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1 Introduction

In this paper, we study the Cauchy problem of a generalized Zakharov
system with magnetic field:

iEt +∆E− nE+ i(E ∧B) = 0,
1
c20
ntt −△n = △|E|2,

△B− iη▽×(▽× (E ∧ Ē)) + βB = 0,

(1.1)

E(0, x) = E0(x), n(0, x) = n0(x), nt(0, x) = n1(x), (1.2)
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where E(t, x) is a vector valued function from R+ × R2 into C3 and denotes
the slowly varying complex amplitude of the high-frequency electric field,
n(t, x) is a function from R+ × R2 into R and represents the fluctuation of
the electron density from its equilibrium, the self-generated magnetic field B
is a vector-valued function from R+ × R2 into R3, i2 = −1, constants η > 0,
β ≤ 0, Ē is the complex conjugate of E, and ∧ means the exterior product of
vector-valued functions. System (1.1) describes the spontaneous generation
of a magnetic field in a cold plasma (see Ref. [8] for the physical derivation).

If we neglect the magnetic field, system (1.1) reduces the following clas-
sical Zakharov system: {

iEt +△E− nE = 0,
1
c20
ntt −△n = △|E|2, (ZS)

which describes the propagation of Langmuir waves (cf. [17]). There are
many papers concerning the well-posedness of the Zakharov system (ZS)
(see e.g., [1, 3, 4, 6, 12, 13, 14] and references therein). On this topic, for
(1.1) there are also some works ( cf. [2, 5, 7, 10, 18]).

Let E = (E1, E2, 0), B = −iηF−1
(

|ξ|2
|ξ|2−β

F
(
E ∧ Ē

))
, E1(t, x), E2(t, x) ∈

C, x ∈ R2. For n1 ∈ H−1, there exist ω0 ∈ L2(R2) and v0 ∈ L2(R2) such
that nt(0, x) = n1 = −divv0 + w0. In this case, (1.1)-(1.2) can be rewritten
as follows: 

iEt +△E− nE+ i(E ∧B(E)) = 0,
nt = −divv + w0,
1
c20
vt = −∇(n+ |E|2),

E(0, x) = E0(x), n(0, x) = n0(x),v(0, x) = v0(x).

(1.3)

In the present paper, we first study the existence of blow-up solutions for
the Cauchy problem (1.1)-(1.2). We construct a kind of blow-up solutions to
(1.1)-(1.2) on [0, T ), which has the form:

E = (E1,−iE1, 0), n(t, x) =
ω2

(T − t)2
Ñ

(
xω

T − t

)
, (1.4)

where

E1 =
ω

T − t
e
i

(
θ+

|x|2
4(−T+t)

− ω2

−T+t

)
P̃
(

xω
T−t

)
√
2

,

P̃ (x) = P̃ (|x|) and Ñ(x) = Ñ(|x|) are real valued functions on R2, and θ ∈ R
and ω > 0. In addition, let

B =

(
0, 0,

ω2

(T − t)2
B̃

(
xω

T − t

))
, (1.5)
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where B̃(x) = B̃(|x|) is a real-valued function on R2 and (P̃ , Ñ , B̃) solves
the following system:

△P̃ − P̃ + P̃ B̃ = ÑP̃ ,

λ2
(
r2Ñrr + 6rÑr + 6Ñ

)
−△Ñ = △|P̃ |2,

△B̃ + βc20(T − t)2λ2B̃ = η△|P̃ |2.

Here, r = |x|, △ = ∂rr +
∂r
r
, and λ = 1

ωc0 . Let

(P̃ , Ñ) =

(
P

(η + 1)1/2
,
N

η + 1

)
and

B̃ = ηF−1

(
|ξ|2

|ξ|2 − βc20(T − t)2λ2
F(P̃ 2)

)
,

we then obtain{
△P − P + η

η+1
PF−1

(
|ξ|2

|ξ|2−βc20(T−t)2λ2F(P 2)
)
= 1

η+1
NP,

λ2 (r2Nrr + 6rNr + 6N)−△N = △|P |2.
(1.6)

We shall consider the existence of solutions for (1.6) in H1
r × L2

r for ∀T > 0,
0 ≤ t < T fixed, where H1

r := {u; u ∈ H1(R2) and u is radially symmetric},
L2

r := {u; u ∈ L2(R2) and u is radially symmetric}. If (Pλ,T−t, Nλ,T−t) ∈
H1

r × L2
r is a solution to (1.6), then (E, n) defined in (1.4) is a blow-up

solution to the Cauchy problem (1.1)-(1.2), which will be shown in Theorem
1.1. When β = 0, (1.6) becomes the following form{

△P − P + η
η+1

P 3 = 1
η+1

NP,

λ2 (r2Nrr + 6rNr + 6N)−△N = △|P |2. (1.7)

If (Pλ, Nλ) ∈ H1
r × L2

r is a solution to (1.7), then (E, n) defined in (1.4) is a
self-similar blow-up solution to (1.1)-(1.2) with β = 0.

The main results of this paper states as follows. At first, we have

Theorem 1.1 (Existence of blow-up solutions to (1.1)-(1.2))
For ∀T > 0, 0 ≤ t < T , there exist λT with 0 < λ < λT , and a solution

(Pλ,T−t, Nλ,T−t) to (1.6) such that for ∀ θ ∈ R,

E = (E1,−iE1, 0), n =
ω2Nλ,T−t

(
xω
T−t

)
(T − t)2(η + 1)

,

is a blow-up solution to (1.1)-(1.2) and

∥E∥H1 + ∥n∥L2 + ∥nt∥Ĥ−1 → +∞ as t→ T,
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B =

(
0, 0,

ηω2

(η + 1)(T − t)2
F−1

(
|ξ|2

|ξ|2 − βc20(T − t)2λ2
F(P 2)

))
.

Here, E1 =
ω

T−t
e
i

(
θ+

|x|2
4(−T+t)

− ω2

−T+t

)
Pλ,T−t( xω

T−t)√
2(η+1)1/2

, and

Ĥ−1 :=
{
u : ∃w ∈ L2(R2) such that u = −∇ · w and ∥u∥Ĥ−1 = ∥w∥L2

}
.
2

Next, the following theorem concerns the nonlinear instability of minimal
periodic solutions to the Cauchy problem (1.1)-(1.2) with β = 0, which will
be checked in Section 3.

Theorem 1.2 (Instability of minimal periodic solution to (1.1)-(1.2)
with β = 0)

Let (E(t), n(t)) be a minimal periodic solution to (1.1)-(1.2) with β = 0,
where

E(t) =

(
ω

1
2 ei(θ+ωt)Q(ω

1
2 (x− x0))√

2(η + 1)1/2
,−iω

1
2 ei(θ+ωt)Q(ω

1
2 (x− x0))√

2(η + 1)1/2
, 0

)
,

n = −ωQ
2(ω1/2(x− x0))

η + 1
,

Q is the unique positive radial solution of the equation

△V − V + V 3 = 0

in R2, ω > 0, θ ∈ R, x0 ∈ R2. Then there exists {(E0ε, n0ε, n1ε)} such
that as ε → 0, (E0ε, n0ε, n1ε) → (E(0), n(0), 0) in Hk, k ≥ 1, and (Eε, nε)
blows up in finite time for some Tε > 0 in H1, where (Eε, nε) is a solution to
(1.1)-(1.2) for β = 0 with the initial data (E0ε, n0ε, n1ε), and Hk = Hk(R2)×
Hk−1(R2)×Hk−2(R2). That is, (E(0), n(0)) is orbitally unstable in Hk for all
k ≥ 1 and (E(t), n(t)) is strongly unstable in the sense of instability induced
by blow-up. 2

In addition, some concentration properties of blow-up solutions to the
Cauchy problem (1.3) holds.

Theorem 1.3 (Concentration properties of blow-up solutions)
If ∥E∥H1 + ∥n∥L2 + ∥v∥L2 → +∞ as t→ T , where (E, n,v) is a blow-up

solution to (1.3) in H1(R2) × L2(R2) × L2(R2) on [0, T ), then the following
properties hold:

4



(1) If nt(0) ∈ Ĥ−1 and E, n are radial functions of |x|, then one has

∀R > 0, lim inf
t→T

∥E(t, x)∥L2(B(0,R)) ≥ ∥Q∥L2 .

