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Abstract

In this paper, we propose a computable error estimate of the Gross-Pitaevskii equation
for the ground state solution of the Bose-Einstein condensate by the general conforming finite
element method on general meshes. Based on this error estimate, the asymptotically lower and
upper bound for the smallest eigenvalue and ground state energy can be calculated. Several
numerical examples are presented to validate the theoretical results in this paper.
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1 Introduction

Bose-Einstein condensation (BEC) predicted by A. Einstein is a new state of matter at the be-
ginning of the last century. When a dilute gas of trapped bosons (of the same species) is cooled
down to ultra-low temperatures (close to absolute zero), BEC could be formed [0, [18]. Since 1995,
the first experimental achievement of BEC in dilute 87 Rb gases [6], which is one of the most im-
portant scientific discoveries in the last century, a nonlinear Schrodinger equation known as the
Gross-Pitaevskii equation (GPE) [21], B0] has been used extensively to describe the single particle
properties of BEC. It has been found that the results obtained by solving the GPE are in excellent
agreement with most of the experiments (cf. [5, 17, 19]). A lot of numerical methods for the
computation of the time-independent GPE for the ground state and the time-dependent GPE for
finding the dynamics of the BEC has been developed, please refer to [2], @, [10, 23] B6, 7] and
references cited therein.

In this paper, we focus on ground state of BEC, which can be obtained by minimizing the
following energy functional (cf. [24])

po) = [ (IvoP +wioP + §loit ) an (1)

with respect to wavefunctions ¢ under the following constraint

/ 620 = 1,
Q

where Q C R? (d = 1,2, 3) denotes the computing domain which has the cone property [I], ¢ > 0
is a constant, inf|,~, W(x) — oo as 7 — oo and W(x) € L>(€2). From [13], (1.1} has exactly two
minimizers v and —u. We denote by A the corresponding Lagrange multiplier. The Euler-Lagrange
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equation corresponding to this minimization problem is the so-called GPE: Find (\,u) € Rx Hg (£2)
such that
{ —Au+Wu+luPu = Iu, in Q. (1.2)

Jo lul?dQ = 1.

The eigenfunction u is a solution to the nonlinear eigenvalue problem corresponding to the
smallest eigenvalue A of (1.2) which is non-degenerate [13]. In this paper, we denote by u the
unique positive solution 0 and 7 and u is one of the ground state solutions of BEC. We
call (A, u) as the principal eigenpair (i.e. the eigenpair corresponding to the ground state solution
u) of and the corresponding ground state energy can be given as E(u).

The lower bounds of the principal eigenvalue of and the ground state energy are very
useful since they can give important guidance for the physical experiments and reveal very useful
physical information (see e.g., [24]). Owing to using the conforming finite element method, we can
obtain the upper bounds of the principal eigenvalue and the ground state energy. Hence, the main
aim of this paper is to consider the lower bounds of the principal eigenvalue and the ground state
energy.

So far, there have been developed some methods to get lower bound of eigenvalue, primarily
including the nonconforming finite element methods (see e.g., [7, 25, 26, 29, [40]), interpolation
constant based methods (see e.g., [27], 28] 39]) and computational error estimate methods (see e.g.,
[15 82, B8]) for the linear eigenvalue problem. But there are no results about lower bounds of the
semilinear eigenvalue problems. This paper is the first attempt in this direction.

In order to deduce the lower bounds of the principal eigenvalue and the ground state energy,
we begin with the computable error estimates for the ground state of GPE by the finite element
method. For this aim, we first propose a computable method to obtain an asymptotically upper
bound of the error estimate for the ground state eigenfunction approximation by the general
conforming finite element methods on general meshes. The approach is based on complementary
energy method from [22], B1] 33| B4]. Of course, the computable error estimates can also provide
a type of the a posteriori error estimate for the partial differential equations by the finite element
method, please refer to [3, [, [8 [T, B5] and references cited therein. In addition, [14] is based
on planewaves and combines the adaptive procedure directly into an iterative algorithm for the
ground state of the GPE.

An outline of the paper goes as follows. In Section [2] we introduce the finite element method
for the GPE. An asymptotically upper bound for the error estimate of the principal eigenfunction
approximation is given in Section In Section [4 asymptotically lower bounds of the principal
eigenvalue and ground state energy are also obtained based on the results in Section [3] Some
numerical examples are presented in Section [f] to validate the theoretical results in this paper.
Some concluding remarks are given in the last section.

