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Abstract

In this paper, we propose a computable error estimate of the Gross-Pitaevskii equation
for the ground state solution of the Bose-Einstein condensate by the general conforming finite
element method on general meshes. Based on this error estimate, the asymptotically lower and
upper bound for the smallest eigenvalue and ground state energy can be calculated. Several
numerical examples are presented to validate the theoretical results in this paper.
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1 Introduction

Bose-Einstein condensation (BEC) predicted by A. Einstein is a new state of matter at the be-
ginning of the last century. When a dilute gas of trapped bosons (of the same species) is cooled
down to ultra-low temperatures (close to absolute zero), BEC could be formed [6, 18]. Since 1995,
the first experimental achievement of BEC in dilute 87Rb gases [6], which is one of the most im-
portant scientific discoveries in the last century, a nonlinear Schrödinger equation known as the
Gross-Pitaevskii equation (GPE) [21, 30] has been used extensively to describe the single particle
properties of BEC. It has been found that the results obtained by solving the GPE are in excellent
agreement with most of the experiments (cf. [5, 17, 19]). A lot of numerical methods for the
computation of the time-independent GPE for the ground state and the time-dependent GPE for
finding the dynamics of the BEC has been developed, please refer to [2, 9, 10, 23, 36, 37] and
references cited therein.

In this paper, we focus on ground state of BEC, which can be obtained by minimizing the
following energy functional (cf. [24])

E(φ) =

∫
Ω

(
|∇φ|2 +W |φ|2 +

ζ

2
|φ|4

)
dΩ (1.1)

with respect to wavefunctions φ under the following constraint∫
Ω

|φ|2dΩ = 1,

where Ω ⊂ Rd (d = 1, 2, 3) denotes the computing domain which has the cone property [1], ζ > 0
is a constant, inf |x|>rW (x)→∞ as r →∞ and W (x) ∈ L∞(Ω). From [13], (1.1) has exactly two
minimizers u and −u. We denote by λ the corresponding Lagrange multiplier. The Euler-Lagrange
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equation corresponding to this minimization problem is the so-called GPE: Find (λ, u) ∈ R×H1
0 (Ω)

such that {
−∆u+Wu+ ζ|u|2u = λu, in Ω.∫

Ω
|u|2dΩ = 1.

(1.2)

The eigenfunction u is a solution to the nonlinear eigenvalue problem (1.2) corresponding to the
smallest eigenvalue λ of (1.2) which is non-degenerate [13]. In this paper, we denote by u the
unique positive solution of (1.1) and (1.2), and u is one of the ground state solutions of BEC. We
call (λ, u) as the principal eigenpair (i.e. the eigenpair corresponding to the ground state solution
u) of (1.2) and the corresponding ground state energy can be given as E(u).

The lower bounds of the principal eigenvalue of (1.2) and the ground state energy (1.1) are very
useful since they can give important guidance for the physical experiments and reveal very useful
physical information (see e.g., [24]). Owing to using the conforming finite element method, we can
obtain the upper bounds of the principal eigenvalue and the ground state energy. Hence, the main
aim of this paper is to consider the lower bounds of the principal eigenvalue and the ground state
energy.

So far, there have been developed some methods to get lower bound of eigenvalue, primarily
including the nonconforming finite element methods (see e.g., [7, 25, 26, 29, 40]), interpolation
constant based methods (see e.g., [27, 28, 39]) and computational error estimate methods (see e.g.,
[15, 32, 38]) for the linear eigenvalue problem. But there are no results about lower bounds of the
semilinear eigenvalue problems. This paper is the first attempt in this direction.

In order to deduce the lower bounds of the principal eigenvalue and the ground state energy,
we begin with the computable error estimates for the ground state of GPE by the finite element
method. For this aim, we first propose a computable method to obtain an asymptotically upper
bound of the error estimate for the ground state eigenfunction approximation by the general
conforming finite element methods on general meshes. The approach is based on complementary
energy method from [22, 31, 33, 34]. Of course, the computable error estimates can also provide
a type of the a posteriori error estimate for the partial differential equations by the finite element
method, please refer to [3, 4, 8, 11, 35] and references cited therein. In addition, [14] is based
on planewaves and combines the adaptive procedure directly into an iterative algorithm for the
ground state of the GPE.

An outline of the paper goes as follows. In Section 2, we introduce the finite element method
for the GPE. An asymptotically upper bound for the error estimate of the principal eigenfunction
approximation is given in Section 3. In Section 4, asymptotically lower bounds of the principal
eigenvalue and ground state energy are also obtained based on the results in Section 3. Some
numerical examples are presented in Section 5 to validate the theoretical results in this paper.
Some concluding remarks are given in the last section.

