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Abstract. Let ϕ : Rn× [0, ∞)→ [0, ∞) satisfy that ϕ(x, ·), for any given x ∈ Rn, is
an Orlicz function and ϕ(· , t) is a Muckenhoupt A∞ weight uniformly in t ∈ (0, ∞).
The (weak) Musielak-Orlicz Hardy space Hϕ(Rn) (WHϕ(Rn)) generalizes both of the
weighted (weak) Hardy space and the (weak) Orlicz Hardy space and hence has a wide
generality. In this paper, two boundedness criterions for both of linear operator and
positive sublinear operator from Hϕ(Rn) to Hϕ(Rn) or from Hϕ(Rn) to WHϕ(Rn)
are obtained. As applications, we establish the boundedness of Bochner-Riesz means
from Hϕ(Rn) to Hϕ(Rn), or from Hϕ(Rn) to WHϕ(Rn) in the critical case. These
results are also new even when ϕ(x, t) := Φ(t) for all (x, t) ∈ Rn × [0, ∞), where Φ
is an Orlicz function.

1 Introduction

The real-variable theory of Hardy space on the n-dimensional Euclidean space Rn, initiated
by Stein and Weiss [35], plays an important role in the harmonic analysis and partial
differential equations. It is well known that Hardy space Hp(Rn) is a good substitute of
Lebesgue space Lp(Rn) with p ∈ (0, 1]; for example, when p ∈ (0, 1], the Riesz transforms
are not bounded on Lp(Rn), however, they are bounded on Hp(Rn). Moreover, when
studying the boundedness of operator in the critical case, the weak Hardy space WHp(Rn)
naturally appear and prove to be a good substitute of Hardy space Hp(Rn) with p ∈ (0, 1].
For example, if δ ∈ (0, 1], T is a δ-Calderón-Zygmund operator and T ∗(1) = 0, where T ∗

denotes the adjoint operator of T , it is known that T is bounded on Hp(Rn) for all

p ∈ ( n
n+δ , 1] (see [1]), but T may be not bounded on H

n
n+δ (Rn); however, Liu [19] proved

that T is bounded from H
n
n+δ (Rn) to WH

n
n+δ (Rn).

Recently, Ky [15] introduced a new Musielak-Orlicz Hardy space Hϕ(Rn), which gen-
eralizes both of the classical Hardy space [7], the weighted Hardy space [33], the Orlicz
Hardy space [10, 12, 13, 14] and the weighted Orlicz Hardy space, and hence has a wide
generality. Later, Liang et al. [26] further introduced a weak Musielak-Orlicz Hardy s-
pace WHϕ(Rn), which covers both of the weak Hardy space [6], the weighted weak Hardy
space [29], the weak Orlicz Hardy space and the weighted weak Orlicz Hardy space, as
special cases. Apart from interesting theoretical considerations, the motivation to study
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Musielak-Orlicz-type space comes from applications to elasticity, fluid dynamics, image
processing, nonlinear PDEs and the calculus of variation (see, for example, [3, 4]). More
Musielak-Orlicz-type spaces are referred to [23, 25, 24, 38, 21, 5, 39, 37]. We refer the
reader to [37] for a complete survey of the real-variable theory of Musielak-Orlicz Hardy
space.

On the other hand, observe that a distribution in Hardy space can be represented as
a (finite or infinite) linear combination of atoms (see [16, 8]). Then, the boundedness
of linear operator on Hardy space can be deduced from their behavior on atoms. More
precisely, as is well known, a linear operator T (which is originally defined on smooth
functions with compact support) can extend to a bounded operator from Hp(Rn) with
p ∈ (0, 1] to some quasi-Banach space B if T is bounded on L2(Rn) and it maps all
(p, 2)-atoms into uniformly bounded elements of B; see, for example, [18, 20, 28, 31].

Motivated by all of the above mentioned facts, it is a natural and interesting problem to
ask if T is a linear or a positive sublinear operator, what kind of additional conditions on T
can deduce the boundedness of T from Hϕ(Rn) to Hϕ(Rn) or from Hϕ(Rn) to WHϕ(Rn)?
In this paper, we shall answer these problems affirmatively. As applications, we establish
the boundedness of Bochner-Riesz means from Hϕ(Rn) to Hϕ(Rn), or from Hϕ(Rn) to
WHϕ(Rn) at critical index. These results are also new even when ϕ(x, t) := Φ(t) for all
(x, t) ∈ Rn × [0, ∞), where Φ is an Orlicz function.

An outline of this paper is as follows.

In Section 2, we recall some notions concerning Muckenhoupt weight, growth function
and Musielak-Orlicz Hardy space Hϕ(Rn). Then we present the completeness of weak
Musielak-Orlicz Hardy space (see Theorem 2.11 below) and two boundedness criterions
for T from Hϕ(Rn) to WHϕ(Rn) or from Hϕ(Rn) to itself (see Theorems 2.12 and 2.13
below).

Section 3 is devoted to the proofs of Theorems 2.11, 2.12 and 2.13. Here, we point out
that, the uniformly σ-quasi-subadditive property of ϕ can be used to prove the complete-
ness of Hϕ(Rn) (see [15, Proposition 5.2] for more details). However, we don’t know how to
use this method to obtain the completeness of WHϕ(Rn) because of the particular form of
the norm of WHϕ(Rn). Fortunately, we overcome this difficulty by borrowing some ideas
from the proof of [27, Proposition 2.8] and using Aoki-Rolewicz’s theorem (see Lemma
3.2 below). In the process of the proof of Theorem 2.13, the molecular characterization
of Hϕ(Rn) plays a key role in obtaining the boundedness criterion for T from Hϕ(Rn) to
itself. It is worth pointing out that the Musielak-Orlicz Hardy space has several different
kinds of molecular characterization. Here, we use the molecular characterization of Li et
al. [21] rather than that of Hou et al. [9].

