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Abstract

The spectral gap is estimated for some measure-valued processes, which are induced
by the intrinsic/extrinsic derivatives on the space of finite measures over a Riemannian
manifold. These processes are symmetric with respect to the Dirichlet and Gamma distri-
butions arising from population genetics. In addition to the evolution of allelic frequencies
investigated in the literature, they also describe stochastic movements of individuals.
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1 Introduction

The Dirichlet distribution arises naturally in Bayesian inference as conjugate priors for categor-
ical distribution and infinite non-parametric discrete distributions respectively. In population
genetics, it describes the distribution of allelic frequencies (see for instance [3, 10, 14]). To
simulate the Dirichlet distribution using stochastic dynamic systems, some diffusion processes
generalized from the Wright-Fisher diffusion have been considered, see [4, 5, 6, 7, 20] and
references within. In this paper, we investigate diffusion processes induced by the Dirichlet
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distribution and the intrinsic/extrinsic derivatives, where the extrinsic derivative term deter-
mines the evolution of allelic frequencies, and the intrinsic derivative drives the movement of
individuals.

In the following three subsections, we introduce the reference measures, intrinsic and ex-
trinsic derivatives, and the main results of the paper respectively. We will take the notation
µ(f) =

∫

E
fdµ for a measurable space (E,B, µ) and f ∈ L1(E, µ).

1.1 Reference measures

Let (M, 〈·, ·〉M) be a complete Riemannian manifold. Consider the space M of all nonnegative
finite measures onM , and let M1 := {µ ∈ M : µ(M) = 1} be the set of all probability measures
on M . According to [13, Theorem 3.2], both spaces are Polish under the weak topology. In
general, for an ergodic Markov process Xt with stationary distribution µ, one may simulate µ
by using the empirical measures µt :=

1
t

∫ t

0
δXs

ds, where δXs
is the Dirac measure at point Xs.

In practice, one may also approximate µ using the discrete time empirical measures

µ̃n :=
1

n

n
∑

i=1

δXi
, n ≥ 1.

See for instance [8] and references within for the study of the convergence rate.
For 0 6= θ ∈ M, the Dirichlet distribution Dθ with shape θ is the unique probability measure

on M1 such that for any measurable partition {Ai}
n
1=1 of M ,

M1 ∋ µ 7→ (µ(A1), · · · , µ(An))

obeys the Dirichlet distribution with parameter (θ(A1), · · · , θ(An)). Recall that for any 0 6= α =
(α1, · · · , αn) ∈ [0,∞)n, the Dirichlet distribution with parameter α is the following probability
measure on the simplex {s = (s1, · · · , sn) : si ≥ 0,

∑n

i=1 si = 1}:

Dα(ds1, · · · , dsn) :=
Γ(α1 + · · ·+ αn)

Γ(α1) · · ·Γ(αn)
sαn−1
n δ1−

∑
1≤i≤n−1

si(dsn)

n−1
∏

i=1

sαi−1
i dsi,

where in case αi = 0 we set 1
Γ(0)

s−1
i dsi = δ0, and δx denotes the Dirac measure at point x

in a measurable space. If Dθ refers to the distribution of population on M , then under the
state µ ∈ M1, µ(A1), · · · , µ(An) stand for the proportions of population located in the areas
A1, · · · , An respectively.

We will also consider the Gamma distribution Gθ on M with shape θ, whose marginal dis-
tribution on M1 coincides with the Dirichlet distribution Dθ. Recall that Gθ is the unique prob-
ability measure on M such that for any finitely many disjoint measurable subsets {A1, · · · , An}
of M ,

M ∋ η 7→ η(Ai), 1 ≤ i ≤ n

are independent Gamma random variables with shape parameters {θ(Ai)}1≤i≤n and scale pa-
rameter 1; that is,

(1.1)

∫

M

f(η(A1), · · · , η(An))Gθ(dη) =

∫

[0,∞)n
f(s1, · · · , sn)

n
∏

i=1

γθ(Ai)(dsi)
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holds for any f ∈ Bb(R
n), where for a constant r > 0,

(1.2) γr(ds) := 1[0,∞)(s)
sr−1e−s

Γ(r)
ds, Γ(r) :=

∫ ∞

0

sr−1e−sds,

and we set γ0 = δ0, the Dirac measure at point 0.
The Gamma distribution Gθ is supported on the class of finite discrete measures

Mdis :=
{

∞
∑

i=1

siδxi
: si ≥ 0, xi ∈M,

∞
∑

i=1

si <∞
}

.

Moreover, under Gθ the random variables η(M) ∈ (0,∞) and Ψ(η) := η

η(M)
∈ M1 are indepen-

dent with

(1.3) Gθ

(

η(M) < r,Ψ(η) ∈ A) =
Dθ(A)

Γ(θ(M))

∫ r

0

sθ(M)−1e−sds, r > 0,A ∈ B(M1).

Consequently,

(1.4) Dθ = Gθ ◦Ψ
−1, Ψ(η) :=

η

η(M)
, η ∈ M \ {0}.

Both Dθ and Gθ are images of the Poisson measure πθ̂ with intensity

(1.5) θ̂(dx, ds) := s−1e−sθ(dx)ds

on the product manifold M̂ := M × (0,∞). Recall that πθ̂ is the unique probability measure
on the configuration space

ΓM̂ :=
{

γ =

∞
∑

i=1

δ(xi,si) : (xi, si) ∈ M̂, γ(K) <∞ for any compact K ⊂ M̂
}

equipped with the vague topology, such that for any disjoint compact subsets {Ki}1≤i≤n of

M̂ , γ 7→ γ(Ki) are independent Poisson random variables of parameters θ̂(Ki)1≤i≤n. By [9,
Theorem 6.2], we have

(1.6) s(γ) :=
∞
∑

i=1

si <∞, for πθ̂-a.s. γ =
∞
∑

i=1

δ(xi,si) ∈ ΓM̂ ,

and

(1.7) Gθ = πθ̂ ◦ Φ
−1,

where

Φ(γ) :=
∞
∑

i=1

siδxi
∈ M, γ :=

∞
∑

i=1

δ(xi,si) ∈ ΓM̂ with
∞
∑

i=1

si <∞.