2 Finite element method for GPE

In this section, we introduce some notation and finite element method for GPE (|1.2). We will use

standard notation for Sobolev spaces W*P(§)) and their associated norms || - |5 p.o and seminorms
| |sp.0 (see, e.g., [1]). For p =2, we denote H*(Q) = W*2(Q) and H}(Q) = {v € HY(Q) : v|sq =
0}, where v|pq = 0 is in the sense of trace, || - ||s.o = || - [|s,2.0- In this paper, we set V := H}(Q)

and use | - ||s,p to denote || - ||s,p,o for simplicity.

For the aim of finite element discretization, we define the corresponding variational form for
(1.2) as follows: Find (A, u) € R x V such that b(u,u) = 1 and

a(u,v) = Ab(u,v), Vv eV, (2.1)
where
a(u,v) = a(u,v)+/ﬂ((W—1)uv+<|u|2m;)d9,
a(u,v) = /Q(wkuu)cm, b(u,v) = /qudﬂ.



It is obvious that a(v,v) > 0 for all v € V. Then we define ||v||, = y/a(v,v) for all v € V in this
paper.
The following Rayleigh quotient expression holds for the principal eigenpair (A, u)
a(u,u)

= S (2.2)

Now, let us demonstrate the finite element method [IT} [I6] for the semilinear eigenvalue problem
(2.1). First we generate a shape-regular decomposition for the computational domain Q c RY
(d = 2,3) into triangles or rectangles for d = 2 (tetrahedrons or hexahedrons for d = 3) and
the diameter of a cell K € 7T, is denoted by hx. The mesh diameter h describes the maximum
diameter of all cells K € T,. Based on the mesh T, we construct the conforming finite element
space denoted by Vj, C V. The family of finite-dimensional spaces V}, is assumed to satisfy the
following assumption:
lim inf — =0, V V. 2.3
lim inf |lw—wvnlla =0, Ywe (2.3)
Define X, = {¢n € Vi : [, |¢on|?dQ = 1}. We shall introduce the following minimization
problem

E(¢n)- (2.4)

up, = arg inf
Pn€EXn

The existence of a minimizer of (2.4 can be obtained. However, the uniqueness is unknown [13].
It is easy to know that the minimizer u; of (2.4) and (up,u) > 0 solves the following eigenvalue

problem
&(uh,vh) = /\hb(uh,vh), V’Uh S Vh, (2.5)

with the Lagrange multiplier )\,. Define the set of finite dimensional ground state eigenpairs
O = {()\;“uh) €R X Xp 1 (Ap,up) solves (2.5)) and (up,u) > 0}.

Then, the discrete ground state energy of BEC is given by
Bun) = [ (IFun 4 Wlaa? + Slonlt) a2 (26)
Q

where (Ap, up) € Op.
From ([2.5)), the following Rayleigh quotient for A; holds

- d(uh,uh)
Ap = 7b(uh7u}1). (2.7)

In order to give the error estimates for the finite element method, we define the following notation

Op(uw) == inf |lu—ovplqe- (2.8)

VR EVh

Lemma 2.1. ([I3, Theorem 1]) There exists hg > 0 such that for all 0 < h < hg, the principal
eigenpair (A, u) € R x V' and its approxzimation (\n,up) € Oy, satisfy following error estimates

lu —uplle < Cudp(u), (2.9)
lu—wunllo < Cuna(h)llu—unlla < Cina(h)on(u), (2.10)
A=l < Cullu—unll? + Cullu = unllo
< CL0n(u) +na(h))lu — unla, (2.11)
where 1, (h) is defined as follows:
Ne(h) = sup inf ||Tf —vnlla (2.12)

FEL2(Q),fllo=1nEVh
with the operator T being defined as follows: Find Tf € ut such that

(E"(u) = NTf,v) = (f,v), VYoeut, (2.13)



where

(E" (u) = Nw,v) = (Vw, Vo) + (W = X\)Vw, V) + 3(C|ul*w, v),

and ut = {v € V : | [uvdQ = 0}. Here and hereafter C,, (with or without subscripts) is some
constant depending on the eigenpair (A, u) but independent of the mesh size h.

Remark 2.1. In Lemma the error estimates are a bit more complicated than that of linear
elliptic eigenvalue problems. The definition of n.(h) and the operator T come from the error
analysis for the semilinear eigenvalue problems in [13]. Since we are concerned with the principal
eigenvalue, the operator T is bounded and elliptic. For more information, please refer to [13)].