2 Finite element method for GPE

In this section, we introduce some notation and finite element method for GPE (1.2). We will use
standard notation for Sobolev spaces W s,p(Ω) and their associated norms ‖ · ‖s,p,Ω and seminorms
| · |s,p,Ω (see, e.g., [1]). For p = 2, we denote Hs(Ω) = W s,2(Ω) and H1

0 (Ω) = {v ∈ H1(Ω) : v|∂Ω =
0}, where v|∂Ω = 0 is in the sense of trace, ‖ · ‖s,Ω = ‖ · ‖s,2,Ω. In this paper, we set V := H1

0 (Ω)
and use ‖ · ‖s,p to denote ‖ · ‖s,p,Ω for simplicity.

For the aim of finite element discretization, we define the corresponding variational form for
(1.2) as follows: Find (λ, u) ∈ R× V such that b(u, u) = 1 and

â(u, v) = λb(u, v), ∀v ∈ V, (2.1)

where

â(u, v) := a(u, v) +

∫
Ω

(
(W − 1)uv + ζ|u|2uv

)
dΩ,

a(u, v) :=

∫
Ω

(
∇u∇v + uv

)
dΩ, b(u, v) :=

∫
Ω

uvdΩ.
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It is obvious that a(v, v) ≥ 0 for all v ∈ V . Then we define ‖v‖a =
√
a(v, v) for all v ∈ V in this

paper.

The following Rayleigh quotient expression holds for the principal eigenpair (λ, u)

λ =
â(u, u)

b(u, u)
. (2.2)

Now, let us demonstrate the finite element method [11, 16] for the semilinear eigenvalue problem
(2.1). First we generate a shape-regular decomposition for the computational domain Ω ⊂ Rd
(d = 2, 3) into triangles or rectangles for d = 2 (tetrahedrons or hexahedrons for d = 3) and
the diameter of a cell K ∈ Th is denoted by hK . The mesh diameter h describes the maximum
diameter of all cells K ∈ Th. Based on the mesh Th, we construct the conforming finite element
space denoted by Vh ⊂ V . The family of finite-dimensional spaces Vh is assumed to satisfy the
following assumption:

lim
h→0

inf
vh∈Vh

‖w − vh‖a = 0, ∀w ∈ V. (2.3)

Define Xh = {φh ∈ Vh :
∫

Ω
|φh|2dΩ = 1}. We shall introduce the following minimization

problem
uh = arg inf

φh∈Xh

E(φh). (2.4)

The existence of a minimizer of (2.4) can be obtained. However, the uniqueness is unknown [13].
It is easy to know that the minimizer uh of (2.4) and (uh, u) > 0 solves the following eigenvalue
problem

â(uh, vh) = λhb(uh, vh), ∀vh ∈ Vh, (2.5)

with the Lagrange multiplier λh. Define the set of finite dimensional ground state eigenpairs

Θh =
{

(λh, uh) ∈ R×Xh : (λh, uh) solves (2.5) and (uh, u) > 0
}
.

Then, the discrete ground state energy of BEC is given by

E(uh) =

∫
Ω

(
|∇uh|2 +W |uh|2 +

ζ

2
|uh|4

)
dΩ, (2.6)

where (λh, uh) ∈ Θh.

From (2.5), the following Rayleigh quotient for λh holds

λh =
â(uh, uh)

b(uh, uh)
. (2.7)

In order to give the error estimates for the finite element method, we define the following notation

δh(u) := inf
vh∈Vh

‖u− vh‖a. (2.8)

Lemma 2.1. ([13, Theorem 1]) There exists h0 > 0 such that for all 0 < h < h0, the principal
eigenpair (λ, u) ∈ R× V and its approximation (λh, uh) ∈ Θh satisfy following error estimates

‖u− uh‖a ≤ Cuδh(u), (2.9)

‖u− uh‖0 ≤ Cuηa(h)‖u− uh‖a ≤ C2
uηa(h)δh(u), (2.10)

|λ− λh| ≤ Cu‖u− uh‖2a + Cu‖u− uh‖0
≤ C2

u(δh(u) + ηa(h))‖u− uh‖a, (2.11)

where ηa(h) is defined as follows:

ηa(h) = sup
f∈L2(Ω),‖f‖0=1

inf
vh∈Vh

‖Tf − vh‖a (2.12)

with the operator T being defined as follows: Find Tf ∈ u⊥ such that

〈(E′′(u)− λ)Tf, v〉 = (f, v), ∀v ∈ u⊥, (2.13)
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where
〈(E′′(u)− λ)w, v〉 = (∇w,∇v) + ((W − λ)∇w,∇v) + 3(ζ|u|2w, v),

and u⊥ =
{
v ∈ V : |

∫
Ω
uvdΩ = 0

}
. Here and hereafter Cu (with or without subscripts) is some

constant depending on the eigenpair (λ, u) but independent of the mesh size h.