Combining (1.4) with (1.7), we obtain

(1.8) Dθ = Gθ ◦Ψ
−1 = πθ̂(Ψ ◦ Φ)−1.
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1.2 Intrinsic and extrinsic derivatives

These derivatives were introduced in [1] and [15] on the configuration space and the space of
probability measures respectively, which can be extended to M under the map Φ : ΓM̂ → M,
see for instance [11].

To introduce the intrinsic derivative for a function on M (or M1), we let V0(M) be the class
of smooth vector fields with compact supports on M . For any v ∈ V0(M), let

φv(x) = expx[v(x)], x ∈M,

where exp is the exponential map on M . Then φv ∈ C∞(M → M). For a function F on M,
we define its directional derivative along v by

∇int
v F (η) := lim

ε↓0

F (η ◦ φ−1
εv )− F (η)

ε

if it exists. Let L2(V (M), η) be the space of all measurable vector fields v on M with η(|v|2) <
∞. When ∇int

v F (η) exists for all v ∈ V0(M) such that

|∇int
v F (η)| ≤ c‖v‖L2(η), v ∈ V0(M)

holds for some constant c ∈ (0,∞), then by Riesz representation theorem there exists a unique
∇intF (η) ∈ L2(V (M), η) such that

(1.9) ∇int
v F (η) = 〈∇intF (η), v〉L2(η) :=

∫

M

〈∇intF (η), v〉M dη, v ∈ V0(M).

In this case, we call F intrinsically differentiable at η with derivative ∇intF (η). If F is in-
trinsically differentiable at all η ∈ M (or M1), we call it intrinsically differentiable on M (or
M1).

Next, a measurable real function F on M is called extrinsically differentiable at η ∈ M, if

∇extF (η)(x) :=
d

ds
F (η + sδx)

∣

∣

∣

s=0
exists for all x ∈M,

such that
‖∇extF (η)‖ := ‖∇extF (η)(·)‖L2(η) <∞.

When a function F on M1 is considered, it is called intrinsically differentiable if

∇̃extF (µ)(x) :=
d

ds
F ((1− s)µ+ sδx)

∣

∣

∣

s=0
exists for all x ∈M,µ ∈ M1

and ∇̃extF (µ) ∈ L2(µ). If F is extrinsically differentiable at all η ∈ M (or M1), we call it
extrinsically differentiable on M (or M1). Let D(M) (respectively D(M1)) denote the set of
functions which are intrinsically and extrinsically differentiable on M (respectively M1).

A typical subclass of D(M) and D(M1) is the set of cylindrical functions

(1.10) FC∞
b (M) :=

{

η 7→ f(〈h1, η〉, · · · , 〈hn, η〉) : n ≥ 1, f ∈ C∞
b (Rn), hi ∈ C∞

0 (M)
}

,
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where 〈hi, η〉 := η(hi) =
∫

M
hidη. This class is dense in L2(M1,Dθ) and L2(M,Gθ), and the

cylindrical function F := f(〈h1, ·〉, · · · , 〈hn, ·〉) is differentiable with

∇intF (η) =
n

∑

i=1

(∂if)(〈h1, η〉, · · · , 〈hn, η〉)∇hi,

∇extF (η) =

n
∑

i=1

(∂if)(〈h1, η〉, · · · , 〈hn, η〉)hi, η ∈ M,

(1.11)

where ∇ is the gradient operator on M . Restricting on M1 we will consider

∇̃extF (µ) :=
n

∑

i=1

(∂if)(〈h1, µ〉, · · · , 〈hn, µ〉)(hi − µ(hi)), µ ∈ M1,

which is the centered extrinsic derivative of F at µ since

(1.12) µ
(

∇̃extF (µ)
)

= 0, µ ∈ M1.

See [16] for general results on the relations of ∇int,∇ext and ∇̃ext.

1.3 The main result

Now, for any λ > 0, we consider the square fields for F,G ∈ FC∞
b (M):

Γλ(F,G)(η) :=

∫

M

{

〈∇intF (η),∇intG(η)〉M + λ(∇extF (η))∇extG(η)
}

(x) η(dx), η ∈ M,

Γ̃λ(F,G)(µ) :=

∫

M

{

〈∇intF (µ),∇intG(µ)〉M + λ(∇̃extF (µ))∇̃extG(µ)
}

(x)µ(dx), µ ∈ M1,

(1.13)

which lead to the following bilinear forms on L2(M1,Dθ) and L
2(M,Gθ) respectively:

E
λ
Dθ
(F,G) :=

∫

M1

Γ̃λ(F,G)(µ)Dθ(dµ),

E
λ
Gθ
(F,G) :=

∫

M

Γλ(F,G)(η)Gθ(dη), F, G ∈ FC∞
b (M).

(1.14)

To ensure the closability of these bilinear forms, we take

(1.15) θ(dx) = eV (x)vol(dx) for some V ∈ W 1,1
loc (M), θ(M) <∞,

where vol is the Riemannian volume measure. Then the integration by parts formula gives

(1.16) Eθ(h1, h2) :=

∫

M

〈∇h1,∇h2〉M(x) θ(dx) = −

∫

M

h1(∆ +∇V )h2dθ, h1, h2 ∈ C∞
0 (M).
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So, the bilinear form is closable in L2(M, θ), and the closure (Eθ,D(Eθ)) is a Dirichlet form.
We will prove the closability of (E λ

Gθ
,FC∞

b (M)) and (E λ
Dθ
,FC∞

b (M)), and calculate the
spectral gaps for the corresponding Dirichlet forms.