3 Computable error estimates

First, we define H(div;Q) := {p € (L*(Q))? : divp € L}(Q)} (d = 2,3) and let W := H(div; Q)
for simplicity.

Theorem 3.1. There exists hg > 0 such that for all 0 < h < hg, the principal eigenpair (\,u) of
and its approzimation (Ap,up) € Oy, satisfy the following error estimate:

1
_ < — 1 .
lw — uplla < 0 PI)IélIl N(An, Un, P), (3.1)

where 01, n(Ap, un, p) and « are defined as follows

01 =1—a(dp(u) + nq(h)), (3.2)
N(An, un, P) = ([[Anun — Wup — Cuj + divpl|§ + |lp — Vuh||§)1/27 (3.3)
a=max {Cy,Cu(Cy+ [Wllo,e + 14 [An]) }-

Here nq(h) is given by and the constant C,, is independent of the mesh size h, vector function
p and the eigenfunction approximation uy. Furthermore, the following asymptotic property holds

i =1. .
hliﬁ) 091 (3 5)

Proof. Let us define w = u — up, in this proof. Combining (2.1)), (2.5) and the following Green’s
formula

/divpde—l—/p-VUdQ:Q Vp €W and Vv € V,
Q Q

we have

3

a(u —up,w) < alu —up, w) + ((u® — u%),w)

:/quwdﬂ—/ﬂ ((W—1)uw>d9

— / (Vup, - Vw + upw + Cuiw)dQ + / divpudQ + / p - VudQ
) Q )

= / (()\huh — Wuy, — Cu + divp)w + (p — Vuy,) - Vw) dQ
Q

Aq
+ /Q ((/\u — Aup) = (W —=1)(u — Uh))wdQ
Ao
= A1 + AQ. (36)

For Ai, by using Cauchy-Schwarz inequality, the following inequalities hold

Ay < wun — Wy, — ClupPup + divpllo]|wllo + [P — Vaunrllol|Vawllo



A

. 1/2
< (IPwun — Wup, — Cuf + divp|2 + [[p — Vun[2)||wll.
= s )|l (3.7)

The second term A, has the following estimate

Ay < / (A — Ap)uwdQ + / O — W+ 1)t — g )wd®2
Q Q
B1 B2
=: Bl + BQ.

For By, By and |lullo = [lup o = 1, using Lemma [2.1} we have following inequalities

Bi < A= Mnlllullollwlla < CH((w) + na(h) 1w = unllalwl]la, (3-8)
By < (IWlloeo + 1+ [Ar))llu — unllollwl]la
< CullWllo.eo + 14 [AnD)na(B)[u = un lal[w]]a- (3.9)

Summing By and Bs leads to

Ay < (CRon(w) + Cu(Cu + [Wllo,o0 + 1+ [Xu[)1a (1)) 1w — uplal|w]la

= a(6n(w) + 1a(h))llu = unllallw]|a; (3.10)

where a = max {C2,C,,(Cy + [[Wllo,00 + 1+ [Aa]) }-
Therefore, from (3.6), (3.7) and (3.10]), we can draw the following conclusion

lw = unlla < 0(An, un, P) + (On(w) + 10 (h)llu = unlla, VP € W.

Then the desired result (3.1)) can be obtained by the arbitrariness of p € W. The property (3.5)
can be deduced from limy_,q 05 (u) = limp, 0 1,(h) = 0 and the proof is complete. O

From (3.1)), in order to produce asymptotically upper bound error estimate for the eigenfunction
approximation, it is a natural way to find a function p* € W to satisfy the following optimization
problem

*) = mi . 11
T’()\ha Uh, P ) I?él‘% 77(/\h7 Uh, p) (3 )

Lemma 3.1. ([33]) The optimization problem s equivalent to the following partial differ-
ential equation: Find p* € W such that

a’(ptq) = F'(a), VYqeW, (3.12)

where
a*(p*,q) = / (divp*divq+p* 'q)dQ,
Q

F(q)

- / (Anup — Cuj — (W = 1)uy, ) divgdQ.
Q

Moreover, a*(-,-) defines an inner product for the space W. The corresponding norm is |||p||? =
a*(p,p), and the auziliary problem has a unique solution.

Now, we state some properties of the estimator n(An, up, p).