In addition, provided that

∥Q∥2L2

η + 1
< ∥E0∥2L2 <

δ∥Q∥2L2

η
, where

η

η + 1
< δ < 1, (1.8)

then there exists mn(∥E0∥2L2) > 0 such that

∀R > 0, lim inf
t→T

∥n(t, x)∥L1(B(0,R)) ≥ mn.

(2) If nt(0) ∈ Ĥ−1 and E, n are non-radial functions of |x|, there is then
a function t→ x(t) ∈ R2 such that

∀R > 0, lim inf
t→T

∥E(t, x)∥L2(B(x(t),R)) ≥ ∥Q∥2L2 .

Moreover, under the assumption (1.8), there exist mn(∥E0∥2L2) > 0 and a
function t→ x(t) ∈ R2 such that

lim inf
t→T

∥n(t, x)∥L1(B(x(t),R)) ≥ mn.

(3) If nt(0) ∈ H−1, nt(0) ̸∈ Ĥ−1 and E, n are radial functions of |x|,
there is then a sequence tk → T as k → +∞ such that

∀R > 0, lim inf
k→∞

∥E(tk, x)∥L2(B(0,R)) ≥ ∥Q∥L2 .

In addition, under the assumption (1.8), there exists tk → T as k → +∞
such that

lim inf
k→∞

∥n(tk, x)∥L1(B(0,R)) ≥ mn.

(4) If nt(0) ∈ H−1, nt(0) ̸∈ Ĥ−1 and E, n are non-radial functions of |x|,
there then exist tk → T as k → +∞ and xk such that

∀R > 0, lim inf
k→+∞

∥E(tk, x)∥L2(B(xk,R)) ≥ ∥Q∥L2 .

Furthermore, under the assumption (1.8), there exist tk → T as k → +∞
and xk such that

lim inf
k→+∞

∥n(tk, x)∥L1(B(xk,R)) ≥ mn. 2

At last, the following global existence result for the Cauchy problem (1.1)-
(1.2) is valid.
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Theorem 1.4 (Global existence for the case ∥E0∥2L2 ≤
∥Q∥2

L2

η+1
)

If E0 ∈ H1(R2), n0 ∈ L2(R2), n1 ∈ H−1(R2) and ∥E0∥2L2 ≤ ∥Q∥2
L2

η+1
, then

there exists a global weak solution (E, n) to the Cauchy problem (1.1)-(1.2)
such that

E ∈ L∞ (R+;H1(R2)
)
, n ∈ L∞ (R+;L2(R2)

)
. 2

2 Existence of blow-up solutions to (1.1)-(1.2)

In this section, we will prove Theorem 1.1.

2.1 Some properties of solutions to (1.6)

In this subsection, we give several lemmas and propositions concerning
the properties of solutions to (1.6). Since T − t is fixed, for convenience, we
denote (Pλ,T−t, Nλ,T−t) by (Pλ, Nλ).
Lemma 2.1 Assume that (E, n,v) is a regular solution to (1.3). Then
(E, n,v) satisfies

1) ∀t ∈ (0, T ), ∥E(t)∥2L2 = ∥E0∥2L2 ;

2) dI(t)
dt

=

∫
R2

w0(n+ |E|2), where

I(t) = I(E(t), n(t),v(t))

=

∫
R2

|∇E|2 + 1

2

∫
R2

|n|2 + 1

2c20

∫
R2

|v|2 +
∫
R2

n|E|2

−η
2

∫
R2

|ξ|2

|ξ|2 − β
|F(E ∧ Ē)|2dξ.

Proof. Multiplying the first equation of (1.3) by Ē, we obtain 1). Multiply-
ing the first equation of (1.3) by Ēt, the second equation of (1.3) by n and
the third equation of (1.3) by v, we derive 2). 2

By a direct computation, we obtain

Proposition 2.2 If {(Pλ,T−t, Nλ,T−t)} ⊂ H1
r × L2

r is a sequence of nontriv-
ial solutions to (1.6) in the sense of distribution and inf

0≤t<T
(∥Pλ,T−t∥H1 +

∥Nλ,T−t∥H1) ≥ c > 0, then (E, n) defined in (1.4) is a solution to (1.1)-

(1.2), and (E, n,v) is a solution to (1.3), where v(x, t) = x
r

ω2

−(T−t)3
rNλ

(
rω
T−t

)
,

nt = ∇ · v, and(
E(t), n(t),

∂n

∂t

)
∈ H1 × L2 × Ĥ−1,
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∥E(t)∥H1 + ∥n(t)∥L2 +

∥∥∥∥∂n∂t
∥∥∥∥
Ĥ−1

→ +∞ as t→ T, (2.1)

∥E(t)∥L2 = ∥Pλ∥L2 , (2.2)

I(t) =
ω2

(T − t)2

[∫
R2

(|∇Pλ(x)|2 +
NλPλ

η + 1
) +

1

2(η + 1)

∫
R2

(λ2|x|2 + 1)N2
λ

− η

2(η + 1)

∫
R2

|ξ|2

|ξ|2 − βc20(T − t)2λ2
|F(P 2

λ )|2
]
+

1

4ω2

∫
R2

|x|2P 2
λ ,

which implies by Lemma 2.1 that∫
R2

(
|∇Pλ(x)|2 +

NλPλ

η + 1

)
+

1

2(η + 1)

∫
R2

(
λ2|x|2 + 1

)
N2

λ

− η

2(η + 1)

∫
R2

|ξ|2

|ξ|2 − βc20(T − t)2λ2
|F(P 2

λ )|2 = 0. (2.3)

2

Lemma 2.3(Weinstein [15]) If u ∈ H1(R2), then

1

2
∥u∥4L4(R2) ≤

∥u∥2L2(R2)

∥Q∥2L2(R2)

∥∇u∥2L2(R2). (2.4)

2

Proposition 2.4 If (Pλ, Nλ) ∈ H1
r × L2

r is a nontrivial solution to (1.6) in

the sense of distributions, then we have

1)

∫
R2

(
|∇Pλ|2 + |Pλ|2

)
=

1

η + 1

(∫
R2

η|ξ|2

|ξ|2 − βc20(T − t)2λ2
|F(P 2

λ )|2 −
∫
R2

Nλ|Pλ|2
)
,

2)

∫
R2

|Pλ|2 =
1

2(η + 1)

(∫
R2

η|ξ|2

|ξ|2 − βc20(T − t)2λ2
|F(P 2

λ )|2 +
∫
R2

(λ2|x|2 + 1)|Nλ|2
)
,

3)

∫
R2

|Pλ|2 >
∫
R2

|Q|2.

Proof. Step 1 Multiplying the first equation of (1.6) by Pλ and then
integrating in R2, we obtain 1).

Step 2 By 1) and (2.3), we drive 2).
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Step 3 Using (2.3), we get

(η + 1)

∫
R2

|∇Pλ|2 = −1

2

∫
R2

(P 2
λ +Nλ)

2 +
η + 1

2

∫
R2

P 4
λ − 1

2

∫
R2

λ2|x|2N2
λ

−η
2

(∫
R2

P 4
λ −

∫
R2

|ξ|2

|ξ|2 − βc20(T − t)2λ2
|F(P 2

λ )|2
)
.

From the above equality, it follows that

(η + 1)

(∫
R2

|∇Pλ|2 −
1

2

∫
R2

P 4
λ

)
+

1

2

∫
R2

(
P 2
λ +Nλ

)2
+

1

2

∫
R2

λ2|x|2N2
λ

+
η

2

(∫
R2

P 4
λ −

∫
R2

|ξ|2

|ξ|2 − βc20(T − t)2λ2
|F(P 2

λ )|2
)

= 0,

which yields that ∫
R2

|∇Pλ|2 −
1

2

∫
R2

P 4
λ < 0. (2.5)

By (2.5) and Lemma 2.3, we conclude 3). 2

Lemma 2.5
1) (Regularity of (1.6)).
If (Pλ, Nλ) ∈ H1×L2 is a radially symmetric solution to (1.6) in the sense

of distribution, then (Pλ, Nλ) ∈ C∞×C∞ and is a classical solution to (1.6).
2) (An equivalent system of (1.6)).
Let (Pλ, Nλ) ∈ H1 ×L2 ∩C∞ ×C∞ be radially symmetric. Then system

(1.6) is equivalent to the following system:
△P − P + η

η+1
PF−1

(
|ξ|2

|ξ|2−βc20(T−t)2λ2F(P 2)
)
= 1

η+1
NP,

N(r) = 1
(λ2r2−1)3/2

∫ r

1
λ

2P (s)P
′
(s)(λ2s2 − 1)1/2ds.