Remark 2.1. In Lemma 2.1, the error estimates are a bit more complicated than that of linear
elliptic eigenvalue problems. The definition of ηa(h) and the operator T come from the error
analysis for the semilinear eigenvalue problems in [13]. Since we are concerned with the principal
eigenvalue, the operator T is bounded and elliptic. For more information, please refer to [13].

3 Computable error estimates

First, we define H(div; Ω) := {p ∈ (L2(Ω))d : divp ∈ L2(Ω)} (d = 2, 3) and let W := H(div; Ω)
for simplicity.

Theorem 3.1. There exists h0 > 0 such that for all 0 < h < h0, the principal eigenpair (λ, u) of
(2.1) and its approximation (λh, uh) ∈ Θh satisfy the following error estimate:

‖u− uh‖a ≤
1

θ1
min
p∈W

η(λh, uh,p), (3.1)

where θ1, η(λh, uh,p) and α are defined as follows

θ1 = 1− α(δh(u) + ηa(h)), (3.2)

η(λh, uh,p) =
(
‖λhuh −Wuh − ζu3

h + divp‖20 + ‖p−∇uh‖20
)1/2

, (3.3)

α = max
{
C2
u, Cu(Cu + ‖W‖0,∞ + 1 + |λh|)

}
. (3.4)

Here ηa(h) is given by (2.12) and the constant Cu is independent of the mesh size h, vector function
p and the eigenfunction approximation uh. Furthermore, the following asymptotic property holds

lim
h→0

θ1 = 1. (3.5)

Proof. Let us define w = u − uh in this proof. Combining (2.1), (2.5) and the following Green’s
formula ∫

Ω

divpvdΩ +

∫
Ω

p · ∇vdΩ = 0, ∀p ∈W and ∀v ∈ V,

we have

a(u− uh, w) ≤ a(u− uh, w) + (ζ(u3 − u3
h), w)

=

∫
Ω

λuwdΩ−
∫

Ω

(
(W − 1)uw

)
dΩ

−
∫

Ω

(∇uh · ∇w + uhw + ζu3
hw)dΩ +

∫
Ω

divpvdΩ +

∫
Ω

p · ∇vdΩ

=

∫
Ω

(
(λhuh −Wuh − ζu3

h + divp)w + (p−∇uh) · ∇w
)

dΩ︸ ︷︷ ︸
A1

+

∫
Ω

(
(λu− λhuh)− (W − 1)(u− uh)

)
wdΩ︸ ︷︷ ︸

A2

=: A1 +A2. (3.6)

For A1, by using Cauchy-Schwarz inequality, the following inequalities hold

A1 ≤ ‖λhuh −Wuh − ζ|uh|2uh + divp‖0‖w‖0 + ‖p−∇uh‖0‖∇w‖0
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≤
(
‖λhuh −Wuh − ζu3

h + divp‖20 + ‖p−∇uh‖20
)1/2‖w‖a

=: η(λh, uh,p)‖w‖a. (3.7)

The second term A2 has the following estimate

A2 ≤
∫

Ω

(λ− λh)uwdΩ︸ ︷︷ ︸
B1

+

∫
Ω

(λh −W + 1)(u− uh)wdΩ︸ ︷︷ ︸
B2

=: B1 +B2.

For B1, B2 and ‖u‖0 = ‖uh‖0 = 1, using Lemma 2.1, we have following inequalities

B1 ≤ |λ− λh|‖u‖0‖w‖a ≤ C2
u(δh(u) + ηa(h))‖u− uh‖a‖w‖a, (3.8)

B2 ≤ (‖W‖0,∞ + 1 + |λh|)‖u− uh‖0‖w‖a
≤ Cu(‖W‖0,∞ + 1 + |λh|)ηa(h)‖u− uh‖a‖w‖a. (3.9)

Summing B1 and B2 leads to

A2 ≤
(
C2
uδh(u) + Cu(Cu + ‖W‖0,∞ + 1 + |λh|)ηa(h)

)
‖u− uh‖a‖w‖a

=: α(δh(u) + ηa(h))‖u− uh‖a‖w‖a, (3.10)

where α = max
{
C2
u, Cu(Cu + ‖W‖0,∞ + 1 + |λh|)

}
.