Lemma 3.2. ([33]) Assume p* be the solution of the and let \p € R, up, € V andp e W
be arbitrary. Then the following equality holds

Ay un,p) = 1Ay un, ) + P =P I7 - (3.13)
It is easy to state the following upper bound property by combining Theorem and ((3.13)).

Corollary 3.1. Under the conditions of Theorem[3.1}, the following upper bound holds

1
lu —uplle < EU(/\hvuha p"). (3.14)



4 Asymptotically lower bounds of the principal eigenvalue
and ground state energy

In this section, based on the upper bound of the error estimate for the principal eigenfunction
approximation in Theorem (3.1} we give an asymptotically lower bounds of the principal eigenvalue
and ground state energy. Actually, the process is direct since we have the following Rayleigh
quotient expansion.

Lemma 4.1. Assume (A, u) € R x V is the principal eigenpair of the original problem ,
(An,up) € R x Vy, is the eigenpair of the discrete problem . We have the following expansion:

A=A = lup —ull2 = Mjup — ull§ + / (W — 1) (up — u)*dQ2
Q
+/ CulPu — Jun?un — |unu — [uup) (up, —u)dQ. (4.1)
Q

Proof. From , 7 , , and direct calculation, we have
An — A = alup,up) — Nb(up, up)
= a(up,up) + /Q ((W — Dupup + §|uh\2uhuh)dQ — Ab(up,up)
= a(up —u,up — u) + 2a(u, up) — au, w)

+ / (W = Dunun + Clun*upus)dQ — Ab(up, un)
Q

= |jun — ul? + 2Xb(u, up) — 2/ (W = Duuy, + Clu*uuy,)d
Q

— Ab(u,u) +/Q (W = Duu + Cluluu)dQ

+ / ((W — l)uhuh + C\uh|2uhuh)d9 — )\b(uh, uh)
Q
= fhun =l = Alun —wlf+ [ (W = 1) w0
Q
+ / Clul?u — up)?un — |upl?u — |ul?up) (w — up,)dSQ.
Q

This is the desired result (4.1) and the proof is complete. O

Theorem 4.1. Under conditions of Theorem|3.1], we have the following error estimate:

Cs(0n(u) + na(h))
An =A< a(0n(w) +1a(h)

)”(Afuuhap)a VP € W7 (42)

where

C3 = max {C,, Ca (|W

lo.00 + 1+ [A) 8 (u)na (h) + CCLCH(lullg + lunlla + lunlZllulla + llullZllunlla) } -

Moreover, if h is such small that

C3(dn(w) +na(h))
1—a(0n(u) +na(h)) =

the following explicit and asymptotically result holds
A; = An = (A, un, p) <A, VpEW, (4.3)

where )\ﬁ denotes an asymptotically lower bound of the principal eigenvalue .



Proof. From (4.1)) and b(up,up) = 1, we have following estimates
An =A< lun =g+ (Mun = wll§ + AW llo.co + llun — ull3)

+/ [CICul*ful + [unl*[un] + fun* ul + [ul? |un])lun — uldQ
Q

A

< Jlun = ullg + (IWllo.co + 1+ [ADfun — ullg
—_——

A1 A2

4161 [ P lultun = ulds2+ ] | funf?l sl
Q Q

A3 A4

161 [ Pl = a2+ i | Pl s~ uld
Q Q

As Ae

6
= ZAZ
=1

Using Lemma the following estimates for A; and As hold

A < Cuop(u)||u — uplla,
Ay < (Wlloeo + 1+ [ANCERZ(R)[Ju — up )2
< (IWllo,ee + 1+ [ANCInZ (R)6n (w)|Jun, — ulla-

From Sobolev imbedding theorem (cf. [1)
W*P(Q) — LY(Q), for p < q < p* =dp/(d — sp), @ C RY,
we have
[vllo,12 < Callvllas [[vllo,s < Callvfla; Yv €V, for d =2, (4.4)

where C, is a constant depending only on 2.
For As, combing Lemma (4.4) and the Holder inequality, we have

¢ (/Q(|u|2)3d9)1/3 </Q u|6dQ>l/6 (/Q s, — u|2dQ)1/2

Cllulld sllullosllu —unllo < CCLCllullzna(h)u — unlla-
Similarly, As, A4 and As have following estimates

Ay CCuCgZHUh”i Na(P) v — unlla,

As CCuCHluniZlulla(R)na(R) 1w = unla,

As

IN

IN

IAIA

and

As < CCuCoNlullZllunlla na(h)llw = unlla.

