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Abstract. In this paper, we derive a sharp conformal Korn inequality on Hölder
domains, we also provide an example for the sharpness of the result. This
shows that the conformal Korn inequality has a different behavior than the
classical one on Hölder domains.

1 Introduction and main result
s1

Let Ω be a bounded, connected domain in Rn, n ≥ 2. For every vector filed v = (v1, v2, . . . , vn) ∈
W1,p(Ω,Rn), 1 < p < ∞, let Dv denote its differential matrix, ε(v) denote the symmetric part of
Dv, namely, ε(v) = (εi, j(v))1≤i, j≤n with

εi, j(v) =
1
2

(
∂vi

∂x j
+
∂v j

∂xi

)
,

and κ(v) = (κi, j(v))1≤i, j≤n denote the anti-symmetric part of Dv as (Dv − DvT )/2.
The Korn inequality states that, if κ(v) has vanishing integral on Ω, then it holds

‖Dv‖Lp(Ω) ≤ CK‖ε(v)‖Lp(Ω).

This is equivalent to that, for any v ∈ W1,p(Ω,Rn),

(Kp) inf
S =−S T

(∫
Ω

|Dv − S |pdx
)1/p

≤ C
(∫

Ω

|ε(v)|pdx
)1/p

.

The Korn inequality (Kp) is a fundamental tool in the theory of elasticity and fluid mechanics; we
refer the reader to [1, 3, 6, 7, 8, 10, 13, 19] and the references therein.

The validity of Korn’s inequality is closely related to the geometry of the domains under con-
sideration. Let us review some earlier results. Friedrichs [8] studied the Korn inequality (K2) on
domains with a finite number of corners or edges on ∂Ω, Nitsche [16] proved the Korn inequality
(K2) on Lipschitz domains, while Kondratiev and Oleinik [13] considered the Korn inequality (Kp)
on star-shaped domains. Acosta, Durán and Muschietti [3] established Korn’s inequality on John
domains, while later the John condition was proved in [11] to be essentially necessary.
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There is a stronger version of the Korn inequality, which states

inf
`(w)=0

(∫
Ω

|Dv − Dw|pdx
)1/p

≤ C
(∫

Ω

|`(v)|pdx
)1/p

,

where

`(v) := ε(v) −
div(v)

n
In×n.

The term `(v) is called as trace-free part, also known as anti-conformal part (cf. [17]). In what
follows we shall call this version as conformal Korn inequality.

Reshetnyak [18] first established this version on star-sharped domains in Rn, n ≥ 3, and Dain
[5] established this version (slightly different) on Lipschitz domains in Rn, n ≥ 3. Dain [5] showed
the conformal Korn inequality does not hold in R2, and pointed out the conformal Korn inequality
has applications in general relativity. A historical survey about the trace-free Korn inequality can
be found in [4].

In a recent interesting work, López-Garcı́a [15] derived the conformal Korn inequality together
with its weighted versions on John domains. To be precise, the following result was proved in
[15].

Theorem A. ([15, Theorem 1.1]) Let 1 < p < ∞ and 0 ≤ β < ∞. Suppose that Ω is a bounded
John domain in Rn with n ≥ 3. Then there exists a positive constant C such that, for any vector
field v ∈ W1,p(Ω,Rn, ρβp),

inf
`(w)=0

(∫
Ω

|Dv − Dw|pρβpdx
)1/p

≤ C
(∫

Ω

|`(v)|pρβpdx
)1/p

,

where ρ(x) is the distance from x to the boundary of Ω, namely, ρ(x) := dist(x, ∂Ω).

Motivated by these studies, and also previous study of Korn’s inequality on irregular domains
(cf. [1, 2, 6, 12, 14]), in this paper, we study the conformal Korn inequality on Hölder domains.
We shall prove that

thm2 Theorem 1.1. Let 1 < p < ∞, 0 < α ≤ 1, 0 ≤ β < ∞ and a ≤ β + 2(α − 1). Suppose Ω ⊂ Rn with
n ≥ 3 is a Hölder α domain.

(i) Then there exists a positive constant C such that, for any vector field v ∈ W1,p(Ω,Rn, ρβp),

inf
`(w)=0

(∫
Ω

|Dv − Dw|pρβpdx
)1/p

≤ C
(∫

Ω

|`(v)|pρapdx
)1/p

.

(ii) If 0 < α < 1, there exists a Hölder α domain in Rn with n ≥ 3 such that the above inequality
does not hold provided a > β + 2(α − 1).
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An interesting point here is that, while on the RHS of the above inequality the sharp power of
the weight ρ is a = β + 2(α − 1), in the classical Korn inequality the sharp power is β + (α − 1)
(cf. [2]). In particular, for 0 < α < 1, the sharp power differs a factor of α − 1. For the proof, we
shall make use of recent developments from [15] and examples from [2] together with some new
observations regarding the trace-free part.

