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Abstract: This study deals with the generalized Zakharov system with
magnetic field. First of all, we construct a kind of blow-up solutions and
establish the existence of blow-up solutions to the system through con-
sidering an elliptic system. Next, we show the nonlinear instability for
a kind of periodic solutions. In addition, we consider the concentration
properties of blow-up solutions for the system under study. At the end
of this paper, we establish the global existence of weak solutions to the
Cauchy problem of the system under consideration.
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1 Introduction

In this paper, we study the Cauchy problem of a generalized Zakharov
system with magnetic field:

iE; + AE —nE +i(EAB) =0,
%ntt —An = A’EF) (11)
AB —iny x(vv x (EAE)) + 3B =0,

E(0,z) = Eo(z),n(0,2) = no(z), n:(0, z) = ny(x), (1.2)
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where E(t,z) is a vector valued function from R™ x R? into C* and denotes
the slowly varying complex amplitude of the high-frequency electric field,
n(t,z) is a function from R™ x R? into R and represents the fluctuation of
the electron density from its equilibrium, the self-generated magnetic field B
is a vector-valued function from Rt x R? into R3, 72 = —1, constants n > 0,
B <0, E is the complex conjugate of E, and A means the exterior product of
vector-valued functions. System (1.1) describes the spontaneous generation
of a magnetic field in a cold plasma (see Ref. [8] for the physical derivation).

If we neglect the magnetic field, system (1.1) reduces the following clas-

sical Zakharov system:

E,+ A AE—-—nE=0
{z : + n , (28)

Cigntt — An = A|:E|27
0

which describes the propagation of Langmuir waves (cf. [17]). There are
many papers concerning the well-posedness of the Zakharov system (ZS)
(see e.g., [1, 3, 4, 6, 12, 13, 14] and references therein). On this topic, for
(1.1) there are also some works ( cf. [2, 5, 7, 10, 18]).

Let E = (Ey, B»,0), B = —inF ! (‘g'g‘iﬁf (E A E)), Ei(t,z), Bs(t,z) €

C, z € R?. For n; € H™!, there exist wy € L*(R?) and v, € L?(R?) such
that n.(0,z) = ny = —divvy + wp. In this case, (1.1)-(1.2) can be rewritten
as follows:

iE,+ AE—-nE+i(EAB(E)) =0,

ny = —divv + wy,

hvi = =Vt |BP)

E(O,ZL’) = EO(‘T)un(Oax) = no(.r),V(O,l’) = V0<x)‘

(1.3)

In the present paper, we first study the existence of blow-up solutions for
the Cauchy problem (1.1)-(1.2). We construct a kind of blow-up solutions to
(1.1)-(1.2) on [0,T), which has the form:

E= (B, —iB.,0), n(taz)= (T"it)2N (T"“_”t) , (1.4)

where , ~
o _ @ i(relfm=) P (£)
1 T ¢ \/§ )

P(z) = P(|z|) and N(z) = N(|z|) are real valued functions on R?, and 6 € R
and w > 0. In addition, let

B= (0,0, (Ti:)zé (Txft» , (1.5)
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where B(z) = B(|z]) is a real-valued function on R? and (P, N, B) solves
the following system:

AP — P+ PB=NP,
A2 (TQNM 4 6rN, + 6.7\7> ~ AN = A|PP?,
AB+ BA(T - t)2/\2f5’ = nA\|PJ2.
Here, r = |z], A = 0, + &, and A = = Let
- P N
(P.) = ( )

(n+1)2 " n+1

e i
5= (= ™).

we then obtain
€[2

{ AP =P+ #PJT_._I <\£|2—603(T—t)2)\2‘7(132)> = #NP7

1.6
A2 (r’N,, + 6rN, +6N) — AN = A|P|?. (16)

We shall consider the existence of solutions for (1.6) in H! x L? for VT > 0,
0 <t < T fixed, where H}! := {u; v € H'(R?) and v is radially symmetric},
L? := {u; u € L*(R?) and u is radially symmetric}. If (Pyr_y, Na7—t) €
H! x L? is a solution to (1.6), then (E,n) defined in (1.4) is a blow-up
solution to the Cauchy problem (1.1)-(1.2), which will be shown in Theorem
1.1. When g8 =0, (1.6) becomes the following form

1 (1.7)

AP — P+ #]ﬁ ——NP,
A2 (r®N,, + 6rN, + 6N) — AN = A|P|?.

If (Py,Ny) € H} x L? is a solution to (1.7), then (E,n) defined in (1.4) is a
self-similar blow-up solution to (1.1)-(1.2) with g = 0.
The main results of this paper states as follows. At first, we have

Theorem 1.1 (Existence of blow-up solutions to (1.1)-(1.2))
For VT > 0,0 <t <T, there exist \p with 0 < A < Ap, and a solution
(Px1—t, Nx7_¢) to (1.6) such that for V 6 € R,
W NAT t (T t)
(T =1)?(n+1)’
is a blow-up solution to (1.1)-(1.2) and

E= (El, —Z'EhO), n

NE|| g1 + ||nl[z2 + ]| g2 — +o00 ast = T,
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B::(Qa(n+£§;_tﬁfglQﬂ”—&gi—iﬁﬂ]xpa)>'

y i(9+74<l”f+t>—f_‘%it) Pz £4)
Here, Fy = 7%€ -

BT ER and

H™' = {u: 3w € L*(R?) such that u= -V -w and ||ul|z- = ||w||z2} .
O

Next, the following theorem concerns the nonlinear instability of minimal
periodic solutions to the Cauchy problem (1.1)-(1.2) with 5 = 0, which will
be checked in Section 3.

