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Abstract

The spectral gap is estimated for some measure-valued processes, which are induced
by the intrinsic/extrinsic derivatives on the space of finite measures over a Riemannian
manifold. These processes are symmetric with respect to the Dirichlet and Gamma distri-
butions arising from population genetics. In addition to the evolution of allelic frequencies
investigated in the literature, they also describe stochastic movements of individuals.
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1 Introduction

The Dirichlet distribution arises naturally in Bayesian inference as conjugate priors for categor-
ical distribution and infinite non-parametric discrete distributions respectively. In population
genetics, it describes the distribution of allelic frequencies (see for instance [3| [I0, 14]). To
simulate the Dirichlet distribution using stochastic dynamic systems, some diffusion processes
generalized from the Wright-Fisher diffusion have been considered, see [4, [5 [0, [7, 20] and
references within. In this paper, we investigate diffusion processes induced by the Dirichlet
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distribution and the intrinsic/extrinsic derivatives, where the extrinsic derivative term deter-
mines the evolution of allelic frequencies, and the intrinsic derivative drives the movement of
individuals.

In the following three subsections, we introduce the reference measures, intrinsic and ex-
trinsic derivatives, and the main results of the paper respectively. We will take the notation
p(f) = [, fdp for a measurable space (E, %, i) and f € L'(E, ).

1.1 Reference measures

Let (M, (-,-)a) be a complete Riemannian manifold. Consider the space M of all nonnegative
finite measures on M, and let M := {y € M : u(M) = 1} be the set of all probability measures
on M. According to [13] Theorem 3.2], both spaces are Polish under the weak topology. In
general, for an ergodic Markov process X; with stationary distribution p, one may simulate
by using the empirical measures p; := % f(f 0x,ds, where dy, is the Dirac measure at point X.
In practice, one may also approximate p using the discrete time empirical measures

1 n
[y = — Ox,, > 1.
ji n; Xy N2

See for instance [8] and references within for the study of the convergence rate.
For 0 # 6 € M, the Dirichlet distribution Dy with shape 6 is the unique probability measure
on M such that for any measurable partition {A;}}_, of M,

M > p— (u(Ar), -, 1u(A4y))

obeys the Dirichlet distribution with parameter (0(A;),---,0(A,)). Recall that for any 0 # a =
(o, ) € [0,00)™, the Dirichlet distribution with parameter « is the following probability
measure on the simplex {s = (sy,--+,s,) 18, >0,> " s =1}

Tl + -+ an) oy e

R a;—1
Da<d517 e ,dSn) = F(Oél) . F(Oén) Sn 61_21§i§n71 i (dsn) g Si d3i7

where in case a; = 0 we set %123; 'ds; = &y, and 0, denotes the Dirac measure at point z

in a measurable space. If Dy l;e ers to the distribution of population on M, then under the
state p € My, pu(Ay), -, u(A,) stand for the proportions of population located in the areas
Aq, -+, A, respectively.

We will also consider the Gamma distribution Gy on M with shape 6, whose marginal dis-
tribution on M coincides with the Dirichlet distribution Dy. Recall that Gy is the unique prob-
ability measure on M such that for any finitely many disjoint measurable subsets {Ay,--- , A, }
of M,

Msn—n(4), 1<i<n

are independent Gamma random variables with shape parameters {6(A;)}1<;<, and scale pa-
rameter 1; that is,

(L1) /M (A, n(A.)Goldn) = / F(snre o+ 50) [ rocan (dso)

[0,00)™ i=1



holds for any f € %,(R™), where for a constant r > 0,

Sr—le—s [es}
1.2 (ds) i= 1ig00) () ———ds, T'(r):= "les(s,
(1.2 (ds) = Ty (5) oy ds. () = [ teas

and we set vy = dp, the Dirac measure at point 0.
The Gamma distribution Gy is supported on the class of finite discrete measures

) 00
M ::{Zsiémz SiZO,LL’Z‘EM,ZSZ‘<OO}.
=1 =1

Moreover, under Gy the random variables n(M) € (0,00) and ¥(n) := W € M, are indepen-
dent with

(13)  Go(n(M) < r,W(y) € A) = % /0 PO letds 150 A € BML).

