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Abstract

Let (E,F , µ) be a σ-finite measure space. For a non-negative symmetric measure
J(dx,dy) := J(x, y)µ(dx)µ(dy) on E × E, consider the quadratic form

E (f, f) :=
1

2

∫

E×E
(f(x)− f(y))2 J(dx,dy)

in L2(µ). We characterize the relationship between the isoperimetric inequality and
the super Poincaré inequality associated with E . In particular, sharp Orlicz-Sobolev
type and Poincaré type isoperimetric inequalities are derived for stable-like Dirichlet
forms on Rn, which include the existing fractional isoperimetric inequality as a special
example.

AMS subject Classification: 47G20, 47D62.
Keywords: Isoperimetric inequality, non-local Dirichlet form, super Poincaré inequality, Or-
licz norm.

1 Introduction

For local (i.e. differential) quadratic forms, the isoperimetric inequality is a geometric in-
equality using the surface area of a set to bound its volume, see, for instance [14, 22, 28] and
references therein, for the study of isoperimetric inequalities and applications to symmetric
diffusion processes. In this case, the surface area refers to the possibility for the associated
diffusion process to exit the set.
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In the non-local case, the associated process is a jump process which exits a set without
hitting the boundary, so it is reasonable to replace the surface area of a set A by the jump
rate from A to its complementary Ac. In this spirit, the famous Cheeger inequality [9]
for the first eigenvalue was extended in [21, 12] to jump processes (see also [34] for finite
Markov chains). See [10, 11, 40, 42, 33, 39, 25, 26] for the study of more general functional
inequalities of symmetric jump processes using isoperimetric constants. These references
only consider large jumps (i.e. the total jump rate is finite). In this paper, we aim to
investigate isoperimetric inequalities for non-local forms with infinite jump rates, for which
small jumps will paly a key role.

To explain our motivation more clearly, let us start from the following classical isoperi-
metric inequality on Rn:

(1.1) µ∂(∂A) ≥ nµ(A)
n−1
n ω

1
n
n ,

where A is a measurable subset of Rn with finite volume, ∂A is its boundary, ωn is the
volume of the n-dimensional unit ball, µ is the Lebesgue measure and µ∂ is the area measure
induced by µ:

µ∂(∂A) := lim sup
ε↓0

µ({dist(·, A) ≤ ε})− µ(A)

ε
.

In particular, the equality in (1.1) holds for A being a ball. By the co-area formula, (1.1) is
equivalent to the sharp L1-Sobolev inequality (i.e. the energy form is of L1 type)

(1.2) ‖f‖ n
n−1

≤ 1

nω
1/n
n

∫

Rn

|∇f(x)| dx, f ∈ W 1,1(Rn),

where for any p ≥ 1, ‖f‖p :=
( ∫

Rn |f(x)|p dx
)1/p

and W 1,p(Rn) is the homogeneous Sobolev

space of differentiability 1 and integrability p. For n > 2, applying (1.2) to f = |g|
2(n−1)
n−2 and

using the Cauchy-Schwarz inequality, we obtain the sharp Sobolev inequality:

‖g‖ 2n
n−2

≤ 2(n− 1)

n(n− 2)ω
1/n
n

(
∫

Rn

|∇g(x)|2 dx
)1/2

, g ∈ W 1,2(Rn).

These inequalities are also available for the α-stable Dirichlet form. For any α ∈ (0, 2∧n),
there exists a universal constant C > 0 such that the fractional Sobolev inequality

‖f‖ 2n
n−α

≤ C

(
∫

Rn×Rn

(f(x)− f(y))2

|x− y|n+α
dx dy

)1/2

, f ∈ C∞
c (Rn)

holds. By an approximation argument, this inequality can be extended to f ∈ W α/2,2(Rd).
Here and in what follows, for p ≥ 1, W α/2,p(Rd) is denoted by the fractional homogeneous
Sobolev space, which is the completion of C∞

c (Rn) with respect to

(∫

Rn×Rn

|f(x)− f(y)|p
|x− y|n+pα/2

dx dy

)1/p

.
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Correspondingly to (1.2), [23, Theorem 1.1] (or [19, Theorem 4.1] with sharp constant) gives
the following L1-Sobolev inequality

(1.3) ‖f‖ n
n−α/2

≤ C

∫

Rn×Rn

|f(x)− f(y)|
|x− y|n+α/2

dx dy, f ∈ W α/2,1(Rn)

for some constant C > 0. The proof of (1.3) addressed in [23, 19] relies on the Hardy
inequality for fractional Sobolev spaces. We note that the Sobolev embedding theorems
involving the spaces Wα/2,p also can be obtained by interpolation techniques and by passing
through Besov spaces, see for example [6, 7]. For the treatment of fractional Sobolev-type
inequalities we can refer to [1, 4, 37, 31] and the references therein.

According to Theorem 2.1(1) below, (1.3) holds if and only if

(1.4) κ := inf
µ(A)∈(0,∞)

1

µ(A)
n−α/2

n

∫

A×Ac

dx dy

|x− y|n+α/2
> 0,

and furthermore, κ ∈ [ 1
2C
, n
2C(n−α/2)

], where C is the sharp constant in (1.3). Due to this

fact, we also call (1.3) a Sobolev type isoperimetric inequality.

In this paper, we aim to establish isoperimetric inequalities for the following non-local
form on a σ-finite measure space (E,F , µ):

(1.5) E (f, f) :=
1

2

∫

E×E

(f(x)− f(y))2 J(dx, dy),

where J(dx, dy) is a non-negative symmetric measure on E × E.
Instead of the fractional Hardy inequality used in [23, 19] and the Besov or interpolation

spaces used in [6, 7], in our paper we will apply the super Poincaré inequality of E , which was
introduced by the first author in [40]. This inequality can be regarded as a deformation of the
Nash-type inequality, but is easier to verify in applications. The proof here is self-contained.

We also mentioned that isoperimetric inequalities for symmetric diffusions have already
been studied in the literature, see [8, 24, 40, 2, 3] and the references therein. In particular,
Ledoux’s approach of Buser’s inequality was used in [40, 2] to illustrate the relation of the
super-Poincaré inequalities with isoperimetry. A notion of Orlicz hypercontractive semi-
groups was introduced in [2], and their relations with various functional inequalities were
studied. A measure-Capacity sufficient condition, in the spirit of Maz’ja [22], was established
for super-Poincaré inequality inequality in [3]. In the present setting, we are concerned with
non-local forms. We will directly derive the equivalence of L1 Orlicz-Sobolev inequality
(involving the L1-norm of the jumping kernel for non-local forms) and L1-Poincaré type in-
equality, and also characterize the relationship between the isoperimetric inequality and the
super Poincaré inequality. In particular, one of our general results (see Theorem 2.2 below)
implies the following Orlicz-Sobolev type isoperimetric inequality (1.7) on Rn.

Following [32, Section 1.3], a function N : [0,∞) → [0,∞] is called a Young function if
it is convex and increasing with N(0) = 0 and N(∞) := lims→∞N(s) = ∞. We consider the
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following Orlicz norm induced by N (see [32, Section 3.2]):

‖f‖N := inf

{

r > 0 :

∫

Rn

N
( |f(x)|

r

)

dx ≤ 1

}

,

where inf ∅ = ∞ by convention. Let LN(Rn) = {f ∈ B(Rn) : ‖f‖N < ∞}. It is easy to see
from the convexity and N(0) = 0 that cN(s) ≤ N(cs) for c ≥ 1. So, N(∞) > 0 is equivalent
to N(∞) = ∞, and

(1.6) c−1‖f‖cN ≤ ‖f‖N ≤ ‖f‖cN , c ≥ 1.

For two Young functions N1 and N2, we say that N1 is not dominated by N2 if sups>0
N1(s)
N2(s)

=

∞, where we set 0
0
= 1, ∞

∞
= 1, r

0
= ∞ and r

∞
= 0 for r > 0. In this case, we write N1 � N2.

For α ∈ (0, 2), let Hα be the class of functions h : (0,∞) → (0,∞) satisfying

(i) h(s) and sh(s)−1 are increasing in s.

(ii) For any s > 0,

Φh(s) :=

∫ s

0

dt

∫ t−1/n

0

rα−1

h(r)
dr <∞.

It is easy to see that Φh is continuous, strictly increasing and concave with Φh(0) = 0. Thus,
Nh := Φ−1

h is a Young function.

Theorem 1.1. For any α ∈ (0, 2) and h ∈ Hα, there exists a constant C > 0 such that

(1.7) ‖f‖Nh
≤ C

∫

Rn×Rn

|f(x)− f(y)| h(|x− y|)
|x− y|n+α

dx dy, f ∈ LNh
(Rn),

which implies

(1.8) inf
µ(A)∈(0,∞)

(

N−1
h (µ(A)−1)

∫

A×Ac

h(|x− y|)
|x− y|n+α

dx dy

)

> 0.

Consequently:

(1) For any α1, α2 ∈ (0, 2), let

N∧
α1,α2

(s) := s
n

n−α1/2 ∧ s
n

n−α2/2 , N∨
α1,α2

(s) := s
n

n−α1/2 ∨ s
n

n−α2/2 , s ≥ 0.