Combining (3.1)) and the above estimates, we have
M= A < (Cut (W oo + 1+ ANCERZ()) 00 (0)fur —
+H(CCLCE (ullg + Nlunllg + llunllZllwlla + llellZllunlla)na(B)llw = unlla
C3(0n(w) +1a(h)) |u = uplla

Cs (31 (u) + ma(h))
= T— aon() + na(h)

A

IA

A

)U(Ah,ump% VpeW,

where

C5 = max {Cu + (W llo.c0 + 1+ [A) Cinz (h), CCuCS (lullg + lunlla + llunlZulla + IIUIIE\IUhIIa}-

This is the desired result (4.2) and (4.3)) follows immediately. O



Corollary 4.1. Under the conditions of Theorem[3.1], we have the following error estimate:

Bun) ~ B(w) < S up), p e W. (4.5
where
Ci = Cs + 2 CuCB (lula + lunlla)®

2
Moreover, if h is such small that

Ca(6n(w) +1a(h))
1= a(0n(u) + 14 (h))

the following explicit and asymptotic result holds

By = E(up) = (A, un,p) < E, VpeW, (4.6)

<1,

where EE denotes an asymptotically lower bound of the ground state energy E.
Proof. From the definition of ground state energy, we have
B(u) = A —/ SlufidQ, B(un) = M —/ S upldde.
02 02

Then, we have the following formulas

E(up) —E() = (Ap—2A) +/Q %(|u\4 — |up|HdQ =: A; + As. (4.7)
Ay
Az

Using (4.2)), the following inequality holds
Cs (5h (u) + %(h))
1 — (6 (u) + na(h)

For As, using Lemma (3.1)), the Holder inequality and the triangle inequality, we have following
estimates

Ay

)77(Ah,uh, p), VPEW. (4.8)

Ay < %/(|u|+|uh|)3|u—uh|d9
Q
9 1/2 1/2
< g(/ (el + ) dQ) (/ |u—uh|2dQ>
Q Q
¢ ¢
< Slllul+ un][[§6llv — unllo < 5 (lullo,g + llunl 0,6)°|lw — unllo
¢
< §CuC§3z(||U||a+||Uh||a)377a(h)||u—uh|\a
3

< SCuCG(1ulla + llunlla)*nalh)
— 2 1 —a(dn(u) +n.(h))

The combination of (4.7)), (4.8]) and (4.9)) leads to
C36n(u) + (03 + %Cucsgz(uu”a + ||uh||a)3)77a(h)

N(Ansun, P), Vp € W. (4.9)

E - F Ah, U,
04(5h(u) + Na (h))
A b b
1= a(ou(e) + na()) " P
where ¢
Cy=Cs + §Cu03(IIUI|a + Jlunlla)®.
Hence we obtain the desired result (4.5) and (4.6) can be derived easily. O]

Remark 4.1. Practically, Theorem[{.1 and Corollary[4.1 are used with n(A, un, p) = n(An, up, P*)
where p* is a numerical approzimation of the dual problem (3.10) and that it is not necessary to
know the exact auxiliary function p.



5 Numerical examples

In this section, two numerical examples are presented to validate the efficiency of the computable
a posteriori error estimate, the upper bounds of the error estimates for the principal eigenvalue
and ground state energy, the lower bounds of the principal eigenvalue and the ground state energy.

In order to give the asymptotically accurate a posteriori error estimate 7(Ap, un, p), we need to
solve the auxiliary problem with enough accuracy by some type of numerical method. Here,
the auxiliary problem is solved by the finite element method on the same mesh 7, and the
H(div; Q) conforming finite element space Wy, that is defined as follows [12]

W = {w € W : w|x € RT,,VK € n}

where RT),, = (Pp)d + xP, and P, denotes the polynomial space with the degree no more than p.
Then the approximate solution of the auxiliary problem (3.12)) is defined as follows: Find p} € W}
such that

a*(py,an) = Flan), Va, € Wi (5.1)

After obtaining pj,, we can compute the a posteriori error estimate n(Ap, up, pj) as in . Based
on Ap and n(Ap, up, Py;), we can obtain the asymptotically lower bound with p = pj, for the
principal eigenvalue A. Furthermore, we can also get an asymptotically lower bound of the ground
state energy E,f

Remark 5.1. In order to give an accurate a posteriori error estimator, it is a reasonable way to
solve the auxiliary problem with some type of numerical method. Of course, we can also use
some simple local computing method to produce a function pp to obtain an asymptotically upper
bound of the error estimate for the eigenfunction approximation (cf. [l]).