Consequently,

(1.4) Dy = GgoUt, W(y) = % n € M\ {0}.

Both Dy and Gy are images of the Poisson measure m; with intensity
(1.5) 0(dx,ds) == s 'e~*0(dx)ds
on the product manifold M := M x (0,00). Recall that m; is the unique probability measure
on the configuration space

Ly = {7 = Zé(xi,si) : (24,8) € M,y(K) < oo for any compact K C M}
i=1

equipped with the vague topology, such that for any disjoint compact subsets {K;}i1<;<, of

M, v — ~(K;) are independent Poisson random variables of parameters 0(K;)1<i<,. By [0,
Theorem 6.2], we have

(1.6) s(y) :== Z 5; < 00, for msga.s. v = 25(%&.) el'y,
i=1 i=1

and

(1.7) Gop =m0,

where

O(y) := Zsiémi eM, ~:= Zé(xivsi) e I'y; with Zsi < 00.
i=1 i=1 i=1
Combining (4] with (L), we obtain
(1.8) Dy =GpoV ' =my(Wod)".
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1.2 Intrinsic and extrinsic derivatives

These derivatives were introduced in [I] and [15] on the configuration space and the space of
probability measures respectively, which can be extended to M under the map ® : I'y, — M,
see for instance [11].

To introduce the intrinsic derivative for a function on M (or M), we let #5(M) be the class
of smooth vector fields with compact supports on M. For any v € %,(M), let

Ou(z) = exp,v(x)], =€ M,

where exp is the exponential map on M. Then ¢, € C*°(M — M). For a function F' on M|
we define its directional derivative along v by

-1\ _

if it exists. Let L*(? (M), n) be the space of all measurable vector fields v on M with n(|v[*) <
0o. When V™ F(n) exists for all v € ¥ (M) such that
IV EM)| < cllvllzegy, v e Fo(M)

holds for some constant ¢ € (0, 00), then by Riesz representation theorem there exists a unique
V™ E(n) € L*(¥ (M), n) such that

(1.9) VI E () = (VM (1),0) 12 = /M<Vi"tF(77),v>Mdn, v e (M),

In this case, we call F' intrinsically differentiable at n with derivative V™ F(n). If F is in-
trinsically differentiable at all n € M (or M), we call it intrinsically differentiable on M (or
Mj).

Next, a measurable real function F' on M is called extrinsically differentiable at n € M, if

d
Ve F(n)(x) = EF(n + 56, . exists for all z € M,

such that
IV F )| = V=) (200 < oo

When a function F' on M} is considered, it is called intrinsically differentiable if

- d
VU F () (z) = &F((l — S)u+ s6,) . exists for all x € M, u € M,

and V' F(u) € L*(p). If F is extrinsically differentiable at all n € M (or M), we call it
extrinsically differentiable on M (or My). Let 2(M) (respectively Z(M;)) denote the set of
functions which are intrinsically and extrinsically differentiable on M (respectively M} ).

A typical subclass of Z(M) and Z(M]) is the set of cylindrical functions

(1.10)  FCFM) = {n> f((h,m), - (b)) : 021, f € CF(RY), hi € CGP(M)},
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where (h;,n) := n(h;) = [, hidn. This class is dense in L*(M;,Dy) and L*(M, Gy), and the
cylindrical function F':= f({(hq,-), -+, (hy,-)) is differentiable with

n

VUEm) =Y (0 f) (), s () Vs,
(1.11) o

n

Ve (n) = Z(aif)«hla ms- s (e, m)hi, n € M,

i=1
where V is the gradient operator on M. Restricting on M; we will consider

n

V() =Y 0 (b )+ s s ) (B = a(ha)), 1€ M,

i=1

which is the centered extrinsic derivative of F' at u since
(1.12) (VU F(p)) =0, pe M.