In Section 4, we first recall the definition of Bochner-Riesz means T δR. Then, as applica-
tions of Theorems 2.12 and 2.13, the boundedness of Bochner-Riesz means from Hϕ(Rn)
to WHϕ(Rn) (see Theorem 4.1 below) or from Hϕ(Rn) to itself (see Theorem 4.2 below)
is obtained. It is worth pointing out that this method is different from that used by Lu
[18, Chapter 3, §5], in which the kernel of T δR belongs to Campanato space was proved.
However, in present setting, the corresponding conclusion that the kernel of T δR belongs
to Musielak-Orlicz Campanato space is still unknown due to the complex structure of
Musielak-Orlicz-type space.
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Finally, we make some conventions on notation. Let Z+ := {1, 2, . . .} and N := {0} ∪
Z+. For any β := (β1, . . . , βn) ∈ Nn, let |β| := β1 + · · ·+ βn and ∂β := ( ∂

∂x1
)β1 · · · ( ∂

∂xn
)βn .

Throughout this paper, the letter C will denote a positive constant that may vary from line
to line but will remain independent of the main variables. The symbol P . Q stands for the
inequality P ≤ CQ. If P . Q . P , we then write P ∼ Q. For any sets E, F ⊂ Rn, we use
E{ to denote the set Rn \E, |E| its n-dimensional Lebesgue measure, χE its characteristic
function and E+F the algebraic sum {x+ y : x ∈ E, y ∈ F}. For any s ∈ R, bsc denotes
the unique integer such that s − 1 < bsc ≤ s. If there are no special instructions, any
space X (Rn) is denoted simply by X . For instance, L2(Rn) is simply denoted by L2. For
any index q ∈ [1, ∞], q′ denotes the conjugate index of q, namely, 1/q + 1/q′ = 1. For
any set E of Rn, t ∈ [0, ∞) and measurable function f , let ϕ(E, t) :=

∫
E ϕ(x, t) dx and

{|f | > t} := {x ∈ Rn : |f(x)| > t}. As usual, for any x ∈ Rn, r ∈ (0, ∞) and α ∈ (0, ∞),
let B(x, r) := {y ∈ Rn : |x− y| < r} and αB(x, r) := B(x, αr).

2 Notions and main results

In this section, we first recall the notion concerning the Musielak-Orlicz Hardy space
via the non-tangential grand maximal function, and then present the completeness of
weak Musielak-Orlicz Hardy space and two boundedness criterions for some operators on
Musielak-Orlicz Hardy space.

Recall that a function Φ : [0, ∞) → [0, ∞) is called an Orlicz function, if it is nonde-
creasing, Φ(0) = 0, Φ(t) > 0 for any t ∈ (0, ∞), and limt→∞Φ(t) =∞.

Given a function ϕ : Rn × [0, ∞) → [0, ∞) such that, for any x ∈ Rn, ϕ(x, ·) is an
Orlicz function, ϕ is said to be of uniformly lower (resp. upper) type p with p ∈ (0, ∞),
if there exists a positive constant C := Cϕ such that, for any x ∈ Rn, t ∈ [0, ∞) and
s ∈ (0, 1] (resp. s ∈ [1, ∞)),

ϕ(x, st) ≤ Cspϕ(x, t).

The critical uniformly lower type index and the critical uniformly upper type index of ϕ
are, respectively, defined by

i(ϕ) := sup{p ∈ (0, ∞) : ϕ is of uniformly lower type p},(2.1)

and

I(ϕ) := inf{p ∈ (0, ∞) : ϕ is of uniformly upper type p}.(2.2)

Observe that i(ϕ) or I(ϕ) may not be attainable, namely, ϕ may not be of uniformly lower
type i(ϕ) or of uniformly upper type I(ϕ); see below for some examples.

Definition 2.1. Let q ∈ [1, ∞). A function ϕ(· , t) : Rn → [0, ∞) is said to satisfy the
uniform Muckenhoupt condition, denoted by ϕ ∈ Aq, if there exists a positive constant C
such that, for any ball B ⊂ Rn and t ∈ (0, ∞), when q = 1,

1

|B|

∫
B
ϕ(x, t) dx

{
ess sup
x∈B

[ϕ(x, t)]−1

}
≤ C
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and, when q ∈ (1,∞),

1

|B|

∫
B
ϕ(x, t) dx

{
1

|B|

∫
B

[ϕ(x, t)]
− 1
q−1 dx

}q−1

≤ C.

Let A∞ :=
⋃
q∈[1,∞) Aq. The critical weight index of ϕ ∈ A∞ is defined as follows:

q(ϕ) := inf{q ∈ [1, ∞) : ϕ ∈ Aq}.(2.3)

Observe that, if q(ϕ) ∈ (1, ∞), then ϕ /∈ Aq(ϕ), and there exists ϕ /∈ A1 such that q(ϕ) = 1
(see, for example, [11]).

Definition 2.2. ([15, Definition 2.1]) A function ϕ : Rn × [0, ∞) → [0, ∞) is called a
growth function if the following conditions are satisfied:

(i) ϕ is a Musielak-Orlicz function, namely,

(a) the function ϕ(x, ·) : [0, ∞)→ [0, ∞) is an Orlicz function for all x ∈ Rn,

(b) the function ϕ(· , t) is a Lebesgue measurable function on Rn for all t ∈ [0, ∞);

(ii) ϕ ∈ A∞;

(iii) ϕ is of uniformly lower type p for some p ∈ (0, 1] and of uniformly upper type 1.

