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Abstract

Under integrability conditions on distribution dependent coefficients, existence
and uniqueness are proved for McKean-Vlasov type SDEs with non-degenerate noise.
When the coefficients are Dini continuous in the space variable, gradient estimates
and Harnack type inequalities are derived. These generalize the corresponding re-
sults derived for classical SDEs, and are new in the distribution dependent setting.
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1 Introduction

In order to characterize nonlinear Fokker-Planck equations using SDEs, distribution de-
pendent SDEs have been intensively investigated, see [20] [I5] and references within for
McKean-Vlasov type SDEs, and [0] [7, 2] and references within for Landau type equations.
To ensure the existence and uniqueness of these type SDEs, growth /regularity conditions
are used. On the other hand, however, due to Krylov’s estimate and Zvonkin’s transform,
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the well-posedness of classical SDEs is proved under an integrability condition, which
allows the drift unbounded on compact sets. The purpose of this paper is to extend this
result to the distribution dependent situation, and to establish gradient estimates and
Harnack type inequalities for the distributions under Dini continuity of the drift, which
is much weaker than the Lipschitz condition used in [26, [11].

Let 22 be the set of all probability measures on R?. Consider the following distribution-
dependent SDE on R%:

(11) dXt = bt(Xt, D%Xt)dt -+ O't(Xt, D%Xt)th,

where W, is the d-dimensional Brownian motion on a complete filtration probability space
(Q,{Z:}i>0,P), L, is the law of X}, and

bR, xRIx Z 3R 0:Ry xR¥x Z - R'@R?

are measurable. When a different probability measure P is concerned, we use i@ﬂf” to
denote the law of a random variable ¢ under the probability P.

By using a priori Krylov’s estimate, a weak solution can be constructed for (ILI]) by
using an approximation argument as in the classical setting, see [0] and references within.
To prove the existence of strong solution, we use a fixed distribution pu; to replace the
law of solution Zx,, so that the distribution SDE (LI reduces to the classical one.
We prove that when the reduced SDE has strong uniqueness, the weak solution of (I.T)
also provides a strong solution. We will then use Zvonkin’s transform to investigate the
uniqueness, for which we first identify the distributions of given two solutions, so that these
solutions solve the common reduced SDE, and thus, the pathwise uniqueness follows from
existing argument developed for the classical SDEs. However, there is essential difficulty
to identify the distributions of two solutions of (LLI). Once we have constructed the
desired Zvonkin’s transform for (LI)) with singular coefficients, gradient estimates and
Harnack type inequalities can be proved as in the regular situation considered in [26].

The remainder of the paper is organized as follows. In Section 2 we summarize the main
results of the paper. To prove these results, some preparations are addressed in Section
3, including a new Krylov’s estimate, two lemmas on weak convergence of stochastic
processes, and a result on the existence of strong solutions for distribution dependent
SDEs. Finally, the main results are proved in Sections 4 and 5.

2 Main results

We first recall Krylov’s estimate in the study of SDEs. We will fix a constant 7" > 0, and
only consider solutions of (LLI]) up to time 7'.. For a measurable function f defined on
[0, 7] x RY, let

Jun

t % q
||fr|Lg<s,t>=< [ ([ irrar) dr) Pz L0<s<I<T,
s R
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When s = 0, we simply denote || f|lz50,4 = [l fllz3@)- A key step in the study of singular
SDEs is to establish Krylov type estimate (see for instance [13]). For later use we introduce
the following notion of K-estimate. We consider the following class of number pairs (p, q):

H = {(p,q)e(l,oo)x(l,oo): ]%ZJF; <2}.

Definition 2.1 (Krylov’s Estimate). An .%;-adapted process { Xs}o<s<r is said to satisfy
K -estimate, if for any (p,q) € A, there exist constants § € (0,1) and C' > 0 such that
for any nonnegative measurable function f on [0,T] x R?,

(1) E<L¢ﬂﬂ&ﬁh

%>§aﬁﬂmﬂmm,0§ﬁﬂ§T

We note that (Z]) implies the following Khasminskii type estimate, see for instance
[28, Lemma 3.5] and it’s proof: there exists a constant ¢ > 0 such that

t n
(2.2) E((/ f,,(Xr)dr) ‘fs) < enl(t — 3)6n||f||gg(T), 0<s<t<T,
and for any A > 0 there exists a constant A = A(A,d,¢) > 0 such that

(23) E(e)\fOT fr(Xr)dr}ys) < eA<1+||f||Lg(T)>’ s € [O’ T]
Let 6 € [1,00), we will consider the SDE (IT]) with initial distributions in the class
Py ={pe 2 u(-’) <oc}.

It is well known that & is a Polish space under the Warsserstein distance

1

Wo(p,v) := inf (/ |:)3—y|97r(dat,dy)) , W,V E Py,
R x R4

TEE (1,v)

where € (u, v) is the set of all couplings of p and v. Moreover, the topology induced by
Wy on &y coincides with the weak topology.

In the following three subsections, we state our main results on the existence, unique-
ness and Harnack type inequalities respectively for the distribution dependent SDE ([IT]).

2.1 Existence and uniqueness

Let
Py = { € Py is absolutely continuous with respect to the Lebesgue measure }

To construct a weak solution of (LII) by using approximation argument as in [9] [15],
we need the following assumptions for some 6 > 1.
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(H) There exists a sequence (", ™), >1, where
V0, T] x R x Py = RY o™ :[0,T] x R x 5 — R*@ R?
are measurable, such that the following conditions hold:
(1) For p € &§ and p™* — pin Py,

Tim {0 (2, ") = bp(, )| + o (2, 1) = oo, )|} =0, ace. (t,2) €[0,T] x RY.

(2) There exist K > 1, (p,q) € X and nonnegative G € LI(T') such that for any n > 1,
b} (2, w)* < G(t,2) + K, K1 < (0} (0})")(w, 1) < KT
for all (t,z,pn) € [0,T] x R? x 2.
(3) For each n > 1, there exists a constant K,, > 0 such that ||b"||. < K, and

107 (2, 1) = 0 (y, )| + ot (z, 1) = 0 (y, V)|

(2.4) L
SK”{|x_y‘+W9(:u7V)}7 (t,x,y) S [OuT] X R xR , UV € 9@-

The main result in this part is the following.