See [16] for general results on the relations of Vi V¢ and Ve,

1.3 The main result

Now, for any A > 0, we consider the square fields for F,G € .ZC°(M):

(1.13)
PEG)m = [ (VP TG0} + NV F ) V=Gln) (o) (o). € M,

PA(E, G) (1) = /

|V E ), TG+ NS E ) VG ) o) ). g€ M,

which lead to the following bilinear forms on L?(My, Dg) and L?(M, Gy) respectively:

8,(F.G) = [ TNF.6)) Dalc),
(1.14) Mh
A (F,G) = / PME.G)(n) Goldy), F,G € FCE(M).

To ensure the closability of these bilinear forms, we take
(1.15) 0(dz) = eV @vol(dz) for some V € Wb (M), (M) < oo,

where vol is the Riemannian volume measure. Then the integration by parts formula gives

(116) (gag(hl,hg) = /

M

<Vh1, Vh2>M(ZL') H(dZL’) = —/ hl(A + VV)hgde, hl, hg € CSO(M)
M



So, the bilinear form is closable in L*(M, #), and the closure (&, Z(&y)) is a Dirichlet form.
We will prove the closability of (&2,,.7Cy°(M)) and (&5, , #Cp°(M)), and calculate the
spectral gaps for the corresponding Dirichlet forms.
Recall that for a probability space (F, %, 1) and a symmetric Dirichlet form (&, 2(&)) on
L*(E,p) with 1 € 2(&) and &(1,1) = 0, the spectral gap of the Dirichlet form is given by

gap(&) = inf {@@(F, F): Fe (&), u(F) =0, u(F?) = 1}.

By the spectral theorem, gap(&’) is the exponential convergence rate of the associated Markov
semigroup (P;)s>o, i.e.

P = pllizgy == sup [|PF — p(F)|| 20 = ¢ 5", £ > 0.
u(F2)<1

Let
N = gap(&y) = inf {(|Vf*) 1 [ e Cy(M),0(f) =0,0(f*) =1}

be the spectral gap of the Dirichlet form (&, 2(&)) in L?(M, 6). The main result of this paper
is the following.

Theorem 1.1. Let § be in (ILID) and let Fy(n) =n(M),n € M.

(1) (&8,, FCy>(M)) is closable in L*(M, Gy) and the closure (63,, 2(63,)) is a quasi-regular
symmetric Dirichlet form with spectral gap gap(&g,) = A.

(2) (&p,,-FCpo(M)) is closable in L*(My,Dy) and the closure (&g, , 2(6y),)) is a quasi-regular
symmetric Dirichlet form with spectral gap satisfying

A(M) < gap(ép,) < A(M) + Xg(6(M) + 1).

Consequently, if Ao = 0, then gap(ép,) = A(M). Moreover, Fo(F o V) € D(&3,) for
F e ZC(M) and for any F,G € FC(M),

(1.17) &8, (Fy(F o), Fy(GoW)) = 0(M)é& (F,G) + XN(M)Dy(F,G).
The formula (ILI7) will play a crucial role in the proof of the closability of (&g, , . # Cy*(M)).
When )y > 0, the exact value of gap(éa]D’)\Q) is unknown. Since in this case the intrinsic derivative
part will play a non-trivial role, we believe that gap(@@m))‘e) is strictly larger than A\(M), hopefully

our upper bound could be sharp.
When A = 1 and without the intrinsic derivative part, the Dirichlet form ‘%\e reduces to

(1.18) 8.6 = [ Dulaw) [ {9 () TG0

which is associated with the Fleming-Viot process. It has been derived in [I8] that

(1.19) gap(&y,”) = 0(M),
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see [20] for the study of log-Sobolev inequality in finite-dimensions as well as [5l, 21}, 22] for
functional inequalities of a modified Fleming-Viot process.
When A =1 and V = 0, [11} Theorem 14| presents an integration by parts formula for éa(j;\e
in the class
FCF(M):={Foy.: FeFC®M)e>0},

where

ve(m) = Y n{z})ds, e>0,neM.

n({z})=>e
Therefore, letting (£, , 2(£2,)) be the generator of the Dirichlet form (&2, Z(&2,)), we have
2(45,) D FCOX(M). However, in general .ZC°(M) is not included in P(£5,)- Indeed,
according to [LI] we have the integration by parts formula

120) [ VE(Fov)dG) =~ [ (Fou)B,Galdn), v e K(M).F € FCE(M)

for Bew(n) == 22, 1a))>e {div(v)+ (v, VV) }(x), where div is the divergence operator in M. This
formula makes sense because

|Go(B:,p)| = 10(div + (v, VV (2 |/ le™*ds < o0.