Recall that for a probability space (E,B, µ) and a symmetric Dirichlet form (E ,D(E )) on
L2(E, µ) with 1 ∈ D(E ) and E (1, 1) = 0, the spectral gap of the Dirichlet form is given by

gap(E ) = inf
{

E (F, F ) : F ∈ D(E ), µ(F ) = 0, µ(F 2) = 1
}

.

By the spectral theorem, gap(E ) is the exponential convergence rate of the associated Markov
semigroup (Pt)t≥0, i.e.

‖Pt − µ‖L2(µ) := sup
µ(F 2)≤1

‖PtF − µ(F )‖L2(µ) = e−gap(E )t, t ≥ 0.

Let
λθ = gap(Eθ) := inf

{

θ(|∇f |2) : f ∈ C1
b (M), θ(f) = 0, θ(f 2) = 1

}

be the spectral gap of the Dirichlet form (Eθ,D(Eθ)) in L
2(M, θ). The main result of this paper

is the following.

Theorem 1.1. Let θ be in (1.15) and let F0(η) = η(M), η ∈ M.

(1) (E λ
Gθ
,FC∞

b (M)) is closable in L2(M,Gθ) and the closure (E λ
Gθ
,D(E λ

Gθ
)) is a quasi-regular

symmetric Dirichlet form with spectral gap gap(E λ
Gθ
) = λ.

(2) (E λ
Dθ
,FC∞

b (M)) is closable in L2(M1,Dθ) and the closure (E λ
Dθ
,D(E λ

Dθ
)) is a quasi-regular

symmetric Dirichlet form with spectral gap satisfying

λθ(M) ≤ gap(E λ
Dθ
) ≤ λθ(M) + λθ(θ(M) + 1).

Consequently, if λθ = 0, then gap(E λ
Dθ
) = λθ(M). Moreover, F0(F ◦ Ψ) ∈ D(E λ

Gθ
) for

F ∈ FC∞
b (M) and for any F,G ∈ FC∞

b (M),

(1.17) E
λ
Gθ
(F0(F ◦Ψ), F0(G ◦Ψ)) = θ(M)E λ

Dθ
(F,G) + λθ(M)Dθ(F,G).

The formula (1.17) will play a crucial role in the proof of the closability of (E λ
Dθ
,FC∞

b (M)).
When λθ > 0, the exact value of gap(E λ

Dθ
) is unknown. Since in this case the intrinsic derivative

part will play a non-trivial role, we believe that gap(E λ
Dθ
) is strictly larger than λθ(M), hopefully

our upper bound could be sharp.
When λ = 1 and without the intrinsic derivative part, the Dirichlet form E λ

Dθ
reduces to

(1.18) E
FV
Dθ

(F,G) :=

∫

M1

Dθ(dµ)

∫

M

{

(∇̃extF (µ))∇̃extG(µ)
}

dµ,

which is associated with the Fleming-Viot process. It has been derived in [18] that

(1.19) gap(E FV
Dθ

) = θ(M),
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see [20] for the study of log-Sobolev inequality in finite-dimensions as well as [5, 21, 22] for
functional inequalities of a modified Fleming-Viot process.

When λ = 1 and V = 0, [11, Theorem 14] presents an integration by parts formula for E λ
Gθ

in the class
F̃C∞

b (M) :=
{

F ◦ ψε : F ∈ FC∞
b (M), ε > 0

}

,

where
ψε(η) =

∑

η({x})≥ε

η({x})δx, ε > 0, η ∈ M.

Therefore, letting (L λ
Gθ
,D(L λ

Gθ
)) be the generator of the Dirichlet form (E λ

Gθ
,D(E λ

Gθ
)), we have

D(L λ
Gθ
) ⊃ F̃C∞

b (M). However, in general FC∞
b (M) is not included in D(L λ

Gθ
). Indeed,

according to [11] we have the integration by parts formula

(1.20)

∫

M

∇int
v (F ◦ ψε) dGθ = −

∫

M

(F ◦ ψε)Bε,v Gθ(dη), v ∈ V0(M), F ∈ FC∞
b (M)

for Bε,v(η) :=
∑

η({x})≥ε

{

div(v)+〈v,∇V 〉
}

(x), where div is the divergence operator inM . This
formula makes sense because

|Gθ(Bε,v)| = |θ(div + 〈v,∇V (x)〉M)|

∫ ∞

ε

s−1e−sds <∞.

So, F ◦ ψε ∈ D(L λ
Gθ
) for any ε > 0 and F ∈ FC∞

b (M). However, since
∫∞

0
s−1e−sds = ∞,

(1.20) does not make sense for ε = 0.

To prove Theorem 1.1, we will formulate the bilinear form EDθ
as the image of the Dirichlet

form on the configuration space constructed in [1], for which the (weak) Poincaré inequality
has been established in [17, Section 7]. To this end, we first recall in Section 2 some known
results on the configuration space, then prove Theorem 1.1(1) in Section 3 by transforming
these results to the Gamma process on M, and finally prove Theorem 1.1(2) in Section 4 by
mapping the Gamma process to the subclass M1.

2 Analysis on the configuration space

In this section, we first recall the diffusion process on the configuration space constructed in
[1, 2], then calculate the spectral gap.