Theorem 2.1. Assume (H?) for some constant § > 1. Let Xy be an Fy-measurable
random variable on RY with pg := Lx, € Py. Then the following assertions hold.

(1) The SDE (1)) has a weak solution with initial distribution pg satisfying Lx. €
C([0,T]; Py) and the K-estimate.

(2) If o is uniformly continuous in x € RY uniformly with respect to (t, ) € [0,T] x P,
and for any p. € C([0,T]; P), b (x) = b(x, ) and o) (x) := op(x, ) satisfy
04> + [|[Va*||* € LUT) for some (p,q) € H#, where V is the weak gradient in
the space variable x € R?, then the SDE (1)) has a strong solution satisfying
Zx € C([0,T]; P) and the K -estimate.

(3) If, in addition to the condition in (2), there exists a constant L > 0 such that
(2.5) low(z, ) = ou(x, v)|| + [be(, ) = i, v)| < LWo(p,v)
holds for all p,v € Py and (t,z) € [0, T] x R?, then the strong solution is unique.

When b and o do not depend on the distribution, Theorem 21 reduces back to the
corresponding results derived for classical SDEs with singular coefficients, see for instance
[30] and references within.



To compare Theorem P11 with recent results on the existence and uniqueness of
McKean-Vlasov type SDEs derived in [3], [I5], we consider a specific class of coefficients
where the dependence on distributions is of integral type. For p € & and a (possibly
multidimensional valued) real function f € L'(u), let u(f) = [pa fdp. Let

(2.6) bi(x, p) := Bz, p(thu(t, @,-)), ou(w, p) == Tz, p(ths (8, 2, -))
for (t,z, 1) € [0,T] x R? x &, where for some k € N,
Yy, Yo 1 [0,T] x R x RY — R¥
are measurable and bounded such that for some constant 6 > 0,
(2.7) [t 2, y) = ot 2,y )| + [Pt 2,y) = Yot 2, 9)] < 0ly — o]
holds for all (t,z) € [0,T] x R? and y,y’ € R, and
B:0,T] xR*xR" - RY ¥:[0,7] x R x R* —» R ® R

are measurable and continuous in the third variable in R¥. We make the following as-
sumption.

(A) Let (b, 0) in (2.6) for (B, X) such that (27) holds, By(z, -) and ¥;(x, -) are continuous
for any (¢,7) € [0,T] x R%. Moreover, there exist constant K > 1, (p,q) € # and
nonnegative F' € LI(T') such that

(2.8) \by(z, p)|? < F(t,x) + K, K ' <oz, p)o(z, p) < KI
for all (t,z, ) € [0,7] x RY x 2.
Corollary 2.2. Assume (A). Then the following assertions hold.
(1) Assertion (1) in Theorem 1] holds.

(2) If moreover, o is uniformly continuous in x € R uniformly with respect to (t, 1) €
0, T] x Py, and for any p. € C([0,T]; Py), b (x) := by(x, i) and oy’ (x) := oy, py)
satisfy [b')* + || Vo*||* € LI(T) for some (p,q) € A, where V is the weak gradient
in the space variable x € RY, then assertion (2) in Theorem Bl hold.

(3) Besides the conditions in (2), if there exists a constant ¢ > 0 such that
|Bt(x>y)_Bt($a y,)|+||zt(x>y)_zt($a y,)H S C|y_y,|> (th) € [Oa T] X]Rda Y, y, € ]Rk>

then for any Fo-measurable random variable Xy on R with pg := Lx, € Py for
some 0 > 1, the SDE (1)) has a unique strong solution with £Lx. continuous in Py.

5



In the next corollary on the existence of weak solution we do not assume (Z:0]). This result
will be used in Section 5.

Corollary 2.3. Assume that (2.0), 2.8) hold. Then the SDE (ILLT)) has a weak solution
with initial distribution uo satisfying £Lx. € C([0,T]; Py) and the K -estimate.

We now explain that results in Corollary and Corollary are new comparing
with existing results on McKean-Vlasov SDEs. We first consider the model in [3] where
1y and 1, are R-valued functions such that

| Bl|oo + sup 0, By(,7)| < 00,
(t,z,r)€[0,T]xRIXR

1y is Holder continuous, v, is Lipschitz continuous, and for some constants C' > 1,
6 € (0, 1],

CTU <¥ET <O,
15 (2, 1) = By(2', )| < C(|z = 2'[ + |r —17]),
10,2 (z,7) — 0,5 (2, r)|| < Cla — 2'|°.

Then [3, Theorem 1] says that when Zx, € %, the SDE (LI) has a unique strong
solution. Obviously, the above conditions imply ||b||oc + [|[Vo|le < o0, but this is not
necessary for conditions in Corollary and Corollary 2.3

Next, [15] considers (I.]) with

by, 1) = / (e y)uldy). o 1) = / :(z, y)u(dy)
R4 R4
for measurable functions
b:0,T] x REx R - R%, 4:[0,7] x R x RY - R? @ R

satisfying .
e (z )| + [be(2, y)| < C(A+ [2]), 66" >C7'T

for some constant C' > 1. Then [I5, Theorem 1] says that when Ly, € &4, (LI) has
a weak solution. If moreover o does not depend on the distribution and ||Voll,. < oo,
then [I5, Theorem 2] shows that when EeXol” < oo for some r > 0, the SDE (L) has
a unique strong solution. Obviously, to apply these results it is necessary that b and Vo

are (locally) bounded, which is however not necessary for the condition in Corollary
and Corollary 2.3



2.2 Harnack inequality

In this subsection, we investigate the dimension-free log-Harnack inequality introduced
in [19] for (1), see [24] and references within for general results on these type Harnack
inequalities and applications. We establish Harnack inequalities for P, f using coupling by
change of measures (see for instance [24], §1.1]). To this end, we need to assume that the
noise part is distribution-free; that is, we consider the following special version of (III):

(29) dXt = bt(Xt, D%Xt)dt + Ut(Xt)th7 t e [O, T]

As in [26], we define P, f(uo) and P/ g as follows:

(P = [ FAP o) = B (X)), f € BRIt € 0.T]po € 2

where X, (o) solves (29) with Zx, = . Let
" o(s)
9 = {¢ :10,00) = [0, 00) is increasing, ¢ is concave,/ Tds < oo}.
0

We will need the following assumption.