Clearly, ϕ(x, t) := ω(x)Φ(t) is a growth function if ω ∈ A∞ and Φ is an Orlicz function
of lower type p for some p ∈ (0, 1] and of upper type 1. It is well known that, for p ∈ (0, 1],
if Φ(t) := tp for all t ∈ [0, ∞), then Φ is an Orlicz function of lower type p and of upper
p; for p ∈ [1/2, 1], if Φ(t) := tp/ ln(e + t) for all t ∈ [0, ∞), then Φ is an Orlicz function
of lower type q for q ∈ (0, p) and of upper type p; for p ∈ (0, 1/2], if Φ(t) := tp ln(e + t)
for all t ∈ [0, ∞), then Φ is an Orlicz function of lower type p and of upper type q for
q ∈ (p, 1]. Recall that if an Orlicz function is of upper type p ∈ (0, 1), then it is also of
upper type 1. Another typical and useful growth function is

ϕ(x, t) :=
tα

[ln(e+ |x|)]β + [ln(e+ t)]γ

for all (x, t) ∈ Rn× [0, ∞), with any α ∈ (0, 1], β ∈ [0, ∞) and γ ∈ [0, 2α(1 + ln 2)]; more
precisely, ϕ ∈ A1, ϕ is of uniformly upper type α and i(ϕ) = α which is not attainable
(see [15]).

Suppose that ϕ is a Musielak-Orlicz function. Recall that the Musielak-Orlicz space Lϕ

is defined to be the set of all measurable functions f such that, for some λ ∈ (0, ∞),∫
Rn
ϕ

(
x,
|f(x)|
λ

)
dx <∞

equipped with the Luxembourg-Nakano (quasi-)norm

‖f‖Lϕ := inf

{
λ ∈ (0, ∞) :

∫
Rn
ϕ

(
x,
|f(x)|
λ

)
dx ≤ 1

}
.
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Similarly, the weak Musielak-Orlicz space WLϕ is defined to be the set of all measurable
functions f such that, for some λ ∈ (0, ∞),

sup
t∈(0,∞)

ϕ

(
{|f | > t}, t

λ

)
<∞

equipped with the quasi-norm

‖f‖WLϕ := inf

{
λ ∈ (0, ∞) : sup

t∈(0,∞)
ϕ

(
{|f | > t}, t

λ

)
≤ 1

}
.

Remark 2.3. Let ω be a classical Muckenhoupt weight and Φ an Orlicz function.

(i) If ϕ(x, t) := ω(x)tp for all (x, t) ∈ Rn × [0, ∞) with p ∈ (0, ∞), then Lϕ (resp.
WLϕ) is reduced to weighted Lebesgue space Lpω (resp. weighted weak Lebesgue
space WLpω), and particularly, when ω ≡ 1, the corresponding unweighted spaces
are also obtained.

(ii) If ϕ(x, t) := ω(x)Φ(t) for all (x, t) ∈ Rn×[0, ∞), then Lϕ (resp. WLϕ) is reduced to
weighted Orlicz space LΦ

ω (resp. weighted weak Orlicz space WLΦ
ω ), and particularly,

when ω ≡ 1, the corresponding unweighted spaces are also obtained.

In what follows, we denote by S the space of all Schwartz functions and by S ′ its dual
space (namely, the space of all tempered distributions). For any m ∈ N, let

Sm :=

{
ψ ∈ S : sup

α∈Nn, |α|≤m+1
sup
x∈Rn

(1 + |x|)(m+2)(n+1)|∂αψ(x)| ≤ 1

}
.

Then, for any m ∈ N and f ∈ S ′, the non-tangential grand maximal function f∗m of f is
defined by setting, for all x ∈ Rn,

f∗m(x) := sup
ψ∈Sm

sup
|y−x|<t, t∈(0,∞)

|f ∗ ψt(y)|,

where, for any t ∈ (0, ∞), ψt(·) := t−nψ( ·t). When

m = m(ϕ) :=

⌊
n

(
q(ϕ)

i(ϕ)
− 1

)⌋
,(2.4)

we denote f∗m simply by f∗, where q(ϕ) and i(ϕ) are as in (2.3) and (2.1), respectively.

Definition 2.4. ([15, Definition 2.2]) Let ϕ be a growth function as in Definition 2.2 and
m ∈ [m(ϕ), ∞) ∩ N, where m(ϕ) is as in (2.4). The Musielak-Orlicz Hardy space Hϕ

m is
defined as the set of all f ∈ S ′ such that f∗m ∈ Lϕ equipped with the (quasi-)norm

‖f‖Hϕ
m

:= ‖f∗m‖Lϕ .
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Definition 2.5. ([26, Definition 2.3]) Let ϕ be a growth function as in Definition 2.2 and
m ∈ [m(ϕ), ∞) ∩ N, where m(ϕ) is as in (2.4). The weak Musielak-Orlicz Hardy space
WHϕ

m is defined as the set of all f ∈ S ′ such that f∗m ∈WLϕ equipped with the quasi-norm

‖f‖WHϕ
m

:= ‖f∗m‖WLϕ .

Remark 2.6. By [22, Lemma 2.13], we know that, if m ∈ [m(ϕ), ∞) ∩ N, then the
definition of Hϕ

m is independent of m. Analogously, by [26, Throrem 3.5] and the same
argument as in the proof of [22, Lemma 2.13], we know that, if m ∈ [m(ϕ), ∞) ∩ N, then
the definition of WHϕ

m is also independent of m. Therefore, from now on, we denote Hϕ
m

and WHϕ
m with m ∈ [m(ϕ), ∞) ∩ N simply by Hϕ and WHϕ, respectively.

Remark 2.7. Let ω be a classical Muckenhoupt weight and Φ an Orlicz function.

(i) If ϕ(x, t) := ω(x)tp for all (x, t) ∈ Rn × [0, ∞) with p ∈ (0, 1], then Hϕ (resp.
WHϕ) is reduced to weighted Hardy space Hp

ω (resp. weighted weak Hardy space
WHp

ω), and particularly, when ω ≡ 1, the corresponding unweighted spaces are also
obtained.

(ii) If ϕ(x, t) := ω(x)Φ(t) for all (x, t) ∈ Rn× [0, ∞), then Hϕ (resp. WHϕ) is reduced
to weighted Orlicz Hardy space HΦ

ω (resp. weighted weak Orlicz Hardy space WHΦ
ω ),

and particularly, when ω ≡ 1, the corresponding unweighted spaces are also obtained.