For F := f(〈ĥ1, ·〉, · · · , 〈ĥn, ·〉) ∈ FC∞
b (M̂), where f ∈ C∞

b (Rn) and ĥi ∈ C∞
0 (M̂), let

(2.1) ∇ΓF (γ) =

n
∑

i=1

(∂if)(〈ĥ1, γ〉, · · · , 〈ĥn, γ〉)∇̂ĥi, γ ∈ ΓM̂ .

For λ > 0, we take the following Riemannian metric on the manifold M̂ :=M × (0,∞) :

(2.2) 〈a1∂s + v1, a2∂s + v2〉M̂ := (λs)−1a1a2 + s〈v1, v2〉M , a1, a2 ∈ R, v1, v2 ∈ TM.
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Let ∆̂, ∇̂ and v̂ol be the Laplacian, gradient and volume measure on M̂ respectively.
Consider the bilinear form

(2.3) E
Γ
θ̂
(F,G) :=

∫

Γ
M̂

πθ̂(dγ)

∫

M̂

〈∇Γ(F ◦ Φ)(γ),∇Γ(G ◦ Φ)(γ)〉M̂dγ, F,G ∈ FC∞
b (M).

To formulate the integration by parts formula of this form, we intend to find out a function W
on M̂ such that

(2.4) eW (s,x)v̂ol(ds, dx) = θ̂(ds, dx),

where θ̂(ds, dx) := s−1e−sdsθ(dx) is given by (1.5). So, for

(2.5) L̂f := ∆̂f + 〈∇̂W, ∇̂f〉M̂ , f ∈ C2(M̂),

we have the integration by parts formula

(2.6) Eθ̂(ĥ1, ĥ2) :=

∫

M̂

〈∇̂ĥ1, ∇̂ĥ2〉M̂dθ̂ = −

∫

M̂

(ĥ1L̂ĥ2)dθ̂, ĥ1, ĥ2 ∈ C∞
0 (M̂).

Therefore, letting

L
Γ
θ̂
F (γ) =

n
∑

i,j=1

(∂i∂jf)(〈ĥ1, γ〉, · · · , 〈ĥn, γ〉)γ(〈∇̂ĥi, ∇̂ĥj〉M̂)

+
n

∑

i=1

(∂if)(〈ĥ1, γ〉, · · · , 〈ĥn, γ〉)γ(L̂ĥi), γ ∈ ΓM̂ ,

(2.7)

we have (see [2, Theorem 4.3])

(2.8) E
Γ
θ̂
(F,G) = −

∫

Γ
M̂

(GL
Γ
θ̂
F ) dπθ̂, F, G ∈ FC∞

b (M̂),

which implies the closability of (E Γ
θ̂
,FC∞

b (M̂)), so that the closure (E Γ
θ̂
,D(E Γ

θ̂
)) is a symmetric

Dirichlet form in L2(ΓM̂ , πθ̂). Moreover, as explained in [13, Section 4.5.1], the result [13,
Corollary 4.9] applies to this situation, so that the Dirichlet form (E Γ

θ̂
,D(E Γ

θ̂
)) is quasi-regular

and local, and hence is associated with a diffusion process on ΓM̂ . Recall that ΓM̂ is equipped
with the vague topology.

To calculate the generator L Γ
θ̂

defined in (2.7), it suffices to figure out the operator L̂. To

this end, for a fixed point z := (s̄, x̄) ∈ M̂ , we take the normal coordinates (s, x1, · · · , xt) in a
neighbourhood O(z) of z such that

U1 := ∂s, Ui+1 := ∂xi
, 1 ≤ i ≤ d

satisfy

(2.9) g(z) = diag{(λs̄)−1, s̄, · · · , s̄}, ∇̂Ui(z) = 0, 1 ≤ i ≤ d+ 1.
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Let
g(s, x) := (〈Ui, Uj〉M̂)1≤i,j≤d+1(s, x), (s, x) ∈ O(z).

Then the Riemannian volume measure on O(z) is

v̂ol(ds, dx) =
√

detg(s, x) dsdx,

so that (2.4) holds for

W (s, x) := log
[ θ̂(ds, dx)

v̂ol(ds, dx)

]

= −s− log s+ V (x)−
1

2
log

[

detg(s, x)
]

, (s, x) ∈ O(z).

Letting (gij)1≤i,j≤d+1 = g−1, we derive from (2.9) that ∇gij(z) = 0. So,

(2.10) ∇̂W (z) :=

d+1
∑

i=1

{

gii(UiW )Ui

}

(z) = s̄−1∇V (x̄)− λ(1 + s̄)∂s.

By the same reason, for any ĥ ∈ C∞(M̂) we have

∇̂ĥ(z) :=

d+1
∑

i=1

{

gii(Uiĥ)Ui

}

(z) = λs̄(∂sĥ)(s̄, x̄)∂s + s̄−1

d
∑

i=1

(∂xi
ĥ(s̄, x̄))∂xi

,

∆̂ĥ(z) :=
1

√

detg(z)

d+1
∑

i=1

Ui

(

√

detggiiUiĥ
)

(z) =

d+1
∑

i=1

{

giiU2
i ĥ

}

(z)

= λs̄∂2s ĥ(s̄, x̄) + s̄−1∆ĥ(s̄, ·)(x̄).

This together with (2.10) implies that at point z,

L̂ := ∆̂ + ∇̂W = λs(∂2s − ∂s)− λ∂s + s−1(∆ +∇V ).(2.11)

Since z ∈ M̂ is arbitrary, this formula holds for all points (s, x) ∈ M̂.

Theorem 2.1. Let λ > 0 and θ ∈ M be as in (1.15). Then gap(E Γ
θ̂
) = λ.