This paper is organized as follows. In section 2, we recall some basic notions and notation used
in this paper, including weighted Lebesgue spaces, weighted Sobolev spaces and Hölder domains.
Section 3 is devoted to the proof of Theorem 1.1 (i). In last section, we remark that the range of a
in Theorem 1.1 (i) is optimal via a counterexample.

Finally, we make some conventions on notation. For any set E ⊂ Rn, we use |E| to denote
the n-dimensional Lebesgue measure of E and χE its the characteristic function. The symbol δα,β
denotes the Kronecker delta, namely, δα,β = 1 if α = β and δα,β = 0 otherwise. The letter C
will denote a positive constant that may vary from line to line but will remain independent of the
main variables. We also use C(α,β,...,γ) to denote a positive constant depending on the indicated
parameters α, β, . . . , γ. For any index 1 ≤ p ≤ ∞, q denotes the conjugate index of p, namely,
1/p + 1/q = 1.

2 Notions
s2

In this section, we recall some basic notions and notation with respect to Lebesgue spaces, Sobolev
spaces and Hölder domains.

For any 1 ≤ p < ∞ and 0 ≤ β < ∞, the weighted Lebesgue space Lp(Ω,R, ρβp) consists of
those measurable functions f : Ω→ R with finite norm given by

‖ f ‖Lp(Ω,R,ρβp) :=
(∫

Ω

| f |pρβpdx
)1/p

.

Analogously, the weighted Sobolev space W1,p(Ω,R, ρβp) is defined to be the set of all weakly
differentiable functions f : Ω→ R with finite norm given by

‖ f ‖W1,p(Ω,R,ρβp) :=

∫
Ω

| f |pρβpdx +

n∑
i=1

∫
Ω

∣∣∣∣∣ ∂ f
∂xi

∣∣∣∣∣p ρβpdx

1/p

.

On the other hand, in order to define the spaces Lp(Ω,Rn×n, ρβp) and W1,p(Ω,Rn, ρβp), we need
the following notion concerning ‖ · ‖r with 1 ≤ r ≤ ∞.

For any vector f̃ : Rn → Rn×n and 1 ≤ r ≤ ∞, the function ‖ f̃ ‖r : Rn → R is defined by setting,
for any x ∈ Rn,

∥∥∥ f̃
∥∥∥

r (x) :=



 ∑
1≤i, j≤n

∣∣∣ f̃i, j(x)
∣∣∣r

1/r

, 1 ≤ r < ∞;

max
1≤i, j≤n

∣∣∣ f̃i, j(x)
∣∣∣ , r = ∞.
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It is easy to see that, for any r1, r2 ∈ [1,∞], there exists a positive constant C := C(r1,r2) such
that, for any vector f̃ ,

1
C

∥∥∥ f̃
∥∥∥

r1
≤

∥∥∥ f̃
∥∥∥

r2
≤ C

∥∥∥ f̃
∥∥∥

r1
.normnorm (2.1)

For any 1 ≤ p < ∞ and 0 ≤ β < ∞, the space Lp(Ω,Rn×n, ρβp) consists of those measurable
vectors f̃ : Ω→ Rn×n with finite norm given by

∥∥∥ f̃
∥∥∥

Lp(Ω,Rn×n,ρβp) :=
(∫

Ω

∥∥∥ f̃
∥∥∥p

p ρ
βpdx

)1/p

.

Analogously, the space W1,p(Ω,Rn, ρβp) is defined to be the set of all weakly differentiable vector
fields v : Ω→ Rn with finite norm given by

‖v‖W1,p(Ω,Rn,ρβp) :=

 n∑
i=1

∫
Ω

|vi|
pρβpdx +

∫
Ω

‖Dv‖ppρβpdx

1/p

.

We end this section with the definition concerning Hölder α domain. A domain Ω ⊂ Rn is
called a Hölder α domain, 0 < α ≤ 1, if the boundary of Ω is locally the graph of a Hölder α
function in an appropriate co-ordinate system. Here a function ϕ is called a Hölder α function if
there exists a positive constant K such that |ϕ(x) − ϕ(y)| ≤ K|x − y|α for any x, y.

3 Proof of Theorem 1.1
s3

To show Theorem 1.1, we shall follow the strategy from [15], where the conformal Korn inequal-
ity was proved on John domains. As Hölder domains may have exterior cusps, we need some
necessary new estimates. Let us begin with some notions and auxiliary lemmas.