Example 5.1. In this example, we consider the ground state solution of GPE for BEC with
¢=1, W(x) = 2%+ 23 and unit square Q = (0,1) x (0,1).

09
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02

01

Figure 1: The initial mesh for the unit square.

In this example, the initial mesh 7, with h; = 1/10 is showed in Figure [1| which is gen-
erated by Delaunay method. Then we produce a sequence of meshes {7}, by the regu-
lar refinement (connecting the midpoints of each edge) from 7y, and then the mesh sizes are
ha = 1/20, ---, hg = 1/320. Based on this sequence of meshes, a sequence of linear conforming
finite element space {Vj, }i_; and H(div;Q) conforming finite element space {W} }?_, are built.
Since the exact eigenvalue is not known, we choose an adequately accurate approximation obtained
by the quadratic finite element method on the mesh 7, as the exact principal eigenpair for our
numerical tests.

First we solve the GPE problem in {V,,,}¢_, and the auxiliary problem in {W} }¢_,,
respectively. The corresponding numerical results are presented in Figure [2] which shows that the
a posteriori error estimate n(\n, un, p;) is efficient when we solve the auxiliary problem in W}. In
Figure we can find that the eigenvalue approximation AL and ground state energy approximation



E,f are really asymptotically lower bounds for the principal eigenvalue A and ground state energy
E(u), respectively. When the mesh has more than approximately 312 elements, the approximations
)\,LL and E}f are really below the exact principal eigenvalue A and the exact ground state energy,
respectively.

Errors for linear element method , Errors for linear element method ) Errors for linear element method
10 10

O,
=¥ 0,00

= = slope=-05

Errors

-
) A -e- E(-Ey

107 N =H=n0,u, 00 =¥t 0,01
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0 Oy 0 - Ew-Ew)

2 3

=00, 00 =000, 00
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10° 10 10° 10° 10" 10° 10° 10° 10°
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Figure 2: The errors for the unit square domain when the eigenvalue problem is solved by the linear
finite element method, where 1(An, un, pj,) denotes the a posteriori error estimator n(An, un, pj,) when the
auxiliary problem is solved in W, AL denotes the asymptotically lower bound of the principal eigenvalue
and EF denotes the asymptotically lower bound of the ground state energy.

Example 5.2. In the second example, we solve the ground state solution of GPE for BEC
with ¢ = 1, W(z) = 22 + 23 on the L shape domain Q = (—1,1) x (—1,1)/[0,1) x (—1,0].

Since €2 has a re-entrant corner, the singularity of the principal eigenfunction is expected. The
convergence order for the eigenvalue approximation by the linear finite element method is less than
2 which is the order predicted by the theory for regular eigenfunctions. Since the exact eigenvalue
is not known, we also choose an adequately accurate approximation obtained by the quadratic
finite element method on the mesh which is refined by 16 times adaptively as the exact principal
eigenpair for our numerical tests. In order to handle the singularity of the eigenfunction, the GPE
is solved by the adaptive finite element method (cf. [11]).

This example is presented to validate the results in this paper also hold on the adaptive meshes.

A standard adaptive mesh process can be described by the following one
---Solve — Estimate — Mark — Refine- -

More precisely, to get Tj, ., from T}, , we first solve the discrete equation on T}, to get the
approximate solution and then calculate the a posteriori error estimator on each mesh element.
Next, we mark the elements with big errors and these elements are refined in such a way that the
triangulation is still shape regular and conforming.

For the computable-type a posteriori estimator can be defined as follows:

. 1/2
nk Ay un, P) = (IAnun — Wup — Cujp + divpl[§ x + [P — Vun g x) 2, (5.2)

In order to compared with the effect of residual error estimator, we give the definition of the
residual type a posteriori error estimator as follows: Define the element residual Ry (A, up) and
the jump residual Jg(up) as follows:

RK()\hauh) = /\huh—C|uh|2uh—Wuh—|—Auh, in K €Ty,
Te(up) = =Vui -vT —Vu, v = [[Vuplle - ve, oneé€ &,

where &5, denotes the interior edge set in the mesh 7y, e is the common side of elements K and
K~ with unit outward normals v* and v, respectively, and v, = v~. For K € Ty, we define the
local error indicator 0, (Ap, up, K) as follows

T (Any wny K) o= Bl RicOnyun) 5+ D hell Te(un) e (5.3)
ec&p,eCOK
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Then we define the global a posteriori error estimator 1yq(Ap, ur) as

Nad(An, un) =
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Figure 3: The initial mesh of L-shape domain (left), the mesh after 7 adaptive refinements using the
a posteriori error estimator 7qq4(An,ur) (middle) and the mesh after 7 adaptive refinements using the a
posteriori error estimator n(An, un, pr) (right).