Therefore, from (3.6), (3.7) and (3.10), we can draw the following conclusion

‖u− uh‖a ≤ η(λh, uh,p) + α(δh(u) + ηa(h))‖u− uh‖a, ∀p ∈W.

Then the desired result (3.1) can be obtained by the arbitrariness of p ∈W. The property (3.5)
can be deduced from limh→0 δh(u) = limh→0 ηa(h) = 0 and the proof is complete.

From (3.1), in order to produce asymptotically upper bound error estimate for the eigenfunction
approximation, it is a natural way to find a function p∗ ∈W to satisfy the following optimization
problem

η(λh, uh,p
∗) = min

p∈W
η(λh, uh,p). (3.11)

Lemma 3.1. ([33]) The optimization problem (3.11) is equivalent to the following partial differ-
ential equation: Find p∗ ∈W such that

a∗(p∗,q) = F∗(q), ∀q ∈W, (3.12)

where

a∗(p∗,q) =

∫
Ω

(
divp∗divq + p∗ · q

)
dΩ,

F∗(q) = −
∫

Ω

(
λhuh − ζu3

h − (W − 1)uh
)
divqdΩ.

Moreover, a∗(·, ·) defines an inner product for the space W. The corresponding norm is 9p92
∗ =

a∗(p,p), and the auxiliary problem (3.12) has a unique solution.

Now, we state some properties of the estimator η(λh, uh,p).

Lemma 3.2. ([33]) Assume p∗ be the solution of the (3.12) and let λh ∈ R, uh ∈ V and p ∈W
be arbitrary. Then the following equality holds

η2(λh, uh,p) = η2(λh, uh,p
∗) + 9p∗ − p 92

∗ . (3.13)

It is easy to state the following upper bound property by combining Theorem 3.1 and (3.13).

Corollary 3.1. Under the conditions of Theorem 3.1, the following upper bound holds

‖u− uh‖a ≤
1

θ1
η(λh, uh,p

∗). (3.14)
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4 Asymptotically lower bounds of the principal eigenvalue
and ground state energy

In this section, based on the upper bound of the error estimate for the principal eigenfunction
approximation in Theorem 3.1, we give an asymptotically lower bounds of the principal eigenvalue
and ground state energy. Actually, the process is direct since we have the following Rayleigh
quotient expansion.

Lemma 4.1. Assume (λ, u) ∈ R × V is the principal eigenpair of the original problem (2.1),
(λh, uh) ∈ R× Vh is the eigenpair of the discrete problem (2.5). We have the following expansion:

λh − λ = ‖uh − u‖2a − λ‖uh − u‖20 +

∫
Ω

(W − 1)(uh − u)2dΩ

+

∫
Ω

ζ(|u|2u− |uh|2uh − |uh|2u− |u|2uh)(uh − u)dΩ. (4.1)

Proof. From (2.1), (2.2), (2.5), (2.7), and direct calculation, we have

λh − λ = â(uh, uh)− λb(uh, uh)

= a(uh, uh) +

∫
Ω

(
(W − 1)uhuh + ζ|uh|2uhuh

)
dΩ− λb(uh, uh)

= a(uh − u, uh − u) + 2a(u, uh)− a(u, u)

+

∫
Ω

(
(W − 1)uhuh + ζ|uh|2uhuh

)
dΩ− λb(uh, uh)

= ‖uh − u‖2a + 2λb(u, uh)− 2

∫
Ω

(
(W − 1)uuh + ζ|u|2uuh

)
dΩ

− λb(u, u) +

∫
Ω

(
(W − 1)uu+ ζ|u|2uu

)
dΩ

+

∫
Ω

(
(W − 1)uhuh + ζ|uh|2uhuh

)
dΩ− λb(uh, uh)

= ‖uh − u‖2a − λ‖uh − u‖20 +

∫
Ω

(W − 1)(u− uh)2dΩ

+

∫
Ω

ζ(|u|2u− |uh|2uh − |uh|2u− |u|2uh)(u− uh)dΩ.

This is the desired result (4.1) and the proof is complete.