Then there exists a constant C > 0 such that

(1.9) ‖f‖N∧
α1,α2

≤ C

∫

Rn×Rn

|f(x)− f(y)|
|x− y|n+α1/2 ∨ |x− y|n+α2/2

dx dy, f ∈ LN∧
α1,α2

(Rn),

(1.10) ‖f‖N∨
α1,α2

≤ C

∫

Rn×Rn

|f(x)− f(y)|
|x− y|n+α1/2 ∧ |x− y|n+α2/2

dx dy, f ∈ LN∨
α1,α2

(Rn).

These inequalities are sharp in the sense that (1.9) (resp. (1.10)) fails if N∧
α1,α2

(resp.
N∨

α1,α2
) is replaced by a Young function N � N∧

α1,α2
(resp. N∨

α1,α2
).
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(2) For any α ∈ (0, 2) and q, p ∈ R, let λ ≥ 2 large enough such that both N log,q,+
α (s) :=

{

s logq (λ+ s)
}

n
n−α/2 and N log,p,−

α (s) :=
{

s logp (λ+ s−1)
}

n
n−α/2 are Young functions.

Then there exists a constant C > 0 such that for all f ∈ LN log,q,+
α

(Rn),

(1.11) ‖f‖N log,q,+
α

≤ C

∫

Rn×Rn

|f(x)− f(y)|{log(2 + |x− y|−1)}q
|x− y|n+α/2

dx dy,

and for all f ∈ LN log,p,−
α

(Rn),

(1.12) ‖f‖N log,p,−
α

≤ C

∫

Rn×Rn

|f(x)− f(y)|{log(2 + |x− y|)}p
|x− y|n+α/2

dx dy.

These inequalities are sharp in the sense that (1.11) (resp. (1.12)) fails if N log,q,+
α (resp.

N log,p,−
α ) is replaced by a Young function N � N log,q,+

α (resp. N log,p,−
α ).

According to Theorem 2.1(1) below, (1.7) and (1.8) are equivalent in more general case,
so an L1 Orlicz-Sobolev inequality of type (1.7) is also called an Orlicz-Sobolev type isoperi-
metric inequality. It is easy to see that when α1 = α2 = α and q = p = 0, the inequalities
(1.9), (1.10), (1.11) and (1.12) coincide with (1.3). The Orlicz-Sobolev type isoperimetric in-
equalities (1.9)–(1.12) are equivalent to the corresponding Poincaré type ones, see Corollary
2.7 for details.

In the remainder of the paper, we will work with the form (1.5) under a general frame-
work. In Section 2, we characterize the link between the super poincaré and isoperimteric
inequalities. In Section 3, we first apply the main result derived in Section 2 to prove
Theorem 1.1, then make extensions to the truncated and discrete α-stable Dirichlet forms.
Finally, by using a perturbation argument, we derive isoperimetric inequalities in Section 4
for α-stable-like Dirichlet forms with finite reference measures.

2 Super Poincaré and isoperimetric inequalities: gen-

eral results

Let (E,F , µ) be a σ-finite measure space, and let J(dx, dy) be a non-negative and symmetric
measure on E×E. In this section, we investigate the link between the isoperimetric inequality
and the super Poincaré inequality for the following symmetric quadratic form

E (f, g) :=
1

2

∫

E×E

(f(x)− f(y))(g(x)− g(y))J(dx, dy),

f, g ∈ D(E ) :=
{

f ∈ L2(µ) : E (f, f) <∞
}

.

(2.1)

To ensure that E (f, f) does not depend on the choice of µ-versions of f , we assume that
J(dx, dy) = J(x, y)µ(dx)µ(dy) for some symmetric density J : E ×E → [0,∞). Moreover,
we assume that D(E ) is dense in L2(µ) so that (E ,D(E )) is a symmetric Dirichlet form.
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According to [40], we say that (E ,D(E )) satisfies the super Poincaré inequality with rate
function β : (0,∞) → (0,∞), if

(2.2) ‖f‖22 ≤ rE (f, f) + β(r)‖f‖21, f ∈ D(E ), r > 0.

Here and in what follows, for any p ∈ [1,∞], ‖ · ‖p denotes the Lp-norm with respect to µ.
Since E (f, f) ≥ 0, we may and do assume that β is decreasing on (0,∞). See [40, 41, 43]
and references within for the super Poincaré inequality and applications.

For a Young function N , let ‖ · ‖N be the Orlicz norm induced by N and the measure
µ, and let LN(µ) = {f ∈ B(E) : ‖f‖N < ∞}, where B(E) is the class of measurable
functions on E. The left derivative of Young function N , denoted by N ′

−, always exists and
is non-decreasing left continuous on (0,∞), see e.g. [32, Section 1.3]. For any non-negative
decreasing function f on [0,∞), let

f−1(r) := inf{s > 0 : f(s) ≤ r}, r ≥ 0,

where inf ∅ := ∞. Similarly, for any non-negative increasing function f on [0,∞), let

f−1(r) := inf{s > 0 : f(s) ≥ r}, r ≥ 0.

In the following four subsections, we first observe the equivalence of an L1 functional
inequality and the corresponding isoperimetric inequality, then investigate the link between
the super Poincaré and isoperimetric inequalities, and finally extend the main results to the
case with killing.

2.1 L1 functional and isoperimetric inequalities

Consider the L1 Orlicz-Sobolev inequality

(2.3) ‖f‖N ≤ C

∫

E×E

|f(x)− f(y)| J(dx, dy), f ∈ LN (µ),

and the L1 Poincaré type inequality

(2.4) ‖f‖22 ≤ C1

∫

E×E

|f 2(x)− f 2(y)| J(dx, dy) + C2‖f‖21, f ∈ L2(µ),

where N is a Young function and C,C1, C2 > 0 are constants. The following result provides
their equivalent isoperimetric inequalities.

Theorem 2.1. (1) The inequality (2.3) implies

(2.5) inf
µ(A)∈(0,∞)

{

N−1(µ(A)−1)J(A× Ac)
}

≥ κ

holds for κ = 1
2C
. On the other hand, if N ′

−(s) > 0 for s > 0 such that

cN := inf
s>0

N(s)

sN ′
−(s)

> 0,

then (2.5) implies (2.3) for C = 1
2cNκ

.
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(2) The inequality (2.4) implies

(2.6) µ(A) ≤ 2C1J(A×Ac) + C̃2µ(A)
2, µ(A) ∈ (0,∞)

for C̃2 = C2. On the other hand, (2.6) implies (2.4) for C2 = 2C̃2.

Proof. (1) For A ⊂ E with µ(A) ∈ (0,∞), let f = 1A. Then

(2.7)

∫

E×E

|f(x)− f(y)| J(dx, dy) = 2J(A×Ac).

Moreover, for any r > 0, by the definition of N−1 we see that
∫

E

N
(

|f(x)|/r
)

µ(dx) = N(r−1)µ(A) ≤ 1

implies r ≥ N−1(µ(A)−1). Therefore, ‖f‖N ≥ N−1(µ(A)−1). Combining this with (2.3) and
(2.7), we prove (2.5) for κ = 1

2C
.

On the other hand, let cN > 0 and (2.5) hold. It suffices to prove (2.3) for C = 1
2cNκ

and
any f ≥ 0 with ‖f‖N = 1. By Fubini’s theorem and (2.5), we have

∫

E×E

|f(x)− f(y)| J(dx, dy) = 2

∫

{f(x)>f(y)}

(
∫ f(x)

f(y)

dr

)

J(dx, dy)

= 2

∫ ∞

0

J({(x, y) : f(x) > r ≥ f(y)}) dr ≥ 2κ

∫ ∞

0

dr

N−1(µ(f > r)−1)

= 2κ

∫ ∞

0

µ(N(f) > N(r))

µ(N(f) > N(r))N−1(µ(N(f) > N(r))−1)
dr

= 2κ

∫ ∞

0

µ(N(f) > s)

N ′
−(N

−1(s))µ(N(f) > s)N−1(µ(N(f) > s)−1)
ds.

(2.8)

Since f ≥ 0 and ‖f‖N = 1, we have

µ(N(f) > s) ≤ µ(N(f))

s
=

1

s
, s > 0.

Noting that N ′
− ◦N−1 is increasing, by letting t = N−1(µ(N(f) > s)−1) we obtain

N ′
−(N

−1(s))µ(N(f) > s)N−1(µ(N(f) > s)−1)

≤ N ′
−(N

−1(µ(N(f) > s)−1))µ(N(f) > s)N−1(µ(N(f) > s)−1)

=
N ′

−(t)t

N(t)
≤ 1

cN
.

Substituting into (2.8) and noting that ‖f‖N = 1, we arrive at

∫

E×E

|f(x)− f(y)| J(dx, dy) ≥ 2κcNµ(N(f)) = 2κcN = 2κcN‖f‖N .

7



Thus, (2.3) holds for C = 1
2κcN

.

(2) As in (1), by applying (2.4) to f = 1A we prove (2.6) for C̃2 = C2. On the other
hand, let f ∈ L2(µ) with ‖f‖1 = 1. Then µ(f 2 > s) ≤ s−1/2, so that, as in (2.8), (2.6) yields

C1

∫

E×E

|f 2(x)− f 2(y)| J(dx, dy) = 2C1

∫ ∞

0

J({f 2 > s} × {f 2 ≤ s}) ds

≥
∫ ∞

0

{

µ(f 2 > s)− C̃2µ(f
2 > s)2

}

ds ≥ µ(f 2)− C̃2

∫ ∞

0

1√
s
µ
(

|f | >
√
s
)

ds

= µ(f 2)− 2C̃2

∫ ∞

0

µ
(

|f | >
√
s
)

d
√
s = µ(f 2)− 2C̃2µ(|f |) = µ(f 2)− 2C̃2µ(|f |)2.