The kernel of the operator `, denoted by Σ := {v : Rn → Rn | `(v) = 0}, has a finite dimension
equal to (n + 1)(n + 2)/2 and a vector field v ∈ Σ if and only if

v(x) = a + A(x − y) + λ(x − y) +

{
〈b, x − y〉(x − y) −

|x − y|2b
2

}
,

where A is a skew-symmetric matrix, a, b ∈ Rn and λ ∈ R. The vector y ∈ Rn is arbitrary but must
be fixed to have uniqueness for this representation.

Next define the space V whose elements are the differential matrix of the vector fields in Σ,
that is to say,

ϕ̃ ∈ V ⇔ ϕ̃(x) = A + λI +

n∑
i=1

biHi(x − y),

where, for any 1 ≤ i ≤ n, the vector Hi = {(Hi) j,k}n×n : Rn → Rn×n is defined by setting, for any
(z1, z2, . . . , zn) ∈ Rn,

(Hi) j,k(z1, z2, . . . , zn) := ziδ j,k + z jδk,i − zkδi, j.HH (3.1)
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For example, when n = 3, we have

H1(z) =

z1 −z2 −z3
z2 z1 0
z3 0 z1

 , H2(z) =

 z2 z1 0
−z1 z2 −z3
0 z3 z2

 , H3(z) =

 z3 0 z1
0 z3 z2
−z1 −z2 z3

 .
Observe thatV is a function space with finite dimension. Thus we denote by h := n(n − 1)/2+1+n
the dimension ofV.

In addition, for any 1 ≤ q < ∞ and 0 ≤ β < ∞, the subspaceW of Lq(Ω,Rn×n, ρ−βq) is defined
by

W := {g̃ ∈ Lq(Ω,Rn×n, ρ−βq) |
∫

Ω

(g̃ : ϕ̃)dx = 0 for any ϕ̃ ∈ V},

where g̃ : ϕ̃ is the product coordinate by coordinate of g̃ and ϕ̃ as follows

g̃(x) : ϕ̃(x) :=
∑

1≤i, j≤n

g̃i, j(x)ϕ̃i, j(x).

For any 1 ≤ p < ∞ and 0 ≤ β < ∞, it is obvious that ρβ ∈ Lp(Ω,R) implies Lq(Ω,Rn×n, ρ−βq) ⊂
L1(Ω,Rn×n). Moreover, since Ω is bounded, it follows that V ⊂ L1(Ω,Rn×n). Hence, W is
well-defined.

Using the following Whitney decomposition, we will define a subspace ofW.

Lemma 3.1. ([9, Appendix J]) Let Ω ⊂ Rn be a bounded open set. Then there exists a collectionw
{Qt}t∈Γ of closed dyadic cubes whose interiors are pairwise disjoint such that

(i) Ω =
⋃

t∈Γ Qt;

(ii) diam(Qt) ≤ dist(Qt, ∂Ω) ≤ 4diam(Qt);

(iii) diam(Qs)/4 ≤ diam(Qt) ≤ 4diam(Qs), if Qs
⋂

Qt , ∅.

Given a Whitney decomposition {Qt}t∈Γ of Ω, we refer by an extended Whitney decomposition
of Ω to the collection of n-dimensional rectangles {Ωt}t∈Γ defined by

Ωt := Q
′

t × (yt,1 − lt/2, yt,2),recrec (3.2)

where Qt = Q
′

t× (yt,1, yt,2) and lt is the common length of the sides of Qt. Obviously, yt,2 = yt,1 + lt.
In what follows we shall call this decomposition as the Whitney R-decomposition. Observe that
this collection of n-dimensional rectangles satisfies the following finite overlapped property

χΩ ≤
∑
t∈Γ

χΩt ≤ 12nχΩ.

From Lemma 3.1 (ii), we deduce that there exists a positive constant C such that, for any x ∈ Ωt,

equalequal (3.3)
1
C

diam(Ωt) ≤ ρ(x) ≤ Cdiam(Ωt).

Given a Whitney R-decomposition {Ωt}t∈Γ of Ω, the subspaceW0 ofW is defined by
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W0 := {g̃ ∈ W | supp(g̃)
⋂

Ωt , ∅ only for a finite number of t ∈ Γ}.

lma2 Lemma 3.2. The subspaceW0 ⊕ ρ
βpV is dense in Lq(Ω,Rn×n, ρ−βq).