(2.6)

3) (Decay solution of (1.6) at infinity).
If (Pλ, Nλ) ∈ H1 × L2 is a solution of (1.6) in the sense of distribution,

then there exists constants δ > 0 and Ck > 0 for k ≥ 0 such that

∀k ≥ 0, ∀x, |P (k)
λ (x)| ≤ Cke

−δ|x|, |N (k)
λ (x)| ≤ Ck

1 + |x|k+3
. 2

Remark 2.1. The proof of Lemma 2.5 is similar to that of the same result
as the following elliptic system{

△P − P = NP,
λ2(r2Nrr + 6rNr + 6N)−△N = △|P |2,
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which was given in [3]. 2

Proposition 2.6 (Asymptotics behavior of solution (Pλ, Nλ) as λ→ 0)
If (Pλn , Nλn) ∈ H1 × L2 is a nontrivial radially symmetric solution to

(1.6) in the sense of distributions, λn → 0 as n → +∞, and there exists
C > 0 such that ∥Pλn∥L2 ≤ C, then there is a subsequence {(Pλn , Nλn)} and
a radially symmetric solution V to

△V − V + V 3 = 0 in R2, (2.7)

such that
(Pλn , Nλn) → (V,−V 2) in H1 × L2as λn → 0.

Moreover, if Pλn(r) ≥ 0 for ∀r ≥ 0, then V = Q.
Proof. From 2) of Proposition 2.4, we obtain∫

R2

|Nλn |2 ≤ c, and
η

η + 1

∫
R2

|ξ|2

|ξ|2 − βc20(T − t)2λ2n
|F(P 2

λn
)|2 ≤ c.

Using Hölder’s inequality and Lemma 2.3, we derive from 1) and 2) in Propo-
sition 2.4 as well as the above two inequalities that∫

R2

(
|∇Pλn|2 + |Pλn |2

)
≤ c+ c

(∫
R2

|Nλn |2
) 1

2
(∫

R2

|Pλn |4
) 1

2

≤ c+ c

(∫
R2

|Nλn |2
) 1

2
(∫

R2

|Pλn|2
) 1

2
(∫

R2

(|∇Pλn |2 + |Pλn |2)
) 1

2

≤ c+ c

(∫
R2

(|∇Pλn |2 + |Pλn|2)
) 1

2

,

which concludes that ∫
R2

(|∇Pλn|2 + |Pλn |2) ≤ c.

Since H1
r and L2

r are both reflexive Banach spaces, there exist P ∈ H1
r and

N ∈ L2
r such that

Pλn ⇀ P in H1
r , and Nλn ⇀ N in L2

r as n→ +∞.

Since the imbedding H1
r ↪→ Lp

r, 2 < p < +∞, is compact, |Pλn |2Pλn → |P |2P
in L2

r, and
△|Pλn|2 → △|P |2, NλnPλn → NP
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in the sense of distribution. From

η

η + 1
PλnF−1

(
βc20(T − t)2λ2n

|ξ|2 − βc20(T − t)2λ2n
F(|Pλn |2)

)
→ 0 in L2

r as n→ +∞,

(2.8)
it follows that

η

η + 1
PλnF−1

(
|ξ|2

|ξ|2 − βc20(T − t)2λ2n
F(|Pλn |2)

)
→ η

η + 1
P |P |2 in L2

r.

Therefore, (P,N) is a solution to the system{
△P − P + η

η+1
|P |2P = 1

η+1
NP,

−△N = △|P |2,

in the sense of distribution. Hence, there exists V (a radially symmetric
solution to (2.7)) such that

P = V, N = −V 2.

Since Pλn → V in L4
r, one has |Pλn |2 → |V |2 in L2

r, andNλn ⇀ −V 2 in L2
r as n→

+∞. Thus, using (2.8), we have

lim
n→+∞

∫
R2

(|∇Pλn|2 + |Pλn |2)

= lim
n→+∞

1

η + 1

(∫
R2

η|ξ|2

|ξ|2 − βc20(T − t)2λ2n
|F(P 2

λn
)|2 −

∫
R2

Nλn |Pλn |2
)

=
η

η + 1

∫
R2

|V |4 + 1

η + 1

∫
R2

|V |4 =
∫
R2

|V |4 =
∫
R2

(|∇V |2 + |V |2),

where we apply the identity

∫
R2

|V |4 =
∫
R2

(|∇V |2+|V |2) with equation (2.7).

Therefore, one has
Pλn → V in H1

r as n→ +∞.

Since Nλn ⇀ −V 2 in L2
r as n→ +∞, by the weakly lower semi-continuity

of norm, we get ∫
R2

|V |4 ≤ lim inf
n→+∞

∫
R2

|Nλn|2. (2.9)

On the other hand, by 2) of Proposition 2.4, we have

lim sup
n→+∞

∫
R2

|Nλn |2
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≤ lim sup
n→+∞

(
2(η + 1)

∫
R2

|Pλn|2 −
∫
R2

η|ξ|2

|ξ|2 − βc20(T − t)2λ2n
|F(P 2

λn
)|2
)

= 2(η + 1)

∫
R2

|V |2 − η

∫
R2

|V |4 =
∫
R2

|V |4, (2.10)

where we use Pλn → V in H1
r as n → +∞, (2.8) and the Pohozaev identity∫

R2

|V |4 = 2

∫
R2

|V |2 with equation (2.7). By Nλn ⇀ −V 2 in L2
r as n→ +∞,

we derive from (2.9) and (2.10) that

Nλn → −V 2 in L2
r as n→ +∞.

In view of Pλn ≥ 0, and Pλn → V in H1
r as n→ +∞, by 3) of Proposition

2.4, we get V ≥ 0 and V ̸= 0. Applying the uniqueness theorem of positive
radial solutions to (2.7), which was proved in [9], we know that V = Q. 2

Proposition 2.7 (Asymptotics behavior of solution (Pλ,T−t, Nλ,T−t) as
t→ T )

Let λ > 0 and T > 0 be fixed. If (Pλ,T−tn , Nλ,T−tn) ∈ H1
r × L2

r is a
nontrivial radially symmetric solution to (1.6) in the sense of distribution,
tn → T as n→ +∞, and there exists C > 0 such that ∥Pλ,T−tn∥L2 ≤ C, then
there is a subsequence {(Pλ,T−tn , Nλ,T−tn)} such that

(Pλ,T−tn , Nλ,T−tn) → (Pλ, Nλ) in H
1 × L2 as tn → T,

where (Pλ, Nλ) ∈ H1×L2 is a nontrivial radially symmetric solution to (1.7)
in the sense of distribution.

Proof. As is shown in the proof of Proposition 2.6, it follows from
∥Pλ,T−tn∥L2 ≤ C that ∥Pλ,T−tn∥H1 ≤ c and ∥Nλ,T−tn∥L2 ≤ c for some positive
constant c. Thus, there exist a subsequence denoted again by (Pλ,T−tn , Nλ,T−tn)
and (Pλ, Nλ) ∈ H1

r × L2
r such that

(Pλ,T−tn , Nλ,T−tn)⇀ (Pλ, Nλ) in H
1 × L2as tn → T.