Proof. According to [19], see also [17, Theorem 7.1], we have

(2.12) gap(E Γ
θ̂
) = λθ̂ := inf

{

Eθ̂(ĥ, ĥ) : ĥ ∈ D(Eθ̂), θ̂(ĥ
2) = 1

}

,

where D(Eθ̂) is the closure of C
∞
0 (M̂) under the Sobolev norm ‖ĥ‖1 :=

√

θ̂(|ĥ|2) + Eθ̂(ĥ, ĥ). Let

ĥ(x, s) := s + 1, (x, s) ∈ M̂.

By (2.11) we have

(2.13) L̂ĥ(x, s) = −λĥ(x, s), (x, s) ∈ M̂.
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Combining this with (2.6), for any g ∈ C∞
0 (M̂) we have

λθ̂(g2) = −

∫

M̂

g2

ĥ
L̂ĥ dθ̂ =

∫

M̂

〈

∇̂(g2/ĥ), ∇̂ĥ
〉

M̂
dθ̂

=

∫

M̂

{

2g〈∇̂g, ∇̂ log ĥ〉M̂ − g2〈∇̂ log ĥ, ∇̂ log ĥ〉M̂
}

dθ̂

≤

∫

M̂

〈∇̂g, ∇̂g〉M̂dθ̂ = Eθ̂(g, g).

Therefore, λθ̂ ≥ λ.
On the other hand, since M is complete, there exists a sequence {hn}n≥1 ⊂ C∞

0 (M) such
that

(2.14) 0 ≤ hn ↑ 1 as n ↑ ∞, and ‖∇hn‖∞ ≤
1

n
, n ≥ 1.

For any ε ∈ (0, 1) let

ĥn,ε(x, s) = (s− ε)+hn(x), ĥε(x, s) = (s− ε)+, (x, s) ∈ M̂, n ≥ 1.

Then {ĥn,ε}n≥1,ε∈(0,1) ⊂ D(Eθ̂) with 0 ≤ ĥn,ε ≤ ĥε. So, for fixed ε, by the dominated convergence
theorem

lim
n→∞

∫

M̂

|ĥn,ε − ĥε|
2dθ̂ =

∫

M̂

(

lim
n→∞

|ĥn,ε − ĥε|
2
)

dθ̂ = 0,

and due to (2.6) and (2.14),

lim
n,m→∞

Eθ̂(ĥn,ε − ĥm,ε, ĥn,ε − ĥm,ε)

= lim
n,m→∞

∫

M̂

{

λs1{s≥ε}|hn − hm|
2(x) + s−1|(s− ε)+|2|∇(hn − hm)|

2(x)
}

s−1e−sdsθ(dx)

≤ lim
n,m→∞

(

λθ(|hn − hm|
2) +

θ(M)

n2 ∧m2

)

= 0.

Thus, ĥε ∈ D(Eθ̂) with

(2.15) Eθ̂(ĥε, ĥε) = lim
n→∞

Eθ̂(ĥn,ε, ĥn,ε) = λθ(M)

∫ ∞

ε

e−sds, ε ∈ (0, 1).

Combining this with

lim
ε→0

θ̂(h2ε) = θ(M)

∫ ∞

0

se−sds = θ(M),

we obtain

λθ̂ ≤ lim
ε↓0

Eθ̂(ĥε, ĥε)

θ̂(h2ε)
= λ.

This together with λθ̂ ≥ λ derived above gives λθ̂ = λ. So, the proof is finished by (2.12).
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3 Proof of Theorem 1.1(1)

Theorem 3.1. Let θ be as in (1.15). Then (E λ
Gθ
,FC∞

b (M)) is closable in L2(M,Gθ) and the
closure (E λ

Gθ
,D(E λ

Gθ
)) is a quasi-regular symmetric Dirichlet form. Moreover, gap(EGθ

) = λ.

Proof. Due to (1.7), we may prove this result by using (2.8) and Theorem 2.1. For any h ∈
C∞

0 (M), let ĥ(x, s) = sh(x), (x, s) ∈ M̂. Then

(3.1) Φ(γ)(h) = γ(ĥ), γ ∈ ΓM̂ .

Let F = f(〈h1, ·〉, · · · , 〈hn, ·〉), G = g(〈h1, ·〉, · · · , 〈hn, ·〉) ∈ FC∞
b (M). We have

F ◦ Φ = f(〈ĥ1, ·〉, · · · , 〈ĥn, ·〉), G ◦ Φ = g(〈ĥ1, ·〉, · · · , 〈ĥn, ·〉) ∈ D(E Γ
θ̂
)

such that

〈∇Γ(F ◦ Φ),∇Γ(G ◦ Φ)〉M̂(γ) =

n
∑

i,j=1

{

(∂if)(∂jg)
}

(〈ĥ1, γ〉, · · · , 〈ĥn, γ〉)γ
(

〈∇̂ĥi, ∇̂ĥj〉M̂
)

.

Because of (2.2) and (3.1), we have

γ
(

〈∇̂ĥi, ∇̂ĥj〉M̂
)

=

∫

M̂

{

λs(hihj)(x) + s〈∇hi,∇hj〉M(x)
}

γ(dx, ds)

= Φ(γ)
(

〈∇hi,∇hj〉M + λhihj
)

.

(3.2)

Thus,
∫

M̂

〈∇Γ(F ◦ Φ)(γ),∇Γ(G ◦ Φ)(γ)〉M̂dγ

=
n

∑

i,j=1

{

(∂if)(∂jg)
}

(〈h1,Φ(γ)〉, · · · , 〈hn,Φ(γ)〉)Φ(γ)
(

〈∇hi,∇hj〉M + λhihj
)

= Γλ(F,G)(Φ(γ)), γ ∈ ΓM̂ .