So, Fot. € P(£4,) for any e > 0 and F € ZC°(M). However, since [;* s 'e™ds = oo,
(C20) does not make sense for ¢ = 0.

To prove Theorem [[T], we will formulate the bilinear form &p, as the image of the Dirichlet
form on the configuration space constructed in [I], for which the (weak) Poincaré inequality
has been established in [I7, Section 7]. To this end, we first recall in Section 2 some known
results on the configuration space, then prove Theorem [[.|(1) in Section 3 by transforming
these results to the Gamma process on M, and finally prove Theorem [[T[(2) in Section 4 by
mapping the Gamma process to the subclass M;.

2 Analysis on the configuration space

In this section, we first recall the diffusion process on the configuration space constructed in
[1, 2], then calculate the spectral gap.
For F := f((hy,-), -, (hn,")) € FC2(M), where f € C°(R") and h; € C°(M), let

n

(2.1) VIF[) =Y 0 (), s (hayy))Vhe, v €Ty

i=1
For A > 0, we take the following Riemannian metric on the manifold M := M x (0,00) :

(22) <a185 + vy, 0,285 + ’Ug)M = ()\s)_lalag + S<'U1,’UQ>M, a1, 02 € ]R, U1,V € T M.
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Let A, V and vol be the Laplacian, gradient and volume measure on M respectively.
Consider the bilinear form

(23) & (F.G):= /

: mo(dy) / (VE(F 0 ®)(7), VI (G o ®)(0)) ydv, F,G e FCFE(M).

N M

To formulate the integration by parts formula of this form, we intend to find out a function W
on M such that

(2.4) VEDvol(ds, dz) = A(ds, dz),

where 0(ds, dz) := s~*e~*dsf(dx) is given by (IH). So, for

(25) Lf = Af+ (VW V). | e ),

we have the integration by parts formula

~

26) &l hs) = / (T, Vo) ) = — /A(Elﬁﬁg)dé, b, b € C52 ().
M

M

Therefore, letting

n

A A A A

LIF() = (0:0;1)((h1, )+ 5 (s Y)YV i, VRG) 1)
(2.7) i<t
+ Z(azf)(<il1>7>a T <iLm 7))7([:;%% oS FMa

we have (see [2, Theorem 4.3])

(2.8) & (F.G)=— / (GZLIF)dm, F.Ge FC(M),

Uy

which implies the closability of (éaér , FC°(M)), so that the closure (éaér, 9 (éaéF )) is a symmetric
Dirichlet form in L*(T'y;, 7). Moreover, as explained in [I13, Section 4.5.1], the result [13|
Corollary 4.9] applies to this situation, so that the Dirichlet form (& éF, 2(& ér>) is quasi-regular
and local, and hence is associated with a diffusion process on I'y;. Recall that I'j; is equipped
with the vague topology.

To calculate the generator D%F defined in (27), it suffices to figure out the operator L. To

this end, for a fixed point z := (5,7) € M, we take the normal coordinates (s,z1, -+ ,x) in a
neighbourhood &'(z) of z such that

U1 = 83, Uz'+1 = 8%., 1 S 1 S d
satisfy

(2.9) g(z) = diag{(A\8)"%,5,--- |5}, VUi(2) =0, 1<i<d+1.

8



Let
g(s,x) = (<UMU> )1<13<d+1(5 I) (S,ZL’) S ﬁ(z)

Then the Riemannian volume measure on (z) is

Vol ds,dz) = /detg(s, z) dsdz,

so that (2.4]) holds for

0(ds, dz)

W (s, x) :=log [Vz)l(ds,d:c)] =—s—logs+V(zx)— %log [detg(s, )], (s,z) € O(z).