Theorem 4.1. Under conditions of Theorem 3.1, we have the following error estimate:

|λh − λ| ≤
C3

(
δh(u) + ηa(h)

)
1− α

(
δh(u) + ηa(h)

)η(λh, uh,p), ∀p ∈W, (4.2)

where

C3 = max
{
Cu, C

3
u

(
‖W‖0,∞ + 1 + |λ|

)
δh(u)ηa(h) + ζCuC

3
Ω

(
‖u‖3a + ‖uh‖3a + ‖uh‖2a‖u‖a + ‖u‖2a‖uh‖a

)}
.

Moreover, if h is such small that

C3

(
δh(u) + ηa(h)

)
1− α

(
δh(u) + ηa(h)

) ≤ 1,

the following explicit and asymptotically result holds

λLh := λh − η(λh, uh,p) ≤ λ, ∀p ∈W, (4.3)

where λLh denotes an asymptotically lower bound of the principal eigenvalue λ.
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Proof. From (4.1) and b(uh, uh) = 1, we have following estimates

|λh − λ| ≤ ‖uh − u‖2a +
(
λ‖uh − u‖20 + (‖W‖0,∞ + 1)‖uh − u‖20

)
+

∫
Ω

|ζ|(|u|2|u|+ |uh|2|uh|+ |uh|2|u|+ |u|2|uh|)|uh − u|dΩ

≤ ‖uh − u‖2a︸ ︷︷ ︸
A1

+ (‖W‖0,∞ + 1 + |λ|)‖uh − u‖20︸ ︷︷ ︸
A2

+ |ζ|
∫

Ω

|u|2|u||uh − u|dΩ︸ ︷︷ ︸
A3

+ |ζ|
∫

Ω

|uh|2|uh||uh − u|dΩ︸ ︷︷ ︸
A4

+ |ζ|
∫

Ω

|uh|2|u||uh − u|dΩ︸ ︷︷ ︸
A5

+ |ζ|
∫

Ω

|u|2|uh||uh − u|dΩ︸ ︷︷ ︸
A6

=:

6∑
i=1

Ai.

Using Lemma 2.1, the following estimates for A1 and A2 hold

A1 ≤ Cuδh(u)‖u− uh‖a,
A2 ≤ (‖W‖0,∞ + 1 + |λ|)C2

uη
2
a(h)‖u− uh‖2a

≤ (‖W‖0,∞ + 1 + |λ|)C3
uη

2
a(h)δh(u)‖uh − u‖a.

From Sobolev imbedding theorem (cf. [1])

W s,p(Ω) ↪→ Lq(Ω), for p ≤ q ≤ p∗ = dp/(d− sp), Ω ⊂ Rd,

we have

‖v‖0,12 ≤ CΩ‖v‖a, ‖v‖0,6 ≤ CΩ‖v‖a, ∀v ∈ V, for d = 2, (4.4)

where CΩ is a constant depending only on Ω.

For A2, combing Lemma 2.1, (4.4) and the Hölder inequality, we have

A3 ≤ ζ

(∫
Ω

(|u|2)3dΩ

)1/3(∫
Ω

|u|6dΩ

)1/6(∫
Ω

|uh − u|2dΩ

)1/2

≤ ζ‖u‖20,6‖u‖0,6‖u− uh‖0 ≤ ζCuC3
Ω‖u‖3aηa(h)‖u− uh‖a.

Similarly, A3, A4 and A5 have following estimates

A4 ≤ ζCuC
3
Ω‖uh‖3a ηa(h)‖u− uh‖a,

A5 ≤ ζCuC
3
Ω‖uh‖2a‖u‖a(h)ηa(h)‖u− uh‖a,

and

A6 ≤ ζCuC
3
Ω‖u‖2a‖uh‖a ηa(h)‖u− uh‖a.

Combining (3.1) and the above estimates, we have

|λh − λ| ≤
(
Cu + (‖W‖0,∞ + 1 + |λ|)C3

uη
2
a(h)

)
δh(u)‖uh − u‖a

+
(
ζCuC

3
Ω

(
‖u‖3a + ‖uh‖3a + ‖uh‖2a‖u‖a + ‖u‖2a‖uh‖a

)
ηa(h)‖u− uh‖a

≤ C3

(
δh(u) + ηa(h)

)
‖u− uh‖a

≤ C3(δh(u) + ηa(h))

1− α(δh(u) + ηa(h))
η(λh, uh,p), ∀p ∈W,

where

C3 = max
{
Cu +

(
‖W‖0,∞ + 1 + |λ|

)
C3
uη

2
a(h), ζCuC

3
Ω

(
‖u‖3a + ‖uh‖3a + ‖uh‖2a‖u‖a + ‖u‖2a‖uh‖a

}
.