Combining this with (1.7), (1.14) and (2.3), we obtain

(3.3) E
Γ
θ̂
(F ◦ Φ, G ◦ Φ) =

∫

M

Γλ(F,G) dGθ = E
λ
Gθ
(F,G).

Below we prove the closability, quasi-regularity, and the spectral gap bounds respectively.
(a) The closability. Let {Fn}n≥1 ⊂ FC∞

b (M) such that

(3.4) lim
n→∞

Gθ(F
2
n) = 0 and lim

n,m→∞
E

λ
Gθ
(Fn − Fm, Fn − Fm) = 0.

It remains to show that limn→∞ E λ
Gθ
(Fn, Fn) = 0. By (1.7) and (3.3), (3.4) implies

lim
n→∞

πθ̂(|Fn ◦ Φ|
2) + lim

n,m→∞
E

Γ
θ̂
(Fn ◦ Φ− Fm ◦ Φ, Fn ◦ Φ− Fm ◦ Φ) = 0,
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so that the closability of (E Γ
θ̂
,D(E Γ

θ̂
)) and (3.4) imply

lim
n→∞

E
λ
Gθ
(Fn, Fn) = lim

n→∞
E

Γ
θ̂
(Fn ◦ Φ, Fn ◦ Φ) = 0.

(b) The quasi-regularity. According to [12, Chap. IV, Def. 3.1], the Dirichlet form
(E λ

Gθ
,D(E λ

Gθ
)) is quasi-regular if and only if there exist a sequences of compact subsets {Kn}n≥1

of M such that the class

(3.5) DK :=
{

F ∈ D(E λ
Gθ
) : F |M\Kn

= 0 for some n ≥ 1
}

is dense in D(E λ
Gθ
) under the Sobolev norm

‖F‖L2(Gθ) +
√

E λ
Gθ
(F, F ), F ∈ D(E λ

Gθ
).

In this case, the sequence {Kn} is called a E λ
Gθ
-nest.

To construct such a E λ
Gθ
-nest, we choose a function ψ ∈ C∞([0,∞)) with 1 ≤ ψ(r) ↑ ∞ as

r ↑ ∞ and 0 ≤ ψ′ ≤ 1, such that θ(|ψ ◦ ρo|
2) < ∞, where ρo is the Riemannian distance from

a fixed point o ∈M . Thus,

(3.6) f := ψ ◦ ρo ∈ D(Eθ).

Since M is complete and ψ ◦ ρo ↑ ∞ as ρo ↑ ∞, the level sets

Kn := {η ∈ M : η(ψ ◦ ρo) ≤ n}, n ≥ 1

are compact in M. It remains to show that {Kn}n≥1 is a E λ
Gθ
-nest. Since FC∞

b (M) is dense in
D(E λ

Gθ
), it suffices to show that for any F ∈ FC∞

b (M), there exist a sequence {Fn}n≥1 ⊂ DK ,
where DK is defined in (4.3) for the present {Kn}n≥1, such that

(3.7) lim
n→∞

{

Gθ(|Fn − F |2) + E
λ
Gθ
(Fn − F, Fn − F )

}

= 0.

We will prove this formula for

(3.8) Fn := F ·
{

1 ∧ (n + 1− F0)
+
}

, n ≥ 1, F0(η) := η(ψ ◦ ρo).

To this end, we first confirm that F0 ∈ D(E λ
Gθ
), so that {Fn}n≥1 ⊂ DK by the definitions of Kn

and Fn. By (3.6), there exist functions {fn}n≥1 ⊂ C∞
0 (M) such that

(3.9) 0 ≤ fn ≤ f := ψ ◦ ρo, lim
n→∞

∫

M

{

|fn − f |2 + |∇(fn − f)|2
}

dθ = 0.

Noting that η 7→ η(ψ ◦ ρo) obeys the Gamma-distribution with parameter δ := θ(ψ ◦ ρo) <∞,
we have

∫

M

F 2
0 dGθ =

∫

M

η(ψ ◦ ρo)
2
Gθ(dη) = δ(δ + 1) <∞.

12



By the dominated convergence theorem and (3.9), the functions Gn(η) := η(fn), n ≥ 1 satisfy

lim
n→∞

∫

M

|F0 −Gn|
2dGθ = 0.

Moreover, (1.11), (1.13), (1.14) and (3.9) imply

lim
n,m→∞

E
λ
Gθ
(Gn −Gm, Gn −Gm) = lim

n,m→∞

∫

M

Γλ(Gn − F0, Gn − F0)dGθ

= lim
n,m→∞

∫

M

η(|fn − f)|2 + λ|f − fn|
2)Gθ(dη)

= lim
n,m→∞

∫

M

(|fn − f)|2 + λ|f − fn|
2)dθ = 0.

Therefore, F0 ∈ D(E λ
Gθ
). Now, let Fn be defined in (3.8). Then Fn → F in L2(Gθ), and (1.11),

(1.13) and (1.14) imply

E
λ
Gθ
(Fn − F, Fn − F )

≤ 2

∫

M

{

‖F‖∞Γλ((F0 − n)+ ∧ 1, (F0 − n)+ ∧ 1) + ‖Γλ(F, F )‖∞|(F0 − n)+ ∧ 1|2
}

dGθ

≤ C

∫

M

{

Γλ(F0, F0)1{n≤F0≤n+1} + 1{F0≥n}

}

dGθ → 0 as n→ ∞,

where C := 2(‖F‖∞ + ‖Γλ(F, F )‖∞) < ∞. Moreover, the dominated convergence theorem
implies that ‖Fn − F‖L2(Gθ

→ 0 as n→ ∞. Therefore, (3.7) holds as desired.
(c) Spectral gap estimates. By Theorem 2.1 and (3.3), for any F ∈ FC∞

b (M) with Gθ(F ) =
0, we have

E
λ
Gθ
(F, F ) = E

Γ
θ̂
(F ◦ Φ, F ◦ Φ) ≥ λπθ̂(|F ◦ Φ|2) = λGθ(F

2).