Letting (¢")1<i j<at+1 = g+, we derive from (Z9) that Vg’ (z) = 0. So,

d+1
(2.10) Z {g"(UWU; }(2) = 5 'VV(Z) — \(1 + 3)0,.

By the same reason, for any h € C*°(M) we have

d+1

Z{g“ Uih)U; } (2) = A5(8,h) (5, 7)0s + *—12 (00,1(5,7))0s,,

i=1
d+1 d+1

Ah(z) = \/Wg) Z U Vetgg Uik ) (2) Z {g"UZh}(2)
= \502h(5, ) + "1Ah( (7).
This together with (2I0) implies that at point z,
(2.11) L:=A+VW =2s(0? = 0,) — A0, + s (A + VV).
Since z € M is arbitrary, this formula holds for all points (s, z) € M.

Theorem 2.1. Let A > 0 and 0 € M be as in (LID). Then gap(éaér) =\
Proof. According to [19], see also [I7, Theorem 7.1], we have

(2.12) gap(&)) = X; == inf {&(h,h) : h € 9(&),0(h?) =1},

where Z(&) is the closure of C§° (M 1) under the Sobolev norm ||k, := \/§(|iz|2) + é"é(ﬁ, h). Let
hz,s):=s+1, (x,s)€ M.

By (ZII)) we have
(2.13) Lh(z,s) = =Mh(z,s), (x,s) € M.
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Combining this with (Z8)), for any g € C5°(M) we have
M) =— | Lh dé _/ (V(g*/h),Vh) ;,db
N
= / {zgwg,wogh)M — g*(Vlogh, Viogh)y }df

/M (Vg V) vidh = (g.9).

Therefore, A\; > A.

On the other hand, since M is complete, there exists a sequence {h,},>1 C C5°(M) such
that

1
(2.14) 0<h,TlasntT oo, and ||Vh,| e < o > 1.

For any ¢ € (0,1) let

A~

hoe(,8) = (s — &) ho(x), he(z,s) = (s—e)*, (x,s)e M,n>1.

~

Then {hn ctn>1:c01) C (&) with 0 < by, . < he. So, for fixed ¢, by the dominated convergence
theorem

lim [ . — ﬁ€|2d§:/A<hm [ ﬁ€|2>dé:0,
M

n—oo M n—r
and due to (2.6]) and (214,
lim & (P = ey e = B )
= lim / {Xs1iszet hn = hinl*(@) + 71 (s — &) TPV (R, — ) [P (2) } s e*dsO(dz)
n,m—00
: O(M)

< — =

- n}rll,gloo ()\9(|hn finl*) + n2 A m2)
Thus, h. € 2(&,) with
(2.15) Elhos ) = i & (s i) = AG(M)/ e*ds, € (0,1).

Combining this with

we obtain

This together with A\; > X derived above gives A\j = A. So, the proof is finished by 2.12). O
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3 Proof of Theorem [1.1](1)

Theorem 3.1. Let 0 be as in (LID). Then (&2, FCp°(M)) is closable in L*(M, Gy) and the
closure (éié\ ,.@(éﬁé‘ )) is a quasi-reqular symmetric Dirichlet form. Moreover, gap(&g,) = A.

Proof. Due to (L7), we may prove this result by using (2.8) and Theorem 2.1l For any h €
O (M), let h(x,s) = sh(x), (z,s) € M. Then

(3.1) O(y)(h) =(h), veTy
Let F'= f((h1,), -, (hn, ), G = g({h1, ), -+, (hn, ) € FC(M). We have
Fo® = f((hy,), -, (hn,)), Go®=g((h1,"), - (hn,")) € D(&})

such that

<VF(FO (I)) VF(GO (I) Z { af ]g h1>7>a e ><ilna7>)7(<Vhi>th>M>‘

i,j=1

Because of (22]) and (B1]), we have

7(<@il'za@il]>M) = /M {A\s(hihj)(z) + s(Vhi, Vhj)ar(z) by (da, ds)

(3.2)

Thus,
[ (0 0)0). 7 (G 8)(3) g

= Z {(0:£)(959) } ((h1, (7)), -+, (i, ®(7)))2(7) (Vi Vhj)ar + Ahihj)
=TNF,G)(2(7)), v€Ty

Combining this with (7)), (LI4) and (23], we obtain

(3.3) & (Fo®,Go®) = / IAF,G)dGy = &, (F, G).