Proof. The proof of this lemma is same as that of [15, Lemma 3.5]. Note that although [15,
Lemma 3.5] was stated and proved for the cubes, its proof also works with our choice of n-
dimensional rectangles. �

Below, we will use some notions concerning graph theory to define a Hardy-type operator; see
[15] for more details. A rooted tree is a connected graph in which any two vertices are connected
by exactly one simple path, and a root is simply a distinguished vertex a ∈ Γ. For this kind of
graph, it is possible to define a partial order “�” in all vertices as follows: s � t if and only if the
unique path connecting t with the root a passes through s. Moreover, the height or level of any
t ∈ Γ is the number of vertices in {s ∈ V | s � t and s , t}. The parent of a vertex t ∈ Γ is the
vertex s satisfying that s � t and its height is one unit smaller than the height of t. We denote by
tp the parent of t. It can be seen that each t ∈ Γ different from the root has a unique parent, but
several elements in Γ could have the same parent.

def1 Definition 3.3. Given a Whitney R-decomposition {Ωt}t∈Γ of a domain Ω ⊂ Rn, where Γ is a tree
with root a, we take a collection of open pairwise disjoint n-dimensional rectangles {Bt}t,a with
sides parallel to the axis such that Bt ⊆ Ωt

⋂
Ωtp and |Ωt| ≤ C(n)|Bt| for any t ∈ Γ. Next the

Hardy-type operator H for all functions g in L1(Ω) is defined by setting, for any x ∈ Ω,

H(g)(x) :=
∑

a,t∈Γ

χBt (x)
|Wt|

∫
Wt

|g|dy,

where Wt :=
⋃

s�t Ωs.

Remark 3.4. We claim that t and s are adjacent vertices implies Ωt ∩Ωs , ∅ in Definition 3.3. In
fact, if t and s are adjacent vertices, then s is the parent of t (without loss of generality). It follows
that there exists a Bt such that Bt ⊆ Ωt ∩Ωs and hence Ωt ∩Ωs , ∅.

lma6 Lemma 3.5. Let {Ωt}t∈Γ be a Whitney R-decomposition of Ω. Then, for any g̃ ∈ W0, there exists
a collection of vectors {g̃t}t∈Γ with the following properties:

(i) g̃ =
∑

t∈Γ g̃t;

(ii) supp(g̃t) ⊂ Ωt for any t ∈ Γ;

(iii) g̃t ∈ W0 for any t ∈ Γ.

Moreover, for every 1 < q < ∞, there exists a positive constant C independent of g̃ such that,
for any x ∈ Ωt,

norm’norm’ (3.4) ‖g̃t‖q(x) ≤ C
(
‖g̃‖q(x) +

diam(Wt)
diam(Ωt)

|Wt|

|Ωt|
H(‖g̃‖1)(x)

)
.
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Proof. The proof of this lemma is same as that of [15, Lemma 4.5]. Note that although [15,
Lemma 4.5] was stated and proved for the cubes, its proof also works with our choice of n-
dimensional rectangles. �

Before presenting the following lemma, we need to introduce a special Hölder α domain Ωϕ

from [14]. For a positive Hölder α function ϕ : (−3l/2, 3l/2)n−1 → R with 0 < α ≤ 1 and l > 0,
the domain Ωϕ ⊂ R

n is defined by the graph of function ϕ as follows

OO (3.5) Ωϕ :=
{
(x, y) ∈ (−l/2, l/2)n−1 × R | 0 < y < ϕ(x)

}
.

Moreover, we may assume that ϕ ≥ 2l but ϕ � 3l, and 0 < l ≤ 1. Thus Hölder α domain Ω is
locally as Ωϕ. Nevertheless, the distance to the boundary of Ω is not necessarily equivalent to the
distance to the graph of ϕ defined over (−l/2, l/2)n−1. Thus, in order to solve this problem, we
assume that Ω is locally an expanded version of Ωϕ as follows

Ωϕ,E :=
{
(x, y) ∈ (−3l/2, 3l/2)n−1 × R | y < ϕ(x)

}
.

With this new approach of the problem, the distance to ∂Ω is equivalent to G over Ωϕ where

G :=
{
(x, y) ∈ (−3l/2, 3l/2)n−1 × R | y = ϕ(x)

}
We use ρG to denote the distance to G.

lma7 Lemma 3.6. Let 1 < q < ∞, 0 ≤ β < ∞ and 0 < α ≤ 1. There exists a Whitney R-decomposition
{Ωt}t∈Γ of Ωϕ with following properties:

(i) the Hardy-type operatorH is bounded on Lq(Ωϕ,R, ρ
−βq
G );

(ii) there exist some positive constants C1,C2 and C3 such that

|Wt|

|Ωt|
≤ C1[diam(Ωt)]α−1 and

diam(Wt)
diam(Ωt)

≤ C2 + C3[diam(Ωt)]α−1.