In this example, we solve (2.5) in the linear conforming finite element space V31 (or V4, 2) and
solve the auxiliary problem (5.1) in the finite element space W}, | (or W} ,), respectively. Here,
Vi1 and W} | denote the finite element spaces based on the meshes which are refined by using of the
a posteriori error estimator 7gq(An,1, Un,1), Va2 and W}h2 denote the finite element spaces based on
the meshes which are refined by using the a posteriori error estimator 1n(Ap 2, un 2, Ph,2). Figure
shows the initial mesh (left), the adaptive meshes after 7 refinements by using the a posteriori error
estimator 7,q(Ap 1, up,1) (middle) and the a posteriori error estimator 1n(Ap 2, un,2, Pr2) (right),
respectively. The corresponding numerical results are presented in Figure |4| which shows that
the a posteriori error estimate n(Ap 2, Un,2, p;kz,2) is more efficient than 7,4(Ap,1,un,1) even on the
adaptive meshes when the auxiliary problem is solved in W,ll,z. Figure 4| also shows )\ﬁ and E,f are
really asymptotically lower bounds for the principal eigenvalue A and the ground state energy F(u),
respectively. When the meshes has more than approximately 982 elements, the approximations
)\,6717 )\,LMQ, E,ﬁl and E,ﬁQ are really below the exact principal eigenvalue A and the exact ground

state energy FE, respectively.

Errors for linear finite element method
10*
.e'naﬂ()\h‘l'uh‘l)
* ”an()‘n‘z'uh‘z)

1
n()\h‘l'uh‘l‘ Py

+ n()\h‘Tuh‘Z‘ p;z)

== slope=-0.5

Errors

Errors for linear finite element method

Errors for linear finite element method

L

i
L

A,

== slope=-0.5

¥ E(u)—Et‘ .
-+ E(u)—E'h“z

== slope=-0.5

10*
Number of elements

10°
Number of elements

Figure 4: The errors for the L shape domain when the eigenvalue problem is solved by the linear finite
element method. Here, n(An,1,un 1, p}m) denotes N(An,1,un,1,Ph,1) When the auxiliary problem is solved
in W,ll,l on the meshes which are generated by adaptive refinement with the a posteriori error estimator
Naa(An,1,Un,1), N(An,2, Un,2, Ph o) denotes 1n(An 2, un 2, Pj 2) when the auxiliary problem is solved in W ,
on the meshes which are generated by using the a posteriori error estimator n(An,2, un,2, p}Z’Q).

Remark 5.2. In Figure we can see that the new a posteriori error estimator n(Ap 2, Un,2, pk,z) 18
smaller than n(An1, Uk, 1, p,ll)l) and both smaller than the residual type a posteriori error estimator
Nad(An1,un1). Thus the error estimator n(An, un, py) is more efficient than the residual type one
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Nad(An,up).  In addition, we can adjust the efficiency of n(An,un,ph) by solving the auxiliary
problem in different spaces W7 .

6 Concluding remarks

In this paper, we give a computable error estimate of the general conforming finite element methods
of the GPE for the ground state of BEC on general meshes. Furthermore, the asymptotically lower
bounds of the principal eigenvalue and ground state energy can be obtained by the computable
error estimate. Some numerical examples are provided to demonstrate the validation of the effi-
ciency of the computable error estimator and the asymptotically lower bounds for the principal
eigenvalue and ground state energy. The method here can be extended to many other semilinear
eigenvalue problems such as the Kohn-Sham model for Schrédinger equation. Moreover, we can
adopt the efficient numerical methods to obtain these lower bounds, such as multilevel correction
and multigrid method (cf. [26, B7]). We can also adopt some efficient postprocessing methods (cf.
[3, [, [34]) to get the approximations of the auxiliary problem .

From the definition (4.3)), (4.6) and numerical examples, we find the accuracy of A\Z and EF is
not optimal. How to produce the lower bounds with the optimal accuracy will be our future work.
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