Therefore, (2.6) implies (2.4) for C2 = 2C̃2.

2.2 From super Poincaré to isoperimetric

Let Pt be the (sub-) Markov semigroup associated with the symmetric Dirichlet form (E ,D(E )).

Theorem 2.2. Assume that (2.2) holds with β(∞) := limr→∞ β(r) = 0. Let γ : E × E →
[0,∞) with γ(x, y) > 0 and γ(x, y) = γ(y, x) for x 6= y, and define

θγ(t) := sup
‖g‖∞≤1

essµ×µ sup
x 6=y

|Ptg(x)− Ptg(y)|
γ(x, y)

, t > 0.

If

Φγ(s) :=

∫ s

0

dr

∫ β−1(r)

0

θγ(t) dt <∞, s > 0,

then Nγ := Φ−1
γ is a Young function, and there exists a constant C > 0 such that

(2.9) ‖f‖Nγ ≤ C

∫

E×E

|f(x)− f(y)|γ(x, y) J(dx, dy), f ∈ LNγ (µ).

To prove this result, we consider the symmetric measure

Jγ(dx, dy) := γ(x, y) J(dx, dy)

on E ×E, and introduce the isoperimetric constants

(2.10) κγ(s) := inf

{

Jγ(A× Ac)

µ(A)
: µ(A) ∈ (0, s)

}

, s > 0,

where inf ∅ := ∞. We have the following result.
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Lemma 2.3. For any increasing function G : [0,∞) → [0,∞) with G(0) = 0 and G(s) > 0
for s > 0, it holds that

(2.11)

∫

E

dµ

∫ |f |

0

κγ
(

G(s)−1
)

ds ≤ 1

2

∫

E×E

|f(x)− f(y)| Jγ(dx, dy), µ(G(|f |)) = 1.

Consequently:

(1) If κγ(s) > 0 for some s > 0, then

(2.12) ‖f‖22 ≤
1

2κγ(s)

∫

E×E

|f 2(x)− f 2(y)| Jγ(dx, dy) +
2

s
‖f‖21, f ∈ L2(µ).

(2) If κγ(s) > 0 for all s > 0 such that

Φ(t) :=

∫ t

0

dr

κγ(r−1)
<∞, t > 0,

then N := Φ−1 is a Young function, and

(2.13) ‖f‖N ≤ 1

2

∫

E×E

|f(x)− f(y)| Jγ(dx, dy), f ∈ LN (µ).

Proof. For any f ∈ B(E) with µ(G(|f |)) = 1, we have

µ(|f | > s) ≤ G(s)−1, s > 0.

As in (2.8), this and the definition of κγ(s) imply that

1

2

∫

E×E

|f(x)− f(y)| Jγ(dx, dy) ≥
1

2

∫

E×E

∣

∣|f |(x)− |f |(y)
∣

∣Jγ(dx, dy)

=

∫ ∞

0

Jγ({|f | > u} × {|f | ≤ u}) du ≥
∫ ∞

0

κγ
(

G(u)−1
)

µ(|f | > u) du

=

∫

E

dµ

∫ |f |

0

κγ
(

G(u)−1
)

du.

We have proved (2.11). Below we prove assertions (1) and (2) respectively.
Assertion (1). For any f ∈ B(E) with ‖f‖1 = 1, we have

(2.14) µ(|f | > s) ≤ 1

s
, s > 0.

Since κγ(s) is decreasing in s, applying (2.11) to f 2 with G(s) = s1/2, we derive

1

2

∫

E×E

|f 2(x)− f 2(y)| Jγ(dx, dy) ≥
∫

E

dµ

∫ f2

0

κγ
(

u−1/2
)

du

=

∫ ∞

0

κγ
(

u−1/2
)

µ(f 2 > u) du ≥ κγ (s)

∫ ∞

s−2

µ(f 2 > u) du, s > 0.

(2.15)
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On the other hand, by (2.14) we have

∫ s−2

0

µ(f 2 > u) du ≤
∫ s−2

0

1√
u
du =

2

s
, s > 0.

Combining this with (2.15) and

‖f‖22 =
∫ ∞

0

µ(f 2 > u) du,

we prove (2.12).
Assertion (2). Let N = Φ−1. Then N satisfies N(0) = 0, and solves the equation

(2.16)
dN(s)

ds
= κγ

(

N(s)−1
)

a.e. s > 0,

where dN(s)
ds

denotes the Radon-Nikodym derivative of N with respect to the Lebesgue mea-
sure. Since κγ(s) is strictly positive and decreasing in s, and since Φ(t) <∞ for t > 0, it is
easy to deduce from (2.16) that N is a Young function, and

∫ |f |

0

κγ
(

N(s)−1
)

ds =

∫ |f |

0

dN(s)

ds
ds = N(|f |).

Combining this with (2.11) leads to

1 ≤ 1

2

∫

E×E

|f(x)− f(y)| Jγ(dx, dy), µ(N(|f |)) = 1,

which in turn implies (2.13).

According to Lemma 2.3, for the proof of Theorem 2.2 we only need to estimate the
isoperimetric constants κγ(s) using (2.2). The following result can be regarded as an exten-
sion of a result of [8] (see also [24]) to non-local forms.

Lemma 2.4. Let γ and θγ(t) be in Theorem 2.2. If

Θγ(t) :=

∫ t

0

θγ(s) ds <∞, t ≥ 0,

then the super Poincaré inequality (2.2) implies

(2.17) κγ(s) ≥
1− e−1

2Θγ(β−1(1/(2s)))
, s > 0.

Proof. For any f, g ∈ D(E ), we have

µ(g(f − Ptf)) = µ(f(g − Ptg)) =

∫ t

0

E (f, Psg) ds

10



=
1

2

∫ t

0

ds

∫

E×E

(Psg(x)− Psg(y))(f(x)− f(y)) J(dx, dy)

≤ ‖g‖∞
2

(
∫ t

0

θγ(s) ds

)
∫

E×E

|f(y)− f(x)| Jγ(dx, dy)

=
Θγ(t)‖g‖∞

2

∫

E×E

|f(y)− f(x)| Jγ(dx, dy).

Thus,

(2.18) µ(|f − Ptf |) ≤
Θγ(t)

2

∫

E×E

|f(y)− f(x)| Jγ(dx, dy).

Next, by [40, (3.4)], the super Poincaré inequality (2.2) is equivalent to

‖Ptf‖22 ≤ ‖f‖22 exp(−2t/r) + β(r)‖f‖21 (1− exp(−2t/r)) , t, r > 0.

In particular, for any A ⊂ E with µ(A) <∞, we have

(2.19) ‖Pt/21A‖22 ≤ µ(A) exp(−t/r) + µ(A)2β(r) (1− exp(−t/r)) , t, r > 0.

Now, for s > 0 and A ⊂ E with 0 < µ(A) < s, (2.18) gives

(2.20) µ(|1A − Pt1A|) ≤
Θγ(t)

2

∫

E×E

|1A(y)− 1A(x)| Jγ(dx, dy) = Θγ(t)Jγ(A× Ac).

On the other hand, we have

µ(|1A − Pt1A|) =
∫

A

(1− Pt1A) dµ+

∫

Ac

Pt1A dµ

≥
∫

A

(1− Pt1A) dµ = µ(A)−
∫

A

Pt1A dµ = µ(A)− ‖Pt/21A‖22.

This together with (2.19) yields that for any t, r > 0,

µ(|1A − Pt1A|) ≥µ(A)
(

1− µ(A)β(r)
)(

1− exp(−t/r)
)

.

Taking r = t = β−1(1/(2µ(A))) in the inequality above, we get that

µ(|1A − Pt1A|) ≥
1− e−1

2
µ(A).

Combining this with (2.20) we arrive at

Jγ(A×Ac)

µ(A)
≥ 1− e−1

2Θγ(β−1(1/(2µ(A))))
≥ 1− e−1

2Θγ(β−1(1/(2s)))
,

where in the last inequality we have used the facts that 0 < µ(A) < s, β is decreasing and
Θγ is increasing. Therefore, (2.17) holds.
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Proof of Theorem 2.2. Let Φγ be in Theorem 2.2. Since β(s) is strictly positive and deceasing
on (0,∞), it is easy to see that Nγ := Φ−1

γ is a Young function. Since β(∞) = 0, by Lemma
2.4 we have κγ(s) > 0 for all s > 0, and

Φ(t) : =

∫ t

0

du

κγ(u−1)
≤ 2

1− e−1

∫ t

0

Θγ

(

β−1(u/2)
)

du

≤ 4

1− e−1

∫ t

0

Θγ

(

β−1(r)
)

dr =
4

1− e−1
Φγ(t), t ≥ 0.

Thus, Nγ(s) := Φ−1
γ (s) ≤ Φ−1(4s/(1− e−1)) := N(4s/(1− e−1)). Combining this with (2.13)

and (1.6), we prove (2.9).