This implies gap(E λ
Gθ
) ≥ λ. On the other hand, we take F0(η) = η(M) and intend to show that

F0 ∈ D(E λ
Gθ
) with

(3.10)
E λ
Gθ
(F0, F0)

Gθ(F 2
0 )−Gθ(F0)2

= λ,

so that by definition gap(E λ
Gθ
) ≤ λ, and hence the proof is finished.

Let ξ ∈ C∞
0 ([0,∞)) such that 0 ≤ ξ ≤ 1, ξ(s) = 1 for s ≤ 1. For hn in (2.14), define

(3.11) Fn(η) =

∫ η(hn)

0

ξ(s/n)ds, η ∈ M.

Then Fn ∈ FC∞
b (M) and 0 ≤ Fn ↑ F0 as n ↑ ∞. By (1.3) we have

∫

M

F0dGθ =
1

Γ(θ(M))

∫ ∞

0

sθ(M)e−sds = θ(M),

∫

M

F 2
0 dGθ =

1

Γ(θ(M))

∫ ∞

0

sθ(M)+1e−sds = θ(M)2 + θ(M).

(3.12)
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So, the dominated convergence theorem implies Gθ(|Fn − F0|
2) → 0 as n→ ∞, and

lim
n,m→∞

E
λ
Gθ
(Fn − Fm, Fn − Fm)

= lim
n,m→∞

∫

M

{

η
(

λ
∣

∣ξ(η(hn)/n)hn − ξ(η(hm)/m)hm
∣

∣

2)

+
(
∣

∣ξ(η(hn)/n)∇hn − ξ(η(hm)/m)∇hm
∣

∣

2)
}

Gθ(dη) = 0.

Therefor, F0 ∈ D(E λ
Gθ
) with

E
λ
Gθ
(F0, F0) = lim

n→∞
E

λ
Gθ
(Fn, Fn) = λ

∫

M

η
(

λ
∣

∣ξ(η(hn)/n)hn
∣

∣

2
+
∣

∣ξ(η(hn)/n)∇hn
∣

∣

2)
Gθ(dη)

= λGθ(F0) = λθ(M).

Combining this with (3.12) we derive (3.10) and hence finish the proof.

4 Proof of Theorem 1.1(2)

The quasi-regularity can be proved by the same means as in the step (b) of the proof of Theorem
1.1(1). So, we need only to prove the closability, the formula (1.17), and the claimed spectral
gap bounds.

(1) Closability and (1.17). Let F0(η) = η(M). It suffices to prove that for any F ∈
FC∞

b (M), one has F0 · (F ◦ Ψ) ∈ D(E λ
Gθ
) such that (1.17) holds. Indeed, since (E λ

Gθ
,D(E λ

Gθ
))

is closed, (1.17) implies the closability of (E λ
Dθ
,FC∞

b (M)).
Similarly to (b) in the proof of Theorem 3.1, and noting that ∇intF0 = 0,∇extF0 = 1, we

see that for any G ∈ FC∞
b (M), GFn → GF0 in D(E λ

Gθ
) with

(4.1) E
λ
Gθ
(F0G,F0G) =

∫

M

η
(

λ
∣

∣F0∇
extG+G

∣

∣

2
+
∣

∣F0∇
intG

∣

∣

2)
Gθ(dη).

However, since for general F ∈ FC∞
b (M) we do not have F ◦ Ψ ∈ FC∞

b (M), this does not
imply F0 · (F ◦Ψ) ∈ D(E λ

Gθ
) as desired.

To approximate F ◦Ψ using functions in FC∞
b (M), we write F = f(〈h1, ·〉, · · · , 〈hk, ·〉) for

some f ∈ C∞
b (Rk) and h1, · · · , hk ∈ C∞

0 (M). Since the Riemannian manifold M is complete,
we may construct {φn}

∞
n≥1 ⊂ C∞

0 (M) such that

(4.2) 0 ≤ φn ↑ 1, |∇φn| ≤ e−n, ∪k
i=1supphi ⊂ {φn = 1}, n ≥ 1.

For any n ≥ 1, let

F̃n(η) = F0Fn, Fn(η) := f
( 〈h1, η〉

η(φn) + n−1
, · · · ,

〈hk, η〉

η(φn) + n−1

)

, η ∈ M.
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So, (4.1) implies F̃n ∈ D(E λ
Gθ
). Obviously, Gθ(|F̃n − F0(F ◦Ψ)|2) → 0 (n → ∞). By (4.2) and

noting that

∇extFn(η) =
k

∑

i=1

(∂if)
( 〈h1, η〉

η(φn) + n−1
, · · · ,

〈hk, η〉

η(φn) + n−1

)( hi
η(φn) + n−1

−
η(hi)φn

(η(φn) + n−1)2

)

,

∇intFn(η) =
k

∑

i=1

(∂if)
( 〈h1, η〉

η(φn) + n−1
, · · · ,

〈hk, η〉

η(φn) + n−1

)( ∇hi
η(φn) + n−1

−
η(hi)∇φn

(η(φn) + n−1)2

)

,

we may find out a constant c > 0 such that

In,m(η) := η
(

λ
∣

∣η(M)
(

∇ext(Fn − Fm)(η) + (Fn − Fm)(η)
∣

∣

2
+
∣

∣η(M)∇int(Fn − Fm)(η)
∣

∣

2
)

≤ c(1 + η(M)), η ∈ M, n,m ≥ 1.

