δyPt/2) ≤

c0
Φ−1(1)

e−λt/2GΦ(t).

This together with (5.1) implies (2.6) for some constants c, λ > 0. Moreover, (2.7) follows
from (2.6) according to Proposition 3.1.

(2) By Proposition 3.1, (2.8) implies

|∇Ptf | ≤ ce−λtPt|∇f |, t ≥ 0, f ∈ C1
b (M).

Then using the standard semigroup calculation of Bakry-Emery, this implies

Pt(f
2 log f 2)− (Ptf

2) logPtf
2 =

∫ t

0

d

ds
Ps

{

(Pt−sf
2) logPt−sf

2
}

ds

=

∫ t

0

Ps

( |∇Pt−sf
2|2

Pt−sf 2

)

ds ≤ 4c2
∫ t

0

e−2λ(t−s)Ps

((Pt−s{f |∇f |})2
Pt−sf 2

)

ds

≤ 4c2
∫ t

0

e2λ(t−s)(Pt|∇f |2)ds =
2c2(1− e−2λt)

λ
Pt|∇f |2, t ≥ 0.

Since limt→∞ Ptg = µ(g) for g ∈ Bb(M) due to the ergodicity, by letting t → ∞ we prove
the log-Sobolev inequality for (3.4) for C = 2c2

λ
.
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Proof of Corollary 2.4. We first observe that the proof of [34, Theorem 4.2] works also for
the non-symmetric case with ∇Z in place of HessV , so that

(5.2) ‖Pt‖L2(µ)→L∞(µ) ≤ exp
[

c+
c

t

(

1 + Λ−1
1 (ct−1) + Λ−1

2 (c−1t)
)]

, t > 0.

Since in the symmetric case we have ‖Pt‖L1(µ)→L∞(µ) ≤ ‖Pt/2‖2L2(µ)→L∞(µ), the first assertion
follows immediately from Theorem 2.3.

As for the non-symmetric case, since

‖Pt‖L1(µ)→L∞(µ) ≤ ‖Pt/2‖L1(µ)→L2(µ)‖Pt/2‖L2(µ)→L∞(µ),

by Theorem 2.3 and (5.2) it suffices to prove

(5.3) ‖Pt‖L1(µ)→L2(µ) ≤ c′ + c′H(c′t−1), t > 0

for some constant c′ > 0. According to [23, Theorem 2.1], (5.2) implies the super log-Sobolev
inequality (3.3) for

β(r) := c+
c

r

{

1 + Λ−1
1 (cr−1) + Λ−1

2 (c−1r)
}

, r > 0

for some (possibly different) constant c > 0. Then Proposition 3.3 with p = 1, q = 2 and

γ(r) := trh(r−1)

(r−1)
∫
1

0
s−1h(s)ds

implies (5.3).

6 Proofs of Theorems 2.5-2.6 and Proposition 2.7

Proof of Theorems 2.5. Let Xt(x) solve (2.15) with initial point x. By Itô’s formula and
condition (2.16) we obtain

d|Xt(x)−Xt(y)|p

≤ dMt + p|Xt(x)−Xt(y)|p−2

{

(p− 2)|(σ(Xt(x))− σ(Xt(y))
∗(Xt(x)−Xt(y))|2

|Xt(x)−Xt(y)|2

+ ‖σ(Xt(x))− σ(Xt(y))‖2HS + 2〈b(Xt(x)− b(Xt(y)), Xt(x)−Xt(y)〉
}

dt

≤ dMt − pKp|Xt(x)−Xt(y)|pdt
for some martingale Mt. This implies

E|Xt(x)−Xt(y)|p ≤ e−pKpt|x− y|p, t ≥ 0, x, y ∈ R
d,

and thus,

|∇Ptf(x)| ≤ lim sup
y→x

E

( |f(Xt(x))− f(Xt(y))|
|Xt(x)−Xt(y)|

· |Xt(x)−Xt(y)|
|x− y|

)

≤ e−Kpt(Pt|∇f |
p

p−1 )
p−1

p .

(6.1)

Then the desired assertion follows from Proposition 3.1.
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Proof of Theorem 2.6. (1) We reformulate (2.15) as

(6.2) dXt = b(Xt)dt +
√
2
(

σ0(Xt)dB
′
t + λ0dB

′′
t

)

,

where B′
t and B

′′
t are independent d-dimensional Brownian motions. For any x 6= y, let Xt

solve this SDE with X0 = x, and let Yt solve the following coupled SDE with Y0 = y:

dYt = b(Yt)dt+
√
2 σ0(Yt)dB

′
t + λ0

√
2

(

dB′′
t − 2

〈Xt − Yt, dB
′′
t 〉(Xt − Yt)

|Xt − Yt|2
)

.

That is, under the flat metric we have made coupling by reflection for B′′
t and coupling by

parallel displacement for B′
t. Obviously, the coupled SDE has a unique solution up to the

coupling time
Tx,y := inf{t ≥ 0 : Xt = Yt}.