2.3 From isoperimetric to super Poincaré

Let (E ,D(E )) be given by (2.1). For a non-negative symmetric function γ on E × E, let
Jγ(dx, dy) := γ(x, y) J(dx, dy), and κγ(s) be the isoperimetric constant defined by (2.10).
For a Young function N , we aim to deduce the super Poincaré inequality (2.2) from the
Orlicz-Sobolev type isoperimetric inequality

(2.21) ‖f‖N ≤ C

∫

E×E

|f(x)− f(y)| Jγ(dx, dy), f ∈ LN(µ).

To this end, we also consider the Poincaré type isoperimetric inequality

(2.22) ‖f‖22 ≤ r

∫

E×E

|f 2(x)− f 2(y)| Jγ(dx, dy) + β1(r)‖f‖21, r > 0, f ∈ L2(µ)

for some decreasing function β1 : (0,∞) → (0,∞).

Theorem 2.5. Assume (2.21) for some Young function N such that s 7→ s−1N(s) is in-

creasing on (0,∞). Then:

(1) For any s > 0,

κγ(s) ≥
1

2CsN−1(s−1)
.

(2) (2.22) holds with

β1(r) := 2 inf
{

s > 0 : Cs−1N−1(s) ≤ r
}

, r > 0.

(3) If the density J(x, y) := J(dx,dy)
µ(dx)µ(dy)

and γ satisfy

(2.23) cγ := essµ sup
x

∫

E

γ(x, y)2J(x, y)µ(dy) <∞,

then (2.2) holds with

β(r) := 4 inf

{

s > 0 : s−1N−1(s) ≤
√
r

2C
√

2cγ

}

, r > 0.
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Proof. For any s > 0 and A ⊂ E with µ(A) ∈ (0, s), take f = N−1(µ(A)−1)1A. Then
‖f‖N = 1 and due to (2.21),

1 ≤ 2CJγ(A×Ac)N−1(µ(A)−1).

Therefore,

κγ(s) ≥
1

2C
inf

r∈(0,s)

1

rN−1(r−1)
.

Since sN−1(s−1) is increasing in s > 0, this implies (1).
It is easy to see that (2) follows from (1) and Lemma 2.3(1). It remains to prove (3). By

(1), Lemma 2.3(1), and the Cauchy-Schwarz inequality, we obtain

‖f‖22 ≤ CsN−1(s−1)

∫

E×E

|f 2(x)− f 2(y)| Jγ(dx, dy) +
2

s
‖f‖21

≤ CsN−1(s−1)

(
∫

E×E

(f(x)− f(y))2 J(dx, dy)

)1/2

×
(
∫

E×E

(f(x) + f(y))2γ(x, y)2 J(dx, dy)

)1/2

+
2

s
‖f‖21

≤ 2C
√

2cγsN
−1(s−1)

√

E (f, f)‖f‖22 +
2

s
‖f‖21

≤ 1

2
‖f‖22 + 4C2cγ(sN

−1(s−1))2E (f, f) +
2

s
‖f‖21, s > 0,

where in the third inequality we have used (2.23). This implies (2.2) for the desired β.

Similarly, we have the following result.

Theorem 2.6. Assume that (2.22) holds with β1(∞) := limr→∞ β1(r) = 0. Then:

(1) For any s > 0,

κγ(s) ≥
1

4β−1
1 (1/(2s))

.

(2) If

Φ(t) := 4

∫ t

0

β−1
1 (r/2) dr <∞, t > 0,

then (2.21) holds with N := Φ−1.

(3) (2.23) implies (2.2) with

β(r) := 2β1
(√

r/(2
√

2cγ)
)

, r > 0.

Proof. By Theorem 2.1(2), (2.22) implies

µ(A) ≤ 2rJγ(A× Ac) + β1(r)µ(A)
2, r > 0.
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Thus,

1 ≤ 2r
Jγ(A×Ac)

µ(A)
+ β1(r)µ(A) ≤ 2r

Jγ(A×Ac)

µ(A)
+ β1(r)s, r > 0.

Taking r = β−1
1 ((2s)−1) in the inequality above, we get that

Jγ(A× Ac)

µ(A)
≥ 1

4β−1
1 (1/(2s))

.

This implies (1).
(2) immediately follows from (1) and Lemma 2.3(2), and (3) can be proved by the argu-

ment for Theorem 2.5(3).

As a consequence of Theorem 2.5(2) and Theorem 2.6(2), we have the following corre-
spondence of (2.21) and (2.22).

Corollary 2.7. Let p1, p2, p > 1 and q ∈ R be constants. Then,

(1) (2.21) holds with N(s) = sp1 ∧ sp2 if and only if (2.22) holds with

β1(r) := c(r
−

p1
p1−1 ∨ r−

p2
p2−1 ), r > 0

for some constant c > 0.

(2) (2.21) holds with N(s) = sp1 ∨ sp2 if and only if (2.22) holds with

β1(r) := c(r
−

p1
p1−1 ∧ r−

p2
p2−1 ), r > 0

for some constant c > 0.

(3) Let λ ≥ 2 such that N(s) := sp{log(λ+ s−1)}q is Young function and s 7→ s−1N(s) is
increasing on (0,∞). Then, (2.21) holds with N(s) if and only if (2.22) holds with

β1(r) := cr−
p

p−1{log(2 + r)}−
q

p−1 , r > 0

for some constant c > 0.

(4) Let λ ≥ 2 such that N(s) := sp{log(λ + s)}q is Young function and s 7→ s−1N(s) is

increasing on (0,∞). Then, (2.21) holds with N(s) if and only if (2.22) holds with

β1(r) := cr−
p

p−1{log(2 + r−1)}−
q

p−1 , r > 0

for some constant c > 0.
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2.4 Extension to the case with killing

We will add a potential term to the Dirichlet form (E ,D(E )) given in (2.1). Let V be a
non-negative measurable function on (E,F ) such that the class

D(EV ) :=

{

f ∈ L2(µ) : EV (f, f) := E (f, f) +

∫

E

f 2 V (dx) <∞
}

is dense in L2(µ), where V (dx) := V (x)µ(dx). Then (EV ,D(EV )) is a Shrödinger type
symmetric energy form in L2(µ), where

(2.24) EV (f, g) := E (f, g) +

∫

E

f(x)g(x) V (dx), f, g ∈ D(EV ).

It is standard that by enlarging the state space we are able to reduce to present setting
to the case without killing, see [21, 12]. More precisely, let Ē := E ∪ {∆} for an additional
state ∆, and define

µ̄(dx) = 1E(x)µ(dx) + δ∆(dx),

J̄(dx, dy) = 1E×EJ(dx, dy) + 1{∆}×E(x, y) δ∆(dx) V (dy) + 1E×{∆}(x, y) V (dx) δ∆(dy),

where δ∆ is the Dirac measure at point ∆. Since J(dx, dy) = J(x, y)µ(dx)µ(dy), we have

J̄(dx, dy) = J̄(x, y) µ̄(dx) µ̄(dy),

where
J̄(x, y) := 1E×E(x, y)J(x, y) + 1{∆}×E(x, y)V (y) + 1E×{∆}(x, y)V (x).

Next, for a non-negative symmetric function γ on E × E and a non-negative function ξ
on E, let

γ̄(x, y) = 1E×E(x, y)γ(x, y) + 1{∆}×E(x, y)ξ(y) + 1E×{∆}(x, y)ξ(x).

Then for any x ∈ E,
∫

Ē

γ̄(x, y)2J̄(x, y) µ̄(dy) =

∫

E

γ(x, y)2J(x, y)µ(dy) + ξ(x)2V (x).

Finally, for any measurable function f on E, we extend it into f̄ defined on Ē and by
letting f̄(∆) = 0. Then

(2.25) EV (f, g) = Ē (f̄ , ḡ) :=
1

2

∫

Ē×Ē

(f̄(x)− f̄(y))(ḡ(x)− ḡ(y)) J̄(dx, dy), f, g ∈ D(EV ).

Let P V
t be the (sub)-Markov semigroup on L2(µ) associated to (EV ,D(EV )), while P̄t is the

corresponding semigroup on L2(µ̄). We have

θ̄(t) := sup
‖ḡ‖∞≤1

essµ̄×µ̄ sup
x 6=y

|P̄tḡ(x)− P̄tḡ(y)|
γ̄(x, y)
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= sup
‖g‖∞≤1

essµ×µ sup
x 6=y

max

{ |Ptg(x)− Ptg(y)|
γ(x, y)

,
|Ptg(x)|
ξ(x)

}

, t > 0.

With the aid of all the notations above, by applying Theorem 2.2 and Theorem 2.5 to Ē

and µ̄ we obtain the following result.

Theorem 2.8. Suppose that the super Poincaré inequality (2.2) holds for (EV ,D(EV )) replac-
ing (E ,D(E )) with some decreasing function β : (0,∞) → (0,∞) satisfying that β(∞) = 0.
If

Φ̄γ(s) :=

∫ s

0

dr

∫ β−1(r)

0

θ̄(t) dt <∞, s > 0,

then N̄γ := Φ̄−1
γ is a Young function, and there exists a constant C > 0 such that

(2.26) ‖f‖N̄γ
≤ C

(
∫

E×E

|f(x)− f(y)|γ(x, y) J(dx, dy) +
∫

E

|f(x)|ξ(x) V (dx)
)

holds for all f ∈ LN̄γ
(µ).

On the other hand, suppose that

sup
x∈E

(∫

E

γ(x, y)2J(x, y)µ(dy) + ξ(x)2V (x)

)

<∞.