Below we prove the closability, quasi-regularity, and the spectral gap bounds respectively.
(a) The closability. Let {F,},>1 C FCp°(M) such that

(3.4) lim Go(F)) =0and lim &2 (F, — F, F, — F,) =0.

n— o0 n,m— 00

It remains to show that lim, . &2 (F,, Fy,) = 0. By ([L7) and [B3), B4) implies

lim 7;(|F,0 @)+ lim & (F,0®— F,0®, F,0®— F,0®)=0,
n—oo n,Mm—>00
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so that the closability of (&7, 2(&£])) and (B.4) imply

lim &3, (F,, F,) = lim & (F, 0 ®, F, 0 ®) = 0.

n—o0 n—oo

(b) The quasi-regularity. According to [12, Chap. IV, Def. 3.1], the Dirichlet form
(&8, 2(&¢,)) is quasi-regular if and only if there exist a sequences of compact subsets {/, }n>1
of M such that the class

(3.5) D = {F € 2(6,) : Flux, = 0 for some n > 1}

is dense in Z(&2,) under the Sobolev norm

1F N2y + 1/ 63,(F. F), F € 2(&g,).

In this case, the sequence {K,} is called a &3 -nest.

To construct such a &2, -nest, we choose a function ¢ € C*([0, 00)) with 1 < ¢ (r) 1 0o as
r 1 oo and 0 < ¢’ < 1, such that 0(|¢ o p,|?) < 0o, where p, is the Riemannian distance from
a fixed point o € M. Thus,

(3.6) fi=1op, € D(&).
Since M is complete and ¥ o p, T 0o as p, T oo, the level sets
Kn={neM:n(pop,) <n}, n>1

are compact in M. It remains to show that {K, },>1 is a &3, -nest. Since FCp°(M) is dense in
2(&2,), it suffices to show that for any F' € FCp°(M), there exist a sequence {F, },>1 C Zk,
where Pk is defined in (£3) for the present {K,},>1, such that

n—oo

(3.7) lim {Gy(|F, — FP) + 6,(Fu — F,Fa — F)} =0,
We will prove this formula for
(3.8) F,=F-{IAn(n+1-Fy)"}, n>1Fn) :=n(op,).

To this end, we first confirm that Iy € .@(5@6}), so that {F),},>1 C Pk by the definitions of K,
and F,,. By (30, there exist functions {f,},>1 C C5°(M) such that

(3.9) 0 fu<fimvop Jm [ {If= P+ V(= NP} =0

Noting that 1 — n(¢ o p,) obeys the Gamma-distribution with parameter § := 6(¢ o p,) < 0,
we have

[ F2a6o= [ v e p Gotan) = 56 +1) < o
M M
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By the dominated convergence theorem and (3.9)), the functions G, (n) :=n(f,),n > 1 satisfy

n—oo

Moreover, (LI1), (LI3), (LI4) and B3.9) imply

lim &2,(Gp— G, Gn— Gr) = lim [ TNG, — Fy, G, — F)dGy

lim / |Fy — G,|?dGy = 0.

n,m—00 n,m—00 [nr

= lm [ n(|fa— F)2+ A — fo])Go(dn)
n,m—00 [nr

= lm [ ([f= HP+AIf = fl)d6 =0,
n,m—0o0 [ar

Therefore, Iy € 2(&2,). Now, let F,, be defined in (B8). Then F,, — F in L*(Gg), and (LI,
(LI3) and (L.I4)) imply

&8, (F, — F,F, — F)