(H) ||b]|«« < oo and there exist a constant K > 1 and ¢ € Z such that for any ¢ €
0,7], 2,y € RY, and p,v € Ps,

(2.10) K1 < (ow07)(2) < KT, low(x) — ou(y)llias < Kz —yl?,

(2.11) |be(, 1) — by, V)| < O(lx —y]) + KWa(p, v).

Theorem 2.4. Assume (H). There exists a constant C > 0 such that

C
W2(M0, V0)2

(2.12) (Pilog f)(ro) < log(P:f)(po) + Al

for any t € (0,T), po, vo € Po, f € B, (RY) with f > 1. Moreover, there exists a constant
po > 1 such that for any p > po,

(2.13) (B () < (Pof?)(110) exp { =g Walpao, 02

for any t € (0,T), po, vo € Pa, [ € B, (RY) and some constant ¢ = c¢(p, K) > 0.



2.3 Shift Harnack inequality

In this section we establish the shift Harnack inequality for P; introduced in [23]. To this
end, we assume that o;(x, ) does not depend on z. So SDE (1)) becomes

(2.14) AX, = b(X,, Ly, )dt + 0,(Ly,)AW,, t e [0,T].

Theorem 2.5. Let o : [0,T]x Py — RIQR? and b : [0, 00) xR x Py — R? be measurable
such that o is invertible with ||0¢||o + |07 *||oo is bounded in t € [0,T), and b satisfies the
corresponding conditions in (H).

(1) For anyp > 1,t € [0,T], io € Po,v € R? and f € B} (RY),

(Lef)P (po) <(Bof"(v ) (o)

P Jy o 1P Il /t + o(slol /1)) ds
2(p—1) :

xexp{

Moreover, for any f € %, (R?) with f > 1,
(oo 1)) < Tog(P (0 + ) (u) + 5 [ o I (ol + 66l

3 Preparations

We first present a new result on Krylov’s estimate, then recall two lemmas from [9] for
the construction of weak solution, and finally introduce two lemmas on the existence and
uniqueness of strong solutions.

3.1 Krylov’s estimate

Consider the following SDE on R
(3.1) AX, = bi(X,)dt + 0y (X)W, ¢ € [0,T].

Lemma 3.1. Let T' > 0, and let p,q € (1,00) with g "’% < 1. Assume that oy(x)

is uniformly continuous in x € R uniformly with respect to t € [0,T], and that for a
constant K > 1 and some nonnegative function I’ € LL(T) such that

(3.2) K <oy(x)o(x)* < KI, (t,z)€[0,T] x RY,

(3.3) b(z)| < K+ F(t,x), (t,x)€[0,T] x R%



Then for any (o, 8) € ', there exist constants C = C(6, K, a, B, || F||Lar)) > 0 and
§ = 0(a, ) > 0, such that for any s € [0,T) and any solution (Xsy)eisr of BI) from
lime s,

30 B [l X 2] < 0= Ul 1€ 015 € 2D

Proof. When b is bounded, the assertion is due to [30, Theorem 2.1]. If |b| < K + F for
some constant K > 0and 0 < F' € LI(T'), then we have a decomposition b = bW 453 with
16V ]| < K and |[p®?| < F, for instance, bV = Wb\/K) Letting the diffeomorphisms
{04 }1ei0,7 on R? be constructed in [30, Lemma 4.3] for b® replacing b, then Y, ; = 0,(X, )
solves

(3.5) dY; = b(Y;)dt + ,(V,)dW,, t € [s,T],

where b is bounded, and & is uniformly continuous in z € R? uniformly with respect to
€ [0,T]. Moreover, there exists a constant K > 1 depending on K and |[F[| (7 such
that

(3.6) K7 <6,(x)a,(x)* < KI, (t,2) €[0,T] x RY,

and B B
1b]| o + [ VO]l + [[VO oo < K.

Again by [30, Theorem 2.1], there exists a constant C' = C(§, K,«,3) > 0 and § =
d(a, B) > 0 such that

61 E| [l Y] 2] < o= 9l te T € 1200

This together with | V0|, < K implies that

5| [ 110 x| 2] <] [0, drw
< Clt- o) ( [ ([ 9;1<x>>\adx) B dr) E
=C(t—s) (/OT (/Rd f(ny)“detwrdy)idry

< C(t = )1l srys t € [T, f € LE(T).

Then the proof is finished. O



3.2 Convergence of stochastic processes

To prove Theorem 2.1[(1), we will use the following two lemmas due to [9, Lemma 5.1,
5.2].

Lemma 3.2. Let {¢"},>1 be a sequence of d-dimensional processes defined on some
probability space. Assume that

(3.8) lim sup sup P(|¢)'| > R) =0,

R—00 n>1 t0,71]
and for any € > 0,

(3.9) limsup sup {P(|¢f — 7| >¢e):|t—s] <0} =0.

0—=0 n>1 5t€[0,7]

Then there exist a sequence {ny}x>1, a probability space (Q,.Z,P) and stochastic processes
{Xy, X[ e (k > 1), such that for every t € (0,77, Ly |P = Lyr|P, and XF converges
to X, in probability P as k — co.

