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In this work, we carried out direct numerical simulations in large channel domains and
studied the kinematics and dynamics of fully localised turbulent bands at Reynolds num-
ber Re = 750. Our results show that the downstream end of the band features fast streak
generation and travels into the adjacent laminar flow, whereas streaks at the upstream
end decay continually and more slowly. This asymmetry is responsible for the transverse
growth of the band. We particularly investigated the mechanism of streak generation
at the downstream end, which drives the growth of the band. We identified a spanwise
inflectional instability associated with the local mean flow near the downstream end and
our results strongly suggest that this instability is responsible for the streak generation
and ultimately for the growth of the band. Based on our study, we propose a possible
self-sustaining mechanism of fully localised turbulent bands at low Reynolds numbers in
channel flow.
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1. Introduction

The laminar state of channel flow becomes linearly unstable above Re=5772, however,
given sufficiently strong perturbations, the flow can undergo subcritical transition to
turbulence and become sustained at much lower Reynolds number at Re ' 660 (Tao et al.
2018; Xiong et al. 2015). Here, the Reynolds number is defined as Re = Uch/ν, where
Uc is the centerline velocity of the unperturbed parabolic flow, h the half gap-width and
ν the kinematic viscosity of the fluid. At low Reynolds numbers, Tsukahara et al. (2005)
first found that channel flow turbulence appears as localised bands tilted with respect to
the streamwise direction, and many studies have investigated band structures in channel
flow since then (Tsukahara et al. 2014; Tsukahara & Kawamura 2014; Tuckerman et al.
2014; Xiong et al. 2015; Tao et al. 2018; Kanazawa 2018). Similar band patterns also
appear in the transitional regime in other plane shear flows (Coles 1965; Prigent et al.
2002; Barkley & Tuckerman 2005; Duguet et al. 2010; Duguet & Schlatter 2013; Chantry
et al. 2017).

The transition scenario through localised turbulence in channel flow has attracted
much attention in recent studies. Sano & Tamai (2016) proposed a directed percolation
(DP) transition, above Recr,DP ' 830, to featureless turbulence at much larger Reynolds
numbers. Together with Lemoult et al. (2016); Chantry et al. (2017); Mukund & Hof
(2018), recent studies categorised the transition to sustained turbulence in shear flows
into the DP universality class. DP theory predicts no sustained turbulence below the
DP critical point. However, using large computational domains, Xiong et al. (2015);

† Email address for correspondence: baofang song@tju.edu.cn



2 Xiangkai Xiao, Baofang Song

Tao et al. (2018) recently reported that, even below Recr,DP, a single turbulent band can
persistently grow transversely in the absence of interactions with other bands and channel
side walls. Therefore, the turbulence fraction stays finite whereas DP theory predicts zero
belowRecr,DP. This sparse-turbulence state was argued to be responsible for the deviation
of the transition scenario in channel flow from the DP theory of Sano & Tamai (2016).
Shimizu & Manneville (2018) studied interactions between multiple bands in a very large
domain (500h × 2h × 250h) and also reported sustained banded turbulence structures
below the DP critical point of Sano & Tamai (2016). Further, through observing and
modeling of the complex interactions between bands, they proposed a bifurcation process
that leads from the one-sided banded turbulence state at lowest Re to two-sided banded
turbulence as Re increases, and eventually to the onset of DP at Re = 976, a bit higher
than the DP critical point of Sano & Tamai (2016).

However, there have been so far rather limited studies of the detailed flow structures
and the dynamics of individual turbulent bands in channel flow, especially in large flow
domains. The mean flow of the repeated turbulent band-laminar gap pattern has been
studied and modeled by Tuckerman et al. (2014). Regarding the structure and dynamics
of a fully localised band in a large domain, Shimizu & Manneville (2018); Kanazawa
(2018) noticed that a turbulent band at low Reynolds numbers is characterized by an
active head at the downstream end and a rather diffusive tail at the upstream end. The
numerical simulation of Shimizu & Manneville (2018) in a 500h×2h×250h domain up to
O(105) time units seems to suggest that a single band does not grow infinitely long, but
instead can undergo longitudinal splitting, which seems to disagree with the conclusion
of Tao et al. (2018). Nevertheless, both of their results indicated that a single band can
be sustained at low Reynolds numbers. To the best of our knowledge, there have been
no studies regarding the growth mechanism and the self-sustaining mechanism of an
individual turbulent band in channel flow. In this contribution, we aim to fill this gap
and investigate the kinematics and particularly the growth mechanism of fully localised
bands in more detail at Re = 750.