Theorem 1.2 (Instability of minimal periodic solution to (1.1)-(1.2)
with = 0)

Let (E(t),n(t)) be a minimal periodic solution to (1.1)-(1.2) with B = 0,
where

(w0 Qub(x — xy)  whe®HOQ(ub (x — )
Ew_( i+ D T R+ ) ’0>’

CWQP(W' A (z — x0))
B n+1

Q 1is the unique positive radial solution of the equation

Y

AV -V +V?=0

in R, w > 0, 0 € R, xg € R%. Then there exists {(Bo., noe,n1c)} such
that as € — 0, (Eqe, noe,n1) — (£(0),n(0),0) in Hy, k > 1, and (E., n.)
blows up in finite time for some T. > 0 in Hy, where (Ec,n.) is a solution to
(1.1)-(1.2) for B = 0 with the initial data (Eqo., noe,n12), and Hy, = H*(R?) x
HM1(R?) x H*2(R?). That is, (E(0),n(0)) is orbitally unstable in Hy, for all
k> 1 and (E(t),n(t)) is strongly unstable in the sense of instability induced
by blow-up. O

In addition, some concentration properties of blow-up solutions to the
Cauchy problem (1.3) holds.

Theorem 1.3 (Concentration properties of blow-up solutions)

If |Ellg: + |Inll2 + || V]2 = +00 as t — T, where (E,n,v) is a blow-up
solution to (1.3) in H'(R?) x L*(R?) x L*(R?) on [0,T), then the following
properties hold:



(1) If n,(0) € H™ and E,n are radial functions of ||, then one has

.. ) > .
\V/R > O, h?i)}ll;lf HE(t,.fL')HL (B(0,R)) = HQ”L

In addition, provided that
3Rz n

2
Q|72 < B2 < , where —— < § < 1, (1.8)
n+1 n n+1

then there exists my,(||Eol/22) > 0 such that

VR > 0, liItIi)ijI}f In(t, ) || L1 (B0,R) = M-

(2) If n,(0) € H™' and E,n are non-radial functions of |x|, there is then
a function t — x(t) € R? such that

VR > 0, h?i}_/pf HE(tvx)HLZ(B(:B(t),R)) Z HQH%z

Moreover, under the assumption (1.8), there exist m,(||[Eol|3.) > 0 and a
function t — x(t) € R? such that

lim inf ¢ > .
im in [n(t, 2)|| L1 (B@),R) = M

(3) If ny(0) € H', ny(0) & H™' and B,n are radial functions of |z|,
there is then a sequence t, — T as k — 400 such that

VR > O, hlgloIolf ||E(tk7$)||L2(B(O,R)) Z ||Q||L2

In addition, under the assumption (1.8), there exists ty — T as k — 400
such that

lim inf ||n(t > My,
iminf |[n(te, o) L1 so.m) = Mn

(4) If ny(0) € H', ny(0) € H' and E,n are non-radial functions of |z|,
there then exist t, — T as k — +o0o and x;, such that

VR > 0, lligl—&gof ||E(tka$)||L2(B(zk7R)) Z ||Q||L2

Furthermore, under the assumption (1.8), there exist t, — T as k — 400
and x;, such that
lliriligof Hn(tk, m)HLl(B(xk,R)) > my,. O
At last, the following global existence result for the Cauchy problem (1.1)-
(1.2) is valid.



2
Theorem 1.4 (Global existence for the case |E|7, < HQ”L2)

IfEy € H'(R?), ny € L(R?), my € H'(R?) and [|Eo|l2: < "2 then

there ezists a global weak solution (E,n) to the Cauchy problem (1.1)-(1.2)
such that

E e L™ (RY; H'(R?), ne L (R*;L}(R?). 0

2 Existence of blow-up solutions to (1.1)-(1.2)

In this section, we will prove Theorem 1.1.

2.1 Some properties of solutions to (1.6)

In this subsection, we give several lemmas and propositions concerning
the properties of solutions to (1.6). Since T'— t is fixed, for convenience, we
denote (P)”T,t, N)\,Tft) by (P)\, N)\)

Lemma 2.1 Assume that (E,n,v) is a regular solution to (1.3). Then
(E,n,v) satisfies

1)Vt € (0,7), [E®)[7. = [[Eoll7:;

2) d;—gt) = /}R2 wo(n + |E?), where

I(t) = I(E@),n(

,n(t), v(t))
2 1 2 1 2 2
= IVE+5 [ In"+55 [ v+ [ nlE|
R2 2 R2 260 R2 R2

o €17
2 Jpo €12 =8

Proof. Multiplying the first equation of (1.3) by E, we obtain 1). Multiply-

ing the first equation of (1.3) by E,, the second equation of (1.3) by n and

the third equation of (1.3) by v, we derive 2). O
By a direct computation, we obtain

| F(E AE)dE.

Proposition 2.2 If {(Pyr_s, Nax7—¢)} C H} x L? is a sequence of nontriv-
ial solutions to (1.6) in the sense of distribution and . glfT(HP)"T*tH m +
<

|Nss—illmr) > ¢ > 0, then (E,n) defined in (1.4) is a solution to (1.1)-

(1.2), and (E,n,v) is a solution to (1.3), where v(z,t) = %_(;—:)37“]\/:\ (74),
n; =V -v, and

(E(t),n(t), g—?) e H' x L* x H™,



B+ @l + 5| = +ooastsT, (2.1)

B2 = 12 22)

10 = s | [vR@r+ 228y 4 L / (el + 1)
sy e P g [ et

which implies by Lemma 2.1 that

NPy 1 / 21,12 2
VP (2)|? S — A 1) N
/IR2 (' \(@) +77+1>+2(?7+1) IR{2< 2+ 1) Ny

. |€|2
2(n+ 1) Jro [€2 = BG(T — 1)X2

| F(P3)|* = 0. (2.3)

Lemma 2.3(Weinstein [15]) If u € H'(R?), then

1, 4 [l I 2 (r2)

=llu Vu 24
2” ”L‘l(R2 = HQHLZ R?) || ”L2 R2)- ( )

Proposition 2.4 If (Py, Ny) € H} x L? is a nontrivial solution to (1.6) in

the sense of distributions, then we have

2 oy 1 nlé|? 21 (2 2
0 [ 0vR R = g - [ minr).

2 _ 1 77|§’2 2Y12 21,12 2
2) RQ‘P/\‘ - 2(77+1) ( R? ‘§|2—Bcg(T—t)2)\2‘f(P/\)| +/R?<)\ ‘x’ +1)’N/\‘ ):

5 [ pe> [ 1o

Proof. Step 1 Multiplying the first equation of (1.6) by P, and then
integrating in R?, we obtain 1).
Step 2 By 1) and (2.3), we drive 2).