< 2/ {IF 1T (Fy = n)* AL (Fy = n)* A1)+ [TE, F) ol (Fo — ) A 112 }dGy
< C/ F(], F(] 1{n<Fo<n+l} + 1{F0>n}}dG9 —0asn— oQ,

where C' 1= 2(||F||oe + [|[T(F, F)||) < 00. Moreover, the dominated convergence theorem
implies that ||F, — F||2g, — 0 as n — co. Therefore, ([B.7) holds as desired.
(c) Spectral gap estimates. By Theorem 2. Iland ([B3), for any F' € .ZCp° (M) with Gy(F) =
0, we have
&6, (F.F) = &) (Fo®,Fo®) > Amy(|F o @) = AGy(F?).

This implies gap(&g,) > A. On the other hand, we take Fy(n) = n(M) and intend to show that
Fy € 9(&3,) with

g(é\e (F07 FO)
Go(F5) — Go(Fo)?

so that by definition gap(é"(é}e) < A, and hence the proof is finished.
Let £ € C5°([0,00)) such that 0 < ¢ < 1,{(s) =1 for s < 1. For h,, in ([2.14)), define

(3.10)

=\,

U(hn)
(3.11) F.(n) = /0 £(s/n)ds, ne M.

Then F,, € ZC°(M) and 0 < F,, 1 Fy as n T oco. By (L3]) we have

1 o0
F - - OM)a=sds = (M
0dGy F(@(M))/O s"We™ds = O(M),

# OOSG(M)He—s s = 2
r(e(M))/O ds = O(M)® + 0(M).

(3.12) /M
/.

F2dGy =

13



So, the dominated convergence theorem implies Gy(|F,, — Fy|?) — 0 as n — oo, and

lim & (Fy — Foy Fr — Fpn)

7,Mm—00

— lim { (Ae@(n) /0 — E(hun) fm)hm| )

n,m—00

o+ ([€00n) /) Ry = &) /1) T i) } Goldn) = 0.

Therefor, Fy € Z(&3,) with

&, (Fo, Fo) = lim &3, (F,,, F,) =A/Mn(A}5( 2 /)] + [€01(hn) /) Vho|*) G (dn)
= AGy(Fp) = MO(M).

Combining this with [B12]) we derive (810) and hence finish the proof.

4 Proof of Theorem [I1.7](2)

The quasi-regularity can be proved by the same means as in the step (b) of the proof of Theorem
[LII(1). So, we need only to prove the closability, the formula (I.I7), and the claimed spectral
gap bounds.

(1) Closability and (LI7). Let Fy(n) = n(M). It suffices to prove that for any F' €
FC°(M), one has Fy - (F o W) € 2(&2,) such that (TIT) holds. Indeed, since (&2, Z(&2,))
is closed, (ILIT) implies the closability of (&3, ,.ZCp°(M)).

Similarly to (b) in the proof of Theorem Bl and noting that V™ F, = 0, V¥*'Fy = 1, we
see that for any G € ZCp°(M), GF, — GF, in 2(&3,) with

(4.1) &2, (G, FyG) = / n(A\[FVEG + G + |[FV™G[") Go(dn).
M

However, since for general F' € FZCp°(M) we do not have F oW € .ZCp°(M), this does not
imply Fy - (Fo W) € 2(&¢,) as desired.

To approximate F o ¥ using functions in .# Cy°(M), we write F' = f((h1,-), -, (h,-)) for
some f € C°(R¥F) and hy,- -+, hy € C°(M). Since the Riemannian manifold M is complete,
we may construct {¢,}2%; C C5°(M) such that

(4.2) 0<¢p 11, |V <e™, U supph; C {é, =1}, n>1.

For any n > 1, let

Eu(n) = FoFo, E(n) =1 (-

haym) ()
n(¢n) +n7t7 Tn(dn) + 07

1), n € M.