Then it follows from Bλ,T−tn → ηP 2
λ ∈ L2as tn → T that (Pλ, Nλ) is a radially

symmetric solution to (1.6) in the sense of distribution. Similar to the proof
of Proposition 2.6, we obtain that

(Pλ,T−tn , Nλ,T−tn) → (Pλ, Nλ) in H1 × L2 as tn → T. 2

2.2 Existence of solutions to (1.6)

In this subsection, we prove the existence of solutions to (1.6) and establish
some properties for them.
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Theorem 2.8 (Existence of solutions (Pλ, Nλ) to (1.6))
For ∀T > 0, 0 ≤ t < T , there exists a solution (Pλ, Nλ) to (1.6) for some

λT with 0 < λ < λT . Moreover, (Pλ, Nλ) → (Q,−Q2) in H1 ×L2as λ→ 0.2
We shall prove this theorem by using Banach fixed point theorem and

the maximum principle at the end of this section.
In fact, if (Pλ, Nλ) is a solution to (1.6), where

Pλ = Q+ hλ, Nλ = Fλ((Q+ hλ)
2),

Fλ(u) =
1

(λ2r2 − 1)3/2

∫ r

1
λ

(u(s))
′
(λ2r2 − 1)1/2ds, (2.11)

then

△(Q+ hλ)− (Q+ hλ)

+
η

η + 1
(Q+ hλ)F−1

(
|ξ|2

|ξ|2 − βc20(T − t)2λ2
F((Q+ hλ)

2)

)
=
Fλ((Q+ hλ)

2)(Q+ hλ)

η + 1
,

that is,

△hλ − hλ + 3Q2hλ

=
Q3 + 3Q2hλ − ηh3λ − 3ηh2λQ+ Fλ((Q+ hλ)

2)(Q+ hλ)

η + 1
+Gλ(Q, hλ),

where

Gλ(Q, hλ) = − η

η + 1
(Q+ hλ)F−1

(
βc20(T − t)2λ2

|ξ|2 − βc20(T − t)2λ2
F((Q+ hλ)

2)

)
.

By the definition of Fλ, we have

Q3 + 3Q2hλ − ηh3λ − 3ηh2λQ+ Fλ((Q+ hλ)
2)(Q+ hλ)

= Zλ(hλ) + lλ(hλ) + qλ(hλ) + Cλ(hλ), (2.12)

where
Zλ(hλ) = (Fλ(Q

2) +Q2)Q,

lλ(hλ) = (Fλ(Q
2) +Q2)hλ + 2(Fλ(Qhλ) +Qhλ)Q,

qλ(hλ) = −3ηh2λQ+ Fλ(h
2
λ)Q+ 2Fλ(Qhλ)hλ,

Cλ(hλ) = −ηh3λ + Fλ(h
2
λ)hλ.
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Since L = (△− Id + 3Q2)−1 is a bounded operator in H1
r and there exists

C > 0 such that ∥L(u)∥H2 ≤ C∥u∥L2 for u ∈ H1
r , which was proved in [3],

we know that (Pλ, Nλ) is a solution to (1.6), where Pλ = Q + hλ, Nλ =
Fλ((Q+ hλ)

2), if and only if hλ is a fixed point of the operator

Tλ(hλ) = L

(
Zλ(hλ) + lλ(hλ) + qλ(hλ) + Cλ(hλ)

η + 1
+Gλ(Q, hλ)

)
. (2.13)

We will show that Tλ is a contraction mapping in the set Bδ0 = {u ∈
H2

r , ∥u∥H2 ≤ δ0}. Now, we give two key lemmas.

Lemma 2.9 ([3]) There exists λ0 such that for 0 < λ < λ0, u, v, w ∈ H2
r ,

∥L(Fλ(uv)w)∥H2 ≤ cλ0∥Fλ(uv)∥L∞∥w∥L2 ≤ cλ0∥u∥H2∥v∥H2∥w∥H2 , (2.14)

∥L((Fλ(Qu) +Qu)v)∥H2 ≤ cλ0λ
2∥u∥H2∥v∥H2 . (2.15)

2

Lemma 2.10 For ∀ε > 0, T > 0, there exists λε,T > 0 such that for

0 < λ < λε,T ,
∥Gλ(Q, hλ)∥L2 ≤ ε, (2.16)

where ∥hλ∥H1 ≤ c.
Proof. By the properties of Fourier transform, we have

∥Gλ(Q, hλ)∥L2 =

∥∥∥∥ η

η + 1
(Q+ hλ)F−1

(
βc20(T − t)2λ2

|ξ|2 − βc20(T − t)2λ2
F((Q+ hλ)

2)

)∥∥∥∥
L2

= sup
∥v∥L2=1

η

η + 1

∫
R2

v(Q+ hλ)F−1

(
βc20(T − t)2λ2

|ξ|2 − βc20(T − t)2λ2
F((Q+ hλ)

2)

)

= sup
∥v∥L2=1

η

η + 1

∫
R2

βc20(T − t)2λ2

|ξ|2 − βc20(T − t)2λ2
F(v(Q+ hλ))F((Q+ hλ)

2)

= sup
∥v∥L2=1

η

η + 1

∫
Ω1+Ω2+Ω3

βc20(T − t)2λ2

|ξ|2 − βc20(T − t)2λ2
F(v(Q+ hλ))F((Q+ hλ)

2).

Here,

Ω1 =
{
ξ ∈ R2 : |ξ|2 ≤ −βc20(T − t)2λ2

}
,

Ω2 =
{
ξ ∈ R2 : −βc20(T − t)2λ2 < |ξ|2 < −Nβc20(T − t)2λ2

}
,

and

Ω3 =
{
ξ ∈ R2 : |ξ|2 ≥ −Nβc20(T − t)2λ2

}
.
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Since v(Q + hλ), (Q + hλ)
2 ∈ L1(R2) implies that F(v(Q + hλ)), F((Q +

hλ)
2) ∈ L∞(R2), one has that there exists c > 0 such that

sup
∥v∥L2=1

η

η + 1

∫
Ω1+Ω2

βc20(T − t)2λ2

|ξ|2 − βc20(T − t)2λ2
F(v(Q+ hλ))F((Q+ hλ)

2)

≤ c
(
|β|c20(T − t)2λ2 + |β|c20(T − t)2λ2

)
.

By the Hölder inequality and the Plancherel Theorem, we have

η

η + 1

∫
Ω3

βc20(T − t)2λ2

|ξ|2 − βc20(T − t)2λ2
F(v(Q+ hλ))F((Q+ hλ)

2)

≤ 1

N

η

η + 1

(∫
R2

|F(v(Q+ hλ))|2
) 1

2
(∫

R2

|F((Q+ hλ)
2)|2
) 1

2

≤ 1

N

η

η + 1

(∫
R2

|v(Q+ hλ)|2
) 1

2
(∫

R2

|Q+ hλ|4
) 1

2

≤ 1

N

η

η + 1
∥v∥L2∥Q+ hλ∥3H2 .

Thus for ∥hλ∥H1 ≤ c, there exists c > 0 such that

∥Gλ(Q, hλ)∥L2 ≤ cλ2 + cNλ2 +
c

N
.

Therefore, for given ε > 0, there exist Nε large enough and λε small enough
such that for N ≥ Nε, 0 < λ ≤ λε,

∥Gλ(Q, hλ)∥L2 ≤ ε.

The proof of Lemma 2.10 is completed. 2

Now, we prove Theorem 2.8.
Proof of Theorem 2.8.

a) Existence of fixed points. We prove the existence of solutions to
(1.6) by Banach fixed pointed theorem. For any δ > 0, we define

Σδ = {h ∈ H2
r : ∥h∥H2

r
≤ δ}.

It is sufficient to show that there exist δ0 > 0 and λT > 0 such that for all
0 < λ < λT , Tλ is a contraction mapping of the set Σδ0 .

From (2.15) in Lemma 2.9 and h, h1, h2 ∈ Σδ0 , we obtain∥∥∥∥ 1

η + 1
L(Zλ(h))

∥∥∥∥
H2

r

≤ Cλ2,

14



∥∥∥∥ 1

η + 1
L(lλ(h))

∥∥∥∥
H2

r

≤ Cλ2∥h∥H2
r
,

and ∥∥∥∥ 1

η + 1
L(lλ(h1)− lλ(h2))

∥∥∥∥
H2

r

≤ Cλ2∥h1 − h2∥H2
r
.