Step 3 Using (2.3), we get

1 n+1 1
(n+1) WRF 2/(PAHv)jL—?— J%—§/A%ﬁm
R2

R?

e
(/ e P BaT (Pf)'2> ‘

From the above equality, it follows that

1 1 1
(n+1) /|VAF——/ % +—/(P}wa+—/nvwW@
R2 2 R2 2 ]R2 2 R2
([ rt- [ e PR <o
R2 g2 |€)? — B3 (T —t)2A

which yields that

1
|VRF——/1%<0 (2.5)
RQ 2 RQ
By (2.5) and Lemma 2.3, we conclude 3). O

Lemma 2.5

1) (Regularity of (1.6)).

If (Py, Ny) € H' x L? is a radially symmetric solution to (1.6) in the sense
of distribution, then (Py, Ny) € C*° x C* and is a classical solution to (1.6).

2) (An equivalent system of (1.6)).

Let (Py, Ny) € H' x LN C* x C* be radially symmetric. Then system
(1.6) is equivalent to the following system:

AP — P+~LPF‘(———@L——fG%)— 1 NP,

|€]2— B (T—1)2\2 n+1 (26)
2.6
N(r) = W/ 2P(s) P (5)(\28* — 1)"/2ds,
b
3) (Decay solution of (1.6) at infinity).
If (Py,N)) € H' x L? is a solution of (1.6) in the sense of distribution,

then there exists constants 6 > 0 and C), > 0 for £ > 0 such that

Vi >0, Vo, |PP(2)] < Cre ¥, INW(2)] < Ci

—_—. O
< T

Remark 2.1. The proof of Lemma 2.5 is similar to that of the same result
as the following elliptic system

AP—P—NP,
A(r?N,, + 6rN, + 6N) — AN = A|P|?,
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which was given in [3]. O
Proposition 2.6 (Asymptotics behavior of solution (P), N,) as A — 0)

If (P\,,Ny,) € H' x L? is a nontrivial radially symmetric solution to
(1.6) in the sense of distributions, A\, — 0 as n — 400, and there exists
C > 0 such that || Py, |2 < C, then there is a subsequence {(Py,, Ny,)} and
a radially symmetric solution V' to

AV —V +V?=0in R? (2.7)

such that
(P, Ny,) = (V,=V?)in H* x L*as \, — 0.

Moreover, if Py, (r) > 0 for Vr > 0, then V = Q.
Proof. From 2) of Proposition 2.4, we obtain

Ui ‘5’2 242
Ny |? < ¢, and / F(P <ec.
R2| [T s e an n4+1 Jgo 15\2—&3(7’—15)%' (AP =e

Using Holder’s inequality and Lemma 2.3, we derive from 1) and 2) in Propo-
sition 2.4 as well as the above two inequalities that

[wersimpy sere( [ me) ([ er)

R2 R2 R2

cere( [ mr) ([imr) ([avar+ipm)
R2 R? R?

2
gm(/ <|VPM|2+\PMF>) ,
RQ

which concludes that
[avn P ip P <e
RQ

Since H! and L? are both reflexive Banach spaces, there exist P € H} and
N € L? such that

Py, = Pin H}, and N), — N in L? as n — +oo.

Since the imbedding H}! < LP, 2 < p < +o0, is compact, | Py
in L2, and

2p,, — |P|>P

n ‘

A|P)\n|2 — A‘P|2, ]\[)\nP)\n — NP



in the sense of distribution. From

U 1 Bei(T —1)°A% 2 T2
77+1PA"]: (|§|2—5C%(T—t)2/\%f(|P)\n‘ )] — 0in L7 as n — o0,
(2.8)

it follows that

Ui |€|2 2 Ui 2 . 2
Py, F~ F(|P — ——P|P|*in L2
N1 (HQ—&ﬂT—ﬂ”2(|M|) n+1| [in £

Therefore, (P, N) is a solution to the system

AP - P+ L|PPP = L NP,
_AN = AP,

in the sense of distribution. Hence, there exists V' (a radially symmetric
solution to (2.7)) such that

P=V, N=-V

Since Py, — V'in L} one has | Py, |*> — |V]?in L% and Ny, — —V?in L?asn —
+00. Thus, using (2.8), we have

lim (IVPy P+ |Pr]?)

n——+0o R

, 1 nl€? /
= lim —— F(P} Ny |P

- [ = v - /w LavvE+ v

where we apply the identity / V|* = / (|VV 2+ |V|?) with equation (2.7).
R? R2

Therefore, one has

Py, — Vin H! as n — +oc.

Since Ny, — —V?in L? as n — +00, by the weakly lower semi-continuity
of norm, we get

|Vﬁghmm{/|NMR (2.9)
R2 n—+00 [p2

On the other hand, by 2) of Proposition 2.4, we have

limsup [ |Ny,|?
n—-+oo R2

10



. ¢? 2 \12
<1 2 +1/ P 2—/ U F(P
—1ﬁiﬁ(<” ) 18 = | =g —ome )

=mn+n/’WP—n/\vﬁ=/“Wh (2.10)
R2 R2 R2

where we use Py, — V in H! as n — 400, (2.8) and the Pohozaev identity

/ V|* = 2/ |V|? with equation (2.7). By Ny, — —V?in L? as n — +o0,
R2 R2

we derive from (2.9) and (2.10) that

Ny, — —V?in L? as n — +oo0.

In view of Py, > 0, and Py, — V in H! as n — 400, by 3) of Proposition
24, we get V>0 and V # 0. Applying the uniqueness theorem of positive
radial solutions to (2.7), which was proved in [9], we know that V = Q. O
Proposition 2.7 (Asymptotics behavior of solution (P r_;, Nxr_:) as
t—1T)

Let A > 0 and 7" > 0 be fixed. If (Pa7—,,Nar—,) € H} X L? is a
nontrivial radially symmetric solution to (1.6) in the sense of distribution,
tn, = T as n — 400, and there exists C' > 0 such that |[|Pyr_¢, ||z2 < C, then
there is a subsequence {(Pxr-t,, Nx7-s,)} such that

(Pxt—t,, Nx7-t,) = (P\,Ny) in H' x L* as t, — T,

where (Py, N)) € H' x L? is a nontrivial radially symmetric solution to (1.7)
in the sense of distribution.