This is the desired result (4.2) and (4.3) follows immediately.
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Corollary 4.1. Under the conditions of Theorem 3.1, we have the following error estimate:

E(uh)− E(u) ≤ C4(δh(u) + ηa(h))

1− α(δh(u) + ηa(h))
η(λh, uh,p), ∀p ∈W, (4.5)

where

C4 = C3 +
ζ

2
CuC

3
Ω(‖u‖a + ‖uh‖a)3.

Moreover, if h is such small that

C4(δh(u) + ηa(h))

1− α(δh(u) + ηa(h))
≤ 1,

the following explicit and asymptotic result holds

ELh := E(uh)− η(λh, uh,p) ≤ E, ∀p ∈W, (4.6)

where ELh denotes an asymptotically lower bound of the ground state energy E.

Proof. From the definition of ground state energy, we have

E(u) = λ−
∫

Ω

ζ

2
|u|4dΩ, E(uh) = λh −

∫
Ω

ζ

2
|uh|4dΩ.

Then, we have the following formulas

E(uh)− E(u) = (λh − λ)︸ ︷︷ ︸
A1

+

∫
Ω

ζ

2
(|u|4 − |uh|4)dΩ︸ ︷︷ ︸

A2

=: A1 +A2. (4.7)

Using (4.2), the following inequality holds

A1 ≤
C3

(
δh(u) + ηa(h)

)
1− α

(
δh(u) + ηa(h)

)η(λh, uh,p), ∀p ∈W. (4.8)

For A2, using Lemma 2.1, (3.1), the Hölder inequality and the triangle inequality, we have following
estimates

A2 ≤ ζ

2

∫
Ω

(
|u|+ |uh|

)3|u− uh|dΩ

≤ ζ

2

(∫
Ω

((
|u|+ |uh|

)3)2

dΩ

)1/2(∫
Ω

|u− uh|2dΩ

)1/2

≤ ζ

2
‖|u|+ |uh|‖30,6‖u− uh‖0 ≤

ζ

2
(‖u‖0,6 + ‖uh‖0,6)3‖u− uh‖0

≤ ζ

2
CuC

3
Ω(‖u‖a + ‖uh‖a)3ηa(h)‖u− uh‖a

≤ ζ

2

CuC
3
Ω(‖u‖a + ‖uh‖a)3ηa(h)

1− α(δh(u) + ηa(h))
η(λh, uh,p), ∀p ∈W. (4.9)

The combination of (4.7), (4.8) and (4.9) leads to

E(uh)− E(u) ≤
C3δh(u) +

(
C3 + ζ

2CuC
3
Ω(‖u‖a + ‖uh‖a)3

)
ηa(h)

1− α
(
δh(u) + ηa(h)

) η(λh, uh,p)

≤ C4(δh(u) + ηa(h))

1− α
(
δh(u) + ηa(h)

)η(λh, uh,p)

where

C4 = C3 +
ζ

2
CuC

3
Ω(‖u‖a + ‖uh‖a)3.

Hence we obtain the desired result (4.5) and (4.6) can be derived easily.

Remark 4.1. Practically, Theorem 4.1 and Corollary 4.1 are used with η(λh, uh,p) = η(λh, uh,p
∗)

where p∗ is a numerical approximation of the dual problem (3.10) and that it is not necessary to
know the exact auxiliary function p.
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5 Numerical examples

In this section, two numerical examples are presented to validate the efficiency of the computable
a posteriori error estimate, the upper bounds of the error estimates for the principal eigenvalue
and ground state energy, the lower bounds of the principal eigenvalue and the ground state energy.

In order to give the asymptotically accurate a posteriori error estimate η(λh, uh,p), we need to
solve the auxiliary problem (3.12) with enough accuracy by some type of numerical method. Here,
the auxiliary problem (3.12) is solved by the finite element method on the same mesh Th and the
H(div; Ω) conforming finite element space Wh that is defined as follows [12]

Wp
h =

{
w ∈W : w|K ∈ RTp,∀K ∈ Th

}
,

where RTp = (Pp)d + xPp and Pp denotes the polynomial space with the degree no more than p.
Then the approximate solution of the auxiliary problem (3.12) is defined as follows: Find p∗h ∈Wp

h

such that
a∗(p∗h,qh) = F(qh), ∀qh ∈Wp

h. (5.1)

After obtaining p∗h, we can compute the a posteriori error estimate η(λh, uh,p
∗
h) as in (3.3). Based

on λh and η(λh, uh,p
∗
h), we can obtain the asymptotically lower bound (4.3) with p = p∗h for the

principal eigenvalue λ. Furthermore, we can also get an asymptotically lower bound of the ground
state energy ELh .