Definition 2.8. ([15, Definition 2.4]) Let ϕ be a growth function as in Definition 2.2.

(i) A triplet (ϕ, q, N) is said to be admissible, if q ∈ (q(ϕ), ∞] and N ∈ [m(ϕ), ∞)∩N,
where q(ϕ) and m(ϕ) are as in (2.3) and (2.4), respectively.

(ii) For an admissible triplet (ϕ, q, N), a measurable function a is called a (ϕ, q, N)-
atom associated with some ball B ⊂ Rn if it satisfies the following three conditions:

(a) a is supported in B;

(b) ‖a‖Lqϕ(B) ≤ ‖χB‖−1
Lϕ , where

‖a‖Lqϕ(B) :=


sup

t∈(0,∞)

[
1

ϕ(B, t)

∫
B
|a(x)|qϕ(x, t) dx

]1/q

, q ∈ [1, ∞),

‖a‖L∞ , q =∞;

(c)
∫
Rn a(x)xαdx = 0 for any α ∈ Nn with |α| ≤ N .

Definition 2.9. ([21, Definition 2.6]) Let ϕ be a growth function as in Definition 2.2.

(i) A quadruple (ϕ, q, N, ε) is said to be admissible, if q ∈ (q(ϕ), ∞], N ∈ [m(ϕ), ∞)∩N
and ε ∈ (0, ∞) satisfying ε > max{q(ϕ)/i(ϕ), N/n+ 1}, where q(ϕ), m(ϕ) and i(ϕ)
are as in (2.3), (2.4) and (2.1), respectively.
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(ii) For an admissible quadruple (ϕ, q, N, ε), a measurable function M is called a
(ϕ, q, N, ε)-molecule associated with some ball B ⊂ Rn if it satisfies the follow-
ing three conditions:

(a) ‖M‖Lqϕ(B) ≤ ‖χB‖−1
Lϕ ;

(b) for any j ∈ N and y ∈ (2j+1B) \ (2jB),

|M(y)| ≤ 2−njε‖χB‖−1
Lϕ ;

(c)
∫
RnM(x)xα dx = 0 for any α ∈ Nn with |α| ≤ N .

Definition 2.10. Let X and Y be two function spaces. An operator T : D ⊂ X → Y
is called a positive sublinear operator if, for any x ∈ Rn, the following conditions are
satisfied:

(i) T (f)(x) ≥ 0;

(ii) T (αf)(x) ≤ |α|T (f)(x), where α ∈ C;

(iii) T (f + g)(x) ≤ T (f)(x) + T (g)(x).

The main results of this paper are as follows, the proofs of which are given in next
section.

Theorem 2.11. Let ϕ be a growth function as in Definition 2.2. The weak Musielak-Orlicz
Hardy space WHϕ is complete.

Theorem 2.12. Let ϕ be a growth function as in Definition 2.2 satisfying I(ϕ) ∈ (0, 1),
and m ∈ [m(ϕ), ∞) ∩ N, where I(ϕ) and m(ϕ) are as in (2.2) and (2.4), respectively.
Suppose that a linear or a positive sublinear operator T is bounded on L2. If there exists
a positive constant C such that, for any λ ∈ (0, ∞) and multiple of a (ϕ, q, N)-atom b(·)
associated with some ball B ⊂ Rn,

sup
α∈(0,∞)

ϕ
(
{(T (b))∗m > α} , α

λ

)
≤ Cϕ

(
B,
‖b‖Lqϕ(B)

λ

)
,(2.5)

then T extends uniquely to a bounded operator from Hϕ to WHϕ.

Theorem 2.13. Let ϕ be a growth function as in Definition 2.2 and a(·) be a (ϕ, q, N)-
atom associated with some ball B ⊂ Rn. Suppose that a linear or a positive sublinear
operator T is bounded on L2. If T (a) is a harmless constant multiple of a (ϕ, q, N, ε)-
molecule, then T extends uniquely to a bounded operator from Hϕ to Hϕ.

Remark 2.14. Let ω be a classical Muckenhoupt weight and Φ an Orlicz function. When
ϕ(x, t) := ω(x)Φ(t) for all (x, t) ∈ Rn× [0, ∞), we have Hϕ = HΦ

ω . In this case, Theorems
2.11, 2.12 and 2.13 hold true for weighted Orlicz Hardy space. Even when ω ≡ 1, the above
results are also new.
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3 Proofs of Theorems 2.11, 2.12 and 2.13

To prove Theorems 2.11, 2.12 and 2.13, we need some auxiliary lemmas. The proof of the
following lemma is identical to that of [15, Proposition 5.1], the details being omitted.

Lemma 3.1. Let ϕ be a growth function as in Definition 2.2. Then WHϕ ⊂ S ′ and the
inclusion is continuous.

Recall that a quasi-normed linear space B is a linear space endowed with a quasi-
norm ‖ · ‖B which is nonnegative, non-degenerate (i.e., ‖f‖B = 0 if and only if f = 0),
homogeneous, and obeys the quasi-triangle inequality, i.e., there exists a constant K no
less than 1 such that, for any f, g ∈ B, ‖f + g‖B ≤ K (‖f‖B + ‖g‖B).

Lemma 3.2. ([30, Aoki-Rolewicz’s theorem]) Let B be a quasi-normed linear space and
K a constant associated with B as above. Then, for any {fi}i∈Z+ ⊂ B,∥∥∥∥∥

∞∑
i=1

fi

∥∥∥∥∥
γ

B

≤
∞∑
i=1

‖fi‖γB,

where γ := [log2(2K)]−1.

Proof of Theorem 2.11. We show this theorem by borrowing some ideas from the proof of
[27, Proposition 2.8]. To prove that WHϕ is complete, we divide our proof in three steps.