Lemma 3.3. Let {n"},>1 and n be uniformly bounded R?@RF-valued stochastic processes,
and let W' and W, fort € [0,T] be Wiener processes such that the stochastic Ito integrals

¢ ¢
T ::/ nedW?r I ::/ nsdWs, t €10,T]
0 0

are well-defined. Assume that nf — n, and W]* — W, in probability for every t € [0,T].
Then

n—00 te[0,T]

limIP’<sup |It"—]t|25>:0, e > 0.

3.3 Existence and uniqueness on strong solutions

We first present a result on the existence of strong solutions deduced from weak solu-
tions, then introduce a result on the existence and uniqueness of strong solutions under
a Lipschitz type condition.

Lemma 3.4. Let (Q, %, W;,P) and X, be a weak solution to (L)) with y; = Lx,|P = .
If the SDE

(310) dXt - bt(Xt, ,ut) dt -+ O't(Xt, /J’t> th, 0 S t S T

has a unique strong solution X; up to life time with £Lx, = po, then (L) has a strong
solution.
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Proof. Since ji; = %%,|P, X, is a weak solution to (3.10). By Yamada-Watanabe principle,
the strong uniqueness of ([B.I0) implies the weak uniqueness, so that X, is nonexplosive
with ZLx, = pg, t > 0. Therefore, X, is a strong solution to (I.IJ). O

Lemma 3.5. Let 0 > 1 and 0, be the Dirac measure at point 0. If b;(0, ) is bounded in
t € [0,T], and there exists a constant L > 0 such that

loe(z, 1) = ary, )| + [0 (2, 1) = iy, V)|

3.11
(8:11) < Lf|lz —yl+ Wo(u,v)}, z,y R pv e Pyt €0,T),
then for any Xo with E|Xo|? < oo, () has a unique strong solution (X)ie(o,1]-

Proof. When 6 > 2 the assertion follows from [26, Theorem 2.1]. So we only consider
0 < 2. As explained in [26] that it suffices to find a constant ¢, € (0,7") independent of
Xo such that ([LLI]) has a unique strong solution up to time ¢y and sup;ejo 4, E|X,|? < oo.

Let Xt(o) = X, and ,ugo) = po for t € [0, T]. For any n > 1, consider the SDE
dX™ = b(X", "t + o (X AW, XS = X,

where uﬁ"‘” = XX@H),O <t <T. By |26, Lemma 2.3(1)], for any n > 1 this SDE has a

unique solution and

(3.12) sup B[ X™|? <00, n>1.
s€[0,7T

Moreover, letting
n n+1 n n n+1 n n n—1
€)= XD X0, A i (X ) — (00, ),
[26], (2.11)] implies

g2 < 2AM AWy, ) + Ko {612 + Wo(ud™ V)2 dt, n> 1.t € [0,T]

for some constant K, > 0. Since 50") = 0, it follows that

t
Ele™P < / Koe oW, (), urY2ds
0

2
< tKoefT sup (E|§§"_1)|9)9, tel[0,T],n>1.
s€[0,t]

Since 6 < 2, by Jensen’s inequality we may find out a constant K; > 0 such that

sup E|¢™|? < K17 sup E|¢™ D) n>1,te0,T].
s€[0,4 s€[0,4

11



_2
So, taking to € (0,7 A K, ?), we may find a constant £ € (0,1) such that

sup E[¢™)? <™ sup E|XW — Xyl <00, n>1,€ (0,1
s€[0,t] s€(0,t0]

Therefore, for any t € [0, there exists an .%;-measurable random variable X; on R?
such that
lim sup Wy(ui™, )’ < lim sup E[X" — X’ =0,

=00 (0, t0] =00 10,t0]

where 1, := Zx,. Combining this with (311 and letting n — oo in the equation

S S

t t
X" = / by(X W, ") ds + / os(XM, AW, > 1t € [0, 4],
0 0

we derive for every t € [0, to],

t t
Xt = / bs(Xsa ,Us)ds + / Us(Xsa ,Us)dWs
0 0

Thus, (X;)sejo,,] has a continuous version which is a strong solution of (LIl up to time
to. The uniqueness is trivial by using condition ([BI1)) and It6’s formula. O

4 Proofs of Theorem 2.1 and Corollary

4.1 Proof of Theorem 2.1)(1)-(2)

According to [30], the condition in Theorem [2I(2) implies that the SDE (B.I0) has a
unique strong solution. So, by Lemma [3.4] Theorem 2.1J(2) follows from Theorem 2.T](1).
Below we only prove the existence of weak solution.

By Lemma 3.5, condition (3) in (H?) implies that the SDE

(4.1) AX7 = B (X7, L)t + oF (X7, Lp)dW, X5 = X

has a unique strong solution (X[")tejo,77. So, Lemma Bl (24) and condition (2) in (H?)
imply that for any (p,q) € %,

(4.2) E/meﬁWSCﬁ—$Wqu,OSfE%U%nzl

holds for some constants C' > 0 and ¢ € (0, 1).
We first show that Lemma B.2] applies to ¢, := (X™, W), for which it suffices to verify
conditions ([B.8) and ([B.9) for ¢, := X". By condition (2) in (H?) and [2.2)) implied by

12



(34)), there exist constants ¢y, ¢y > 0 such that
T 0
Bl < o Bl +B( [ o 2l a)
0

(4.3) CE (/OT ||af(X[‘,$Xf)||2dt>g}

< ¢ <E|X0|9 + T+ 1G gy + T§> <00, n>1,te0,T].

Thus, ([B.8) holds for 1, := X"
Next, by the same reason, there exists a constant c¢3 > 0 such that for any 0 < s <
t<T,

(S

t t
By - 21 < B [ 2l e+ B ([ o (a2l o)

< es(t— s+ (t—5)°||Gll g + (t— 5)?).