Remark 5.1. In order to give an accurate a posteriori error estimator, it is a reasonable way to
solve the auxiliary problem (5.1) with some type of numerical method. Of course, we can also use
some simple local computing method to produce a function ph to obtain an asymptotically upper
bound of the error estimate for the eigenfunction approximation (cf. [4]).

Example 5.1. In this example, we consider the ground state solution of GPE (1.2) for BEC with
ζ = 1, W (x) = x2

1 + x2
2 and unit square Ω = (0, 1)× (0, 1).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1: The initial mesh for the unit square.

In this example, the initial mesh Th1 with h1 = 1/10 is showed in Figure 1 which is gen-
erated by Delaunay method. Then we produce a sequence of meshes {Thi}6i=2 by the regu-
lar refinement (connecting the midpoints of each edge) from Th1

and then the mesh sizes are
h2 = 1/20, · · · , h6 = 1/320. Based on this sequence of meshes, a sequence of linear conforming
finite element space {Vhi

}6i=1 and H(div; Ω) conforming finite element space {W1
hi
}6i=1 are built.

Since the exact eigenvalue is not known, we choose an adequately accurate approximation obtained
by the quadratic finite element method on the mesh Th6 as the exact principal eigenpair for our
numerical tests.

First we solve the GPE problem (2.1) in {Vhi
}6i=1 and the auxiliary problem (5.1) in {W1

hi
}6i=1,

respectively. The corresponding numerical results are presented in Figure 2 which shows that the
a posteriori error estimate η(λh, uh,p

∗
h) is efficient when we solve the auxiliary problem in W1

h. In
Figure 2, we can find that the eigenvalue approximation λLh and ground state energy approximation
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ELh are really asymptotically lower bounds for the principal eigenvalue λ and ground state energy
E(u), respectively. When the mesh has more than approximately 312 elements, the approximations
λLh and ELh are really below the exact principal eigenvalue λ and the exact ground state energy,
respectively.
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Figure 2: The errors for the unit square domain when the eigenvalue problem is solved by the linear
finite element method, where η(λh, uh,p

1
h) denotes the a posteriori error estimator η(λh, uh,p

∗
h) when the

auxiliary problem is solved in W1
h, λL

h denotes the asymptotically lower bound of the principal eigenvalue
and EL

h denotes the asymptotically lower bound of the ground state energy.

Example 5.2. In the second example, we solve the ground state solution of GPE (1.2) for BEC
with ζ = 1, W (x) = x2

1 + x2
2 on the L shape domain Ω = (−1, 1)× (−1, 1)/[0, 1)× (−1, 0].

Since Ω has a re-entrant corner, the singularity of the principal eigenfunction is expected. The
convergence order for the eigenvalue approximation by the linear finite element method is less than
2 which is the order predicted by the theory for regular eigenfunctions. Since the exact eigenvalue
is not known, we also choose an adequately accurate approximation obtained by the quadratic
finite element method on the mesh which is refined by 16 times adaptively as the exact principal
eigenpair for our numerical tests. In order to handle the singularity of the eigenfunction, the GPE
(2.1) is solved by the adaptive finite element method (cf. [11]).

This example is presented to validate the results in this paper also hold on the adaptive meshes.

A standard adaptive mesh process can be described by the following one

· · ·Solve→ Estimate→Mark→ Refine · · ·

More precisely, to get Thk+1
from Thk

, we first solve the discrete equation on Thk
to get the

approximate solution and then calculate the a posteriori error estimator on each mesh element.
Next, we mark the elements with big errors and these elements are refined in such a way that the
triangulation is still shape regular and conforming.

For the computable-type a posteriori estimator can be defined as follows:

ηK(λh, uh,p) =
(
‖λhuh −Wuh − ζu3

h + divp‖20,K + ‖p−∇uh‖20,K
)1/2

, (5.2)

In order to compared with the effect of residual error estimator, we give the definition of the
residual type a posteriori error estimator as follows: Define the element residual RK(λh, uh) and
the jump residual JE(uh) as follows:

RK(λh, uh) := λhuh − ζ|uh|2uh −Wuh + ∆uh, in K ∈ Th,
Je(uh) := −∇u+

h · ν
+ −∇u−h · ν

− := [[∇uh]]e · νe, on e ∈ Eh,

where Eh denotes the interior edge set in the mesh Th, e is the common side of elements K+ and
K− with unit outward normals ν+ and ν−, respectively, and νe = ν−. For K ∈ Th, we define the
local error indicator ηh(λh, uh,K) as follows