Firstly, without loss of generality, we take a sequence {fj}j∈Z+ ⊂ WHϕ such that, for
any j ∈ Z+, ‖fj‖WHϕ ≤ 2−j .

The next thing to do in the proof is to find some f in WHϕ. Since {
∑k

j=1 fj}k∈Z+

is a Cauchy sequence in WHϕ, from Lemma 3.1, it follows that {
∑k

j=1 fj}k∈Z+ is also a
Cauchy sequence in S ′, which, together with the completeness of S ′, implies that there
exists some f ∈ S ′ such that

∑k
j=1 fj converges to f as k →∞ in S ′. Thus, for any ψ ∈ S,

the series
∑k

j=1 fj ∗ψ converges to f ∗ψ pointwisely as k →∞. Therefore, for any x ∈ Rn,
we have

f∗(x) ≤
∑
j∈Z+

(fj)
∗(x).

By this and Lemma 3.2, we know that there exists some γ ∈ (0, 1] associated with WLϕ

such that

‖f‖γWHϕ = ‖f∗‖γWLϕ ≤

∥∥∥∥∥∥
∑
j∈Z+

(fj)
∗

∥∥∥∥∥∥
γ

WLϕ

≤
∑
j∈Z+

‖(fj)∗‖γWLϕ ≤
∑
j∈Z+

2−jγ <∞.

Finally, we still to show that
∑k

j=1 fj → f as k → ∞ in WHϕ. Applying Lemma 3.2
again, we know that there exists some γ̃ ∈ (0, 1] associated with WHϕ such that∥∥∥∥∥∥f −

k∑
j=1

fj

∥∥∥∥∥∥
WHϕ

=

∥∥∥∥∥∥
∞∑

j=k+1

fj

∥∥∥∥∥∥
WHϕ

≤

 ∞∑
j=k+1

‖fj‖γ̃WHϕ

1/γ̃
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≤

 ∞∑
j=k+1

2−jγ̃

1/γ̃

∼ 2−k → 0 as k →∞.

This finishes the proof of Theorem 2.11.

Lemma 3.3. Let X and Y be two linear spaces. Suppose T : D ⊂ X → Y is a positive
sublinear operator as in Definition 2.10. Then, for any f, g ∈ D,

|T (f)− T (g)| ≤ T (f − g).

Proof. Applying Definition 2.10(ii), we obtain that

T (−f) ≤ | − 1|T (f) = T (f) ≤ | − 1|T (−f) = T (−f) ,

therefore, T (−f) = T (f). By Definition 2.10(iii), we know that

T (f)− T (g) = T (f − g + g)− T (g) ≤ T (f − g) + T (g)− T (g) = T (f − g).

Similarly,

T (g)− T (f) ≤ T (g − f).

From the above two inequalities and T (−f) = T (f), we deduce that |T (f)− T (g)| ≤
T (f − g). This finishes the proof of Lemma 3.3.

The following lemma gives the superposition principle of weak type estimates.

Lemma 3.4. ([2, Lemma 7.13]) Let ϕ be a growth function as in Definition 2.2 satisfying
I(ϕ) ∈ (0, 1), where I(ϕ) is as in (2.2). Assume that {fj}j∈Z+ is a sequence of measurable
functions such that, for some λ ∈ (0, ∞),∑

j∈Z+

sup
α∈(0,∞)

ϕ
(
{|fj | > α}, α

λ

)
<∞.

Then there exists a positive constant C, depending only on ϕ, such that, for any η ∈ (0, ∞),

ϕ

∑
j∈Z+

|fj | > η

 ,
η

λ

 ≤ C ∑
j∈Z+

sup
α∈(0,∞)

ϕ
(
{|fj | > α}, α

λ

)
.

By an argument similar to that used in the proof of [15, Lemma 4.3], we easily obtain
the following lemma, the details being omitted.

Lemma 3.5. Let ϕ be a growth function as in Definition 2.2. For a given positive constant
C̃, there exists a positive constant C such that, for any λ ∈ (0, ∞),

sup
α∈(0,∞)

ϕ
(
{|f | > α}, α

λ

)
≤ C̃ implies that ‖f‖WLϕ ≤ Cλ.
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Definition 3.6. ([15, Definition 2.4]) For an admissible triplet (ϕ, q, N), the Musielak-
Orlicz atomic Hardy space Hϕ, q,N

at is defined as the set of all f ∈ S ′ which can be repre-
sented as a linear combination of (ϕ, q, N)-atoms, that is, f =

∑
j bj in S ′, where bj for

each j is a multiple of some (ϕ, q, N)-atom supported in some ball Bj , with the property∑
j

ϕ
(
Bj , ‖bj‖Lqϕ(Bj)

)
<∞.

Define

Λq ({bj}j) := inf

λ ∈ (0, ∞) :
∑
j

ϕ

(
Bj ,
‖bj‖Lqϕ(Bj)

λ

)
≤ 1


and

‖f‖
Hϕ, q,N

at
:= inf {Λq({bj}j)} ,

where the infimum is taken over all admissible decompositions of f as above.

Lemma 3.7. ([22, Lemma 2.13]) Let (ϕ, q, N) be an admissible triplet as in Definition
2.9. If m ∈ [m(ϕ), ∞) ∩ N, where m(ϕ) is as in (2.4), then

Hϕ
m = Hϕ, q,N

at

with equivalent (quasi-)norms.

Lemma 3.8. ([37, Remark 4.1.4]) Let ϕ be a growth function as in Definition 2.2. Then
Hϕ ∩ L2 is dense in Hϕ.

Lemma 3.9. Let B be a quasi-normed linear space equipped with the quasi-norm ‖ · ‖B.
For any {fk}k∈Z+ ⊂ B and f ∈ B, if lim

k→∞
‖fk − f‖B = 0, then

lim
k→∞

‖fk‖B = ‖f‖B .