Hence, (89]) holds for v, := X™. According to Lemma B2 there exists a subsequence of
(X", W)p>1, denoted again by (X", W),>1, stochastic processes (X", Wn)nZl and (X, W)
on a complete probability space (Q,.%,P) such that Lixnwy|P = (,iﬂ(Xan)HP) for any
n > 1, and for any t € [0,7], lim, oo (X7, W) = (X,,W,) in the probability P. As
in [9], let # be the completion of the o-algebra generated by the {Xg, WS" c s <t}
Then as shown in [9], Xt” is .Z#/"-adapted and continuous (since X" is continuous and
Lxn|P = ZL5a|P), W is a d-dimensional Brownian motion on (Q, {.%"}iefo 11, P), and
(X", W) iefor] solves the SDE

(4.4) dX7 = b (X)) Lip P = %x,|P.

n
0

Simply denote ‘Z)gtn@ = XX? and XXJI@ = Z%,. Then (Xt, Wt)te[O,T] is a weak solution
to (L)) provided for any € > 0,

(4.5) lim P ( sup / b7 (X], L) — bi( Xy, Ly,)| dt > g> =0,
n—00 sef0,7] Jo ¢
and
(4.6) lim B ( sup / o (X1, L )P — / oK1 L5) AW, 25> 0.
n—00 sefo0,7] |Jo k 0

In the following we prove these two limits respectively.
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Proof of ([@3l). For any n > m > 1, we have

/ b7 (X, Lsp) = 0K, Ly,)| At < Li(s) + Lo(s) + Iy (s),

0
where

::“/q|b¢<ﬁi?,;£gn>—-b?%z%f,54@>|dt
/|wnwz (R L)l dt,

/ |bm Xt, % - bt(Xt, Xt)| dt
Below we estimate these I;(s) respectively.
Firstly, by Chebyshev’s inequality and (4.2]), we arrive at
~ €

P( sup I(s) >

9 T n ~MN m ~n ~
3) < E/ 1{\X”|<R}|b (X, ag) — b (X , fig)|? dt
s€[0,7T7 0

9 ’ n"’n m
+ 5 [ Ly T ) — 07 )

1
9C T n o m R q/p q
= 2 </ (/ b} (, i) — b (x7ﬂt)‘2pdx) dt)
0 z|<R

36K . 36C
+ i P(|X]| > R)dt + 2 161 rllger

Since X' converges to X, in probability, [3) implies
Tim Wo(pg', pe) = 0,
and o o
lim P(|X}'| > R) <P(|X:| > R).
n—o0
Then it follows from (H?) (1) and (3) that
lim |67 (, i) — b(z, fi,)| = 0, a.e. t€[0,T],2 € R
n—oo

So, by condition (2) in (H?), we may apply the dominated convergence theorem to derive

limsup P( sup I;(s) > Z)

n—r00 s€[0,T]

90 T ~ ~ ) Q/p %
(@.7) <X ([ me = poar) o
€ 0 |z|<R

36K [T - 36C
= 0 P(|X,;| > R)dt + ?HGl{\-bR}HLZ(T)

14



Since ™ is bounded and continuous, it follows that

T
limsupIP’( sup Io(s) > %) < lim sup §E/O b (X7, L) — 0Ky, L) dt = 0.

n—o0 ge[O,T] n—oo &

Finally, since Xt" — X, in probability, estimate ([£2]) also holds for X replacing X,
Therefore, inequality (1) holds for I3 replacing I;. In conclusion, we arrive at

limsupIP’ sup / b X, & S —bt(Xt,gXt)|dt2€)

n—oo sGOT
5 €

< lim sup P( sup I[; e

n—00 22:; <8€[0T] ( ) 3)

18C’ T R . a/p q
=2 / (/ |b:( vﬂt)—bin(%m)lz”dx) dt

€ |z|<R

72K 720

/ (1] = R)dt + =[Gy my lger

for any m > 0 and R > 0. Then letting first m — oo and then R — oo, due to (1) and
(2) in (HY), we obtain from the dominated convergence theorem that

1imsupIP’ sup / M X!, L %) —bt(Xt,ciﬂXtﬂdtzE):O.

n—00 s€[0,T]

Proof of (A6]). For any n > m > 1 we have

| o zany - [ o2 i,
0 0

<

/0 o (X}, L)W — / oP (X7, L) AV

_|_

/ o (X}, L) AW — / o (Xy, Ligm) AW,
0 0

_|_

/ O':n(Xt,gX?L)th —/ Ut(XtagXt)th
0 0
= Jl(S) + JQ(S) -+ Jg(S).

By Chebyshev’s inequality, BDG inequality and (£2I), we have

€ 9 g n/yn m(yn
P( sup Ji(s) > g) < 5_2E/0 1{\X?|§R}Hat (X7 agfql) — 0" (X, 7-=§/ﬂj<gn)“§{s dt

s€[0,T

15



9 g n/yn m/yYn
+ 5B [ gm0 (R0 L) = o (X0 L s

1
9C g n ~n m ~m % !
< = </ (/ oy (z, i) — 07" (@, fiy )H?de) dt)
€ 0 |z|<R
184K [T
+ —2/ B(|X7| > R)dt.
€ 0
By condition (1) in (H?), and i — fi; in &% as observed above, we have
Tim o7 (e, i) — (e, )| = 0,

and o o
lim P(|X['| > R) < P(|X;| > R).
n—00

So, the dominated convergence theorem gives

limsupﬁ”< sup Ji(s) > E)

n—00 s€[0,T] — 3

9C 4 ~ m ~m\ ||2p % ’
(4.8) < = lov(@, fu) — o (z, 1i")[[Fedx ) dt
€ 0 lz|<R
18dK [T~
N 85—2/ B(1X,| > R)dL
0

Similarly,

s€[0,T]
1

9C [ [T . S 4\
S 3 </ (/ lo¢(z, fie) — 0} (x, 1y )||?§de) dt)

€ \Jo \Jpi<r

18dK [T . -
+ —Q P(|Xt| > R)dt

9

0

So, applying Lemma B.3] to

777L(t) = U?(thha?l)a n(t) = U?(Xb:a;n)’

we conclude that when n — oo,
/ o' (X}, L) AW]" — / ot (X, L) AW,
0 0

16



in probability P, uniformly in s € [0,7]. Hence,

| o gy - [ oz a
0 0

n—00 s€[0,T]

lim P < sup > 5)

1

18C [ [T i . AN
S (/ (/ loe(x, fir) — o (z, [i; )]ﬁfsdx) dt)
c 0 \Jjel<r
36dK [T . -
+ 2% [p(|X,| > R)dt.
ez,

Letting first m — oo and then R — oo, we prove that when n — oo,
/ of (X7, L )dW] — / oo( Xy, Ly,) AW,
0 0
in probability P, uniformly in s € [0, T7. O

4.2 Proof of Theorem [2.1](3)

We will use the following result for the maximal operator:

1
4.9 Mh(x ::supif h(y)dy, he L. (RY), € R?,
( ) ( ) =0 ‘B(LL’,T)| Blew) ( ) l ( )
where B(z,r) :=={y: |z —y| <r}, see [4, Appendix A].