2. Methods

We solve the non-dimensional incompressible Navier-Stokes equations

∂u

∂t
+ u ·∇u = −∇p+

1

Re
∇2u, ∇ · u = 0 (2.1)

for a volume flux-driven channel flow in Cartisian coordinates (x, y, z), where u denotes
velocity, p denotes pressure and x, y and z represent the streamwise, wall-normal and
spanwise coordinates, respectively. The flux in the streamwise direction is fixed to be that
of the unperturbed parabolic laminar flow and the flux in the spanwise direction is zero.
Velocities are normalised by Uc, length is normalized by h and time by h/Uc. The origin of
the y-axis is placed at the channel center. No-slip boundary condition, u = 0, for velocities
is imposed at channel walls, i.e., at y = ±1. Periodic boundary conditions are imposed in
streamwise and spanwise directions. A hybrid Fourier spectral-finite difference method
is used to solve Eqs. (2.1). In the wall-normal direction, a finite-difference method with
a 9-point stencil is employed for the discretisation. Therefore, the velocity and pressure
fields can be expressed as

A(x, y, z, t) =

K∑
k=−K

M∑
m=−M

Âk,m(y, t)ei(αkx+βmz), (2.2)
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Figure 1. (a) The turbulent band formed at Re=750 starting from an initial condition simulated
at Re = 950. The streamwise velocity ux in the x-z cut-plane at y = −0.5 is plotted as the
colormap. The flow is from left to right in the figure and the band is tilted about the streamwise
direction at an angle of 57 degrees at this time instant, which is calculated using the method
given in Tao et al. (2018). (b) The streamwise and spanwise speeds of the tail and head of the
band shown in (a).

where k and m are the indices of the streamwise and spanwise Fourier modes, respectively,
Âk,m is the Fourier coefficient of the mode (k,m) and α and β are the fundamental
wave numbers in the streamwise and spanwise directions, respectively. The size of the
computational domain is set to be Lx = 2π/α and Lz = 2π/β. We use the finite difference
scheme and the parallelisation strategy of openpipeflow (Willis 2017) and adopt the time-
stepping and projection scheme of Hugues & Randriamampianina (1998) for integrating
the incompressible system.

3. Results

We first performed direct numerical simulations (DNS) at Re = 750 in a computa-
tional box with Lx = 120 and Lz = 120. We used 768 Fourier modes (K = M = 384)
in both streamwise and spanwise directions. This resolution gives 6 grid points in the
horizontal directions per unit length of h and is comparable with Tao et al. (2018), which
results in a decrease by more than 4 orders of magnitude in the amplitude of the Fourier
coefficient from the lowest to the highest Fourier mode for a turbulent field. Tuckerman
et al. (2014) used 12 grid points over h for Re up to 2300, which also implies that our
resolution is sufficient for Re = 750 assuming N ∼ Re3/4, where N is the number of
grid points in one spatial dimension. We used 72 Chebyshev grid points for the finite
difference discretisation in the wall normal direction (we also tested 96 points and found
72 sufficient). A time-step size of ∆t = 0.01 is used for the time integration, which is
sufficiently small for this low Reynolds number.