Proof. By Lemma 3.2, we obtain that, for any k ∈ Z+,

‖fk‖γB − ‖f‖
γ
B = ‖fk − f + f‖γB − ‖f‖

γ
B ≤ ‖fk − f‖

γ
B ,

where γ is a harmless constant as in Lemma 3.2. Similarly, we have

‖f‖γB − ‖fk‖
γ
B ≤ ‖f − fk‖

γ
B ,

which, together with the above inequality, implies that∣∣‖fk‖γB − ‖f‖γB∣∣ ≤ ‖fk − f‖γB → 0 as k →∞.

This finishes the proof of Lemma 3.9.
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Proof of Theorem 2.12. We first assume that f ∈ Hϕ ∩ L2. By the well known Calderón
reproducing formula (see also [22, Theorem 2.14]), we know that there exist complex
numbers {λj}j∈Z+ and (ϕ, q, N)-atoms {aj}j∈Z+ associated with balls {Bj}j∈Z+ such
that

f = lim
k→∞

k∑
j=1

λjaj =: lim
k→∞

fk in S ′ and also in L2.(3.1)

From Lemma 3.3, the assumption that the linear or positive sublinear operator T is bound-
ed on L2, and (3.1), it follows that

lim
k→∞

‖T (f)− T (fk)‖L2 ≤ lim
k→∞

‖T (f − fk)‖L2 . lim
k→∞

‖f − fk‖L2 = 0,

which implies that

T (f) = lim
k→∞

T (fk) ≤ lim
k→∞

k∑
j=1

T (λjaj) =
∞∑
j=1

T (λjaj) almost everywhere.(3.2)

By this, Lemma 3.4 and (2.5) with taking λ = Λq({λjaj}), we obtain that, for any
m ∈ [m(ϕ), ∞) ∩ N and α ∈ (0, ∞),

ϕ

(
{(T (f))∗m > α}, α

Λq({λjaj}j)

)
≤ ϕ


∞∑
j=1

(T (λjaj))
∗
m > α

 ,
α

Λq({λjaj}j)


.
∞∑
j=1

sup
α∈(0,∞)

ϕ

({
(T (λjaj))

∗
m > α

}
,

α

Λq({λjaj}j)

)

.
∞∑
j=1

ϕ

(
Bj ,
‖λjaj‖Lqϕ(Bj)

Λq({λjaj}j)

)
. 1,

which, together with Lemma 3.5, further implies that

‖(T (f))∗m‖WLϕ . Λq({λjaj}j).

Taking infimum for all admissible decompositions of f as above and using Lemma 3.7, we
obtain that, for any f ∈ Hϕ ∩ L2,

‖T (f)‖WHϕ = ‖ (T (f))∗m ‖WLϕ . ‖f‖
Hϕ, q,N

at
∼ ‖f‖Hϕ .(3.3)

Generally, suppose f ∈ Hϕ. By Lemma 3.8, we know that there exists a sequence
{fj}j∈Z+ ⊂ Hϕ ∩ L2 such that fj → f as j →∞ in Hϕ. Therefore, {fj}j∈Z+ is a Cauchy
sequence in Hϕ. From this, Lemma 3.3 and (3.3), we conclude that, for any j, k ∈ Z+,

‖T (fj)− T (fk)‖WHϕ ≤ ‖T (fj − fk)‖WHϕ . ‖fj − fk‖Hϕ .
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Thus, {T (fj)}j∈Z+ is also a Cauchy sequence in WHϕ. According to Theorem 2.11, we
conclude that there exists some g ∈ WHϕ such that T (fj) → g as j → ∞ in WHϕ.
Consequently, define T (f) := g. Below, we claim that T (f) is well defined. Indeed, for
any other sequence {f ′j}j∈Z+ ⊂ Hϕ ∩ L2 satisfying f ′j → f as j → ∞ in Hϕ, by Lemma
3.3 and (3.3), we have∥∥T (f ′j)− T (f)

∥∥
WHϕ .

∥∥T (f ′j)− T (fj)
∥∥
WHϕ + ‖T (fj)− g‖WHϕ

.
∥∥f ′j − fj∥∥Hϕ + ‖T (fj)− g‖WHϕ

.
∥∥f ′j − f∥∥Hϕ + ‖f − fj‖Hϕ + ‖T (fj)− g‖WHϕ → 0 as j →∞,

which is wished. From this, Lemma 3.9 and (3.3), it follows that

‖T (f)‖WHϕ = ‖g‖WHϕ = lim
j→∞

‖T (fj)‖WHϕ . lim
j→∞

‖fj‖Hϕ ∼ ‖f‖Hϕ .

This completes the proof of Theorem 2.12.

We now recall the Musielak-Orlicz molecular Hardy space [21, Definition 2.8] as follows.

Definition 3.10. For an admissible quadruple (ϕ, q, N, ε), the Musielak-Orlicz molecular
Hardy space Hϕ, q,N, ε

mol is defined as the set of all f ∈ S ′ which can be represented as a linear
combination of (ϕ, q, N, ε)-molecules, that is, f =

∑
jMj in S ′, where Mj for each j is a

multiple of some (ϕ, q, N, ε)-molecule associated with some ball Bj , with the property∑
j

ϕ
(
Bj , ‖Mj‖Lqϕ(Bj)

)
<∞.

Define

Λ̃q ({Mj}j) := inf

λ ∈ (0, ∞) :
∑
j

ϕ

(
Bj ,
‖Mj‖Lqϕ(Bj)

λ

)
≤ 1


and

‖f‖
Hϕ, q,N, ε

mol
:= inf

{
Λ̃q ({Mj}j)

}
,

where the infimum is taken over all admissible decompositions of f as above.

Lemma 3.11. ([21, Theorem 2.10]) Let (ϕ, q, N, ε) be an admissible quadruple as in
Definition 2.9. Then

Hϕ = Hϕ, q,N, ε
mol

with equivalent (quasi-)norms.

