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Abstract

Due to the small parameter, high order derivatives and nonlinear term, it takes a long time
to reach the steady state in the simulation of the molecular beam epitaxy (MBE) model. In
this work, based on the numerical scheme in [6] and the good properties it holds, we introduce
two types of adaptive time-stepping method, in which the physical quantities like energy or
roughness are involved to produce time steps. Similarly to the spatial adaptive method, we
take equidistribution of the physical quantities in time direction to control the simulation
error. The numerical experiment shows that the computational time is significantly saved by
these methods.

Keywords. Molecular beam epitaxy, adaptive time-stepping method, equidistribution of
energy, equidistribution of roughness

AMS subject classifications. 35G31, 35Q99, 35R99, 65M06, 65M12.

1 Introduction

The dynamics of molecular beam epitaxy (MBE) growth has been widely concerned recently. In
this work, we consider the continuum model for the evolution of MBE growth. The governing
partial differential equation is:{

∂φ
∂t = −ε∆2φ−∇ · [(1− |∇φ|2)∇φ] in Ω× (0, T ),

φ(x, 0) = φ0(x) in Ω,
(1.1)

where Ω := [0, L]2. φ is a periodic height function and ε is a constant. The equation of MBE is
the gradient flow associated with the following energy functional

E(φ) =

∫
Ω

(
1

4
(1− |∇φ|2)2 +

ε2

2
|∆φ|2

)
dx, (1.2)

where the nonlinear second-order term models the Ehrlich-Schwoebel effect, which leads to a
preference of the structures with slope |∇φ| = 1, and the fourth-order term represents the surface
diffusion effect.

There have been extensive works for the MBE model. On the finite difference method, approach-
es based on convex splitting can be found in [7, 11], where the unconditional energy stability is
given. In [6, 12] some implicit-explicit methods are introduced to deal with the problem. On the
finite element method, [5] introduces a mixed finite element method combining the Crank-Nicolson
(CN) scheme, and get optimal order in space and time. [2] applied Local discontinuous Galerkin
method to the problem. [8] proposes a scalar auxiliary variable (SAV) for gradient flows. For more
details, please see [9].

How to reduce the computational time in simulating the long term behavior is also widely
considered. In [6], an adaptive time-stepping technique is developed based on the energy derivative
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in time and was also used in [13] for the Cahn-Hilliard problem. In [12], based on the stabilization
method there, the large time step is allowed in computation. [10] proposed the spectral deferred
correction methods, and [1] applied this method the phase field problems. In this work, we mainly
focus on finding some new adaptive time-stepping methods to shorten the simulation time. Based
on the second order CN scheme, we first proposed an adaptive time-stepping method: based on the
energy (ATSBE) similar to that in [4]. Then we also proposed a new type of adaptive time-stepping
method: based on the roughness (ATSBR). With the help of the two methods, we proposed the
adaptive time-stepping algorithm for the MBE problem and use the numerical example to illustrate
the algorithm.

2 Difference scheme and some properties

In this section, we briefly introduce some properties of the equation and also the difference scheme
for the completeness of the paper because the focus of the paper is on the time step variance. You
can find more details in [6].

Define ‖ · ‖ as the standard L2 norm in Ω, and ‖ · ‖Lp as the Lp norm. First, we list some known
results for the continuum MBE model about the mass conservation, energy decay and stability.

Lemma 2.1. (mass conservation) The solution φ of MBE problem (1.1) is of mass conservation:

d

dt

∫
Ω

φ(x, t)dx = 0. (2.1)

Proof. Integral the first equation of (1.1) with respect to spatial variables, and apply the period
boundary condition and Gauss-Green Formula. We prove the result.

Lemma 2.2. (energy identities [3]) For the solution φ of MBE problem (1.1), the following energy
identities hold:

d

dt
‖φ‖2 + 4E(φ) + ‖∇φ‖4L4 = |Ω|, (2.2)

d

dt
E(φ) + ‖φt‖2 = 0. (2.3)

Lemma 2.3. ( L2 stability [6]) The solution φ(x, t) is L2 stable under the sense that

‖φ(·, t)‖2 ≤ et/2ε‖φ(·, 0)‖2. (2.4)

Then, we use the CN scheme proposed in [6] to discretize the continuum MBE model. The CN
scheme enjoys properties including energy decay, unconditional stability and second order accuracy
in both time and space dimension.