We first perturbed the flow at Re = 950 using a localized vortical perturbation pro-
posed by Henningson & Kim (1991). After a band was formed, we reduced the Reynolds
number to Re=750 and, after some initial adjustment, obtained a single band, see Fig.
1(a). As mentioned by Shimizu & Manneville (2018), the turbulent band in this Reynolds
number regime is characterised by an active downstream end (referred to as head here-
after) and a rather diffusive upstream end (referred to as tail hereafter), which are labeled
in the figure. In addition, we observed a wave-like pattern, i.e. a pattern of alternating
high and low speed streaks, localised in the streamwise direction, along the turbulent
band in the x-z cut-plane at y = −0.5 (see Fig. 1(a)). A similar wave-pattern was
also observed at the downstream end of turbulent bands in the numerical simulations
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of Kanazawa (2018), at the wingtip of turbulent spots at higher Reynolds numbers in
channel flow (Carlson et al. 1982; Alavyoon et al. 1986; Henningson & Alfredsson 1987;
Henningson 1989; Henningson & Kim 1991) and in plane Couette flow (Dauchaot &
Daviaud 1995) as well.

3.1. Kinematics of the head and tail

To understand the growth mechanism of the band, we first investigated the kinematics
of the head and tail. We tracked the head and tail and measured their mean speeds,
which are shown in Fig. 1 (b). Streamwise and spanwise positions of the head and tail
are determined by setting a proper threshold in the fluctuation intensity above which the
region is considered turbulent and otherwise laminar. Speed is subsequently calculated
based on the time series of the position. Both streamwise and spanwise speeds of the head
are quite stable over the time window we investigated, and the former is 0.85 and the
latter is -0.10 on average (see the bold lines). Clearly the head is invading the adjacent
laminar flow. The streamwise speed of the tail is also quite stable with an average of 0.76
(see the dashed thin line), whereas the spanwise speed of the tail is about 0.035 at t=250,
and slowly decreases to nearly zero at about t=600 (see the solid thin line). Clearly, the
spanwise speed of the tail has not stabilised within the time window of about 300 time
units and shows a decreasing trend as time goes on. The domain size chosen is not large
enough for a longer measurement time because at later times the head and tail get too
close to each other and start to interact due to the periodic boundary condition.

To study the kinematics of the tail with a less restrictive domain size, we considered
a larger computation domain with Lx = Lz = 320. For this domain size, we used a
resolution of 2048 Fourier modes (K = M = 1024) in both spanwise and streamwise
directions (h/∆x = h/∆z ' 6.4). Figure 2 shows the development of a turbulent band
in the domain. This large domain allows a much longer observation time of the band
without significant head-tail interaction due to the periodic boundary condition.

Overall, the tail is moving downward in the spanwise direction, i.e., the spanwise speed
is negative, which cannot be observed in the small domain shown before. Nevertheless,
this negative speed is consistent with the trend of the spanwise speed shown in Fig. 1(b).
However, because the tail continually decays as a bulk (multiple streaky structures decay
as a whole, see the tail shown in panels from t = 2575 to 3015 and from t = 3850 to 4420
in Fig. 2.), it is difficult to define a characteristic advection speed. Nevertheless, based on
the spanwise position of the tail over very large time interval (O(103)), we can estimate
an average spanwise speed of the tail, which is roughly -0.06.

It is noted that the kinematics of the head is not affected by the domain size, as
both the streamwise and spanwise speed of the head are still 0.85 and -0.1 on average,
respectively, see the t > 2000 part of the large domain case in Fig. 3(a). This implies
that the head has rather robust structure and dynamics. The tilt angle of the band is
also calculated for the two domain sizes using the method proposed by Tao et al. (2018)
and compared in Fig. 3(b). It can be seen that the tilt angle keeps decreasing and has
not stabilised in the whole observation time in the small domain. In the large domain,
we can see that the tilt angle seems to have stabilised and fluctuate between 37 and 39
degrees after a very long transient of about 2000 time units (the length of the transient
is probably initial condition dependent as Tao et al. (2018) showed a shorter transient of
about 1000 time units).