If (2.26) holds for some Young function N replacing N̄γ and satisfying that s 7→ s−1N(s)
is increasing on (0,∞), then there exist constants c1, c2 > 0 such that (2.2) holds for

(EV ,D(EV )) replacing (E ,D(E )) with

β(r) := c1 inf
{

s > 0 : s−1N−1(s) ≤ c2
√
r
}

, r > 0.

3 Proof of Theorem 1.1 and extensions

3.1 Proof of Theorem 1.1

By Theorem 2.1(1), it suffices to prove (1.7) and assertions (1) and (2). Let E = Rn

and µ(dx) be the Lebesgue measure. Consider the symmetric α-stable process on Rn with
jumping kernel

J(x, y) := 1{x 6=y}|x− y|−(n+α), x, y ∈ Rn.

Let Pt be the Markov semigroup generated by the Dirichlet form

E (f, g) :=
1

2

∫

Rn×Rn

(f(x)− f(y))(g(x)− g(y))J(x, y) dx dy, f, g ∈ D(E ).

It is well known that for some constant c1 ≥ 1, we have the heat kernel upper bound (see
for instance [17, Theorem 3.2])

(3.1) ‖Pt‖L1(µ)→L∞(µ) ≤
c1
tn/α

, t > 0,
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as well as the gradient estimate (see for instance [36, Theorem 1.3 and Example 1.4])

(3.2) ‖∇Ptf‖∞ := sup
x∈Rn

lim sup
y→x

|Ptf(y)− Ptf(x)|
|y − x| ≤ c1

t1/α
‖f‖∞, f ∈ L∞(µ), t > 0.

The heat kernel upper bound (3.1) is equivalent to the Sobolev/Nash inequality with dimen-
sion 2n/α (see [15] or [17, Section 3]), or the super Poincaré inequality (2.2) with

(3.3) β(r) = c2r
−n/α, r > 0

for some constant c2 ≥ 1, see [40, 41] or [43].
Now, for any h satisfying conditions (i) and (ii), the gradient estimate (3.2) yields

θ(t) := sup
‖g‖∞≤1

essµ×µ sup
x 6=y

|Ptg(x)− Ptg(y)|
h(|x− y|) ≤ sup

s>0

2c1
h(s)

(

1 ∧ s

t1/α

)

= 2c1 sup
s>0

( 1

h(s)
∧ s

h(s)t1/α

)

=
2c1

h(t1/α)
, t > 0,

(3.4)

where the last step follows from the fact that h(s)−1 is decreasing while sh(s)−1 is increasing
so that the sup is reached at s = t1/α which solves 1

h(s)
= s

h(s)t1/α
.

Finally, let γ(x, y) = h(|x− y|). By (3.3) and (3.4), we have

Φγ(s) :=

∫ s

0

dr

∫ β−1(r)

0

θ(t) dt ≤ 2c1

∫ s

0

dr

∫ (r/c2)−α/n

0

dt

h(t1/α)
≤ c3Φh(c4s), s ≥ 0

for some constants c3, c4 ≥ 1. Therefore, by Theorem 2.2 and the property (1.6), we prove
(1.7) for some constant C > 0.

Below we verify (1.9)–(1.12) and their sharpness respectively.

(a) For (1.9). Let α = 1 and h(s) = s1−α1/2 ∧ s1−α2/2 for s ≥ 0. Then

Φh(s) :=

∫ s

0

dt

∫ t−1/n

0

dr

h(r)
≤ c5

(

s
n−α1/2

n ∨ s
n−α2/2

n

)

, s ≥ 0

holds for some constant c5 > 0. So,

Nh := Φ−1
h ≥ c6N

∧
α1,α2

holds for some constant c6 > 0. Therefore, (1.9) follows from (1.7).
To verify the sharpness of (1.9), let N be a Young function such that N � N∧

α1,α2
. We

have

(3.5)
(

lim sup
s↓0

+ lim sup
s↑∞

) N(s)

N∧
α1,α2

(s)
= ∞.

Let
fs(x) := (s− |x|)+, s > 0, x ∈ Rn.
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Then
|fs(x)− fs(y)| ≤ (s ∧ |x− y|)

{

1B(0,s)(x) + 1B(0,s)(y)
}

.

Thus, there exist constants c7, c8 > 0 such that
∫

Rn×Rn

|fs(x)− fs(y)|
|x− y|n+α1/2 ∨ |x− y|n+α2/2

dx dy

≤ 2

∫

B(0,s)

dx

∫

Rn

s ∧ |x− y|
|x− y|n+α1/2 ∨ |x− y|n+α2/2

dy

≤ c7

∫

B(0,s)

(s1−α1/2 ∧ s1−α2/2) dx ≤ c8(s
n+1−α1/2 ∧ sn+1−α2/2), s ≥ 0.

(3.6)

If (1.9) holds for N replacing N∧
α1,α2

, then

‖fs‖N ≤ c0(s
n+1−α1/2 ∧ sn+1−α2/2), s > 0

holds for some constant c0 > 0. Therefore, there exist constants c9, c10 > 0 such that

1 ≥
∫

Rn

N
(

{

c0(s
n+1−α1/2 ∧ sn+1−α2/2)

}−1
fs(x)

)

dx

≥
∫

{s/4≤|x|≤3s/4}

N
(

c9(s
α1/2−n ∨ sα2/2−n)

)

dx

≥ c10s
nN
(

c9(s
α1/2−n ∨ sα2/2−n)

)

, s > 0.

(3.7)

Noting that
inf
s>0

snN∧
α1,α2

(

c9(s
α1/2−n ∨ sα2/2−n)

)

> 0,

from (3.5) and (3.7) we conclude that

1 ≥
(

lim sup
s↓0

+ lim sup
s↑∞

)

c10s
nN
(

c9(s
α1/2−n ∨ sα2/2−n)

)

= ∞,

which is impossible.

(b) For (1.10). Let α = 1 and h(s) = s1−α1/2 ∨ s1−α2/2 for s ≥ 0. Then

Φh(s) :=

∫ s

0

dt

∫ t−1/n

0

dr

h(r)
≤ c′5

(

s
n−α1/2

n ∧ s
n−α2/2

n

)

, s ≥ 0

holds for some constant c′5 > 0. So,

Nh := Φ−1
h ≥ c′6N

∨
α1,α2

holds for some constant c′6 > 0. Therefore, (1.10) follows from (1.7).
As in (a), we have

∫

Rn×Rn

|fs(x)− fs(y)|
|x− y|n+α1/2 ∧ |x− y|n+α2/2

dxdy ≤ c′7(s
n+1−α1/2 ∨ sn+1−α2/2), s > 0.
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for some constant c′7 > 0. Moreover, for any Young function N with N � N∧
α1,α2

, and for
any constant c0 > 0, we have

(

lim sup
s↓0

+ lim sup
s↑∞

)

∫

Rn

N
(

{

c0(s
n+1−α1/2 ∨ sn+1−α2/2)

}−1
fs(x)

)

dx = ∞,

so that (1.10) does not hold for N replacing N∨
α1,α2

.

(c) For (1.11). Let λ0 ≥ 2 such that

h(s) := sα/2{log(λ0 + s−1)}q, s ≥ 0

satisfies condition (i). Then there exists a constant c11 > 0 such that

Φh(s) :=

∫ s

0

dt

∫ t−
1
n

0

r(α/2)−1

{log(λ0 + r−1)}q dr ≤
c11s

n−α/2
n

{log(2 + s)}q , s ≥ 0.

Thus,
Nh := Φ−1

h ≥ c12N
log,q,+
α

holds for some constant c12 > 0. Therefore, (1.11) follows from (1.7). The sharpness can be
verified with reference functions fs as above.

(d) For (1.12). We take

h(s) := sα/2{log(λ0 + s)}p, s ≥ 0

for some λ0 ≥ 2 large enough such that condition (i) is satisfied. Then there is a constant
c′11 > 0 such that

Φh(s) :=

∫ s

0

dt

∫ t−
1
n

0

r(α/2)−1

{log(λ0 + r)}p dr ≤
c′11s

n−α/2
n

{log(2 + s−1)}p , s ≥ 0.

Hence,
Nh := Φ−1

h ≥ c′12N
log,p,−
α

holds for some constant c′12 > 0. Therefore, from (1.7) we can get (1.12). Similar to (c), one
can verify the sharpness of (1.12) by using reference functions fs as above.

3.2 Extension to the truncated α-stable form

Theorem 3.1. Let n ≥ 2, α ∈ (0, 2), and let h : (0,∞) → (0,∞) satisfy condition (i) in

Theorem 1.1 and

(ii’)

Φ̃h(s) :=

∫ s

0

dt

∫ t−
α
n ∨t−

2
n

0

dr

h(r
1
α ∧ r 1

2 )
<∞, s ≥ 0.
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Let Ñh = Φ̃−1
h . Then there exists a constant C > 0 such that

(3.8) ‖f‖Ñh
≤ C

∫

{|x−y|≤1}

|f(x)− f(y)| h(|x− y|)
|x− y|n+α

dx dy, f ∈ LÑh
(Rn).

Consequently, for Ñα(s) := s
n

n−α/2 ∧ s n
n−1 , there exists a constant C > 0 such that

(3.9) ‖f‖Ñα
≤ C

∫

{|x−y|≤1}

|f(x)− f(y)|
|x− y|n+α/2

dx dy, f ∈ LÑα
(Rn).