Suppose a square domain Ω is divided uniformly with size ∆x = L/Nx and ∆y = L/Ny, where
L is side length of the square and Nx, Ny are the integers used to divide the sides. The set of
the grid points is Ωh = {(xi, yj), xi = i∆x, yj = j∆y}. In time direction, ∆t is used to denote
the time steps. The discrete difference operator is defined for any function f as ∇hfi+ 1

2 ,j+
1
2

=

(
fi+1,j−fi,j

∆x ,
fi,j+1−fi,j

∆y )T ,∆hfi,j =
fi+1,j+fi−1,j−2fi,j

(∆x)2 +
fi,j+1+fi,j−1−2fi,j

(∆y)2 , where fi,j = f(xi, yj). The

second order CN scheme for MBE model (1.1) is

φn+1
i,j − φni,j

∆t
= −µn+ 1

2
i,j , (2.5)

where

µ
n+ 1

2
i,j = (ε∆2

h + ∆h)
φn+1
i,j + φni,j

2
−∇h ·

(
|∇hφn+1

i,j |2 + |∇hφni,j |
2

∇h(φn+1
i,j + φni,j)

2

)
. (2.6)

The discrete L2 inner product and L2 norm for the grid function f, g are defined as (f, g)h =
Nx∑
i=1

Ny∑
j=1

fi,jgi,j∆x∆y, ‖f‖2h = (f, f)h, and the discrete H1 norm is ‖f‖H1,h =
[ Nx∑
i=1

Ny∑
j=1

(|fi,j |2 +

|∇hfi− 1
2 ,j−

1
2
|2)∆x∆y

]
.

The CN scheme preserves a discrete version of the properties held by the continuum model.
These properties are important ingredients for the adaptive time-stepping algorithms.
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Lemma 2.4. (Mass conservation) For any solution of (2.5), the discrete form of mass conservation
holds

Nx∑
i=1

Ny∑
j=1

φsi,j∆x∆y =

Nx∑
i=1

Ny∑
j=1

φti,j∆x∆y, ∀s, t. (2.7)

Proof. Multiply ∆x∆y∆t on both side of (2.5), and sum on all of the spatial grid, we have the left
hand side

Nx∑
i=1

Ny∑
j=1

∆x∆y∆t
φn+1
i,j − φni,j

∆t
=

Nx∑
i=1

Ny∑
j=1

φn+1
i,j ∆x∆y −

Nx∑
i=1

Ny∑
j=1

φni,j∆x∆y.

By the definition of the discrete operator ∇h and ∆h and the periodic boundary condition, the
right-hand side equals to zero. So the conclusion holds for two consecutive steps and thus for any
two solutions.

Lemma 2.5. (Equality between two steps [6]) Let φn and φn+1 be two consecutive numerical

solutions of (2.5) and define φn+ 1
2 := φn+φn+1

2 , then we have

‖φn+1‖2h − ‖φn‖2h
∆t

=

−
(

2ε‖∆hφ
n+ 1

2 ‖2h +
( |∇hφn|2 + |∇hφn+1|2

2
, |∇hφn+ 1

2 |2
)
− 2‖∇hφn+ 1

2 ‖2h
)
. (2.8)

Moreover, we have ‖φn‖2h ≤ C1‖φ0‖2h, with condition ∆t ≤ 4ε, where C1 is independent of h and
∆t, but depends on 1/ε.

Define the discrete energy functional of (1.2) as

Eh(·) =
1

4
‖1− |∇h · |2‖2h +

ε2

2
‖∆h · ‖2h. (2.9)

Lemma 2.6. (Energy stability [6]) The scheme (2.5) is unconditionally energy stable, which means
for any time step ∆t, it holds Eh(φn+1) ≤ Eh(φn). More precisely, a similar energy identity as
(2.3) holds

Eh(φn+1)− Eh(φn)

∆t
= −‖µn+ 1

2 ‖2h, (2.10)

where µn+ 1
2 is defined in (2.6).

3 Adaptive time-stepping algorithms

We introduce two types of adaptive time-stepping method in this section. First, there are two
ways to build the adaptive time step. Then with some uniform notation, we proposed the adaptive
time-stepping algorithms.

(a) An adaptive time step: based on energy (ATSBE)

We follow the method in [4] for the Cahn-Hilliard equation to use the energy decay to control the

variance of the time steps. A transform of discrete energy identity (2.10) is ∆t = −Eh(φn+1)−Eh(φn)

‖µn+1
2 ‖2h

.

As we aim at equidistribution of the energy decrease, let the numerator |Eh(φn+1
h ) − Eh(φnh)| be

a constant δE. Then it turns to ∆t = δE

‖µn+1
2 ‖2h

. There is still an unknown term φn+1
h in the

denominator. We replace φn+1
h by φnh in (2.6) to denote µn and get a computable adaptive time

step δt

δt =
δE

‖µn‖2h
. (3.1)

(b) An adaptive time step: based on roughness (ATSBR)
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The roughness changes according to the phase changes, and it is bounded by initial data. Thus,
it is reasonable to consider using it to produce time steps.

The roughness, noted as M(t), for the height function at t is defined as

M(t) =

√
1

|Ω|

∫
Ω

(φ(x, t)− φ̄(t))2dx, where φ̄(t) =
1

|Ω|

∫
Ω

φ(x, t)dx.

Since we have conservation law in both continuous form (2.1) and discrete form (2.7), and when
the initial value is chosen to satisfied the φ̄(t) = 0, we have |Ω|M(t)2 = ‖φ‖2 and the identity (2.8)
can be viewed as the relationship between roughness and time steps.