Proof. As is shown in the proof of Proposition 2.6, it follows from
| Pr1—t,|lz2 < C that | Pxr—t,||m < cand ||[Nxr_¢,|/z2 < c for some positive
constant c. Thus, there exist a subsequence denoted again by (P r—¢,, Nx1—t,)
and (Py, N,) € H! x L? such that

(Par—t,s Nazt,) = (Py,Ny) in H' x L*as t, — T.

Then it follows from By 1, — nP7 € L*ast, — T that (P, Ny) is a radially
symmetric solution to (1.6) in the sense of distribution. Similar to the proof
of Proposition 2.6, we obtain that

(Pxt—t,, Nx7-t,) — (P\,Ny) in H' x L* as t,, — T. O

2.2 Existence of solutions to (1.6)

In this subsection, we prove the existence of solutions to (1.6) and establish
some properties for them.

11



Theorem 2.8 (Existence of solutions (P, N,) to (1.6))
For VT' > 0, 0 <t < T, there exists a solution (Py, Ny) to (1.6) for some
Ar with 0 < A < Ap. Moreover, (Py, Ny) — (Q,—Q?) in H' x L?as A — 0.0
We shall prove this theorem by using Banach fixed point theorem and
the maximum principle at the end of this section.
In fact, if (Py, Ny) is a solution to (1.6), where

Py=Q+hy, Ny=FE((Q+h)?,

Fy(u) = m /;(U(s))/(w2 —1)"2ds, (2.11)

then

AQ+hy) = (Q+hy)

Ui -1 |§‘2 2
@ (@ )
~ B(@Q+m)*)(@Q+ hy)
_ i) |

that is,
Ahy — hy + 3Q%hy

_ @ + 3Q%hy — nh3 — 3nh3Q + FA((Q + ha)?)(Q + hy)
n+1

+ G (@, 1),

where

B (T — 1)2\?
€7 = B (T — )22

Gr(Quhn) =~ (Q+ ) ( F(Q+ m?)) .

By the definition of F), we have

Q” 4 3Q%hy — nh3 — 3nh3Q + FA((Q + ha)?)(Q + ha)

= Zx(ha) + I (ha) + aa(ha) + Ca(ha), (2.12)

where

Zx(hy) = (FA(Q*) + @%@,

I(hy) = (FA(Q) + @%)ha + 2(FA(Qhy) + Qhy)Q,
0 (hn) = =3nh3Q + FA(h3)Q + 2FA(Qhy ),
Ca(ha) = =nh3 + FA(hX) .

12



Since L = (A — Id + 3Q?*) ™! is a bounded operator in H} and there exists
C > 0 such that ||L(u)||gz < C|lul||z2 for u € H}, which was proved in [3],
we know that (Py, N,) is a solution to (1.6), where P, = @ + hy, N, =
F\((Q + hy)?), if and only if hy is a fixed point of the operator

Zx(h Ix(h h h
Ty(h) :L< ) ) F ) ¥ Gl | oo m). (2.13)
n+1
We will show that Ty is a contraction mapping in the set Bs, = {u €

H?, ||u|lgz < d0}. Now, we give two key lemmas.
Lemma 2.9 ([3]) There exists A\g such that for 0 < A < Ao, u, v, w € H2,

IL(Ex(uv)w)|[ 2 < exol| Fa(uv)|| oo Jwll 22 < exgllull ([0l a2 llwl] 52, (2.14)
IL((FA(Qu) + Qu)v) [l i < exg A Jull g2 0]l 72 (2.15)
O

Lemma 2.10 For Ve > 0, T" > 0, there exists A\, > 0 such that for
0<A<Ar,
HG)\(Qa h)\)HLQ S g, (216)

where ||hy|| g < c.

Proof. By the properties of Fourier transform, we have
BA(T = 1)°)2

€17 = Beg (T — )2 A%

F(Q+ fm)

_|n 1
P P CRR L { )
B (T — 12N
P = BAT — 170
B n B (T — )2\ 9
=5 T S 1P — B — e W@ FQ 4 )

B n B (T —t)° N2
Tl 4 1 / €2 — BA(T — t)2\?

— ap v<Q+hA>f‘1<

| ||Ul 1N+ 1 Jge e+ hA)Q))

Fu(Q + ha)F((Q + ha)?).

Here,
O = {€eR?: [¢§]* < (T —1)°\%},

Qo ={EeR*: —Bc(T —t)°X* < [§P < —=NB(T — t)°\*},

and

Qs ={EeR*: [¢* > —NBG(T —t)>°N°}.

13



Since v(Q + hy), (Q + hy)? € L*(R?) implies that F(v(Q + hy)), F((Q +
hy)?) € L>=(RR?), one has that there exists ¢ > 0 such that

- Bey(T —)° N2 )
ooy 1+ 1 Jo, 0, 167 — BR(T — t)wf(v(@ + h))F(Q + hy)?)

< (1Ble3(T = 1)*A* + 1Blcg (T — £)°2%) .
By the Holder inequality and the Plancherel Theorem, we have

n I /Q |§\26foézﬁth1?)2A2 FO@+h)F(@Q+ ha)’)

2

IA

=] =

F|s
[N

o ([re@enr) ([ Fc@ )

o ) %
— <R2|v<cz+m>\> (/RQ!@MA\)
1

1
< = |oll2)|Q + a3
“ Nn+1

Thus for ||hy||g < ¢, there exists ¢ > 0 such that

IA
=~

C

IGA(Q, ha) |2 < eA? + cNA* + ¥

Therefore, for given ¢ > 0, there exist V. large enough and A, small enough
such that for N > N., 0 < X < ),

|GAQ, )| 2 < e.