Applying (2.14) in Lemma 2.9 and h ∈ Σδ0 , we have∥∥∥∥ 1

η + 1
L(qλ(h))

∥∥∥∥
H2

r

≤ C∥h∥2H2
r
,

∥∥∥∥ 1

η + 1
L(Cλ(h))

∥∥∥∥
H2

r

≤ C∥h∥3H2
r
,∥∥∥∥ 1

η + 1
L(qλ(h1)− qλ(h2))

∥∥∥∥
H2

r

≤ C
(
∥h1∥H2

r
+ ∥h2∥H2

r

)
∥h1 − h2∥H2

r
,

and ∥∥∥∥ 1

η + 1
L(Cλ(h1)− Cλ(h2))

∥∥∥∥
H2

r

≤ C(∥h1∥2H2
r
+ ∥h2∥2H2

r
)∥h1 − h2∥H2

r
.

Therefore,

∥Tλ(h)∥H2
r
≤ C

(
λ2 + λ2∥h∥H2

r
+ ∥h∥2H2

r
+ ∥h∥3H2

r
+ ∥Gλ(Q, h)∥L2

)
,

and

∥Tλ(h1)− Tλ(h2)∥H2
r
≤ ∥Gλ(Q, h1)−Gλ(Q, h1)∥L2)

+C∥h1 − h2∥H2
r

(
λ2 + ∥h1∥H2

r
+ ∥h2∥H2

r
+ ∥h1∥2H2

r
+ ∥h2∥2H2

r

)
.

Thus, from Lemma 2.10, we know that there exist δ0 > 0 and λT > 0 such
that for all 0 < λ < λT ,

Tλ(h) ∈ Σδ0 for h ∈ Σδ0 ,

and for all h1, h2 ∈ Σδ0 ,

∥Tλ(h1)− Tλ(h2)∥H2
r
≤ 1

2
∥h1 − h2∥H2

r
.

Thus, for all 0 < λ < λT , Tλ is a contraction mapping of the set Σδ0 . By
Banach fixed point Theorem, we know that there exists a unique fixed point
of the mapping Tλ in the set Σδ0 , i.e., there exists a solution (Pλ, Nλ) to
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(1.6).
b) Continuity of solutions (Pλ, Nλ) with respect to λ in H1 ×

L2. Applying Lemma 2.9 and Lemma 2.10, with the dominated convergence
theorem, we obtain the uniform continuity of the function Tλ(h) : R+×H2

r →
H2

r . Thus, we get the continuity of hλ in H2
r with respect to λ, i.e., the

continuity of Pλ = Q + hλ in H2
r with respect to λ. Thus, we prove that

Nλ = Fλ((Pλ)
2) is continuous in L2

r with λ. 2

Proof of Theorem 1.1. Using Theorem 2.8, Proposition 2.8 and Propo-
sition 2.2, we obtain the results in Theorem 1.1. 2

3 Instability of minimal periodic solutions to

(1.1)-(1.2) with β = 0

In this section, we prove Theorem 1.2 by applying Theorem 1.1. We first
consider a kind of minimal periodic solutions to (1.1)-(1.2), which has the
form:

(E(t), n(t)) = (eiωtV(x), |V(x)|2),
where

V(x) =

(
V1(x)√
2(η + 1)

,−i V1(x)√
2(η + 1)

, 0

)
,

△V1 − ωV1 + |V1|2|V1| = 0, ω > 0 and ∥V1∥L2 = ∥Q∥L2 . Applying the
uniqueness of positive radial solutions to △V −V +V 3 = 0 in R2, we obtain
that there exist θ ∈ R and x0 ∈ R2 such that

V1(x) = ω
1
2 eiθQ(ω

1
2 (x− x0)).

Now, we prove Theorem 1.2.

Proof of Theorem 1.2. Let

c̃0 = c0ω
− 1

2 .

Applying Theorem 1.1, we conclude that there exists a solution (Pε, Nε) to
(1.7) for some ε0 with 0 < λ = ε < ε0, which is is a blow-up solution to
(1.1)-(1.2) with c0 = c̃0 and

∥Ẽε∥H1 + ∥ñε∥L2 + ∥∂ñε

∂t
∥Ĥ−1 → +∞ as t→ Tε,

where for ∀ θε ∈ R,

Ẽε = (Ẽ1ε,−iẼ1ε, 0), ñε =
ω2
εNε(

xωε

Tε−t
)

(Tε − t)2(η + 1)
,
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and

Ẽ1ε =
ωε

Tε − t
e
i

(
θε+

|x|2
4(−Tε+t)

− ω2
ε

−Tε+t

)
Pε(

xωε

Tε−t
)

√
2(η + 1)1/2

.

Moreover, according to Theorem 2.8, we get

(Pε, Nε) → (Q,−Q2) in H1 × L2 as ε→ 0.

Choosing

ωε =
1

c̃0ε
, Tε =

1

c̃0ε
, θε =

−1

c̃0ε
,

we obtain that (Ẽε, ñε) is a blow-up solution to (1.1)-(1.2) with c0 = c̃0 and
the initial data Ẽε(0) = Ẽ0ε, ñε(0) = ñ0ε,

∂ñε

∂t
(0) = ñ1ε, where

Ẽ0ε =

(
eic̃0ε

|x|2
4

Pε(x)√
2(η + 1)1/2

,−ieic̃0ε
|x|2
4

Pε(x)√
2(η + 1)1/2

, 0

)
,

ñ0ε =
Nε(x)

(η + 1)
, ñ1ε = c̃0ε(|x|N ′

ε(x) + 2Nε(x)),

(Ẽ0ε, ñ0ε, ñ1ε) =

(
ẼQ,−

Q2

η + 1
, 0

)
in H1 × L2 ×H−1 as ε→ 0,

and

ẼQ =

(
Q√

2(η + 1)1/2
,−i Q√

2(η + 1)1/2
, 0

)
.

Let
Eε(t, x) = eiθω

1
2 Ẽε

(
ωt, ω

1
2 (x− x0)

)
,

nε(t, x) = ωñε

(
ωt, ω

1
2 (x− x0)

)
.

We obtain that (Eε(t, x), nε(t, x)) is a blow-up solution to (1.1)-(1.2) with
the initial data

Eε(0, x) = E0ε(x) = eiθω
1
2 Ẽ0ε

(
ω

1
2 (x− x0)

)
,

nε(0, x) = n0ε(x) = ωñ0ε

(
ω

1
2 (x− x0)

)
,

ntε(0, x) = n1ε(x) = ω2ñ1ε

(
ω

1
2 (x− x0)

)
.

Furthermore, for all k ≥ 1, we also have

(E0ε, n0ε, n1ε) → (E(0), n(0), 0) in Hk as ε→ 0. 2
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4 Concentration properties of blow-up solu-

tions to (1.3)

In this section, we first give some lemmas and propositions which are key
to the proof of Theorem 1.3.

Lemma 4.1 (Merle [4]) Assume that there exists a sequence (vk, Nk) ∈
H1(R2)× L2(R2) such that as k → +∞,∫

R2

|vk|2 → C1 > 0,

∫
R2

Nk|vk|2 → −C3 < 0,

∫
R2

|∇vk|2 +
1

2

∫
R2

|Nk|2 → C2 > 0.

Then there exist a constant C4 = C4(C1, C2, C3) > 0 and a sequence xk such
that ∫

|x−xk|<1

|Nk| > C4. 2

Lemma 4.2 Assume that {vm} is bounded in H1(R2) and

sup
y∈R2

∫
B(y,R)

|vm|2dx→ 0 for some R > 0.