3.2. Streak generation at the head of the band

To investigate the dynamics of the head, we went into the frame of reference co-moving
with the head at a spanwise speed of -0.1 and visualised the flow in the x-z cut-plane
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Figure 2. The turbulent band in the large domain with Lx = Lz = 320. The contours of
streamwise velocity are visualized in the x-z cut-plane at y = −0.5. Flow is from left to right.
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Figure 3. The speeds of the head (a) and the tilt angle of the turbulent band (b) for the small
domain (120× 2× 120) and large domain (320× 2× 320). The reference speeds of 0.85 and -0.1
are plotted as thin dashed and solid lines. The tilt angle shown in panel (b) is calculated using
the method used by Tao et al. (2018).

at y = −0.5, see Fig. 4. We observed that wave-like structures, i.e., alternating low and
high speed streaks, are continually generated at the head. The high speed streak in the
black rectangle (panel (a)) moves toward the band body and leaves the rectangle (panel
(b, c)), and subsequently a new high speed streak forms at the head and appears in
the rectangle after roughly 15 time units (panel (d)). Noting that the enclosed streak
in (d) is nearly the same as the one in (a), we estimated that the period of the streak
generation is approximately 15 time units. See Online Movie 1 for a better visualisation
of this dynamical process. Kanazawa (2018) also observed this process in channel flow
and attributed the growth of a turbulent band to the periodic wave generation at the
head.
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Figure 4. The illustration of the generation of streaks at the band head. A black rectangle is
used to mark the first observable streak generated at the head. Streamwise velocity fluctuations
are plotted as the colormap. Panel (a) to (d) show four time instants separated by 5 time units.

3.2.1. Mean flow around the head

For turbulent spots at higher Reynolds numbers, Li & Widnall (1989); Henningson &
Alfredsson (1987); Henningson (1989) proposed that the generation of wave-like struc-
tures at the wingtip of the spot is due to the destabilisation of the flow by the spot in
the wingtip region. Following their studies, we investigated the temporally and spatially
averaged mean flow at the head (referred to as ‘mean flow’ hereafter), particularly in the
region where the first visible streak is periodically generated. We selected three regions
enclosing the first visible high speed streak, and named them as region I (bold blue),
region II (dashed red) and region III (thin black), see Fig. 5(a). We considered different
shapes (quarter circle and rectangle) and different positions and sizes of the region, in or-
der to check the sensitivity of the mean flow to the selected region. We averaged the flow
both spatially and temporally in the three regions in the co-moving frame of reference
using about 150 snapshots separated by ∆t = 1, and obtained the one-dimensional mean
flow. The duration of the averaging is one order of magnitude larger than the estimated
streak generation period. We plotted the streamwise, wall normal and spanwise velocity
profiles of the mean flow in the three regions in Fig. 5(b-d). In fact, the instantaneous
spatially averaged velocity profile fluctuates slightly due to weak nonlinearity and fluc-
tuations in the position of the head. The two maxima of the spatially averaged spanwise
velocity have different heights which alternate in time, as can be seen in Movie 2.

The mean streamwise velocity profile is considerably higher than the basic parabolic
profile, indicating a higher local Reynolds number. The mean spanwise velocity profiles,
in all three regions, exhibit strong inflection, similar to the observation of Henningson
& Alfredsson (1987); Henningson (1989) in the wingtip region of turbulent spots. The
y-component of the mean flow velocity is orders of magnitude smaller than the other
two. We speculate that the streaky structures at the head and within the band body
originate from a local inflectional instability at the head, as proposed by Henningson &
Alfredsson (1987); Henningson (1989) for spots. To check this possibility, we carried out
a linear stability analysis based on the measured mean flow.

3.2.2. Linear stability analysis

Considering that the y-component of the averaged mean flow is orders of magnitude
smaller than the other two (see Fig. 5(b-d)), we zeroed the y-component and considered
a two-component mean flow Ub(y) = (Ux(y), 0, Uz(y)), which is a solenoidal field and
only depends on y. We adopted the velocity-vorticity formulation of the Navier-Stokes
equations, and derived the governing equations of small perturbations with respect to
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Figure 5. (a) Three regions near the head in which the spatially and temporally averaged
velocity profiles are calculated: region I (bold blue), II (dashed red) and III (thin black). (b-d)
The averaged velocity profiles of Ux, Uy and Uz in the three regions as defined in panel (a). The
color and line style correspond to those in (a). In panel (b), the parabola is shown as a black
thin dash-dotted line.