The proof of Lemma 2.10 is completed. O
Now, we prove Theorem 2.8.
Proof of Theorem 2.8.

a) Existence of fixed points. We prove the existence of solutions to
(1.6) by Banach fixed pointed theorem. For any § > 0, we define

Ss={he H2: [huz <6},

It is sufficient to show that there exist g > 0 and Ar > 0 such that for all
0 < A < Ap, Ty is a contraction mapping of the set s, .
From (2.15) in Lemma 2.9 and h, hy, hy € X5, we obtain

——L(Z\(h))

’ il <N,
n

HE

14



——L(x(h))

1
n+1

< ON||h| 2,
2

H?

and
Hﬁhumm—uw»

< ON2||hy — ha 2.

HT

Applying (2.14) in Lemma 2.9 and h € Y5, we have

1
——L(qg\(h < CO||h|?
Srake®)| < Clal
)| <l
RS He
1
——L(ga(h1) —aa(ho))|| < C (Il + 1hallm2) 1P = holl 2,
n+1 2
and
1
——L(C\(h1) = Cx(h2))|| < C(ImllFz + [[hallFz2)1ha — holl 2.
7]+ 1 HE T [z
Therefore,

1Tz < € (A2 + X UAlz + [l + 1l + 1GA(Q, B 2
and
|7 (hn) = Ta(ho) 1z < IGA(Q ) = GA(Q, h)2)

+C||h1 — halluz (AQ + 1Pl + Nh2llaz + Al Fe + ||h2||§{g> :

Thus, from Lemma 2.10, we know that there exist dg > 0 and Ay > 0 such
that for all 0 < A < Ap,

T/\(h) < 250 for h € 250,

and for all hy, hy € X,
1
1T (ha) = Ta(ho)llmz < SliPa = hellm.
Thus, for all 0 < XA < Ap, T is a contraction mapping of the set ¥;5,. By
Banach fixed point Theorem, we know that there exists a unique fixed point

of the mapping 7y in the set Xs,, i.e., there exists a solution (Py, N,) to

15



(1.6).

b) Continuity of solutions (Py, N,) with respect to A in H' x
L?. Applying Lemma 2.9 and Lemma 2.10, with the dominated convergence
theorem, we obtain the uniform continuity of the function T)(h) : R x H* —
H?. Thus, we get the continuity of hy in H? with respect to A, i.e., the
continuity of Py = @ + hy in H? with respect to A. Thus, we prove that

Ny = F)\((Py)?) is continuous in L? with \. O
Proof of Theorem 1.1. Using Theorem 2.8, Proposition 2.8 and Propo-
sition 2.2, we obtain the results in Theorem 1.1. O

3 Instability of minimal periodic solutions to
(1.1)-(1.2) with =0

In this section, we prove Theorem 1.2 by applying Theorem 1.1. We first
consider a kind of minimal periodic solutions to (1.1)-(1.2), which has the
form:

(E(t),n(t) = (e“'V(2),[V(2)]),

Vi) = (Al i o),
V2m+1)  2(n+1)
AVy —wVi + [ViIPIVi] = 0, w > 0 and ||Vi|lz2 = ||Q|lz2- Applying the

uniqueness of positive radial solutions to AV —V + V3 = 0 in R?, we obtain
that there exist € R and 2y, € R? such that

Vi(z) = w%er(w%(x — xp)).

where

Now, we prove Theorem 1.2.
Proof of Theorem 1.2. Let

D=

60 = CoWw

Applying Theorem 1.1, we conclude that there exists a solution (P., N.) to
(1.7) for some gy with 0 < A = ¢ < ¢, which is is a blow-up solution to
(1.1)-(1.2) with ¢o = & and

= _ on
|Ec| g + |72 22 + ||a—;||H,1 — 400 ast — Ty,

where for V 0, € R,
ngef(%)

(T: =t)*(n+ 1)’

Es = (Elsa —iEN15, 0)7 ﬁs =

16



and

WQ TWe
We ei<96+4<1+f+w*T€+t)M
T. — ¢ V2(n+1)1/2

Moreover, according to Theorem 2.8, we get

Ele =

(P.,N.) = (Q,—Q* in H' x L* as ¢ — 0.

Choosing
1 1 -1
w€:~_a T6:~_7 95:~_7
CoE Co€ CoE
we obtain that (EE, fi.) is a blow-up solution to (1.1)-(1.2) with ¢y = ¢ and
the initial data E.(0) = Eq., n.(0) = 7., %(O) = 1., where

Eo. = (e"éo‘fﬂ2 —P5<x> , —ieiéo‘f# —PE(QJ) ,0) ,
Va+ 1)1 Val+ 1)1

o = A i = (el V. (o) + 2N ).
(Eoe, Mg, T112) = (EQ, s ,o) in H' x > x H ' as ¢ — 0,
n+1
and 0 0
o= (v v )
Let

[SIE
I

E.(t,z) = e’w2E, (wt,w (x — x0)> :

(x — x0)> :

We obtain that (E.(t,z),n.(t,z)) is a blow-up solution to (1.1)-(1.2) with
the initial data

[SIE

ne(t,r) = wn. (wt,w

NI
—~
8
|
S

(=]
~—
N———

N (0, 1) = nio(x) = e (w
Furthermore, for all £ > 1, we also have

(Eoe, nos, n12) — (£(0),1(0),0) in Hy as € — 0. O

17



4 Concentration properties of blow-up solu-
tions to (1.3)

In this section, we first give some lemmas and propositions which are key
to the proof of Theorem 1.3.