Then vm → 0 in L4(R2).
Proof. By interpolation inequalities, for v ∈ H1(R2) we have

∥v∥4L4(B(y,R)) ≤ c∥v∥2L2(B(y,R))∥v∥2H1(B(y,R)),

where c is a positive constant. Let B1 = B(0, R), B2 = B(y2, R), where
y2 ∈ ∂B(0, R), B3 = B(y3, R), B4 = B(y4, R), {y3, y4} = ∂B1 ∩ ∂B2,..., we
can cover R2 by the above balls of radius R such that each point of R2 is
contained in at most 3 balls. Therefore, by the above inequality,

∥vm∥4L4(R2) ≤ c sup
y∈R2

∫
B(y,R)

|vm|2dx∥vm∥2H1(R2), (4.1)

By the assumptions of the lemma, vm → 0 in L4(R2). 2

Proposition 4.3 Assume that Ek ∈ H1(R2), ∥Ek∥2L2 = ∥E0∥2L2 > 0,
nk ∈ L2(R2), vk ∈ L2(R2), and there exist R0 > 0 and δ0 > 0 such that

sup
y∈R2

∫
|y−x|<R0

|Ek|2 ≤ ∥Q∥2L2 − δ0, (4.2)
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or for
∥Q∥2

L2

1+η
< ∥E0∥2L2 <

δ∥Q∥2
L2

η
with η

η+1
< δ < 1, there is a constant

mn(∥E0∥2L2) > 0 such that

sup
y∈R2

∫
|y−x|<R0

|nk(x)| ≤ mn(∥E0∥2L2)− δ0. (4.3)

Then there are C1 > 0 and C2 > 0 such that

−C1 + C2

∫
R2

(|∇Ek|2 + |nk|2 + |vk|2) ≤ I(Ek, nk,vk).

In order to prove Proposition 4.3, we first define some functionals:

M(E, n) =

∫
R2

|∇E|2 + 1

2

∫
R2

|n|2 +
∫
R2

n|E|2 − η

2

∫
R2

|ξ|2

|ξ|2 − β
|F(E ∧ Ē)|2,

G(E) =

∫
R2

|∇E|2 − 1

2

∫
R2

|E|4 − η

2

∫
R2

|ξ|2

|ξ|2 − β
|F(E ∧ Ē)|2,

G∗(E) =

∫
R2

|∇E|2 − η + 1

2

∫
R2

|E|4.

It is clear from β ≤ 0 that

M(E, n) ≥ G(E) ≥ G∗(E).

Now we begin to prove Proposition 4.3 by contradiction.
Proof of Proposition 4.3. By the definition of M(E, n) and I(E, n,v),
we only need to prove that there exist C1 > 0 and C2 > 0 such that

−C1 + C2

∫
R2

(|∇Ek|2 + |nk|2) ≤M(Ek, nk). (4.4)

Assume that there would be no positive constants C1 > 0 and C2 > 0
satisfying (4.4). Then

λ2k :=

∫
R2

|∇Ek|2 +
1

2

∫
R2

|nk|2 → +∞ as k → +∞, (4.5)

and

lim sup
k→∞

M(Ek, nk)

λ2k
≤ 0. (4.6)

Indeed, if λk ≤ C, then we have M(Ek, nk) ≤ C by using ∥Ek∥2L2 = ∥E0∥2L2 ,

which implies (4.4). If lim
k→+∞

M(EK , nk)

λ2k
= C > 0, then there exists k0 > 0,

for all k ≥ k0,
M(Ek,nk)

λ2
k

≥ C
2
, which also concludes (4.4).

19



Let

Ẽk(x) =
1

λk
Ek

(
x

λk

)
, and ñk(x) =

1

λk
nk

(
x

λk

)
.

Using the assumptions of Proposition 4.3 and (4.5), we obtain∫
R2

|Ẽk(x)|2 =
∫
R2

|Ẽ0|2,
∫
R2

(
|∇Ẽk(x)|2 +

1

2
|ñk(x)|2

)
= 1. (4.7)

1) We shall prove (4.4) under the assumption (4.2). At first, combining (4.2)
with (4.5), one has, for ∀R > 0, that

lim inf
k→+∞

sup
y

∫
|y−x|<R

|Ẽk(x)|2 ≤ ∥Q∥2L2 − δ0. (4.8)

By (4.7) and the Sobolev inequality, there exist positive constants C1 and C2

such that

C1 ≤
∫
R2

|Ẽk(x)|4 ≤ C2 and C1 ≤
∫
R2

(
|∇Ẽk(x)|2 + |Ẽk(x)|2

)
≤ C2. (4.9)

By Lemma 4.2, we derive from (4.9) that there exists a positive constants δ1
(depending only on ∥E0∥2L2) and a sequence x1k such that∫

|x−x1
k|<1

|Ẽk(x)|2 ≥ δ1.

By the techniques of Concentration-Compactness Principle (see [11]) for the

case of dichotomy, we obtain that there exist Ẽ1
k and Ẽ1,R

k (x) (going if nec-
essary to a subsequence) such that

Ẽk(x) = Ẽ1
k(x) + Ẽ1,R

k (x),

where
Ẽ1

k(x+ x1k)⇀ ψ1 in H1, (4.10)∫
|x|<1

|Ẽ1
k(x+ x1k)|2 ≥ δ1, ∥Ẽ1

k∥2L2 + ∥Ẽ1,R
k (x)∥2L2 → ∥E0∥2L2 ,

δ1 ≤ lim
k→∞

∥Ẽ1
k(x)∥2L2 ≤ ∥Q∥2L2 − δ0,

and

lim sup
k→+∞

G(Ẽ1
k) + lim sup

k→+∞
G(Ẽ1,R

k (x)) ≤ lim sup
k→+∞

G(Ẽk) ≤ 0. (4.11)
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By the weakly lower semi-continuity of norm, we derive from (4.10) and
(4.11) that

G(ψ1) + lim sup
k→+∞

G(Ẽ1,R
k (x)) ≤ 0, and δ1 ≤ ∥ψ1∥2L2 ≤ ∥Q∥2L2 − δ0,

which implies that there exists k0 > 0 such that ∀k ≥ k0,

G(Ẽ1,R
k (x)) ≤ G(ψ1)

2
< 0. (4.12)

If ∥Ẽ1,R
k (x)∥2L2 ≤ ∥Q∥2L2 , we then get by Lemma 2.3 that G(Ẽ1,R

k (x)) ≥ 0,
which is contradictory to (4.12).

If ∥Ẽ1,R
k (x)∥2L2 > ∥Q∥2L2 , then we derive from (4.12) that there exists a

positive constant C depending only on ∥E0∥2L2 such that

∫
R2

|Ẽ1,R
k (x)|4 > C.

Similarly, by Lemma 4.2, there exist δ1 > 0 and x2k such that∫
|x−x2

k|<1

|Ẽ1,R
k (x)|2 ≥ δ1.

Using the same procedure as above, we obtain that there exist Ẽ2
k and Ẽ2,R

k (x)
such that

Ẽ1,R
k (x) = Ẽ2

k + Ẽ2,R
k ,

where Ẽ2
k has the same properties as Ẽ1

k and Ẽ2,R
k (x) as Ẽ1,R

k (x).
Applying the above procedure p times such that

∥Ẽp,R
k ∥2L2 ≤ ∥Q∥2L2 , (4.13)

we have

G
(
Ẽp,R

k

)
≤ G(ψ1)

2
< 0, for p large enough,

which is contradictory to (4.13). The proof of (4.4) under the assumption
(4.2) is completed.

2) In the following, we shall prove (4.4) under the assumption (4.3).
Since ∥Ẽk∥2L2 = ∥E0∥2L2 <

δ
η
∥Q∥2L2 , by Lemma 2.3, we have

δ∥∇Ẽk∥2L2 ≥
δ
2
∥Ẽk∥4L4∥Q∥2L2

∥Ẽk∥2L2

>
η

2
∥Ẽk∥4L4 ≥

η

2

∫
R2

|F(Ẽk ∧ ¯̃Ek)|2. (4.14)

On the other hand, we derive from (4.6) and (4.14) that

lim sup
k→+∞

((1− δ)

(∫
R2

|∇Ẽ|2 + 1

2

∫
R2

|ñk|2 +
∫
R2

ñk|Ẽk|2
)
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≤ lim sup
k→+∞

(
(1− δ + δ)

(∫
R2

|∇Ẽ|2 + 1

2

∫
R2

|ñk|2
)

−η
2

∫
R2

|F(Ẽk ∧ ¯̃Ek)|2 +
∫
R2

ñk|Ẽk|2
)

≤ lim sup
k→+∞

M(Ẽk, ñk)

≤ lim sup
k→+∞

M(Ek, nk)

λ2k
≤ 0,

which implies that ∫
R2

ñk|Ẽk|2 → −C ≤ −(1− δ)

as k → ∞ (going if necessary to a subsequence), where we have used the
Sobolev inequality.