Figure 6. The distribution of the imaginary part of the most unstable eigenvalue in the α-β
wavenumber plane. (a), (b) and (c) correspond to the region I, II and III shown in Fig. 5(a),
respectively. The black line marks the stability boundary.
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where uy denotes the wall normal velocity and η = ∂ux/∂z−∂uz/∂x is the y-component
of the fluctuating vorticity (for an alternative formulation, see Henningson & Alfredsson
(1987)). The boundary condition is uy = ∂uy/∂y = 0 and η = 0 at y = ±1. A Chebyshev-
Fourier-Fourier spectral method is used to discretise this system, for details see Trefethen
(2000).

The linear stability is analysed mode by mode and contours of the most unstable/least
stable eigenvalue are plotted in the α-β wavenumber plane, see Fig. 6. It is clear that
a large region in the wavenumber plane is unstable, with positive imaginary part of the
most unstable eigenvalue, for all three averaged mean flows (see the region enclosed by
the bold black line). The most unstable mode is (α, β) = (0.34,−1.92), (0.30,−1.94)
and (0.30,−1.93) for region I, II and III, respectively. The most unstable eigenvalues of
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Figure 7. The spectrum of the most unstable modes correspond to region I (blue squares), II
(red circles) and III (black triangles). The x-axis shows the real part ωr and the y-axis shows
the imaginary part ωi of the eigenvalues ω. The flow is linearly unstable if the imaginary part is
located in the region of ωi > 0. The most unstable eigenvalue for region I is labeled by a letter
A (the blue square).

these three modes are ω=0.1861+0.0192i, 0.1628+0.0140i and 0.1643+0.0148i (see Fig.
7), respectively, where the real parts give the frequencies and the imaginary parts give
the temporal growth rates of the corresponding eigenvectors. From the most unstable
eigenvalue and the corresponding wave number, we can calculate the spanwise wave
speed of the flow structures given by the associated eigenvector as ωr/β, which is -0.097,
-0.084 and -0.085 for region I, II and III, respectively. These speeds are very close to the
measured spanwise speed of the head.

As shown, the instability properties of the three regions are very close. In the following,
we only show analysis of region I. Figure 8 visualises the eigenvector associated with the
most unstable eigenvalue of the most unstable mode for region I (labeled by a letter A in
Fig. 7). Panel (a) shows the streamwise velocity fluctuation with respect to Ub in the x-z
cut-plane at y = 0.5 and (b) shows the same quantity in the z-y cross-section at x = 0.
We can observe high and low velocity streak pattern tilted with respect to the streamwise
direction. Panel (c) shows the velocity profiles at position (x, z)=(0, -1), which indicates
a streak-dominant flow with ux being larger by more than an order of magnitude than
other two velocity components.

The most unstable perturbation, as shown in Figure 8, has some close similarities with
the streaky structures in the real turbulent band.

(a) The instability indeed generates tilted streaky flow pattern. The tilting direction
is similar to that of the streaks in the band, see Fig. 1(a) and Fig. 4, although the tilt
angle, which is about 10 degrees, is smaller than that of the first two streaks at the head,
which is about 38 degrees.

(b) The spanwise wave number of the streaky pattern, 1.92 (absolute value), is very
close to that of the streaks at the head of the band, which is about 2.1 and can be
estimated later in Fig. 10(c).

(c) The wave speed in the spanwise direction, -0.097, is very close to the spanwise
speed of the head, -0.1.

These results suggest that this spanwise instability is responsible for the generation of
streaky structures at the head.
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Figure 8. The visualisation of the most unstable perturbation corresponding to region I, which
is at (α, β)=(0.34, -1.92). (a) The contours of streamwise velocity component (with respect to
Ub) in the x-z cutplane at y = −0.5. (b) The contours of streamwise velocity and in-plane
velocity vectors shown in the z-y cross-section at x = 0. (c) The velocity profiles of ux (bold
black), uy (dashed blue) and uz (thin red) are plotted at (x, z)=(0, -1).

3.2.3. Nonlinear development

To further evidence that the streaky structures are generated by this spanwise inflec-
tional instability, we performed direct numerical simulations of the development of small
perturbations given the base flow Ub. Here we only investigated region I for the nonlinear
analysis. We took the averaged mean velocity profiles in region I as the base flow Ub,
i.e., we imposed forcing in the x and z directions to produce this base flow, and added
very small perturbations (O(10−5)) on top and integrated the Navier-Stokes equations.