This inequality fails if Ñα is replaced by a Young function N � Ñα.

Proof. Consider the following truncated α-stable Dirichlet form

E (f, g) :=
1

2

∫

{|x−y|≤1}

(f(x)− f(y))(g(x)− g(y))
1

|x− y|d+α
dx dy, f, g ∈ D(E ).

Let Pt be the associated Markov semigroup. Then, by [16, Proposition 2.2] and [36, Theorem
1.3 and Example 1.5], we have

(3.10) ‖Pt‖L1(µ)→L∞(µ) ≤
c1

tn/α ∧ tn/2 , t > 0,

and

(3.11) ‖∇Ptf‖∞ ≤ c1
t1/α ∧ t1/2 ‖f‖∞, f ∈ L∞(µ), t > 0

for some constant c1 ≥ 1. By (3.10) and [41, Theorem 4.5], the super Poincaré inequality
(2.2) holds with

(3.12) β(r) = c2(r
−n/α ∨ r−n/2), r > 0

for some constant c2 ≥ 1. On the other hand, by (3.11) and the argument of (3.4), for any
h satisfying condition (i),

θ(t) : = sup
‖g‖∞≤1

essµ×µ sup
x 6=y

|Ptg(x)− Ptg(y)|
h(|x− y|)

≤ sup
s>0

2c1
h(s)

(

1 ∧ s

t1/α ∧ t1/2
)

=
2c1

h(t1/α ∧ t1/2) , t > 0.

(3.13)

Thus, let γ(x, y) = h(|x− y|). By (3.12) and (3.13), for s > 0,

Φγ(s) :=

∫ s

0

dr

∫ β−1(r)

0

θ(t) dt ≤ 2c1

∫ s

0

dr

∫ (r/c2)−α/n∨(r/c2)−2/n

0

dt

h(t1/α ∧ t1/2) ≤ c3Φ̃h(c4s)

holds with some constants c3, c4 ≥ 1. Therefore, by (ii’) and Theorem 2.2 we prove (3.8) for
some constant C > 0.
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Below we verify (3.9) and its sharpness. Let h(s) = sα/2 ∨ s for s ≥ 0. Then

Φ̃h(s) :=

∫ s

0

dr

∫ r−α/n∨r−2/n

0

dt

h(t1/α ∧ t1/2) ≤ c5
(

s
n−α/2

n ∨ sn−1
n

)

, s ≥ 0

holds for some constant c5 > 0, where in the inequality we have used the fact that n ≥ 2.
So,

Ñh := Φ̃−1
h ≥ c6Ñα

holds for some constant c6 > 0. Therefore, (3.9) follows from (1.7).
Let fs be the function in the argument of Theorem 1.1. Then there exists a constant

c7 > 0 such that

∫

{|x−y|≤1}

|fs(x)− fs(y)|
|x− y|n+α

dx dy ≤ 2

∫

B(0,s)

dx

∫

{|y−x|≤1}

s ∧ |x− y|
|x− y|n+α/2

dy

≤ c7(s
n+1−α/2 ∧ sn), s ≥ 0.

Let N be a Young function such that N � Ñα. We have

(

lim sup
s↓0

+ lim sup
s↑∞

) N(s)

Ñα(s)
= ∞.

Suppose that (3.9) holds for N . Then

‖fs‖N ≤ c0(s
n+1−α/2 ∧ sn), s > 0

holds for some constant c0 > 0, so that

1 ≥
∫

Rn

N
(

{

c0(s
n+1−α/2 ∧ sn)

}−1
fs(x)

)

dx

≥
∫

{s/4≤|x|≤3s/4}

N
(

c8(s
α/2−n ∨ s1−n)

)

dx ≥ c9s
nN
(

c8(s
α/2−n ∨ s1−n)

)

, s > 0.

Combining this with all the estimates above, we obtain that

1 ≥
(

lim sup
s↓0

+ lim sup
s↑∞

)

c9s
nN
(

c8(s
α/2−n ∨ s1−n)

)

= ∞,

which is impossible. Therefore, (3.9) does not hold for N , and so we verify the sharpness of
(3.9).

3.3 Extension to discrete α-stable Dirichlet form

In this subsection, let E = Zn and µ be the counting measure. Under this setting, the Orlicz
norm ‖ · ‖N for a Young function N is essentially determined by N(s) for small s > 0. In
particular, for any two Young functions N1 and N2, ‖ · ‖N1 ≤ c‖ · ‖N2 for some constant c > 0
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if and only if there is a constant c′ > 0 such that N1(s) ≤ c′N2(s) holds for all s ∈ [0, 1].
Moreover, since |x− y| ≥ 1 for x 6= y, we have 2 ≤ 2 + |x− y|−1 ≤ 3, and for α1 ≤ α2,

|x− y|n+α1/2 ∨ |x− y|n+α2/2 = |x− y|n+α2/2, |x− y|n+α1/2 ∧ |x− y|n+α2/2 = |x− y|n+α1/2.

Therefore, in assertion (1) of Theorem 1.1 we will take α1 = α2 = α, and in assertion (2) we

only consider N log,p,−
α :=

{

s logp (λ+ s−1)
}

n
n−α/2 with some constant λ ≥ 2.

Theorem 3.2. Assertions in Theorem 1.1 hold for the counting measure µ on Zn replacing

the Lebesgue measure on Rn. More precisely, for any α ∈ (0, 2) and h ∈ Hα, there exists a

constant C > 0 such that

‖f‖Nh
≤ C

∑

x,y∈Zn,x 6=y

|f(x)− f(y)| h(|x− y|)
|x− y|n+α

, f ∈ LNh
(Zn).

Consequently:

(1) There exists a constant C > 0 such that

‖f‖ n
n−α/2

≤ C
∑

x,y∈Zn,x 6=y

|f(x)− f(y)|
|x− y|n+α/2

, f ∈ L
n

n−α/2 (Zn).

This inequality fails if ‖ · ‖ n
n−α/2

is replaced by ‖ · ‖LN
for a Young function N with

lim sup
s→0

s
n−α/2

n N(s) = ∞.

(2) For any α ∈ (0, 2) and p ∈ R, there exists a constant C > 0 such that for all f ∈
LN log,p,−

α
(Zn),

‖f‖N log,p,−
α

≤ C
∑

x,y∈Zn,x 6=y

|f(x)− f(y)|{log(2 + |x− y|)}p
|x− y|n+α/2

.

This inequality fails if N log,p,−
α is replaced by a Young function N with

lim sup
s→0

N(s)

N log,p,−
α (s)

= ∞.

Proof. According to the proof of Theorem 1.1, it suffices to construct a symmetric sub-
Markov semigroup Pt on L

2(µ) such that the associated Dirichlet form (E ,D(E )) is compa-
rable with

Eα(f, f) :=
1

2

∑

x,y∈Zn,x 6=y

(f(x)− f(y))2

|x− y|n+α
, D(Eα) := {f ∈ L2(µ), Eα(f, f) <∞},
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i.e., D(E ) = D(Eα) and there exists a constant C ≥ 1 such that

(3.14) C−1
E (f, f) ≤ Eα(f, f) ≤ CE (f, f), f ∈ D(E ) = D(Eα);

and moreover, both (3.1) and (3.2) are satisfied for Pt, where in (3.2)

‖∇Ptf‖∞ := sup
x,y∈Zn,|x−y|=1

|Ptf(x)− Ptf(y)|.

Condition (3.1) can be easily deduced from the Nash inequality for (Eα,D(Eα)) (see
for example [30, Proposition 2.1]), but to prove explicit gradient estimate (3.2) we need
additional arguments. Below we first construct the required semigroup Pt then verify these
two estimates.

(1) Construction of Pt. Let qk(x, y) and Q
k be the transition function and the semi-

group for discrete time simple random walk Y ′ = (Y ′
k)k≥0 on Zn, respectively. It is known

(see [38] or [20, Theorem 5.1]) that there are constants ci > 0 (i = 1, · · ·5) so that

(3.15) qk(x, y) ≤
c1
kn/2

exp

(−c2|x− y|2
k

)

, x, y ∈ Zn, k ≥ 1,

(3.16) qk(x, y) + qk+1(x, y) ≥
c3
kn/2

exp

(−c4|x− y|2
k

)

, x, y ∈ Zn, k ≥ |x− y|

and

‖∇Qkf‖∞ := sup
x∈Zn

sup
y∈Zn,|y−x|=1

|Qkf(y)−Qkf(x)|

≤c5k−1/2‖f‖∞, k ≥ 1, f ∈ L∞(Zn).
(3.17)

Consider the discrete subordination of Y ′ by the Bernstein function ψ(r) = rα/2 with
α ∈ (0, 2), see [5]. Denote by X ′ = (X ′

k)k≥0 the corresponding discrete time subordinated
Markov chain on Zn, and by pk(x, y) the transition function of X ′. Then, according to [5,
Proposition 2.3 and Example 2.1],

(3.18) p1(x, y) =
∞
∑

k=1

c(ψ, k)qk(x, y), k ≥ 1, x, y ∈ Zn,

where

c(ψ, k) =
α

2Γ(1− α/2)

Γ(k − α/2)

Γ(k + 1)
.