We set Yt = Xt for t ≥ Tx,y as usual. Then by (2.17) and Itô’s formula, we obtain

(6.3) d|Xt − Yt| ≤ dMt +
{

(K1 +K2)1{|Xt−Yt|≤r0} −K2

}

|Xt − Yt|dt, t ≤ Tx,y

for

dMt :=

√
2〈2λ0dB′′

t + (σ0(Xt)− σ0(Yt))dB
′
t, Xt − Yt〉

|Xt − Yt|
being a martingale with

(6.4) d〈M〉t ≥ 8λ20dt.

By repeating the argument leading to (4.3), it is easy see that (6.3) and (6.4) imply

E|Xt − Yt| ≤ ce−λt|x− y|, t ≥ 0

for some constants c, λ > 0 independent of x, y. Therefore,

|∇Ptf | ≤ ce−λt‖∇f‖∞, t ≥ 0, f ∈ C1
b (R

d),

so that the first assertion follows from Proposition 3.1.
(2) According to [37, Theorem 1.1], a ≥ αI and (2.19) imply the log-Harnack inequality

Pt(log f)(x) ≤ logPtf(y) +
c1|x− y|2
1− e−c2t

, t ≥ 0, x, y ∈ R
d, 0 ≤ f ∈ Bb(R

d)

for some constants c1, c2 > 0. Combining this with the log-Sobolev inequality, we prove the
second assertion as in (c) in the proof of Theorem 2.1.

(3) According to the proof of Theorem 2.5, the condition (2.16) implies the gradient
estimate (6.1). Next, by Proposition 3.4, the ultracontractivity and (6.1) imply

|∇Ptf | ≤ c(p)e−λt(Pt|∇f |
p

p−1 )
p−1

p , t ≥ 0, f ∈ C1
b (R

d)

for some c(p) > 0 and λ > 0 independent of p. Then the proof if finished by Proposition
3.1.
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Proof of Proposition 2.7. We will apply results in [23] and [35]. To this end, we introduce
the Riemannian metric

g(∂i, ∂j) = gij := (a−1)i,j, 1 ≥ i, j ≤ d,

and let ∆g,∇g,Hessg be the corresponding Laplacian, gradient and Hessian tensor respec-
tively. Then L = ∆g + Z for some C1 vector field Z. We first verify the Bakry-Emery
curvature condition (1.1) for some constant K. Using the Christoffel symbols, the intrinsic
Hessian tensor induced by g is formulated as

Hessgf(∂i, ∂j) = ∂2ijf −
d

∑

k=1

Γk
ij∂kf.

So, for any x ∈ R
d and f ∈ C2(Rd) with Hessgf(x) = 0, we have

∂2ijf(x) =
d

∑

n=1

Γn
ij∂nf(x), 1 ≤ i, j ≤ d.

Thus, by Bochner-Weitzenböck formula and (2.22), at point x there holds

RicZ(∇gf,∇gf) +K0|∇f |2 =
1

2
L〈a∇f,∇f〉 − 〈a∇f,∇Lf〉+K0|∇f |2

≥ 1

2

d
∑

i,j,k,l=1

akl

[

(∂2klaij)(∂if)(∂jf) + 2aij(∂
2
kif)(∂

2
ilf) + 2(∂laij)

{

(∂2kif)∂jf − (∂2ijf)∂kf
}

]

=
1

2

d
∑

i,j,k,l=1

akl

[

(∂2klaij)(∂if)(∂jf) + 2(∂laij)
d

∑

n=1

(∂nf)
{

Γn
ki∂if − Γn

ij∂kf
}

]

≥ −K1|∇f |2 ≥ −K1

α
〈a∇f,∇f〉 = −K1

α
g(∇gf,∇gf)

for some constant K1. Then (1.1) hold for some constant K.
Next, (2.23) implies that Pt has a unique invariant probability measure µ such that

µ(ec2|·|
2

) < ∞ for some c2 > K
2α
. By our assumption on a, the Riemannian distance ρ

induced by the metric g is equivalent to the Euclidian metric:

(6.5)
1

‖a‖∞
| · |2 ≤ ρ2a(0, ·) ≤

1

α
| · |2.

Then we may repeat the proof of [23, Corollary 2.5] with γ(r) = c2r
δ and ρ = | · | to prove

(6.6) ‖Pt‖L2(µ)→L∞(µ) ≤ exp
[

c3t
− δ

δ−1

]

, t > 0

for some constant c3 > 0. Combining this with the curvature condition (1.1), we obtain from
[23, Theorem 2.1] for p = 2 and q = ∞ that

µ(f 2 log f 2) ≤ rE (f, f) + c4r
− δ

δ−1 , r ∈ (0, 1), µ(f 2) = 1
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holds for some constant c4 > 0. Applying Proposition 3.3 below for p = 1, q = 2 and
γ(r) = c5t(r − 1)

δ−1

2δ
−1 for constant c5 > 0 such that t =

∫ 2

1
γ(r)
r
dr, we obtain

‖Pt‖L1(µ)→L2(µ) ≤ exp
[

c6t
− δ

δ−1

]

, t ∈ (0, 1)

for some constant c6 > 0. Combining this with (6.6) we arrive at

‖Pt‖L1(µ)→L∞(µ) ≤ c7 exp
[

c7t
− δ

δ−1

]

, t > 0

for some constant c7 > 0.
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