The base flow will be nearly unchanged during the linear development of the per-
turbations. The initial perturbation was obtained by taking a fully turbulent flow field
simulated at a higher Reynolds number, Re = 1500, and scaling down the velocity fluc-
tuations about the basic parabolic flow by a small factor of 10−4. In this way, we not
only perturbed the most unstable mode but also perturbed other modes.

Figure 9 shows the kinetic energy of the streamwise-dependent part of the velocity field,
Ek 6=0. After some initial transients, the most unstable perturbation becomes dominant
after t = 200, with a growth rate exactly given by our linear stability analysis (marked by
the dashed line). The kinetic energy reaches an amplification of nearly 108 from t = 200
to 700. Later, nonlinearity kicks in and the kinetic energy starts to saturate after t = 700.
Figure 10 visualises the flow field near the end of the linear regime at t = 650 (panel
(a)) and at early nonlinear stage at t = 750 (panel (b)). In comparison, the streamwise
velocity of the real turbulent band in the z-y cross-section at x = 57 (see Fig. 5(a)), which
cuts through the head of the band, is visualised in panel (c). From the comparison, we
can see close resemblances between the flow structure in panel (a-b) and between z = 60
and 67 in panel (c): both the pattern of the streaks in the z-y plane and the spanwise
wave length (or wave number) are very close.

The linear analysis in Sec. 3.2.2 and the nonlinear simulations indeed evidence the
important role that the spanwise inflectional mean flow and the associated instability
play in the streak generation at the band head.

4. Discussion and conclusion

Our simulations in large computational domains show that the head of a turbulent
band travels into the adjacent laminar flow at a speed of 0.1 and the tail travels in the
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Figure 9. The kinetic energy of the streamwise-dependent part of the perturbation velocity
field, Ek 6=0, starting from a base flow averaged in region I (see Fig. 5(a)). The initial condition
is a noisy field of small amplitude (O(10−5)). The inset shows a close-up of the transition from
linear to nonlinear regime.

Figure 10. The visualisation of the flow field of the simulation shown in Fig. 9. (a, b) Flow
fields at time-instant t = 650 and 750 are plotted. The streamwise velocity with respect to the
parabola 1 − y2 in the x-z cut-plane at y = −0.5 is plotted in the top panels and in the z-y
cut-plane at x = 0 in the bottom panels. (c) The streamwise velocity perturbation with respect
to the parabola of the band shown in Fig 5(a) in the z-y cut-plane at x = 57, which cuts through
the head of the band.

same direction as the head, therefore into the band body, at a speed relatively smaller
than the head, which is roughly 0.06 in our simulation. Therefore, the band, as a whole,
exhibits a slow drift in the spanwise direction at a speed of about (0.1 + 0.06)/2=0.08,
which is close to the measurement of Tao et al. (2018); Shimizu & Manneville (2018).
Visualisation in Fig. 2 shows that, at the tail, a substantially long patch containing
multiple streaky structures decays as a whole continually. Our study also shows that, for
DNS, a sufficiently large computational domain and long observation time are necessary
to obtain reliable characteristics of a band, such as the speed of the tail and the tilt angle
of the band.

A close observation of the head indicates that wave-like streaky structures are contin-
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ually generated at the head, see Fig. 4. We can conclude that the head is responsible, at
least partially, for the growth and self-sustaining of the turbulent band. This is consistent
with Shimizu & Manneville (2018); Kanazawa (2018) that a turbulent band is driven by
an active head in this Reynolds number range. Considering the importance of the head,
we particularly studied the streak generation mechanism at the head. Our results show
that the (temporally and spatially averaged) mean flow at the head is strongly inflec-
tional in the spanwise velocity component. We took the mean velocity profile at the head
and carried out linear stability analysis, and indeed found an inflectional instability. The
most unstable eigenvector gives a flow field that exhibits remarkable similarities with the
streaky flow structure at the head, in terms of wave-like streaky flow pattern, spanwise
wave length (or wave number), wave speed and the tilting direction with respect to the
streamwise direction. A further DNS study of the linear and nonlinear development of
small perturbations also shows close resemblances with the flow pattern at the head of
a real turbulent band (see Fig. 10). Both the linear stability analysis and nonlinear sim-
ulation strongly suggest that the mechanism of the streak generation at the head is the
spanwise inflectional instability associated with the local mean flow.