Proof. The proof of this lemma can be obtained from the proof of [14, Lemma 6.1]. �

The following lemma shows a decomposition of g̃ ∈ W0 based on the Whitney R-decomposition
{Ωt}t∈Γ of Ωϕ.

lma5 Lemma 3.7. Let {Ωt}t∈Γ be a Whitney R-decomposition of Ωϕ. Then, for any g̃ ∈ W0, there exists
a collection of vectors {g̃t}t∈Γ with the following properties:

(i) g̃ =
∑

t∈Γ g̃t;

(ii) supp(g̃t) ⊂ Ωt for any t ∈ Γ;

(iii) g̃t ∈ W0 for any t ∈ Γ.
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Moreover, for every 1 < q < ∞, there exists a positive constant C independent of g̃ such that

‖g̃t‖Lq(Ωt ,Rn×n,ρ−βq) ≤ C
(
1 + [diam(Ωt)]α−1 + [diam(Ωt)]2(α−1)

)
‖g̃‖Lq(Ωt ,Rn×n,ρ−βq).N2N2 (3.6)

Proof. To show this lemma, by (i) (ii) and (iii) of Lemma 3.5, it suffices to prove (3.6). One may
use (3.4), Minkowski’s inequality, Lemma 3.6 and (2.1) to deduce that

‖g̃t‖Lq(Ωt ,Rn×n,ρ−βq) =

(∫
Ωt

‖g̃t‖
q
qρ
−βqdx

)1/q

≤ C
[∫

Ωt

(
‖g̃‖q +

diam(Wt)
diam(Ωt)

|Wt|

|Ωt|
H(‖g̃‖1)

)q

ρ−βqdx
]1/q

≤ C
(
‖g̃‖Lq(Ωt ,Rn×n,ρ−βq) +

diam(Wt)
diam(Ωt)

|Wt|

|Ωt|
‖H(‖g̃‖1)‖Lq(Ωt ,R,ρ−βq)

)
≤ C

(
1 +

diam(Wt)
diam(Ωt)

|Wt|

|Ωt|

)
‖g̃‖Lq(Ωt ,Rn×n,ρ−βq)

≤ C
(
1 + [diam(Ωt)]α−1 + [diam(Ωt)]2(α−1)

)
‖g̃‖Lq(Ωt ,Rn×n,ρ−βq),

which is desired. The proof is completed. �

lma4 Lemma 3.8. Let 1 < p < ∞. Suppose Ω ⊂ Rn is a n-dimensional rectangle as in (3.2) with sides
parallel to the axis. Then there exists a positive constant C independent of Ω such that, for any
vector field u ∈ W1,p(Ω,Rn),

inf
`(w)=0

(∫
Ω

|Du − Dw|pdx
)1/p

≤ C
(∫

Ω

|`(u)|pdx
)1/p

.

Proof. Let Ω0 be the n-dimensional rectangle (0, 1)n−1×(−1/2, 1). Hence, any other n-dimensional
rectangle as in (3.2) with sides parallel to the axis can be obtained by a translation and dilation of
Ω0. Thus, using the same argument as in the proof of [15, Corollary 3.1], we can easily carry out
the proof of this lemma. The proof will be omitted. �

Lemma 3.9. ([15, Lemma 3.2]) For any 1 ≤ q < ∞ and 0 ≤ β < ∞, the space Lq(Ω,Rn×n, ρ−βq)lma1
can be written asW⊕ ρβpV. Moreover, for any g̃ + ρβpϕ ∈ W ⊕ ρβpV, it follows that

‖g̃‖Lq(Ω,Rn×n,ρ−βq) ≤ C1
∥∥∥g̃ + ρβpϕ

∥∥∥
Lq(Ω,Rn×n,ρ−βq) ,

where

C1 = 1 +

h∑
i=1

∥∥∥ψ̃i
∥∥∥

Lp(Ω,Rn×n,ρβp)

∥∥∥ψ̃i
∥∥∥

Lq(Ω,Rn×n,ρβq) .

The collection {ψ̃i}1≤i≤h in the previous identity is an arbitrary orthonormal basis ofV with respect
to the inner product

productproduct (3.7) 〈ψ̃, ϕ̃〉Ω =

∫
Ω

(ψ̃ : ϕ̃)ρβpdx.
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We end this section with the proof of Theorem 1.1 (i).

Proof of Theorem 1.1 (i). STEP 1. We first prove Theorem 1.1 under the case Ωϕ. The argument
presented in this step partly follows López-Garcı́a [15, Theorem 1.1]. We claim that there exists a
positive constant C such that, for any vector field u ∈ W1,p(Ωϕ,R

n, ρ
βp
G ) satisfying 〈Du,V〉Ωϕ = 0,∫

Ωϕ

|Du|pρβp
G dx

1/p

≤ C
∫

Ωϕ

|`(u)|pρap
G dx

1/p

.