Lemma 4.1 (Merle [4]) Assume that there exists a sequence (vy, Ni) €
H'(R?) x L*(R?) such that as k — +o0,

|Vk|2 — Cl > 0, / Nk|Vk|2 — —Cg < 0,
R2 R2

1
/ \Vvk\z + 5/ ’Nk‘Q — Cy > 0.
R2 R2

Then there exist a constant Cy = Cy(C1, Cy, C3) > 0 and a sequence xy such

that
/ |Nk| > 04. O
|lz—xk|<1

Lemma 4.2 Assume that {v,,} is bounded in H'(R?) and

sup / |vy[Pdz — 0 for some R > 0.
yeR? J B(y,R)

Then v, — 0 in L*(R?).
Proof. By interpolation inequalities, for v € H'(R?) we have

ol Las.ry < lvllizme.ry 101 By,

where ¢ is a positive constant. Let By = B(0,R), By = B(y,, R), where
Y2 € 8B(O,R), B3 = B(y3>R)v By = B(y47R)v {y3ay4} = aBl N aBZ;"'? we
can cover R? by the above balls of radius R such that each point of R? is
contained in at most 3 balls. Therefore, by the above inequality,

lomlleny < csup [ Jom el (4.1)
yeR? J B(y,R)
By the assumptions of the lemma, v,, — 0 in L*(R?). O

Proposition 4.3  Assume that E, € H'(R?), |Eyl3. = ||Eoll7. > 0,
ni, € L*(R?), vi, € L*(R?), and there exist Ry > 0 and &y > 0 such that

yeR2

sup [ B < QI — (12)
ly—=z|<Ro

18



or for 19l < ||Eol|?. < WMz ity < § < 1, there is a constant
1+n 0ll L2 n +1 )
mn (]| Eol|32) > 0 such that
sup [ foula)] < ([Blf) ~ o (1.3
yeR? J|y—z|<Ro

Then there are C; > 0 and C5 > 0 such that
RG] / (VE[2 + gl + [vel?) < I(By, i vi).
RQ

In order to prove Proposition 4.3, we first define some functionals:

2
M) = [ vepsg [ [ aee-d [ FE

B = [ ver-3 [ mp-1 [ L ey

2 [ —
R n+1
G(E)z/ |VE|2—T/ B
R2 R2

It is clear from § < 0 that

M(E,n) > G(E) > G*(E).

Now we begin to prove Proposition 4.3 by contradiction.
Proof of Proposition 4.3. By the definition of M(E,n) and I(E,n,v),
we only need to prove that there exist C; > 0 and C5 > 0 such that

R2

Assume that there would be no positive constants C; > 0 and Cy > 0
satisfying (4.4). Then

1
AP = / |VE|* + 5/ [ng|> = +o0 as k — +oo, (4.5)
R? R?
and M(E
lim sup % <0. (4.6)
k—o0 k

Indeed, if A, < C, then we have M(Ey,n;) < C by using |[Ex|% = |Eol2,

M(E
which implies (4.4). If lim M

for all k& > ko, W > %, which also concludes (4.4).
k

= C > 0, then there exists ky > 0,

19



Let . |
- x _ x
Ex(x) = )\—kEk ()\—k) , and ng(x) = )\—knk <>\—k) :

Using the assumptions of Proposition 4.3 and (4.5), we obtain

/Rz Bl = /R By, /R (lVEW:)!2 + %!m(@ﬁ) —1 (A7)

1) We shall prove (4.4) under the assumption (4.2). At first, combining (4.2)
with (4.5), one has, for VR > 0, that

liminfsup/ IEx(2)* < [|Q|22 — do. (4.8)
ly—z|<R

k—4o00 y

By (4.7) and the Sobolev inequality, there exist positive constants C and Cs
such that

i< [ [En@)* < Cand O < / <|VEk(m)|2 + |Ek(x)|2> < Ch. (4.9)
R2 R2

By Lemma 4.2, we derive from (4.9) that there exists a positive constants d;
(depending only on ||Eg||3.) and a sequence xj, such that

[ Bz
lz—zt|<1

By the techniques of Concentration-Compactness Principle (see [11]) for the
case of dichotomy, we obtain that there exist £} and E,"(z) (going if nec-
essary to a subsequence) such that

Ey(x) = Ej(z) + By (),

where 3
Ej(x + z}) — ¢ in H', (4.10)
/I 1 Ei(w+ap)? 26, BT + 1B (@)]7: = [EollZ,
z|<
01 < lim |[Ey(2)l[7: < [1QIF2 — &,
and
lim sup G(E}) + lim sup G(E, " ()) < limsup G(E}) < 0. (4.11)
k—+o0 k—+o00 k—+o00

20



By the weakly lower semi-continuity of norm, we derive from (4.10) and
(4.11) that

G () +limsup G(E;y (x)) <0, and &; < || ]|22 < [|Q]|22 — o,

k——+o0

which implies that there exists ko > 0 such that Vk > ko,
GE (r)) < % <0. (4.12)

If [|[Ey (2)]|%, < [|Q||%2, we then get by Lemma 2.3 that G(E;™(x)) > 0,
which is contradictory to (4.12).
If |Ey"(2)]%. > ||Q|%,, then we derive from (4.12) that there exists a

positive constant C' depending only on ||Eo||7, such that / E (2)* > C.
R2

Similarly, by Lemma 4.2, there exist 6; > 0 and x% such that

[ @Rz
r—xy <

Using the same procedure as above, we obtain that there exist E% and EiR(x)
such that . . )
By (2) = B + B,
where EZ has the same properties as E} and E;™(z) as By ().
Applying the above procedure p times such that

IEYH)1Z: < @I, (4.13)

we have o
G (Eﬁ’R> < % < 0, for p large enough,

which is contradictory to (4.13). The proof of (4.4) under the assumption
(4.2) is completed.
2) In the following, we shall prove (4.4) under the assumption (4.3).
Since |Eg|%, = |Eol3, < 5||Q||L2, by Lemma 2.3, we have

8| VE|2, >

é||E~/<3||4 ||Q||2 - - =
2 L4 L2 Ui 4 Ui 2
= —||E > = F(ENE . 4.14

On the other hand, we derive from (4.6) and (4.14) that

limsup((1 —¢ </ IVE|? + / |7k |? +/ nk|Ek|>
k—+o0
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IN

~ 1
lim sup ((1 —0+9) (/ IVE|* + —/ |ﬁk|2)
k—+o00 R2 2 R2
-2 [ 1F@ABR+ [ )
R2 R2

lim sup M (Ey, 7z )

k—+o0

IN

1m sup I —
k—+o00 )‘k
< 0,

IN

which implies that
/ B = —C < —(1— )
]RQ

as k — oo (going if necessary to a subsequence), where we have used the
Sobolev inequality.