Lemma 4.1. There exists a constant C' > 0 such that for any continuous and weak
differentiable function f,

(4.10) f() = fW)] < Clo —y|(A|V f|(2) + AV fI(y)), ae a,yeR
Moreover, for any p > 1, there exists a constant C,, > 0 such that
(4.11) 2 fllee < Coll fllw, f € LP(RY).

Let X and Y be two solutions to (1)) with Xy = Yy, and let p, = Zx,, vy = %, t €
[0,T]. Then po = 1. Let

bf(.ﬁ(:) = bt(xa ,ut)v O-;fu(x) = O-t(xa ,ut)v (tv .CL’) S [OvT] X Rda
and define 07, 0} in the same way using v, replacing ;. Then

dX, = b (Xy) dt + o7 (X)) AW,

4.12
(4.12) 4Y; = 0/ (Y;)dt + 0! (Y;)dIW,.
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For any A > 0, consider the following PDE for u : [0, 7] x R? — R%:

du, 1
(4.13) % STHo! (o) VPur) + Vg + B = hug, g = 0.

By LemmaB. and [31, Theorem 3.1}, when A is large enough (4.I3]) has a unique solution
uM* satisfying

1
(4.14) [Vur | < =
and

(4.15) | V2uH "Nl 22y < 00

Let 0" (x) = = +u}*(x). By @12), @I3) and Itd’s formula (see [30] for more details),

we have
(4.16) Ao (X)) = Aupt(X,)dt + (VO ol ) (X,) AW,
and

Ao (V) = Aup™(Yy)dt + (VO ol ) (Yy) AW, + [VO" (b7 — b)) (Y;)dt

+ S T(o (07" — ol (ol V) V| (i)t
Let & = 0;*(X,) — 6;*(Y;). By @I06), @I7) and Itd’s formula, we obtain
gl =22 (g w (X) = wM(v;) )t

+2(&. [(V0}"al) (X) = (V0 ><m>]dwt>

(4.17)

+ (8ot (X)) — (VO Har) ()
= 2(&. [VOX" (b — b))(¥2) )
— (& Tr{(0} (07)" = ot (o)) V2urH)(¥)) ) dt.

dt
HS

So, for any m > 1,
dlg " =2malg, 0 <£ *H(Xo—ut H(v7)) dt
+2mlg Y (&, (VO "ol) () — (V6o ”)(Yt)]dWQ

+ g2 H(VHS%—»(X» (VO a7)(¥))

dt
(4.18) s ,
+ 2m(m = DI [[(V00)(X) — (VO o) (V))& at

= 2mlg [V (&, [VOM (b — 0] (V2) ) dit

=l (&, (0} (07)" = ot' (1)) V2] (¥7) ) .

18



By I4), (Z3), Lemma Tl and noting that the distributions of X; and Y; are absolutely
continuous with respect to the Lebesgue measure, we may find out a constant ¢; > 0 such
that

(4.19) &PV - [ (X)) — (V)] < ealéf*™,

2

6202 | (V0 at)(X0) — (VO *at) (V) 6

2
< g || (vartar) () — (Ve )|

(a20) S I&PI{Clala (1930 + |90t (X)

2
+ Clel- (V262 | + VL) (V) + Wo(ue, )}
<l { A (IV20 1| + Vot 1) (X0) + o (96| + | Vor'[) ()}
+ & + s Wo e, 1) ™,
&Vl - (V6 (5 — ) }H(Y?)

(4.21)
< LIV |70 &P D16 W (122, 1) < c1 (1€7™ + W (e, 12)*™),

and for some constants ¢y, c; > 0
&P I1G] - | Te[(o7 (o))" — of (o1) ) V2u ] (V)]
(4.22) < ol & W (e, 1) [| V0| (V)
2m
< |Gl IV 7 (V) + e W (e, )™

Combining ([{19)-(#22) with [I8), and noting that ;22 < 2, we arrive at

(423) d|£t|2m S C2|£t|2mdAt + CQWQ(,LLt, Vt)2mdt + th
for some constant ¢y > 0, a local martingale M,;, and
t
A= [ (PR 4 (192020 + Vo) ()
0
£ (|20 + [Vt (v2))* Jds.

By the stochastic Gronwall lemma due to [28, Lemma 3.8], when 2m > 6 this implies

2m

m C. —0 t
(4.24) Wg(ut,yt)mg(mgtwﬁ gcz(Ee%At) 0 /Wg(us,us)zmds, te0,T).
0

Since by Lemma 3], (£I1]), (£I5) and the Khasminskii type estimate, see for instance
[28, Lemma 3.5], we have

cob
Eewm 747 < 00,
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so that by Gronwall’s lemma we prove Wy (p, ;) = 0 for all ¢ € [0, T]. Then by ([@I2]) both
X, and Y} solve the same SDE with coefficients b} and o', and due to [30], the condition
1p(Jb|* + |Val'|?) € LYT) for compact D C R? implies the pathwise uniqueness of this
SDE, so we conclude that X; =Y} for all ¢ € [0, 7.