14



So, () implies F, € 2(&2,). Obviously, Go(|F, — Fo(F o ¥)]?) = 0 (n — 00). By [EZ) and
noting that

N R (%) N (%) hi (b
¥ an)_;(&f)<?7(¢n)+n‘l’ ’n<¢n>+n—1><n<¢n>+n—1 <n<¢n>+n—l>2>’

k
Vi = ;(&f) <77(¢n) +n7t Tn(dn) + n_1> (77(¢n) +n7t (o) + n_1)2> 7

we may find out a constant ¢ > 0 such that

L) 1= (A0 (M) (V4 (B = B (1) + (B = Bn) ()] + [n(M) V™ (B, = F)())
<c(14+nM)), neM, n,m>1.

Since Fy € L'(Gy), by ([ET) and Fatou’s lemma, we arrive at

lim sup éa([l)‘;\@ (Fn - Fma Fn - Fm) = lim SU.p/ In,m(n)GG(dn)
M

7,1M—+00 7,1M—+00

< /M (limsup [mm(’f]))Gg(d’f]) =0.

n,m—00

Then Fy(F o W) = lim, o0 [, € 2(&2,). Similarly, for G = g((ha,-), -, (hi,")) € FCF(M),

we define G‘n = FyG, in the same way. By the above formulas of intrinsic and extrinsic
derivatives for F), and G, it is easy to see that
1 - . 1 .
lim V' E,(n) = ——(V“'F)(¥(n)), lim V™F,(n) = ———(V™F)(¥(n
tim V() = s (VR (). i VE () = s (V) (V)

and the same holds for (G,,, G) replacing (F),, F'). Therefore, by the dominated convergence
theorem and using (I3) and (L.4]), we obtain

EL (Fy(F o W), Fy(G o V) = lim &2, (F,, G)

n—oo

= Tim [ (s (VE) ) + Fa(n)} - {n(M)(VGr)(n) + Gol1)})
+ (M PV E) ), (TG (0)),,) | Gold
= [ 9D [\ (T F )} (TG + MFC) ()
W) (T (W (), VG () ar) | Goldn)
= 6(M) /M (AT} AT} + MEG)) + (V" F (1), T Gn)ar | Bo(dn)
= A(M)Dy(FG) + 0(M)é&p, (F, G).

15



Therefore, (LIT) holds.

(2) Spectral gap estimates. Since
& (F,F) > X6V (F.F), Fe.ZCr(M),

where &V is given in (II8) as the Dirichlet form of the Fleming-Viot process, it follows from

(CI9) that
gap(&5,) > Agap(&5") = A(M).

To verify the spectral gap upper bound, for any h € Cg°(M) with §(h) = 0 and 6(h?) =
let Fy,(n) = n(h). Then F}, € 2(&p,). It suffices to show that

(4.3) 0 < &3, (Fn, Fr) < {A0(M) + 0(|VR|*)(O(M) 4+ 1)} - {Dg(Fy) — Dy(Fy)*}.
To this end, we recall that (see for instance the proof of [I7, Lemma 7.2])
(4.4) ma{h, ) = B(h), m4((h,)2) = 06 + (b2, b e 12().
Letting §(z, s) = sg(z) for g € L2(M, 6) and applying (), (), and (), we deduce from
(@) that
OOND(E) = [ 2, V@))Galdn) = | n(g)Gadn)
= 75((9,-) = 0(9), g€ L*(M,90),

and similarly,

O(M)(0(M) + 1)Dy(| Fy|*) = /MT?(M)z(ga U(n))*Ge(dn) = /M [1(9)*Go(dn)
=m5((3,)?) = 0(g”) +0(9)*, g€ L*(M.0).
Thus, for h € C°(M) with 6(h) = 0 and 6(h?*) = 1, we have

: s O — o) _
Dy (F},) — Dy(Fh)° = O(M)(O(M)+1)  6(M)2 (M) (O(M) + 1)’

and

&5, (Fn, Fy) = Dy (A{(R?,-) D+ (VAP )

{
_ A<9(h2) () +0(h ) )+ O(VRP) A 0(|Vh|?)
o(M)  O(M)(6(M) +1) o(M)  o(M)+1  A(M)

Therefore, ([£3) holds.

Acknowledgement. We would like to thank the referees for helpful comments on an earlier
version of the paper.
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