Using Lemma 4.1, we obtain that there exist a constant C' > 0 and a
sequence xj such that

/ B || > C > 0. (4.15)
T—TE | <

On the other hand, by the assumption (4.2) and the definition of 71y, using
the dominated convergence theorem, we have

lim inf (sup/ |ﬁk]> —0as R—0,
k—+o0 Y lz—y|<R

which is contradictory to (4.15). This completes the proof of Proposition 4.3.
O

Now we begin to prove Theorem 1.3.
Proof of Theorem 1.3.
(1) We shall prove the first part of Theorem 1.3 by contradiction for the
case: n,(0) € H™' and (E,n) is radial. Assume that there exist §, > 0,
Ry > 0 and a sequence t;, — T as k — oo such that

[P <1QIE - b, (4.16)
|z|<Ro
ez, QIZ, .
or for L= < |Eol|72 < o= with - <6 <1,
lim inf (/ ]n(tk,x)|> — 0, as R — 0. (4.17)
k—=+oo \ Jiz|<R
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1 @ 1 .
E(x) = )\—kE (tk, )\—k) , and ng(x) = pn (tk> )\_k) :
k

where A7 = | VE(ty, x)||3, — 00 as k — +o0.
Indeed, assume that |[VE(t)| < C for ¢ € [0,T). From [E(t)|]?. =
[Bo|12, one has [B(f)|2: < C and

B 1 U €17 -
om(n) = [ 1vEP =g [ B3 [ qrrmamr <

Lemma 2.1 then implies that

T <o e [ weiEpy
C+G(E)+%/ (n+ |E]?)?

R2
< C+I(t).

IN

Thus, by the Gronwall Lemma, we have I(t) < C, which contradicts || E(t)|| g1+
In(t)||zz + ||[v(t)||zz = 40 ast — T.
According to the definitions of E;, ng, G* and M, we have

3 IVE,|? = 1, /R ELJ? = /R B2, (4.18)
G (By) = AiiG%E(tk,x)) - )\%G*(E(tk»
and )
M(Ek, nk) = M(E(tk), n(tk))

A
Since n,(0) € H!, which implies that wy = 0, Lemma 2.1 yields that for

0<t<T,
](E(t),n(t),v(t)) = I(Eo,no,Vo) = ]0.

From M (E,n) < I(E,n,v), it follows that
G (BE(tr)) < M(E(tr), ni(tr)) < T(E(t), n(te), v () < o,
and

1 I
G (Bx) < M By, ni) = 15 M(B(te), ni(tr)) < A—‘; —~0ask—oo. (4.19)
k k
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Hence, one obtains that
lim sup G*(Eg) <0
k—o00
and
lim sup M (Eg,ng) < 0.
k—o00

On the other hand, one has

2 2
. . 4 > 3 ] 2— * > _— .
h;g(l)rolf y |Ex|* > . ll;gl;lf( g |IVE,| — G*(Ey)) > | >0, (4.20)

: 1 1 U ) .
lim su —/ n2<—/ E4—i——/ FENE)P<C, (421
kaoop2 R? k= 2 R2| k| 2 |€|2 _5| ( k k)l ( )

which are derived from (4.18), limsup M (Eg, n;) < 0, and
k—o0

. 1 1 Ui 17 =
] - E“——/ E,*—2 FE,ANE)*<0.
12;8£p2/R2(nk+! W) =5 Rz! il =3 |§|2—5| (Ex AER)|" <

According to (4.18) and (4.20), there exist (E,7) € H' x L? and a subse-
quence of {(Ey, nk)}, denoted again by {(Eg,n)}, such that

EkAEinHjandnkéﬁianask%+oo.

Since the embedding H? < LP(2 < p < +0o0) is compact, one has B, — E
in LT, Therefore, from (4.20), it follows that

. 2 .
E[* > . and E # 0. 4.22
(B> o and B2 (4.22)
Moreover, we derive from (4.16) that
IR <1Q1E: ~ 6 (1.23)
and from (4.17) that
i = 0. (4.24)

Thus E;, — E in L* and n;, — 7 in L? imply that
R2 R2
By (4.19), we have M(E,n) < lilgn inf M (Eg,ng) <0, that is,
—00
. 1 . 1 L \2
IVE|> — ﬂ/ B!+ —/ <ﬁ+ |E|2>
R2 2 R2 2 R2

24



el

n IV 17 ;
5. ('E' g EA

which yields that

”) <o

3 1 3
VR - ﬂ/ Bl <0, (4.25)
]R2 2 R2

However, by Lemma 2.3 and (4.23), we have

5 1 5
/ vEp - 1! / Bl >0,
R2 2 ]R2

which contradicts (4.25).
On the other hand, under the assumption (1.8), we have

n ¢ _

Then from the above inequality and (4.19), it follows that

(1-6) [ VEF+ [ mlBif+ [ nt<o
R2 R2 R2

Since nj, =7 =0in L2 and/

ng|Ex|? — / 7|E|? as k — 400, we have
R2 R2

(1- ) / VEP <0,
RQ

which is contradictory to

|z
R2 1+77

The proof of (1) of Theorem 1.3 is completed.