Proof of Theorem 2.13. Since the proof of Theorem 2.13 is similar to that of Theorem
2.12, we use the same notation as in the proof of Theorem 2.12. Here we just point out
the necessary modifications.

We first assume that f ∈ Hϕ ∩ L2. By Lemma 3.11, (3.2) and the assumption that
T (aj) for each j is a harmless constant multiple of a (ϕ, q, N, ε)-molecule, we obtain that

‖T (f)‖Hϕ ∼ ‖T (f)‖
Hϕ, q,N, ε

mol
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. max


∥∥∥∥∥∥
∞∑
j=1

|λj |T (aj)

∥∥∥∥∥∥
Hϕ, q,N, ε

mol

,

∥∥∥∥∥∥
∞∑
j=1

λjT (aj)

∥∥∥∥∥∥
Hϕ, q,N, ε

mol


. max

{
Λ̃q

(
{|λj |T (aj)}j

)
, Λ̃q

(
{λjT (aj)}j

)}
∼ max {Λq ({|λj |aj}j) , Λq ({λjaj}j)}
∼ Λq ({λjaj}j) .

By taking the infimum over all admissible decompositions of f as above on the both sides
of the above inequality and using Lemma 3.7, we conclude that, for any f ∈ Hϕ ∩ L2,

‖T (f)‖Hϕ . ‖f‖
Hϕ, q,N
at

∼ ‖f‖Hϕ .

Noticing that Hϕ is a complete (quasi-)normed linear space (see [15, Proposition 5.2]),
then the remainder of the argument is analogous to that in the proof of Theorem 2.12 and
is left to the reader. This finishes the proof of Theorem 2.13.

4 Applications

In this section, as applications of our main results, we obtain the boundedness of Bochner-
Riesz means from Hϕ to WHϕ or from Hϕ to itself.

We first recall the notion of Bochner-Riesz means. Let δ ∈ (0, ∞). The Bochner-Riesz
means of order δ is defined initially for Schwartz functions f on Rn by setting, for any
x ∈ Rn,

T δR(f)(x) :=

∫
Rn
f̂(ξ)

(
1− |ξ|

2

R2

)δ
+

e2πix·ξ dξ, R ∈ (0, ∞),

where f̂ denotes the Fourier transform of f . The Bochner-Riesz means can be also ex-
pressed as a convolution operator

T δR(f)(x) = (f ∗ φ1/R)(x),

where, for any x ∈ Rn and ε ∈ (0, ∞), φ(x) := {(1− | · |2)δ+}̂(x) and φε(x) := ε−nφ(x/ε).
The corresponding maximal Bochner-Riesz means of order δ is defined by setting, for any
x ∈ Rn,

T δ∗ (f)(x) := sup
R∈(0,∞)

T δR(f)(x).

The main results of this section are following two theorems.

Theorem 4.1. Let ϕ be a growth function as in Definition 2.2 with p ∈ (0, 1), I(ϕ) ∈
(0, 1) as in (2.2), and δ := n/p − (n + 1)/2. If ϕ ∈ A1 and n(1/p − 1) /∈ N, then there
exists a positive constant C independent of f such that∥∥∥T δR(f)

∥∥∥
WHϕ

≤ C‖f‖Hϕ .
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Theorem 4.2. Let ϕ be a growth function as in Definition 2.2 and δ > max{N + (n −
1)/2, n/p − (n + 1)/2}, where N := bn(1/p − 1)c. If ϕ ∈ A1, then there exists a positive
constant C independent of f such that∥∥∥T δR(f)

∥∥∥
Hϕ
≤ C‖f‖Hϕ .

Remark 4.3. Let ω be a classical Muckenhoupt weight and Φ an Orlicz function.

(i) When ϕ(x, t) := ω(x) tp for all (x, t) ∈ Rn × [0, ∞), we have Hϕ = Hp
ω. In this

case, Theorems 4.1 and 4.2 are reduced to [36, Theorem 1.4] and [17, Theorem 2],
respectively.

(ii) When ϕ(x, t) := ω(x)Φ(t) for all (x, t) ∈ Rn × [0, ∞), we have Hϕ = HΦ
ω . In this

case, Theorems 4.1 and 4.2 hold true for weighted Orlicz Hardy space. Even when
ω ≡ 1, the above results are also new.

To prove Theorems 4.1 and 4.2, we need the following several lemmas.

Lemma 4.4. ([15, Lemma 4.5]) Let ϕ ∈ Aq with q ∈ [1, ∞). Then there exists a positive
constant C such that, for any ball B ⊂ Rn, λ ∈ (1, ∞) and t ∈ (0, ∞),

ϕ(λB, t) ≤ Cλnqϕ(B, t).

Lemma 4.5. ([32]) Let p1 ∈ (0, 1), δ := n/p1 − (n+ 1)/2 and α ∈ Nn. Then there exists
a positive constant C := Cn, p1, α such that the kernel φ of Bochner-Riesz means of order
δ satisfies the inequality

sup
x∈Rn

(1 + |x|)n/p1 |∂αφ(x)| ≤ C.

Lemma 4.6. Let ϕ be a growth function as in Definition 2.2 with p ∈ (0, 1), and δ :=
n/p− (n+ 1)/2. Suppose b(·) is a multiple of a (ϕ, ∞, bn(q(ϕ)/p− 1)c)-atom associated
with some ball B(x0, r), where q(ϕ) is as in (2.3). Then there exists a positive constant
C independent of b such that, for any x ∈ Rn,

T δ∗ (b)(x) ≤ C‖b‖L∞
(

r

r + |x− x0|

)n/p
.(4.1)

Proof. We show this lemma by borrowing some ideas from the proof of [17, Lemma 2].
It suffices to show (4.1) holds for x0 = 0 and r = 1. Indeed, for any multiple of a
(ϕ, ∞, bn(q(ϕ)/p− 1)c)-atom b associated with some ball B(x0, r), it is easy to see that

b1(·) := ‖χB1‖−1
Lϕ‖b‖

−1
L∞b(x0 + r·)

is a (ϕ, ∞, bn(q(ϕ)/p − 1)c)-atom associated with the ball B(0, 1). For any x ∈ Rn, we
have

(b ∗ φε)(x) = ε−n
∫
Rn
b(x− y)φ

(y
ε

)
dy
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= ‖b‖L∞‖χB1‖Lϕε−n
∫
Rn
b1

(
x− x0

r
− y

r

)
φ
(y
ε

)
dy

= ‖b‖L∞‖χB1‖Lϕ(b1 ∗ φε/r)
(
x− x0

r

)
,

which implies that

T δ∗ (b)(x) ≤ ‖b‖L∞‖χB1‖LϕT δ∗ (b1)

(
x− x0

r

)
.