We claim that

(3.19)
c−1
0

|x− y|n+α
≤ p1(x, y) ≤

c0
|x− y|n+α

, x, y ∈ Zn, x 6= y
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holds for some constant c0 ≥ 1. Indeed, by [18],

(3.20) c−1
6 k−(α/2+1) ≤ c(ψ, k) ≤ c6k

−(α/2+1), k ≥ 1

holds for some constant c7 ≥ 1. Then, by (3.16), (3.18) and (3.20), we have

p1(x, y) ≥
1

2

( ∞
∑

k=1

c(ψ, k)qk(x, y) +

∞
∑

k=1

c(ψ, k + 1)qk+1(x, y)

)

≥ c7

∞
∑

k=1

1

k1+α/2
(qk(x, y) + qk+1(x, y)) ≥ c8

∞
∑

k=|x−y|2

1

k1+(α+n)/2
≥ c9

|x− y|n+α
.

On the other hand, according to (3.15), (3.18) and (3.20),

p1(x, y) ≤ c7

∞
∑

k=1

1

k1+α/2
qk(x, y)

≤ c9





∞
∑

k=|x−y|2

1

k1+(α+n)/2
+

|x−y|2
∑

k=1

1

k1+(α+n)/2
exp

(−c2|x− y|2
k

)





≤ c10
|x− y|n+α

.

Thus, (3.19) is proved.
Let Nt be a Poisson process independent of X ′ and Y ′. Set Xt = X ′

Nt
and Yt = Y ′

Nt
for

all t ≥ 0. Therefore, by (3.19), X = (Xt)t≥0 is a continuous time symmetric Markov chain
on Zn such that the associated Dirichlet form (E ,D(E )) is comparable with Eα, i.e., (3.14)
holds for some constant C > 1. Let Pt be the Markov semigroup of Xt.

(2) Proofs of (3.1) and (3.2). Let Qt be the Markov semigroup of Yt. We have

Qt = e−t
∞
∑

k=0

tkQk

k!
, t > 0.

Then, by (3.15), for any f ∈ L∞(Zn) and t > 0,

‖Qtf‖∞ ≤ e−t‖f‖∞ + c1e
−t

∞
∑

k=1

tkk−n/2

k!
‖f‖∞

≤ e−t‖f‖∞ + c11t
−d/2‖f‖∞ ≤ c12

tn/2
‖f‖∞,

(3.21)

where in the second inequality we have used the expansion for inverse moments of Poisson
distribution, see [45, (29) in Corollary 3]. By (3.17), we also have that for any f ∈ L∞(Zn)
and t > 0,

‖∇Qtf‖∞ ≤ e−t‖f‖∞ + c6e
−t

∞
∑

k=1

tkk−1/2

k!
‖f‖∞ ≤ c13

t1/2
‖f‖∞,(3.22)
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where in the last inequality we have used again [45, (29) in Corollary 3].
On the other hand, let St be the α/2-subordinator, which is independent of X,X ′, Y and

Y ′. According to [29, Proposition 1.2], we know that Xt and YSt enjoy the same distribution.
That is,

Ptf =

∫ ∞

0

Qsf P(St ∈ ds), t ≥ 0, f ∈ L∞(Zn).

This along with (3.21) and (3.22) yields

‖Ptf‖∞
‖f‖∞

≤ c12

∫ ∞

0

s−n/2 P(St ∈ ds) ≤ c14t
−n/α, t ≥ 0, f ∈ L∞(Zn)

and
‖∇Ptf‖∞
‖f‖∞

≤ c13

∫ ∞

0

s−1/2 P(St ∈ ds) ≤ c15t
−1/α, t ≥ 0, f ∈ L∞(Zn),

where we used the fact that ES−λ
t = cα,λt

−2λ/α for all t, λ > 0, see [35, (25.5)]. Therefore,
(3.1) and (3.2) hold.

4 Isoperimetric inequalities for α-stable-like Dirichlet

forms: a perturbation argument

Let n ≥ 2 and α ∈ (0, 2). Let W ∈ B(Rn) be such that µW (dx) := e−W (x) dx is a probability
measure. Consider the following α-stable-like Dirichlet form (Eα,W ,D(Eα,W )):

Eα,W (f, f) :=

∫

Rn×Rn

|f(x)− f(y)|2
|x− y|n+α

dy µW (dx),

D(Eα,W ) :={f ∈ L2(Rn, µW ) : D(Eα,W )(f, f) <∞}.
(4.1)

Obviously, C∞
c (Rn) ⊂ D(Eα,W ). See [44, 13] for explicit criteria of Poincaré-type (i.e.,

Poincaré, weak Poincaré and super Poincaré) inequalities for this Dirichlet form.
Since it is not clear how to verify the regularity property (e.g. gradient estimates) for

the associated semigroup Pt, we could not apply Theorem 2.2 for non-negative symmetric
function γ(x, y) satisfying γ(x, y) → 0 as y → x. So, in this section, we will establish
isoperimetric inequalities for (Eα,W ,D(Eα,W )) by using a perturbation argument. The main
result of this section is the following.

Theorem 4.1. Let n ≥ 2 and α ∈ (0, 2). Let W ∈ B(Rn) be such that µW (dx) = e−W (x) dx
is a probability measure. Set

Φ(l) := inf
|x|≥l

eW (x)

|x|n+α/2
, l ≥ 1.

(1) If liml→∞Φ(l) > 0, then there are constants c1, c2 > 0 such that for any f ∈ C∞
c (Rn),

(4.2) µW (f 2) ≤ c1

∫

Rn×Rn

|f 2(x)− f 2(y)|
|x− y|n+α/2

dy µW (dx) + c2µW (|f |)2.
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(2) Let W be locally Lipschitz continuous. If liml→∞Φ(l) = ∞, then for any r > 0 and

f ∈ C∞
c (Rd),

(4.3) µW (f 2) ≤ r

∫

Rn×Rn

|f 2(x)− f 2(y)|
|x− y|n+α/2

dy µW (dx) + β(r)µW (|f |)2,

where

β(r) = inf

{

2c1
(

s−2n/α + s−n
)

(

sup
|z|≤l+1

eW (z)/2

)

: s+
1

Φ(l − 1)
≤ c2(r ∧ 1)

and sup
|z|≤l+2

e2|∇W (z)| ≤ c3
s

}

with some constants c1, c2, c3 > 0.

To prove Theorem 4.1, we will make perturbation to the following Poincaré type isoperi-
metric inequality for the truncated α-stable Dirichlet from on Rn.

Lemma 4.2. There is a constant c > 0 such that for all f ∈ C∞
c (Rn),

∫

f(x)2 dx ≤ r

∫

{|x−y|≤1}

|f 2(x)− f 2(y)|
|x− y|n+α/2

dx dy + c(r−2n/α + r−n)

(
∫

|f |(x) dx
)2

, r > 0.

Proof. This follows from (3.9) and Corollary 2.7(1).

For any D ⊂ Rn, consider the isoperimetric constant

κW (D) :=
1

2
inf

{

1

µW (A)

∫

A×Ac

eW (x) + eW (y)

|x− y|n+α/2
µW (dx)µW (dy) : A ⊂ D, µW (A) > 0

}

= inf

{

1

µW (f)

∫ |f(x)− f(y)|
|x− y|n+α/2

dy µW (dx) : f ≥ 0, f |Dc = 0, µW (f) > 0

}

,

(4.4)

where the second equality in (4.4) can be verified by the co-area formula, see [21, Theorem
3.1].

Lemma 4.3. Let n ≥ 2 and α ∈ (0, 2). Let Bl = {| · | < l} for l > 0.

(1) If

(4.5) lim
l→∞

κW (Bc
l ) > 0,

then (4.2) holds with some constants c1, c2 > 0.

(2) Let W be locally Lipschitz continuous. If

(4.6) lim
l→∞

κW (Bc
l ) = ∞,
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then (4.3) holds with

β(r) = inf

{

2c1
(

s−2n/α + s−n
)

(

sup
|z|≤l+1

eW (z)/2

)

: s+
1

κW (Bc
l−1)

≤ c2(r ∧ 1)

and sup
|z|≤l+2

e2|∇W (z)| ≤ c3
s

}

for some constants c1, c2, c3 > 0.