Using Lemma 4.1, we obtain that there exist a constant C > 0 and a
sequence xk such that ∫

|x−xk|<1

|ñk| > C > 0. (4.15)

On the other hand, by the assumption (4.2) and the definition of ñk, using
the dominated convergence theorem, we have

lim inf
k→+∞

(
sup
y

∫
|x−y|<R

|ñk|
)

→ 0 as R → 0,

which is contradictory to (4.15). This completes the proof of Proposition 4.3.
2

Now we begin to prove Theorem 1.3.

Proof of Theorem 1.3.
(1) We shall prove the first part of Theorem 1.3 by contradiction for the

case: nt(0) ∈ Ĥ−1 and (E, n) is radial. Assume that there exist δ0 > 0,
R0 > 0 and a sequence tk → T as k → ∞ such that∫

|x|<R0

|E(tk, x)|2 ≤ ∥Q∥2L2 − δ0, (4.16)

or for
∥Q∥2

L2

1+η
≤ ∥E0∥2L2 ≤

δ∥Q∥2
L2

η
with η

η+1
< δ < 1,

lim inf
k→+∞

(∫
|x|<R

|n(tk, x)|
)

→ 0, as R → 0. (4.17)
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Let

Ek(x) =
1

λk
E

(
tk,

x

λk

)
, and nk(x) =

1

λ2k
n

(
tk,

x

λk

)
,

where λ2k = ∥∇E(tk, x)∥2L2 → ∞ as k → +∞.
Indeed, assume that ∥∇E(t)∥ ≤ C for t ∈ [0, T ). From ∥E(t)∥2L2 =

∥E0∥2L2 , one has ∥E(t)∥2H1 ≤ C and

G(E(t)) =

∫
R2

|∇E|2 − 1

2

∫
R2

|E|4 − η

2

∫
R2

|ξ|2

|ξ|2 − β
|F(E ∧ Ē)|2 ≤ C.

Lemma 2.1 then implies that

dI(t)

dt
≤ 2

∫
R2

ω2
0 +

∫
R2

(n+ |E|2)2

≤ C +G(E) +
1

2

∫
R2

(
n+ |E|2

)2
≤ C + I(t).

Thus, by the Gronwall Lemma, we have I(t) ≤ C, which contradicts ∥E(t)∥H1+
∥n(t)∥L2 + ∥v(t)∥L2 → +∞ as t→ T .

According to the definitions of Ek, nk, G
∗ and M , we have∫

R2

|∇Ek|2 = 1,

∫
R2

|Ek|2 =
∫
R2

|E0|2, (4.18)

G∗(Ek) =
1

λ2k
G∗(E(tk, x)) =

1

λ2k
G∗(E(tk)),

and

M(Ek, nk) =
1

λ2k
M(E(tk), n(tk)).

Since nt(0) ∈ Ĥ−1, which implies that ω0 = 0, Lemma 2.1 yields that for
0 ≤ t < T ,

I(E(t), n(t),v(t)) = I(E0, n0,v0) = I0.

From M(E, n) ≤ I(E, n,v), it follows that

G∗(E(tk)) ≤M(E(tk), nk(tk)) ≤ I(E(tk), n(tk),v(tk)) ≤ I0,

and

G∗(Ek) ≤M(Ek, nk) =
1

λ2k
M(E(tk), nk(tk)) ≤

I0
λ2k

→ 0 as k → ∞. (4.19)
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Hence, one obtains that
lim sup
k→∞

G∗(Ek) ≤ 0

and
lim sup
k→∞

M(Ek, nk) ≤ 0.

On the other hand, one has

lim inf
k→∞

∫
R2

|Ek|4 ≥
2

η + 1
lim inf
k→∞

(

∫
R2

|∇Ek|2 −G∗(Ek)) ≥
2

η + 1
> 0, (4.20)

lim sup
k→∞

1

2

∫
R2

n2
k ≤

1

2

∫
R2

|Ek|4 +
η

2

∫
|ξ|2

|ξ|2 − β
|F(Ek ∧ Ēk)|2 ≤ C, (4.21)

which are derived from (4.18), lim sup
k→∞

M(Ek, nk) ≤ 0, and

lim sup
k→∞

1

2

∫
R2

(nk + |Ek|2)2 −
1

2

∫
R2

|Ek|4 −
η

2

∫
|ξ|2

|ξ|2 − β
|F(Ek ∧ Ēk)|2 ≤ 0.

According to (4.18) and (4.20), there exist (Ẽ, ñ) ∈ H1
r × L2

r and a subse-
quence of {(Ek, nk)}, denoted again by {(Ek, nk)}, such that

Ek ⇀ Ẽ in H1
r and nk ⇀ ñ in L2

r as k → +∞.

Since the embedding H2
r ↪→ Lp

r(2 < p < +∞) is compact, one has Ek → Ẽ
in LP

r , Therefore, from (4.20), it follows that∫
R2

|Ẽ|4 ≥ 2

η + 1
, and Ẽ ̸= 0. (4.22)

Moreover, we derive from (4.16) that∫
R2

|Ẽ|2 ≤ ∥Q∥2L2 − δ0, (4.23)

and from (4.17) that
ñ = 0. (4.24)

Thus Ek → Ẽ in L4
r and nk ⇀ ñ in L2

r imply that∫
R2

nk|Ek|2 →
∫
R2

ñ|Ẽ|2.

By (4.19), we have M(Ẽ, ñ) ≤ lim inf
k→∞

M(Ek, nk) ≤ 0, that is,∫
R2

|∇Ẽ|2 − η + 1

2

∫
R2

|Ẽ|4 + 1

2

∫
R2

(
ñ+ |Ẽ|2

)2
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+
η

2

∫
R2

(
|Ẽ|4 − |ξ|2

|ξ|2 − β
|F(Ẽ ∧ ¯̃E)|2

)
≤ 0,

which yields that ∫
R2

|∇Ẽ|2 − η + 1

2

∫
R2

|Ẽ|4 ≤ 0. (4.25)

However, by Lemma 2.3 and (4.23), we have∫
R2

|∇Ẽ|2 − η + 1

2

∫
R2

|Ẽ|4 > 0,

which contradicts (4.25).
On the other hand, under the assumption (1.8), we have

δ

∫
R2

|∇Ek|2 ≥
η

2

∫
|ξ|2

|ξ|2 − β
|F(Ek ∧ Ēk)|2.

Then from the above inequality and (4.19), it follows that

(1− δ)

∫
R2

|∇Ek|2 +
∫
R2

nk|Ek|2 +
∫
R2

n2
k ≤ 0.

Since nk ⇀ ñ = 0 in L2
r and

∫
R2

nk|Ek|2 →
∫
R2

ñ|Ẽ|2 as k → +∞, we have

(1− δ)

∫
R2

|∇Ẽ|2 ≤ 0,

which is contradictory to∫
R2

|Ẽ|4 ≥ 2

1 + η
and Ẽ ̸= 0.

The proof of (1) of Theorem 1.3 is completed.
(2) Here, we show (2) for the case: nt(0) ∈ Ĥ−1 and (E, n) is non-

radial. Let mn(∥E0∥L2) be defined in Proposition 4.3. Assume that there is
a subsequence tk → T as k → +∞, R0 > 0, δ0 > 0 such that

lim inf
k→+∞

(
sup
y

∫
|x−y|<R0

|E(tk, x)|2dx
)

≤ ∥Q∥2L2 − δ0

or

lim inf
k→+∞

(
sup
y

∫
|x−y|<R

|n(tk, x)|dx
)

≤ mn(∥E0∥L2)− δ0.
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Applying Proposition 4.3 with (E(tk), n(tk),v(tk)), we obtain∫
R2

|∇E(tk)|2 + |n(tk)|2 + |v(tk)|2 ≤ c as tk → T,

which is a contradiction. Thus, there exist x(t) and y(t) such that, for
∀R > 0,

lim inf
t→T

∫
|x−x(t)|<R

|E(t, x)|2 ≥ |Q|2L2

and

lim inf
t→T

∫
|x−y(t)|<R

|n(tk, x)| ≥ mn(∥E0∥L2) > 0,

which concludes the proof of (2) of Theorem 1.3.
(3) Now, we prove (3) and (4) for the case: nt(0) ∈ H−1 but nt(0) ̸∈ Ĥ−1.
Assume that there is no sequence tk → T such that, for ∀R > 0,

lim inf
k→+∞

(
sup
y

∫
|x−y|<R

|E(tk, x)|2dx
)

≥ ∥Q∥2L2 ,

or

lim inf
k→+∞

(
sup
y

∫
|x−y|<R

|n(tk, x)|dx
)

≥ mn(∥E0∥L2).