Assuming that this claim holds for the moment, we give the proof of this theorem (i).
First, let v be an arbitrary vector field in W1,p(Ωϕ,R

n, ρ
βp
G ) and {ψ̃i}1≤i≤h an orthonormal basis

of V with respect to the inner product (3.7). Next, take w ∈ Σ such that Dw =
∑h

i=1 αiψ̃i, where
αi =

∫
Ωϕ

(Dv : ψ̃i)ρ
βp
G dx. Then it follows that, for any ϕ̃ ∈ V,∫

Ωϕ

(Dv : ϕ̃)ρβp
G dx =

∫
Ωϕ

(Dw : ϕ̃)ρβp
G dx.

Noticing that 0 ≤ β < ∞ and the fact that Ωϕ is bounded, w also belongs to W1,p(Ωϕ,R
n, ρ

βp
G ).

Finally, by taking u := v − w, we obtain that

inf
`(w)=0

∫
Ωϕ

|Dv − Dw|pρβp
G dx

1/p

≤

∫
Ωϕ

|Du|pρβp
G dx

1/p

≤ C
∫

Ωϕ

|`(v)|pρap
G dx

1/p

.

It remains to prove the claim. Applying the fact that Lq(Ωϕ,R
n×n, ρ

−βq
G ) is the dual space

of Lp(Ωϕ,R
n×n, ρ

βp
G ) and Lemma 3.2, the claim will be proved by showing that there exists a

positive constant C independent of u such that, for any g̃ + ρ
βp
G ψ̃ ∈ W0 ⊕ ρ

βp
G V satisfying

‖g̃ + ρ
βp
G ψ̃‖Lq(Ωϕ,Rn×n,ρ

−βq
G ) ≤ 1,

∣∣∣∣∣∣
∫

Ωϕ

[
Du :

(
g̃ + ρ

βp
G ψ̃

)]
dx

∣∣∣∣∣∣ ≤ C
∫

Ωϕ

|`(u)|pρap
G dx

1/p

.q2q2 (3.8)

For the g̃ ∈ W0 mentioned above, we can use Lemma 3.7 to obtain∣∣∣∣∣∣
∫

Ωϕ

[
Du :

(
g̃ + ρ

βp
G ψ̃

)]
dx

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫

Ωϕ

(Du : g̃)dx

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
∫

Ωϕ

Du :
∑
t∈Γ

g̃t

 dx

∣∣∣∣∣∣∣ ≤∑
t∈Γ

∣∣∣∣∣∣
∫

Ωt

(Du : g̃t) dx

∣∣∣∣∣∣ ,
where the first “=” is due to 〈Du,V〉Ωϕ = 0 and the last “≤” is due to the finiteness of the sum
“
∑

t∈Γ” stated in Lemma 3.7. Noticing that
∫
Ωt

(Dw : g̃t)dx = 0 for any w ∈ Σ, from the above
inequality, Hölder inequality, (3.3), Lemma 3.8 and (3.6), it follows that∣∣∣∣∣∣

∫
Ωϕ

[
Du :

(
g̃ + ρ

βp
G ψ̃

)]
dx

∣∣∣∣∣∣ ≤∑
t∈Γ

‖g̃t‖Lq(Ωt ,Rn×n,ρ
−βq
G ) inf

`(w)=0

(∫
Ωt

|Du − Dw|pρβp
G dx

)1/p
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≤ C
∑
t∈Γ

[diam(Ωt)]β‖g̃t‖Lq(Ωt ,Rn×n,ρ
−βq
G ) inf

`(w)=0

(∫
Ωt

|Du − Dw|pdx
)1/p

≤ C
∑
t∈Γ

[diam(Ωt)]β‖g̃t‖Lq(Ωt ,Rn×n,ρ
−βq
G )

(∫
Ωt

|`(u)|pdx
)1/p

≤ C
∑
t∈Γ

[diam(Ωt)]β+2(α−1)‖g̃‖Lq(Ωt ,Rn×n,ρ
−βq
G )

(∫
Ωt

|`(u)|pdx
)1/p

+ C
∑
t∈Γ

[diam(Ωt)]β+α−1 · · · + C
∑
t∈Γ

[diam(Ωt)]β · · ·

=: C(I1 + I2 + I3).