From the discrete identity (2.8), with a slight transformation, it turns to

∆t = −‖φ
n+1‖2h − ‖φn‖2h

νn+ 1
2

, (3.2)

where

νn+ 1
2 =

(
2ε‖∆hφ

n+ 1
2 ‖2h +

(
|∇hφn|2 + |∇hφn+1|2, |∇hφn+ 1

2 |2
)
− 2‖∇hφn+ 1

2 ‖2h
)
. (3.3)

Since the roughness is concerned here, we set a constant change constraint on ‖φ‖2h by δM =
|‖φn+1‖2h − ‖φn‖2h|, and replace the unknown term φn+1

h in (3.3) with φnh to denote νn and form a
second computable adaptive time step

δt =
δM

|νn|
(3.4)

where the absolute value is taken since the time step should be positive.

Based on the discussion, an adaptive time stepping algorithm on equidistribution of the energy
decay or the roughness change is proposed as below.For the convenience, we use a triple (W, δW, γ)
in the algorithm defined as (W, δW, γ) := (E, δE, µ) or (M, δM, ν).

Algorithm 3.1. (adaptive time-stepping algorithm)
1. Set ∆tmin and ∆tmax, compute the problem (2.5) with the minimal time step ∆tmin for
some step. Set δW as the average of the energy decay or the roughness change, and set
m,n = 1.
2. At the time tn, compute the time step with formula

δt =
δW

|γn|
,

and compute the problem (2.5) with time step ∆t = min(∆tmax,max(δt,∆tmin)).
3. Check if energy decay or the roughness change between two step ≤ δW and ∆t = tmin.
If neither, return to 2 with time step ∆t = min(tmax,max(∆t

2 ,∆tmin)).
4. If ∆t = ∆tmin, adjust δM with an arithmetic average

δW =
m× δW + energy decay or the roughness change

m+ 1
(3.5)

and set m := m+ 1.
5. Set tn+1 = tn + ∆t, set n := n+ 1 and go to 2.

Remark 3.1. The time step in ATSBE or ATSBR could have a similarly accurate mechanism
to adjust result δt. When the phase changes fast which means the energy or the roughness changes
fast, the methods can produce small time steps. When the phase change slows down, time steps
turn to bigger.

Remark 3.2. It is noted that in roughness based adaptive method (3.4), only the first and second
order derivatives are involved, compared to the higher order derivatives in the energy based one
(3.1).

Remark 3.3. In the adaptive time-stepping strategy Algorithm 3.1, we get rid of the artificial
choice of the parameters, except the ∆tmin,∆tmax.
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4 Numerical experiments

In this section, we implement two adaptive time-stepping methods for the MBE problem. The
constant time steps are used to compute a comparable solution. The Newton iteration method is
used to solve the nonlinear discrete system, and multigrid solver is used to solve the linear system
arise at each Newton iterative step. The tolerances for the Newton iteration method and for the
multigrid method are set to be 10−9.

Example Consider the two-dimensional isotropic symmetry current model,{
∂φ
∂t = −ε∆2φ−∇ · [(1− |∇φ|2)∇φ] in [0, 2π]2 × (0, T ),

φ(x, 0) = φ0(x) in [0, 2π]2,
(4.1)

with periodic boundary condition and parameter ε = 0.1. The initial condition is φ0(x) =
0.1(sin 3x sin 2y + sin 5x sin 5y) and T = 30.

This example is used in [3, 6, 12] to study the stability, energy decay, roughness evolution and
adaptive time stepping. Here we also do detailed research on this problem to show the usability
of our algorithm. Since the true solution is unknown, a numerical result obtained on a 200× 200
grid and with a uniform time step δt = 0.0001 is served as the ”true solution”. For two adaptive
time stepping methods, we use the average energy decay in the time interval [0.05, 0.1] as δM and
set ∆tmin = 0.0001.

The comparison of the phase pictures.

Some phase pictures on special timelines are shown in Figure 1. The upper three are with
uniform step( ∆t = 0.0001) , the middle three are with ATSBE and the lower three are with
ATSBR (both adaptive method are with ∆tmin = 0.0001,∆tmax = 0.1). From the pictures, we
can see on every timeline the three look almost the same.
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Figure 1: Contour plots of height profiles: left to right, t = 0.05s, t = 5.5s, t = 30s; upper: with
uniform ∆t, middle: with ATSBE, bottom: with ATSBR
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The evolution of M and the corresponding ∆t. In order to show the sensitive of the
adaptive method, we fix the ∆tmin = 0.0001, but use different ∆tmax = 0.1, 0.2 and 0.5. The
Figure 2 shows the evolution of energy E, and the corresponding ∆t of ATSBE, and the Figure
3 shows that of roughness M , and the corresponding ∆t of ATSBR.
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Figure 2: ATSBE. Left: the energy evolution; Right: the ∆t
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Figure 3: ATSBR. Left: the roughness evolution; Right: the ∆t

The computational time. Finally, the CPU time is showed in Figure 4, from which we can
find both adaptive methods do actually save computational time and only take 1/3 to 1/2 of the
time of the uniform method.
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Figure 4: The CPU time. Left: ATSBE; right: ATSBR
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