Then there are R0, δ0 > 0 such that, for ∀t ∈ [0, T ),

sup
y

∫
|x−y|<R0

|E(t, x)|2dx ≤ ∥Q∥2L2 − δ0

or

sup
y

∫
|x−y|<R0

|n(t, x)|dx ≤ mn(∥E0∥L2)− δ0.

Applying Proposition 4.3, we obtain, for ∀t ∈ [0, T ),∫
R2

|∇E(tk)|2 + |n(tk)|2 + |v(tk)|2 ≤ C1I(t) + C2, (4.26)

In addition, from Lemmas 2.1, it follows for ∀t ∈ [0, T ) that

I(t) ≤ I(0) +

∫ t

0

I ′(s)ds

≤ c

(
1 +

∫ t

0

(∥w0∥2L2 + ∥n(s)∥2L2 + ∥E(s)∥2L2

)
ds)

≤ c

(
1 +

∫ t

0

(|n(s)|2L2 + |∇E(s)|2L2)ds

)
≤ c

(
1 +

∫ t

0

(∥∇E(s)∥2L2 + ∥n(s)∥2L2 + ∥v(s)∥2L2)ds

)
. (4.27)
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Using the Gronwall lemma, we derive from (4.26) and (4.27) that

∀t ∈ [0, T ), ∥∇E(t)∥2L2 + ∥n(t)∥2L2 + ∥v(t)∥2L2 ≤ C,

or equivalently,
∀t ∈ [0, T ), |E(t), n(t), nt(t)|H1 ≤ C,

which is a contradiction.
We remark that in the radial case, we only need to choose xk = 0 in

Theorem 1.3 in view of the obvious symmetry reasons and conservation of
the L2 norm.

The proof of Theorem 1.3 is completed. 2

5 Global existence for the case ∥E0∥2L2 ≤
∥Q∥2

L2

η+1

In this section, we prove Theorem 1.4. On one hand, we prove the global

existence of weak solutions to (1.3) for the case ∥E0∥2L2 <
∥Q∥2

L2

η+1
. On the

other hand, we use Proposition 4.3 to prove the global existence for the case

∥E0∥2L2 =
∥Q∥2

L2

η+1
.

Theorem 5.1 If E0 ∈ H1(R2), n0 ∈ L2(R2), v0 ∈ L2(R2) and ∥E0∥2L2 <
1

η+1
∥Q∥2L2 , then there is a global weak solution E ∈ L∞ (R+;H1(R2)), n ∈

L∞ (R+;L2(R2)), v ∈ L∞ (R+;L2(R2)) to (1.3), and (E, n,B(E)) is a weak
solution to (1.1) with initial data E0, n0, n1 = −divv0 + w0.

Proof. Here we only give the uniform a priori estimates for the solutions
to (1.3). For more details of the proof of Theorem 5.1, we can refer to [10].
By Lemma 2.1, we have

dI(t)

dt
=

∫
R2

w0(n+ |E|2) ≤ 2

∫
R2

w2
0 +

1

2

∫
R2

(n+ |E|2)2.

We note that

∫
R2

|∇E|2 − η

2

∫
R2

|E|4 > 0 for ∥E∥2L2 <
∥Q∥2

L2

1+η
, which is true

from Lemma 2.3,

∫
R2

|E|4 ≥
∫
R2

|ξ|2

|ξ|2 − β
|F(E ∧ Ē)|2dξ and the definition of

I, where

I(t) =

∫
R2

|∇E|2 + 1

2

∫
R2

|n|2 + 1

2c20

∫
R2

|v|2 +
∫
R2

n|E|2

−η
2

∫
R2

|ξ|2

|ξ|2 − β
|F(E ∧ Ē)|2dξ
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=

∫
R2

|∇E|2 − 1 + η

2

∫
R2

|E|4 + 1

2

∫
R2

(n+ |E|2)2 + 1

2c20

∫
R2

|v|2

+
η

2

(∫
R2

|E|4 −
∫
R2

|ξ|2

|ξ|2 − β
|F(E ∧ Ē)|2dξ

)2

.

Thus, we conclude that

dI(t)

dt
≤ 2

∫
R2

w2
0 +

1

2

∫
R2

(n+ |E|2)2 ≤ 2

∫
R2

w2
0 + I(t),

which together with the Gronwall Lemma implies that

I(t) ≤ C(I(0), ∥w0∥L2). (5.1)

On the other hand, in view of the Hölder inequality, the Young inequality
and Lemma 2.3, we derive from (5.1) that

∥∇E∥2L2 +
1

2
∥n∥2L2 +

1

2c20
∥v∥2L2

≤ C + ∥n∥L2∥E∥2L4 +
η

2
∥E∥4L4

≤ C + b2∥n∥L2 +
1

4b2
∥E∥4L4 +

η

2
∥E∥4L4

≤ C + b2∥n∥L2 +

(
1

2b2
+ η

)
∥E∥2L2

∥Q∥2L2

∥∇E∥2L2 ,

where 0 < b2 ≤ 1
2
. Letting b2 = 1

2
, we obtain

∥∇E∥2L2 ≤ C, and ∥v∥2L2 ≤ C.

Furthermore, letting 0 < b < 1
2
, we have ∥n∥2L2 ≤ C.

Proof of Theorem 1.4 for the case ∥E0∥2L2 =
∥Q∥2

L2

η+1
.

Here we shall prove the global existence of weak solutions to (1.3) for the

case ∥E0∥2L2 =
∥Q∥2

L2

η+1
by contradiction. Assume that there exists T > 0 such

that ∥E∥H1 + ∥n∥L2 + ∥v∥L2 → +∞ as t → T . Applying Lemma 2.3 and

noting that ∥E∥2L2 = ∥E0∥2L2 =
∥Q∥2

L2

η+1
, we get∫

R2

|∇E|2 − η

2

∫
R2

|E|4 ≥ 0. (5.2)

Similarly, one has
I(t) ≤ C(∥w0∥L2 , I(0)). (5.3)
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By the definition of I, we derive from (5.2) and (5.3) that

G∗(E(t)) ≤ C, ∥v∥L2 ≤ C, and

∫
R2

(n+ |E|2)2 ≤ C. (5.4)

By |E(t)|2 = (n+ |E(t)|2)− n and (5.4), we obtain

∥|E(t)|2∥H−1 ≤ C. (5.5)

Indeed, we can derive from nt = ∇ · v + w0 that

∥n(t)∥H−1 ≤ ∥n0∥H−1 +

∫ t

0

∥nt(s)∥H−1ds

≤ C +

∫ t

0

(∥v(s)∥L2 + ∥w0∥L2)ds ≤ 0. (5.6)

Combining (5.4) with (5.6), we establish (5.5).
In the proof of (1) of Theorem 1.3, we note that if ∥E∥H1 + ∥n∥L2 +

∥v∥L2 → +∞ as t → T , then ∥∇E∥H1 → +∞ as t → T . Thus, applying
Proposition 4.3, we obtain that there is x(t) such that

|E(t, x+ x(t))|2 ⇀ ∥Q∥2L2δx=0 as t→ T,

in the distribution sense, where δx=0 is the usual Dirac function. Moreover,
by (5.5), we have

∥Q∥2L2δx=0 ∈ H−1,

which is impossible. Therefore, the solution (E(t), n(t)) to (1.1)-(1.2) exists
globally.
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