η2
h(λh, uh,K) := h2

K‖RK(λh, uh)‖20,K +
∑

e∈Eh,e⊂∂K

he‖Je(uh)‖20,e. (5.3)
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Then we define the global a posteriori error estimator ηad(λh, uh) as

ηad(λh, uh) :=

( ∑
K∈Th

η2
h(λh, uh,K)

)1/2

. (5.4)

Initial mesh Mesh after 7 iterations Mesh after 7 iterations

Figure 3: The initial mesh of L-shape domain (left), the mesh after 7 adaptive refinements using the
a posteriori error estimator ηad(λh, uh) (middle) and the mesh after 7 adaptive refinements using the a
posteriori error estimator η(λh, uh,ph) (right).

In this example, we solve (2.5) in the linear conforming finite element space Vh,1 (or Vh,2) and
solve the auxiliary problem (5.1) in the finite element space W1

h,1 (or W1
h,2), respectively. Here,

Vh,1 and W1
h,1 denote the finite element spaces based on the meshes which are refined by using of the

a posteriori error estimator ηad(λh,1, uh,1), Vh,2 and W1
h,2 denote the finite element spaces based on

the meshes which are refined by using the a posteriori error estimator η(λh,2, uh,2,ph,2). Figure 3
shows the initial mesh (left), the adaptive meshes after 7 refinements by using the a posteriori error
estimator ηad(λh,1, uh,1) (middle) and the a posteriori error estimator η(λh,2, uh,2,ph,2) (right),
respectively. The corresponding numerical results are presented in Figure 4 which shows that
the a posteriori error estimate η(λh,2, uh,2,p

∗
h,2) is more efficient than ηad(λh,1, uh,1) even on the

adaptive meshes when the auxiliary problem is solved in W1
h,2. Figure 4 also shows λLh and ELh are

really asymptotically lower bounds for the principal eigenvalue λ and the ground state energy E(u),
respectively. When the meshes has more than approximately 982 elements, the approximations
λLh,1, λLh,2, ELh,1 and ELh,2 are really below the exact principal eigenvalue λ and the exact ground
state energy E, respectively.
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Figure 4: The errors for the L shape domain when the eigenvalue problem is solved by the linear finite
element method. Here, η(λh,1, uh,1,p

1
h,1) denotes η(λh,1, uh,1,p

∗
h,1) when the auxiliary problem is solved

in W1
h,1 on the meshes which are generated by adaptive refinement with the a posteriori error estimator

ηad(λh,1, uh,1), η(λh,2, uh,2,p
1
h,2) denotes η(λh,2, uh,2,p

∗
h,2) when the auxiliary problem is solved in W1

h,2

on the meshes which are generated by using the a posteriori error estimator η(λh,2, uh,2,p
1
h,2).

Remark 5.2. In Figure 4, we can see that the new a posteriori error estimator η(λh,2, uh,2,p
1
h,2) is

smaller than η(λh,1, uh,1,p
1
h,1) and both smaller than the residual type a posteriori error estimator

ηad(λh,1, uh,1). Thus the error estimator η(λh, uh,p
1
h) is more efficient than the residual type one
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ηad(λh, uh). In addition, we can adjust the efficiency of η(λh, uh,p
p
h) by solving the auxiliary

problem (3.12) in different spaces Wp
h.

6 Concluding remarks

In this paper, we give a computable error estimate of the general conforming finite element methods
of the GPE for the ground state of BEC on general meshes. Furthermore, the asymptotically lower
bounds of the principal eigenvalue and ground state energy can be obtained by the computable
error estimate. Some numerical examples are provided to demonstrate the validation of the effi-
ciency of the computable error estimator and the asymptotically lower bounds for the principal
eigenvalue and ground state energy. The method here can be extended to many other semilinear
eigenvalue problems such as the Kohn-Sham model for Schrödinger equation. Moreover, we can
adopt the efficient numerical methods to obtain these lower bounds, such as multilevel correction
and multigrid method (cf. [26, 37]). We can also adopt some efficient postprocessing methods (cf.
[3, 4, 34]) to get the approximations of the auxiliary problem (5.1).

From the definition (4.3), (4.6) and numerical examples, we find the accuracy of λLh and ELh is
not optimal. How to produce the lower bounds with the optimal accuracy will be our future work.
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