4.3 Proof of Corollary and Corollary 2.3

Proof of Corollary[23. We set ay(x, u) := (00*)(z,p) for t € [0,7T], and b(z,p) = 0,
ag(x, p) = I for t € R\[0,T]. Let 0 < p € C°(R x R?) with support contained in {(r, z) :
|(r,2)| < 1} such that [, g0 p(r,2)drde = 1. For any n > 1, let p,(r,z) = n® p(nr, nz)
and define

ay(z,p) = / oo (2, ) pn(t — 5,0 — 2')dsda’,

(4.25) R

b (x, 1) = / by (2, 1) pu(t — 8,0 — 2')dsda’, (t, 2, ) € R x R x 2.
RxR4

Let 67 = v/a} and 6, = \/a;. Consider the following SDE:

(426) dXt — bt(Xt, gxt)dt ‘l— &t(Xta gxt)dVVt

We first show that (b, &) satisfies assumption (H?). Firstly, (Z.6)-(27) and the continuity
in the third variable of B and ¥ imply that b and ¢ are continuous in the third variable
p € Py. Thus, (1) in (H) holds. As to (H?) (2), since by [30], it holds that

Jim [|F = Fx py [ Lger) =0,
there exists a subsequence ny such that
IF = F % po |l gy < 27"

Letting

G=> |F=Fxp,|+F
k=1
then |G| L3y < 1+ ||F|lLsry and noting [b" > < K + F * py,, we have [0"[* < K + G.
So, using the subsequence b™ replacing b", we verify condition (2) in (HY). Finally, by
(Z4), for any n > 1 there exists a constant ¢, > 0 such that

b (2, 1) = (2", )| + (167 (2, 1) — 63 (2", )| < en(t = 8|+ |2 — 2] + Wi(p, v))

holds for all s, € R, 2,2’ € R? and p,v € &,. So, for any § > 1, condition (3) in (H?)
holds. By Theorem 2] (1), SDE (26 has a weak solution. Noting that oco* = 66*, the
SDE (L) also has a weak solution. Finally, the strong existence and uniqueness follow

from Theorem 2.1] (2) and (3). O
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Proof of Corollary[2.3. Let b} and af be in (£23)), and let 67" = /a} and 6, = /a;. Then
[3) and [E2Z5) imply (b, &) satisfy H’. Then we may complete the proof as in the proof
of Corollary 23 (1). O

5 Proofs of Theorems 2.4 and

5.1 Proof of Theorem [2.4]

According to [27, Theorem 1.2 (2)] for d; = 0, Corollary 23] and Lemma 3.4, (H) implies
the existence and uniqueness of solution to (L1). For any p € &5 we let i, = P 1 be the
distribution of X; which solves (29) with Zx, = p.

We first figure out the outline of proof using coupling by change of measure as in
[22, 24]. From now on, we fix t, € (0,7] and uo, vy € P, and take .Fp-measurable
variables X and Yy in R such that Zx, = po, L, = 1o and

(5.1) E|Xo — Yo|* = Wa(po, 10)°.
Let X; with Zx, = o solve ([2.9), we have
(52) dXt - bt(Xt, ,ut)dt + O't(Xt)th.

To establish the log-Harnack inequality, We construct a process Y; such that for a weighted
probability measure Q := RP

(5.3) Xy =Y, Q-as, and %y, [Q = P vy =: vy,
Then

(Pio.f)(v0) = Eq[f(Yio)] = E[Re, f(Xs)], [ € Bu(RY).
So, by Young’s inequality we obtain the log-Harnack inequality:

(Rfo 10g f)(V0> < E[Rto 10g Rto] + logE[f(Xto)]

(5:4) = log(Pyy f) (o) + B[Ry log Ry,], f € BF (RY), f > 1.

To construct the desired Y;, we follow the line of [27] using Zvonkin’s transform. As
shown in [27, Theorem 3.10] for d; = 0 that Assumption (H) implies that for large enough
A > 0, the PDE (£I3)) has a unique solution u™* satisfying

1
(5.5) oo + VU]l + [ VAUl <

ot

| V2uMH|| 5 < oo together with the Lipschitzian continuity of o implies that the increasing
process A; in ([23)) satisfies
dAt S cdt
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for some constant ¢ > 0. Moreover, E|&|? > ¢/'Wq (s, v4)? holds for some constant ¢ > 0.
So, with m = 1,0 = 2, Zx, = po and %y, = vy, the inequality [£23)) gives

(5.6) Wo e, i) < kWa(po, vp), t€[0,T]

for some constant x > 0.
Asin 22 §2], let v = 2K + 24 + 122 and take

25y

12
(5.7) G = %@ _ e1_6(t_t°)), t € [0, ),

and let Y; solve the modified SDE
1

(58)  dv,= {bt(Yt, )+ o (Yo X7 (X, y;)}dt + o (Y)AW,, te[0,t).
t

Since sup;cjo 7 V(| - |*) < 00, this SDE has a unique solution (Y;)ejo.,). Let

Tp = to Ninf{t € [0,%0) : | X¢| + |Yi| > n}, n>1,

where inf () := oo by convention. We have 7,, T tg as n 1 oo. To see that the process Y
meets the above requirement, we first prove that

(5.9) R, = exp {/Os é<at(Xt>_l(Y;t _ Xt),th> 1 /Os o (X)) (Ve — X4)| at

2 ¢/
for s € [0,y) is a uniformly integrable martingale, and hence extends also to time .

Lemma 5.1. Assume (A1)-(A2) and let Xy, Yy be two Fy-measurable random variables
such that Lx, = 1o, Ly, = o, and

(510) E‘X@ —YE)P :Wg(,u(],l/o)z.
Then there ezists a constant ¢ > 0 uniformly in ty € (0,T) such that

(5.11) sup E[R;log Ry < ;W2(M0,V0)2.
0

te[0,t0)

Consequently, R, extends to t = ty, Q := Ry, P is a probability measure under which (5.8)
has a unique solution (Yy)ico,) Satisfying

(5.12) QX =Yy) = 1.