(2) Here, we show (2) for the case: n,(0) € H~! and (E,n) is non-
radial. Let m,,(||Eo|/z2) be defined in Proposition 4.3. Assume that there is
a subsequence t, — T as k — 400, Ry > 0, §g > 0 such that

and E # 0.

lim inf (sup/ |E(tk,l‘)|2d$) < [Ql372 — do
k |z—y|<Ro

—+00 y
or

lim inf (sup/ \n(tk,x)|dx> < m([|[Eo||£2) — do-
lz—y|<R

k—4o0 y
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Applying Proposition 4.3 with (E(tx), n(tx), v(tx)), we obtain
[ IVE@)F + (@) + (0 < cas b T,
R2
which is a contradiction. Thus, there exist x(t) and y(t) such that, for

VR > 0,
fimit [ B0 > |OF:
lz—z(t)|<R

t—=T

and

t—T

liminf/ |n(tk, )| > mn(||Eollz2) > 0,
lz—y(t)|<R

which concludes the proof of (2) of Theorem 1.3. A
(3) Now, we prove (3) and (4) for the case: n:(0) € H~* but n,(0) € HL.
Assume that there is no sequence t;, — T such that, for VR > 0,

lim inf (Sup/ |E(tk,33)|2d$> > HQH%%
k lz—y|<R

—+00 Yy

or

lim inf (sup/ |n(tk,3¢)|dl‘> > mp(||Eol|£2).
lz—y|<R

k—4o00 y

Then there are Ry, dy > 0 such that, for vVt € [0,T),

Y

wp/’ B(t,2)dz < ||QI% —
\x7y|<Ro

or

sup/ In(t, x)|de < my,(||Eol|r2) — do-
Yy J|z—y|<Ro

Applying Proposition 4.3, we obtain, for V¢ € [0, 7)),
IVE(t)|? + [n(te)]? + [v(te)]? < CLI(t) + Oy, (4.26)
RQ

In addition, from Lemmas 2.1, it follows for V¢ € [0,T") that
I(t) < I(0)+ /Ot I'(s)ds
(14 [l + I + B ) ds)
< ¢ (1 + /Ot(\n(s)ﬁg + |VE(3)|2Lz)ds)
(1+ [ AVEIE: + I + Vs (1.27)
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Using the Gronwall lemma, we derive from (4.26) and (4.27) that
vt € [0,7), [VE®)L2 + In(®)7: + [v(®)l[z: < C,

or equivalently,
vt € [OvT)7 |E(t)an(t)7nt(t)|H1 < Ca

which is a contradiction.

We remark that in the radial case, we only need to choose z, = 0 in
Theorem 1.3 in view of the obvious symmetry reasons and conservation of
the L? norm.

The proof of Theorem 1.3 is completed. O
. , eIz,
5 Global existence for the case [|Eo[|7, < =%
In this section, we prove Theorem 1.4. On one hand, we prove the global
2
existence of weak solutions to (1.3) for the case ||Eg||7. < ”ﬂf. On the

other hand, we use Proposition 4.3 to prove the global existence for the case

lQII?
IEoll3. = L2

Theorem 5.1 If Ej € H'(R?), ng € L*(R?), vo € L*(R?) and ||Eo|3, <
—L||@Q||?., then there is a global weak solution E € L*® (RT; H}(R?)), n €
n+1 L

L= (RT; L3(R?)), v € L™ (RT; L*(R?)) to (1.3), and (E,n, B(E)) is a weak

solution to (1.1) with initial data Eg, ng, n; = —divvg + wp.

Proof. Here we only give the uniform a priori estimates for the solutions
to (1.3). For more details of the proof of Theorem 5.1, we can refer to [10].
By Lemma 2.1, we have

dI(t 1
J:/ wo(n + [EJ) §2/ wg+—/ (n+ [E2)2
dt R2 R2 2 R2
2
We note that / IVE* — g/ [E|* > 0 for |E|2, < ”?Jllff, which is true
R2 R2

2
from Lemma 2.3, / |E[* > / |§+||}"(E A E)|?d¢ and the definition of
R2 w2 [§* — B

I, where

1 1
) - /WE|2+—/ |n\2+—2/ 1v|2+/ n|EJ?
R2 2 R2 200 R2 R2

2 —
3 [T En B
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1+ 1 1
Ry - R O s
R2 2 R2 2 R2 2C0 R2

Q 57 (2 )2
H1( e [ g iFEaBra)

Thus, we conclude that

dI(t 1
L32/ w§+—/ (n+|E|2)2§2/ wg + I(t),
dt R2 2 R2 R2

which together with the Gronwall Lemma implies that

1(t) < C(1(0), [[wol 2. (5.1)

On the other hand, in view of the Holder inequality, the Young inequality
and Lemma 2.3, we derive from (5.1) that

vz

1
IVE[Z: + 5llnlz: + 55
L 2! ST o2

U
C+ HnHLzHEHi4 + 5 Il

IN

IN

€+ Bl 2 + 5 EllL + 1 ||E||‘i4

|| ||
C + b2||nl| ;2 + ( + )

where 0 < b* < 1. Letting b* = 1, we obtain

402

IN

|IVE||2. < C, and ||v|2. < C.

Furthermore, letting 0 < b < 1, we have |n||?, < C.

2
Proof of Theorem 1.4 for the case |Ey|?, = ”ﬂi? )

Here we shall prove the global existence of weak solutions to (1.3) for the
Iell? e

case |[Eo||3. = by contradiction. Assume that there exists 7' > 0 such
that [|E| z: + HnHLz + ||v]|p2 = 400 as t — T. Applying Lemma 2.3 and

2
noting that ||E[2, = |Eo||3. = Hﬂ?; we get
2 N 4
/ VE[? — -/ B[ > 0. (5.2)
R2 2 R2
Similarly, one has
I(t) < C([lwoll 2, 1(0)). (5.3)
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By the definition of I, we derive from (5.2) and (5.3) that
G*(E(t)) < C, ||v]jz2 < C, and / (n+|E]?)* < C. (5.4)
R2

By |E(t)|> = (n + |E()|?) — n and (5.4), we obtain
IE®) Pz < C. (5.5)

Indeed, we can derive from n; = V - v + wq that

t
M@MISMWN+/HMMMMS
0

sc+Awwwm+mwmwso (5.6)

Combining (5.4) with (5.6), we establish (5.5).

In the proof of (1) of Theorem 1.3, we note that if |E|| g + ||n|/z2 +
|vllre = 400 as t — T, then ||VE| g1 — +00 as t — T. Thus, applying
Proposition 4.3, we obtain that there is x(t) such that

E(t,z +2(t)] = |QIIf200—0 as t — T,

in the distribution sense, where d,—q is the usual Dirac function. Moreover,
by (5.5), we have
HQH%ﬂSw:O € H_17

which is impossible. Therefore, the solution (E(t),n(t)) to (1.1)-(1.2) exists
globally.
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