Henningson & Alfredsson (1987); Henningson (1989) proposed a very similar ‘growth
by destabilisation’ mechanism for the growth of turbulent spots at higher Reynolds num-
bers. Dauchaot & Daviaud (1995) also proposed similar mechanism for the growth of
turbulent spots in plane Couette flow. In addition, Hof et al. (2010) proposed that an
inflectional instability at the upstream edge of turbulent puffs is responsible for the tur-
bulence production and therefore the self-sustainment of puffs in pipe flow, although
Shimizu & Kida (2009) proposed a different mechanism via Kelvin-Helmholtz instability.
Our study here provides more quantitative evidence for the inflectional instability being
the underlying mechanism in the case of turbulent bands at low Reynolds numbers. All
these studies suggest that this inflectional instability associated with the local mean flow
is a rather general mechanism for the growth of localised turbulence in wall-bounded
shear flows.

It should be noted that, although our linear analysis captures some key characteristics
of the head, our analysis does not quantitatively capture some other characteristics of the
waves at the head. For example, the tilting angle of the waves is about 38 degrees, whereas
the most unstable mode of our linear instability analysis only shows a tilt angle of about
10 degrees. Besides, we see a relatively fast growth of streaks (see Online Movie 1), while
the modal growth obtained in our analysis seems to be slow. These deficiencies probably
can be attributed to the over-simplification of the linearisation about a temporally and
spatially averaged mean flow, during which many aspects of the real flow have been
neglected. For example, the counter-clockwise large scale flow around the head (see the
vectors in Fig. 5(a)) could potentially contribute to the large tilt angle of the streaks at
the head. Clearly this effect cannot be accounted for in our simplified analysis. A more
rigorous stability analysis taking into account the temporal and spatial dependence of
the mean flow is needed to more quantitatively capture all these characterisitics.

Based on our analysis, we propose a self-sustaining mechanism of fully localised turbu-
lent bands at low Reynolds numbers, which is similar to the self-sustaining mechanism
of the wingtips of turbulent spots proposed by Henningson (1989): Spanwise inflectional
instability generates streaks, which are quickly amplified and become turbulent and move
away from the head (towards the tail, see Online Movie 1). The streak generation rate
is higher than the decaying rate of streaks at the tail, therefore, the band can achieve
transverse growth. In turn, the band maintains a large scale flow around the band (via
a similar mechanism as described by Duguet & Schlatter (2013), which bears a spanwise
inflectional instability at the head of the band. A noticeable difference with the spot case
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is that streaks generated at the head largely keep traveling wave form with relatively
weak turbulent fluctuations while traveling within the bulk of the band (see the flow
pattern in Fig. 1(a), Fig. 2 and the Online Movie 1).

However, it has been shown that turbulent bands can be sustained either in a small
tilted domain by (Tuckerman et al. 2014) or even in large domains by (Tao et al. 2018) if
the band is periodic and no head and tail exist. Further study is needed to elucidate how
streaks in the bulk of the band sustain themselves and maintain a traveling wave-like
form with turbulent fluctuations on top. For plane Couette flow, Rolland (2015, 2016) in-
vestigated the sustaining mechanism of the turbulent streaks within turbulent bands and
spots and concluded that the shear layers inside the velocity streaks generate vorticity
and are responsible for the self-sustainment of the turbulent streaks. Duguet & Schlat-
ter (2013) described the motion of the streaks inside turbulent bands in plane Couette
flow as the advection of small-scale structures by the large-scale flow. It is interesting
to investigate the case in channel flow following their analysis. Another open question
regards what mechanism determines the tilt angle of the band. We speculate that the
wave speed of the waves generated at the head, with respect to the convection speed of
the bulk of the band, may give a hint to the answer.
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