Proof. For any l > k ≥ 1, let ψl,k ∈ C1
c (R

n) such that ψl,k(x) = 1 for all |x| ≤ l, ψl,k(x) = 0
for all |x| > l + k, and |∇ψl,k| ≤ 2/k on Rn. Then, according to Lemma 4.2, for any
f ∈ C∞

c (Rn) and r > 0,
∫

f 2(x)e−W (x)1{|x|≤l} dx

≤
∫

f 2(x)e−W (x)ψl,k(x) dx

≤ r

∫

{|x−y|≤1}

|f 2(x)e−W (x)ψl,k(x)− f 2(y)e−W (y)ψl,k(y)|
|x− y|n+α/2

dx dy

+ c1
(

r−2n/α + r−n
)

(
∫

|f |(x)e−W (x)/2ψl,k(x)
1/2 dx

)2

≤ r

∫

{|x−y|≤1}

|f 2(x)− f 2(y)|
|x− y|n+α/2

dy e−W (x)ψl,k(x) dx

+ r

∫

f 2(x)e−W (x) dx

∫

{|x−y|≤1}

|ψl,k(x)− ψl,k(y)|
|x− y|n+α/2

dy

+ r

∫

f 2(x)e−W (x) dx

∫

{|x−y|≤1}

|1− eW (x)−W (y)|
|x− y|n+α/2

ψl,k(y) dy

+ c1
(

r−2n/α + r−n
)

(

sup
|z|≤l+k

eW (z)/2

)

(
∫

|f |(x)e−W (x) dx

)2

≤ r

∫

{|x−y|≤1}

|f 2(x)− f 2(y)|
|x− y|n+α/2

dy e−W (x) dx

+
c2r

k

(
∫

f 2(x)e−W (x) dx

)

+ c3r

(

sup
|z|≤l+k+1

e2|∇W (z)|

)

(
∫

f 2(x)e−W (x)dx

)

+ c1
(

r−2n/α + r−n
)

(

sup
|z|≤l+k

eW (z)/2

)

(∫

|f |(x)e−W (x) dx

)2

,

where in the last inequality we have used the facts that for all x ∈ Rd,

(4.7)

∫

{|x−y|≤1}

|ψl,k(x)− ψl,k(y)|
|x− y|n+α/2

dy ≤
(

sup
z∈Rn

|∇ψl,k|(z)
)

∫

{|x−y|≤1}

1

|x− y|n−1+α/2
dy ≤ c2

k
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and, by the elementary inequality |er − 1| ≤ e|r||r| ≤ e2|r| for all r ∈ R,

∫

{|x−y|≤1}

|1− eW (x)−W (y)|
|x− y|n+α/2

ψl,k(y) dy

≤ sup
|x|≤l+k+1

∫

{|x−y|≤1,|y|≤l+k}

|1− eW (x)−W (y)|
|x− y|n+α/2

dy

≤ sup
|x|≤l+k+1

∫

{|x−y|≤1,|y|≤l+k}

e|W (x)−W (y)||W (x)−W (y)|
|x− y|n+α/2

dy

≤
(

sup
|z|≤l+k+1

e|∇W (z)||∇W (z)|
)

∫

{|x−y|≤1}

1

|x− y|n−1+α/2
dy

≤ c3

(

sup
|z|≤l+k+1

e2|∇W (z)|
)

.

On the other hand, by the definition of κW (Bc
l−k), we have

∫

f 2(x)e−W (x)
(

1− 1{|x|≤l}

)

dx

≤
∫

f 2(x)e−W (x)(1− ψl−k,k(x)) dx

≤ 1

κW (Bc
l−k)

∫ |f 2(x)(1− ψl−k,k(x))− f 2(y)(1− ψl−k,k(y))|
|x− y|n+α/2

dy e−W (x) dx

≤ 1

κW (Bc
l−k)

∫ |f 2(x)− f 2(y)|
|x− y|n+α/2

dy e−W (x) dx

+
1

κW (Bc
l−k)

∫ |f 2(x)ψl−k,k(x)− f 2(y)ψl−k,k(y)|
|x− y|n+α/2

dy e−W (x) dx

≤ 2

κW (Bc
l−k)

∫ |f 2(x)− f 2(y)|
|x− y|n+α/2

dy e−W (x) dx

+
1

κW (Bc
l−k)

∫

f 2(x)e−W (x) dx

∫ |ψl−k,k(x)− ψl−k,k(y)|
|x− y|n+α/2

dy

≤ 2

κW (Bc
l−k)

∫ |f 2(x)− f 2(y)|
|x− y|n+α/2

dy e−W (x) dx

+
c2

k κW (Bc
l−k)

∫

f 2(x)e−W (x) dx,

where the last inequality follows from (4.7) again.
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Combining both inequalities above, we have

µW (f 2) ≤
(

r +
2

κW (Bc
l−k)

)
∫

Rn×Rn

|f 2(x)− f 2(y)|
|x− y|n+α/2

dy e−W (x) dx

+ c1
(

r−2n/α + r−n
)

(

sup
|z|≤l+k

eW (z)/2

)

µW (|f |)2

+

(

(c2
k

+ c3 sup
|z|≤l+k+1

e2|∇W (z)|
)

r +
c2

k κW (Bc
l−k)

)

µW (f 2).

(4.8)

(1) Taking l = 2k, we have

(c2
k

+ c3 sup
|z|≤l+k+1

e2|∇W (z)|
)

r +
c2

k κW (Bc
l−k)

=
(c2
k

+ c3 sup
|z|≤3k+1

e2|∇W (z)|
)

r +
c2

k κW (Bc
k)
.

Since κW (Bc
l ) is increasing with respect to l, under (4.5) we can choose k ≥ 1 large enough

and then take r > 0 small enough such that

(c2
k

+ c3 sup
|z|≤3k+1

e2|∇W (z)|
)

r +
c2

k κW (Bc
k)

≤ 1

2
.

This along with (4.8) yields (4.2).
(2) Taking k = 1 in (4.8) and using (4.6), we know that (4.3) holds with

β(r) = inf

{

2c1
(

s−2n/α + s−n
)

(

sup
|z|≤l+1

eW (z)/2

)

: s +
2

κW (Bc
l−1)

≤ r

2

and
(

c2 + c3 sup
|z|≤l+2

e2|∇W (z)|
)

s+
c2

κW (Bc
l−1)

≤ 1

2

}

.

Note that

β(r) ≤ inf

{

2c1
(

s−2n/α + s−n
)

(

sup
|z|≤l+1

eW (z)/2

)

: s+
1

κW (Bc
l−1)

≤ c4(r ∧ 1)

and sup
|z|≤l+2

e2|∇W (z)|s ≤ c5

}

.

Then, we prove (4.3) with the desired β.

Lemma 4.4. For any α ∈ (0, 2), there is a constant c0 > 0 such that

κW (Bc
l ) ≥ c0 inf

|x|≥l

eW (x)

|x|n+α/2
, l ≥ 1.
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Proof. According to the definition of κW (Bc
l ), we have

κW (Bc
l ) ≥

1

2
inf

A⊂Bc
l

inf
x∈A

∫

Ac

eW (x)−W (y) + 1

|x− y|n+α/2
dy ≥ 1

2
inf
|x|≥l

∫

{|y|<l}

eW (x)−W (y) + 1

|x− y|n+α/2
dy

≥c1 inf
|x|≥l

eW (x)

∫

{|y|≤1}

1

|x− y|n+α/2
dy ≥ c2 inf

|x|≥l

eW (x)

|x|n+α/2
.

This proves the desired assertion.

Theorem 4.1 is a direct consequence of Lemmas 4.3 and 4.4, and so we omit the proof
here.

The example below indicates that Theorem 4.1 is sharp in some sense.

Example 4.5. Let W (x) = 1
2
(n+ ε) log(1 + |x|2) + cn,ε for ε > 0.

(1) (4.2) holds if and only if ε ≥ α/2.

(2) (4.3) holds if and only if ε > α/2. Furthermore, when ε > α/2, (4.3) holds with

β(r) = c1(1 ∧ r)−
2n
α
− n+ε

2ε−α .

Proof. The sufficiency for both conclusions is easily seen from Theorem 4.1. To verify the
necessary, we will make use of the reference functions used in [44, Corollary 1.1]. For any
l ≥ 1, define gl ∈ C∞(Rn) such that |∇gl| ≤ 2/l and

gl(x)











= 0, if |x| ≤ l,

∈ [0, 1], if |x| ∈ [l, 2l],

= 1, if |x| ≥ 2l.

Then there exists a constant c0 > 0 independent of l such that for all x ∈ Rn and l ≥ 1,

∫

Rn

|g2l (y)− g2l (x)|
|x− y|n+α/2

dy ≤ 2

∫

Rn

|gl(y)− gl(x)|
|x− y|n+α/2

dy

≤ 4

l

∫

{|x−y|≤l}

1

|y − x|n+α/2−1
dy + 2

∫

{|x−y|≥l}

1

|x− y|n+α/2
dy

≤ c0
lα/2

.

(4.9)

Obviously,

(4.10) µW (g2l ) ≥
c1
lε
, µW (gl)

2 ≤ c2
l2ε
, l ≥ 1

hold for some constants c1, c2 > 0. Note that, since 1− gl ∈ C∞
c (Rn), we can directly apply

gl into (4.2) and (4.3).
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(1) Combining (4.9) with (4.10), we see that for any c > 0,

lim
l→∞

1

µW (g2l )− cµW (gl)2

∫ |g2l (y)− g2l (x)|
|x− y|n+α/2

dy µW (dx) ≤ lim
l→∞

c0l
−α/2

c1l−ε − cc2l−2ε
= 0

provided ε ∈ (0, α/2). Thus, the inequality (4.2) does not hold.
(2) We first prove that if ε ≤ α/2, then for any β : (0,∞) → (0,∞) the inequality (4.3)

does not hold. Indeed, if this inequality holds, then, by (4.9) and (4.10),

c1
lε

≤ c0r

lα/2
+
c2β(r)

l2ε
, r > 0, l ≥ 1

holds for some constants c0, c1, c2 > 0. Since ε ∈ (0, α/2], we obtain

c1 ≤ lim
l→∞

c0r

l(α/2)−ε
+ lim

l→∞

c2β(r)

lε
≤ c0r, r > 0.

Letting r → 0 we conclude that c1 ≤ 0, which is however impossible. Furthermore, by
Theorem 4.1(2), it is easy to prove (4.3) with the desired rate function β(r).
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