For I1, one may use (3.3), Hölder’s inequality, the fact that Ωt intersects no more 12n n-
dimensional rectangles in {Ωt}t∈Γ, Lemma 3.9, and ρβ+2(α−1)

G ≤ C(Ωϕ)ρ
a
G (which is guaranteed by

a ≤ β + 2(α − 1)) to deduce that

I1 ≤ C
∑
t∈Γ

‖g̃‖Lq(Ωt ,Rn×n,ρ
−βq
G )

(∫
Ωt

|`(u)|pρ[β+2(α−1)]p
G dx

)1/p

≤ C

∑
t∈Γ

‖g̃‖q
Lq(Ωt ,Rn×n,ρ

−βq
G )

1/q ∑
t∈Γ

∫
Ωt

|`(u)|pρ[β+2(α−1)]p
G dx

1/p

≤ C
∥∥∥∥g̃ + ρ

βp
G ψ̃

∥∥∥∥
Lq(Ωϕ,Rn×n,ρ

−βq
G )

∑
t∈Γ

∫
Ωt

|`(u)|pρ[β+2(α−1)]p
G dx

1/p

≤ C
∫

Ωϕ

|`(u)|pρ[β+2(α−1)]p
G dx

1/p

≤ C
∫

Ωϕ

|`(u)|pρap
G dx

1/p

.

Analogously, for I2 and I3, we obtain that

I2 ≤ C
∑
t∈Γ

‖g̃‖Lq(Ωt ,Rn×n,ρ
−βq
G )

(∫
Ωt

|`(u)|pρ(β+α−1)p
G dx

)1/p

≤ C
∫

Ωϕ

|`(u)|pρ(β+α−1)p
G dx

1/p

≤ C
∫

Ωϕ

|`(u)|pρap
G dx

1/p

and

I3 ≤ C
∫

Ωϕ

|`(u)|pρβp
G dx

1/p

≤ C
∫

Ωϕ

|`(u)|pρap
G dx

1/p

.

Combining the estimates of I1, I2 and I3, we have∣∣∣∣∣∣
∫

Ωϕ

[
Du :

(
g̃ + ρ

βp
G ψ̃

)]
dx

∣∣∣∣∣∣ ≤ C
∫

Ωϕ

|`(u)|pρap
G dx

1/p

,
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which completes the proof of Step 1.
STEP 2. We are now turning to the proof of Theorem 1.1 (i) under the case Hölder α domain

by borrowing a decomposition technique from the proof of [14, Theorem 6.1]. Indeed we may
assume that ∂Ω can be covered by a finite collection of open sets {Ei}

k
i=1 such that Ωϕi := Ei

⋂
Ω

is in the form (3.5). Now, take a Lipschitz domain Ωϕ0 ⊂⊂ Ω satisfying
⋃k

i=0 Ωϕi = Ω.
Let us define the finite collection {Ωϕi}

k
i=0. The tree structure of the index set {0, 1, . . . , k} is

defined in such a way that two nodes i and j are connected by an edge if and only if one of those
is the root a = 0. Thus, the partial order is given by i 4 j if and only if i = 0 or i = j.

With the help of the tree structure, by checking the proof of [15, Lemma 4.5], we know that,
for any g̃ ∈ W, there exists a collection of vectors {g̃i}

k
i=0 with the following properties:

(i) g̃ =
∑k

i=0 g̃i;

(ii) supp(g̃i) ⊂ Ωϕi ;

(iii) g̃i ∈ W;

(iv) ‖g̃i‖Lq(Ω,Rn×n,ρ−βq) ≤ C‖g̃‖Lq(Ω,Rn×n,ρ−βq).

Next, similarly to Step 1, it suffices to prove that there exists a positive constant C independent
of v such that, for any g̃ + ρβpψ̃ ∈ W ⊕ ρβpV satisfying ‖g̃ + ρβpψ̃‖Lq(Ω,Rn×n,ρ−βq) ≤ 1,∣∣∣∣∣∫

Ω

[
Dv :

(
g̃ + ρβpψ̃

)]
dx

∣∣∣∣∣ ≤ C
(∫

Ω

|`(v)|pρapdx
)1/p

.

Invoking the decomposition mentioned above to g̃, we arrive at∣∣∣∣∣∫
Ω

[
Dv :

(
g̃ + ρβpψ̃

)]
dx

∣∣∣∣∣ =

∣∣∣∣∣∫
Ω

(Dv : g̃)dx
∣∣∣∣∣ ≤ k∑

i=0

∣∣∣∣∣∣∣
∫

Ωϕi

(Dv : g̃i) dx

∣∣∣∣∣∣∣ ,
where the first “=” is due to 〈Dv,V〉Ω = 0.

For i = 0, it follows from the proof of Theorem A, and a ≤ β + 2(α − 1) that∣∣∣∣∣∣∣
∫

Ωϕ0

(Dv : g̃0) dx

∣∣∣∣∣∣∣ ≤ C‖g̃0‖Lq(Ω,Rn×n,ρ−βq)

∫
Ωϕ0

|`(v)|pρβpdx

1/p

≤ C‖g̃0‖Lq(Ω,Rn×n,ρ−βq)

(∫
Ω

|`(v)|pρapdx
)1/p

.