Proof. By (A1), for any n > 1 and ¢t € (0,t), the process (Rsar,)scjo,q is a uniformly
integrable continuous martingale. So, for the first assertion it suffices to find out a constant
¢ > 0 uniformly in ¢y € (0,7) such that

c
(5.13) sup E[Rin-, log Rinr,| < t—Wz(Mo,Vo)2, t €[0,t).
0

n>1
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To this end, for fixed ¢ € (0,7') and n > 1, we consider the weighted probability Q;, :=
Ripr, P. By Girsnaov’s theorem (Ws>s€[0,t/\7'n} is a d-dimensional Brownian motion under

Q¢- Reformulating (5.2) and (5.8) as
Xs - Y;

s

AY, = by (Y, vs) + 0,(Y,)dW,, s € [0,t A,

AX, = by(X,, 1) — ds + oy (X,)dW,,

where

t
- 1
W, =W, +/ C—US(XS)_l(XS —Y,)dW,.
0 S

Next, we fix A = Ag. Letting 8" (z) = z + u}"*(z), combining [IJ) and Itd’s formula,
we arrive at

(514)  dOM(X) = M (Xp)dt + (VO o) (X)W, — veﬁv*‘(xt)Xf o,
t

and

(5.15) A6} (V) = M (V) dt + (VO 0y) (Yy) AW, + [V6 () — b)) (Yo)dt

By Ito’s formula under probability Q;,, we obtain

djo* (V) — 0, (X,) 2

= 200" (X)) — 0, (Y7), A (X)) — Aup (y))dt

+ 2(9?’“()(15) - 93’“(3@)7 (VH?’“Ut)(Xt)th - (V@f’“o—t)(}ﬁ)dﬁ/’t)
(5.16) IV 02)(X0) — VO3 (V) |35t

— 2(0(Xy) — 67 (Y), [0 (b — )] (Y)dt)

29X - (1), () T M ar),

G
By (&.5]) we have
X, —Y,

= (0M(00) = 02 (1), VO (X) = =)

t

X =Y, X =Y,
- _<Xt =Y+ u(X0) - utt(Y), tg S V(X)) t( t>

t t

B X — Y A A Xi =Y
= <Xt Yi, T> <ut (Xi) —u"(Y2), G, >

X —Y

: =)

- <Xt —-Y, Vui"”(Xt) c
t

> — <u?’”(Xt) - ui"”(y;)’ vui\,u(Xt)
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14]X, — Y;?
<=t
- 25 G
So,

72 4 Xs - Y; 2
A = PR CC)P < (31X = VP + DX = Yol ) — 3= s

+dM, se[0,t AT,
for some Q;,,-martingale M,. By (51) we have
8

4 16 ,
3_7C8+%Cs_%7

By Ito’s formula, there exists a constant ¢ > 0 such that Then

B () — oM,

Gs
dM, X Y (4 16, 1
(5.17) < . + caWo(ps, vs)"ds — T{g -G + 2—5§; - %}ds
M, 71X, — Y, |?
< dCS +CQW2(,LLS,VS)2dS — |TCS2|, S € [O,t/\Tn]

Combining this with (5.6]), (51)) and (EI7), we arrive at

tATn |Xs —Y;|2 c
(5.18) %WA S s < S ), e 0.1)

for some constant ¢; > 0. Therefore, there exists a constant C' > 0 such that
T |JS(XS)_1(Y; - Xy)
(2
¢ 2
S t_WQ(M()?VO) ) te (OatO)
0

1 2
E[Rmm log Rmm] = §EQt,n/ | ds
0

Thus, (GI1)) holds.
By (5II) and the martingale convergence theorem, (R;)icjoz is a uniformly inte-

grable martingale, so Q := R, P is a probability measure. By Girsanov theorem, we can
reformulate (5.8) as

(5.19) AY; = by(Y;, vp)dt + o, (Y;)d W,
which has a unique solution (Y;):cjo,4,)- By (B11),
©|X, - V2
%/liTim<m
0 Gi

0 itdt = 00, this implies Q(X;, = Y;,) = 1. O

. . . t
Since X; — Y, is continuous and fo :
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Proof of Theorem[2.4 Consider the distribution dependent SDE
dXt = bt(Xt, D%Xt‘]p)dt -+ O't(Xt)tha X(] = YE)

By the weak uniqueness we have XXJIED = P}yy = v, for t € [0,tp]. Combining this with
(519) and the strong uniqueness, we conclude that X; = Y; for t € [0, T]. Therefore, (5.4
and Lemma [5.1] lead to

(P log £)(0) < log(Pr f) (10) + %WM, W), to € (0,7

Finally, the Harnack inequality with power (2.13) follows from [24], Section 3.4]. O

5.2 Proof of Theorem
Proof. Fix ty > 0. Denote p; = Py = Zx,,t € [0,to]. Then ([ZI4) becomes

(520) dXt = bt(Xt, ,ut)dt + O't(,ut)th, D%XO = M-
Let Y; = X; + {2, t € [0,o]. Then
dY; = bt(Y;nUt)dt + Ut(ut)th, XYO = o, t € [O>t0]a

where
. ¢
Wt = Wt "‘/ ’I]SdS,
0
v tv
N = Ut_l{t— + by (X, ) — by (Xt + t_"ut)}’
0 0

Let Ry, = exp[— [}°(n,, dW,) — L [”|n,|?ds]. By the Girsanov theorem we obtain

-1

(P £)(tt0) = E[Big f(Yio)] = E[Rig f(Xiy + )] < (P 2(0 +))» () (BRE )7,

and by Young’s inequality, we obtain

(Pto log f) (NO) = E[Rto log f(Y;fo)]
= E[Ry, log f( Xy, +v)] < log Py, f (v + ) (p0) + ERy, log Ry,

Then we have

o1 p to 5
ER; ™ <supe2r-1? o0 Ins|2ds
Q

p Sy llor 2ol /to + o (|l /to) } it
P 2p— 172 -

25

< ex



and

1 fo
ER,, log R, = Eglog Ry, < iEQ/ ns|*ds
0

1 [ 2
<5 [ N el o+ ottlol ) .
0
U
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