Since F0 ∈ L1(Gθ), by (4.1) and Fatou’s lemma, we arrive at

lim sup
n,m→∞

E
λ
Gθ
(F̃n − F̃m, F̃n − F̃m) = lim sup

n,m→∞

∫

M

In,m(η)Gθ(dη)

≤

∫

M

(

lim sup
n,m→∞

In,m(η)
)

Gθ(dη) = 0.

Then F0(F ◦ Ψ) = limn→∞ F̃n ∈ D(E λ
Gθ
). Similarly, for G = g(〈h1, ·〉, · · · , 〈hk, ·〉) ∈ FC∞

b (M),

we define G̃n = F0Gn in the same way. By the above formulas of intrinsic and extrinsic
derivatives for Fn and Gn, it is easy to see that

lim
n→∞

∇extFn(η) =
1

η(M)
(∇̃extF )(Ψ(η)), lim

n→∞
∇intFn(η) =

1

η(M)
(∇intF )(Ψ(η))

and the same holds for (Gn, G) replacing (Fn, F ). Therefore, by the dominated convergence
theorem and using (1.3) and (1.4), we obtain

E
λ
Gθ
(F0(F ◦Ψ), F0(G ◦Ψ)) = lim

n→∞
E

λ
Gθ
(F̃n, G̃n)

= lim
n→∞

∫

M

[

η
(

λ
{

η(M)(∇extFn)(η) + Fn(η)
}

·
{

η(M)(∇extGn)(η) +Gn(η)
})

+ η(M)2η
(〈

(∇intFn)(η), (∇
intGn)(η)

〉

M

)

]

Gθ(dη)

=

∫

M

η(M)
[

λΨ(η)
(

{∇̃extF (Ψ(η))} · {∇̃extG(Ψ(η))}
)

+ λ(FG)(Ψ(η))

+ Ψ(η)
(

〈∇intF (Ψ(η)),∇intG(Ψ(η))〉M
)

]

Gθ(dη)

= θ(M)

∫

M1

η
(

λ{∇̃extF (η)} · {∇̃extG(η)}+ λ(FG)(η) + 〈∇intF (η),∇intG(η)〉M

)

Dθ(dη)

= λθ(M)Dθ(FG) + θ(M)E λ
Dθ
(F,G).
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Therefore, (1.17) holds.

(2) Spectral gap estimates. Since

E
λ
Dθ
(F, F ) ≥ λE FV

Dθ
(F, F ), F ∈ FC∞

b (M),

where E FV
Dθ

is given in (1.18) as the Dirichlet form of the Fleming-Viot process, it follows from
(1.19) that

gap(E λ
Dθ
) ≥ λgap(E FV

Dθ
) = λθ(M).

To verify the spectral gap upper bound, for any h ∈ C∞
b (M) with θ(h) = 0 and θ(h2) = 1,

let Fh(η) = η(h). Then Fh ∈ D(E λ
Dθ
). It suffices to show that

(4.3) 0 < E
λ
Dθ
(Fh, Fh) ≤

{

λθ(M) + θ(|∇h|2)(θ(M) + 1)} · {Dθ(F
2
h )− Dθ(Fh)

2}.

To this end, we recall that (see for instance the proof of [17, Lemma 7.2])

(4.4) πθ̂(〈ĥ, ·〉) = θ̂(ĥ), πθ̂(〈ĥ, ·〉
2) = θ̂(ĥ2) + θ̂(ĥ)2, ĥ ∈ L2(θ̂).

Letting ĝ(x, s) = sg(x) for g ∈ L2(M, θ) and applying (1.3), (1.4), and (1.7), we deduce from
(4.4) that

θ(M)Dθ(Fg) =

∫

M

η(M)〈g,Ψ(η)〉Gθ(dη) =

∫

M

η(g)Gθ(dη)

= πθ̂(〈ĝ, ·〉) = θ(g), g ∈ L2(M, θ),

and similarly,

θ(M)(θ(M) + 1)Dθ(|Fg|
2) =

∫

M

η(M)2〈g,Ψ(η)〉2Gθ(dη) =

∫

M

|η(g)|2Gθ(dη)

= πθ̂(〈ĝ, ·〉
2) = θ(g2) + θ(g)2, g ∈ L2(M, θ).

Thus, for h ∈ C∞
b (M) with θ(h) = 0 and θ(h2) = 1, we have

Dθ(F
2
h )− Dθ(Fh)

2 =
θ(h2)− θ(h)2

θ(M)(θ(M) + 1)
−

θ(h)2

θ(M)2
=

1

θ(M)(θ(M) + 1)
,

and

E
λ
Dθ
(Fh, Fh) = Dθ

(

λ
{

〈h2, ·〉 − 〈h, ·〉2
}

+ 〈|∇h|2, ·〉
)

= λ
( θ(h2)

θ(M)
−

θ(h2) + θ(h)2

θ(M)(θ(M) + 1)

)

+
θ(|∇h|2)

θ(M)
=

λ

θ(M) + 1
+
θ(|∇h|2)

θ(M)
.

Therefore, (4.3) holds.
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[2] S. Albeverio,Y. G. Kondratiev, M. Röckner, Analysis and geometry on configuration
spaces, J. Funct. Anal. 154(1998), 444–500.

[3] R. J. Connor, J. E. Mosimann, Concepts of independence for proportions with a general-
ization of the Dirichlet distribution, J. Amer. Statist. Assoc. 64(1969), 194-206.

[4] C. L. Epstein, R. Mazzeo, Wright-Fisher diffusion in one dimension, SIAM J. Math.
Anal. 42(2010), 568–608.
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