For 1 ≤ i ≤ k, we know by the proof of Step 1 that∣∣∣∣∣∣∣
∫

Ωϕi

(Dv : g̃i) dx

∣∣∣∣∣∣∣ ≤ C‖g̃i‖Lq(Ω,Rn×n,ρ−βq)

(∫
Ω

|`(v)|pρapdx
)1/p

.

Combining the three inequalities above and using (iv) lead to∣∣∣∣∣∫
Ω

[
Dv :

(
g̃ + ρβpψ̃

)]
dx

∣∣∣∣∣ ≤ C‖g̃‖Lq(Ω,Rn×n,ρ−βq)

(∫
Ω

|`(v)|pρapdx
)1/p

≤ C
(∫

Ω

|`(v)|pρapdx
)1/p

,

where the last “≤” is due to Lemma 3.9. This completes the proof of Step 2 and hence Theorem
1.1 (i). �
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4 A counterexample
s5

We conclude this paper by proving Theorem 1.1 (ii), i.e., the range of a in Theorem 1.1 is optimal.
For some 1 < γ < ∞ (may be close to 1+), consider the following Hölder 1/γ domain (see

Figure 1 below)

Ω :=
{
(x, y, z) ∈ R3 | 0 < x < 1 and (y2 + z2)1/2 < xγ

}
.

Figure 1

By an argument similar to that used in the proofs of [15, Corollaries 3.6 & 3.7], we know that
Theorem 1.1 implies ∫

Ω

|Du|pρβpdx ≤ C
(∫

Ω

|`(u)|pρapdx +

∫
Q
|u|pdx

)
,qqqqqq (4.1)

where Q ⊂⊂ Ω is a cube. Take a vector field

u :=
(
xs −

s(s − 1)
2

xs−2(y2 + z2), sxs−1y, sxs−1z
)
,

where the constant s is arbitrary for the moment and will be fixed later. Thus, its differential matrix
Du and trace-free part `(v) are as follows,

Du =

 sxs−1 −
s(s−1)(s−2)

2 xs−3(y2 + z2) −s(s − 1)xs−2y −s(s − 1)xs−2z
s(s − 1)xs−2y sxs−1 0
s(s − 1)xs−2z 0 sxs−1

 ;
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`(u) =


−

s(s−1)(s−2)
3 xs−3(y2 + z2) 0 0

0 s(s−1)(s−2)
6 xs−3(y2 + z2) 0

0 0 s(s−1)(s−2)
6 xs−3(y2 + z2)

 .
On the one hand, for any fixed cube Q ⊂⊂ Ω, one has

∫
Q |u|

pdx < ∞.
On the other hand, a straightforward calculation gives∫

Ω

|`(u)|pρapdΩ = C(s,p)

∫ 1

0
dx

∫ ∫
(y2+z2)1/2<xγ

x(s−3)p(y2 + z2)pρ(x, y, z)apdydz

= C(s,p)

∫ 1

0
x(s−3)pdx

∫ 2π

0
dθ

∫ xγ

0
t2pρ(x, t cos θ, t sin θ)aptdt

= C(s,p)

∫ 1

0
x(s−3)pdx

∫ 2π

0
dθ

∫ xγ

0
t2pρ(x, 0, t)aptdt

≤ C(s,p)

∫ 1

0
x(s−3)pdx

∫ xγ

0
t2p(xγ − t)aptdt

= C(s,p,a)

∫ 1

0
x(s−3)p+(2p+ap+2)γdx

and ∫
Ω

|Du|pρβpdΩ ≥ C(s,p)

∫ 1

0
dx

∫ ∫
(y2+z2)1/2<xγ

x(s−1)pρ(x, y, z)βpdydz

= C(s,p)

∫ 1

0
x(s−1)pdx

∫ xγ

0
ρ(x, 0, t)βptdt

= C(s,p)

∫ 1

0
x(s−1)pdx

∫ xγ

0
(xγ − t)βp

(
ρ(x, 0, t)

xγ − t

)βp

tdt

≥ C(s,p)

∫ 1

0
x(s−1)pdx

∫ xγ

0
(xγ − t)βp

(
ρ(1, 0, 0)
1γ − 0

)βp

tdt

= C(s,p,β)

∫ 1

0
x(s−1)pdx

∫ xγ

0
(xγ − t)βptdt

= C(s,p,β)

∫ 1

0
x(s−1)p+(βp+2)γdx.

If a > β + 2(1/γ − 1), we can take s such that

(s − 3)p + (2p + ap + 2)γ + 1 > 0 and (s − 1)p + (βp + 2)γ + 1 ≤ 0,

which, together with the two above inequalities, implies the left hand of (4.1) is infinite while the
right one is finite. This proves that, if a > β + 2(1/γ − 1), the conformal Korn inequality can not
be valid. This completes the proof of Theorem 1.1 (ii).
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