If we assume (4.1) holds for x0 = 0 and r = 1, then, for any x ∈ Rn,

T δ∗ (b)(x) . ‖b‖L∞‖χB1‖Lϕ‖b1‖L∞
(

1

1 +
∣∣x−x0

r

∣∣
)n/p

. ‖b‖L∞
(

r

r + |x− x0|

)n/p
.

It remains to prove (4.1) holds for x0 = 0 and r = 1. Let b be a multiple of a
(ϕ, ∞, bn(q(ϕ)/p − 1)c)-atom associated with the ball B(0, 1). From Lemma 4.5 and
p ∈ (0, 1), we deduce that, for any x ∈ B(0, 2),

T δ∗ (b)(x) = sup
1/ε∈(0,∞)

|(b ∗ φε)(x)| ≤ ‖b‖L∞
∫
Rn
|φ(y)| dy

≤ ‖b‖L∞
∫
Rn

1

(1 + |y|)n/p
dy ∼ ‖b‖L∞

(
1

1 + 2

)n/p
. ‖b‖L∞

(
1

1 + |x|

)n/p
,

which is wished.
By repeating the estimate of (2) in the proof of [17, Lemma 2], we know that, for any

x ∈ [B(0, 2)]{ and ε ∈ (0, ∞),

|(b ∗ φε)(x)| . ‖b‖L∞ |x|−n/p.

From this and the inequality |x| ∼ |x| + 1 with x ∈ [B(0, 2)]{, it follows that, for any
x ∈ [B(0, 2)]{,

T δ∗ (b)(x) = sup
1/ε∈(0,∞)

|(b ∗ φε)(x)| . ‖b‖L∞
(

1

1 + |x|

)n/p
,

which is also wished. This finishes the proof of Lemma 4.6.

Lemma 4.7. Let ϕ be a growth function as in Definition 2.2 with p ∈ (0, 1), and δ :=
n/p− (n+ 1)/2. Suppose b(·) is a multiple of a (ϕ, ∞, N)-atom associated with some ball
B := B(x0, r) ⊂ Rn, where N := bn(1/p − 1)c satisfying n(1/p − 1) /∈ N. If ϕ ∈ A1 and
integer m ≥ N satisfying (m+ 2)(n+ 1) ≥ n+N + 1. then there exists a positive constant
C independent of b such that, for any x ∈ (4B){,

(
T δR(b)

)∗
m

(x) ≤ C‖b‖L∞
(

r

|x− x0|

)n/p
.(4.2)
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Proof. To prove Lemma 4.7, we borrow some ideas from the proof of [36, Lemma 4.3]. We
claim that, for any x ∈ (4B){,∣∣∣ψt ∗ T δR(b)(x)

∣∣∣ . ‖b‖L∞ ( r

|x− x0|

)n/p
,(4.3)

where ψ ∈ Sm and t ∈ (0,∞). Assuming the claim for the moment, it’s easy to obtain
that (4.2) holds true by using (4.3). So, to end the proof, it remains to verify (4.3).

Firstly, by [36, (4.6)], we know that, for any γ ∈ Nn with |γ| ≤ N ,∫
Rn
T δR(b)(y)yγdy = 0.(4.4)

By this, we know that, for any x ∈ (4B){ and γ ∈ Nn with |γ| ≤ N ,

∣∣∣ψt ∗ T δR(b)(x)
∣∣∣ =

∣∣∣∣∣∣
∫
Rn
t−n

ψ(x− y
t

)
−
∑
|γ|≤N

∂γψ
(
x−x0
t

)
γ!

(
x0 − y
t

)γT δR(b)(y)dy

∣∣∣∣∣∣
≤ t−n

∫
|y−x0|<r

∣∣∣∣∣∣ψ
(
x− y
t

)
−
∑
|γ|≤N

∂γψ
(
x−x0
t

)
γ!

(
x0 − y
t

)γ∣∣∣∣∣∣
∣∣∣T δR(b)(y)

∣∣∣ dy
+ t−n

∫
r≤|y−x0|≤|x−x0|/2

· · ·+ t−n
∫
|y−x0|>|x−x0|/2

· · · =: I1 + I2 + I3.

For I1, noticing that x ∈ (4B){ and |y − x0| < r, we have

|x− x0 − θ(y − x0)| > |x− x0|/2.(4.5)

From Taylor’s theorem, T δR(b) ≤ T δ∗ (b), ψ ∈ Sm with integer m ≥ N , (m + 2)(n + 1) ≥
n+N + 1, (4.5), Lemma 4.6 and N + 1 ≥ n(1/p− 1), we deduce that, for any x ∈ (4B){,

I1 ≤ t−n
(r
t

)N+1
∫
|y−x0|<r

∑
|γ|=N+1

∣∣∣∣∣∣
∂γψ

(
x−x0−θ(y−x0)

t

)
γ!

∣∣∣∣∣∣
∣∣∣T δ∗ (b)(y)

∣∣∣ dy
.

rN+1

tn+N+1

∫
|y−x0|<r

∣∣∣∣x− x0 − θ(y − x0)

t

∣∣∣∣−n−N−1 ∣∣∣T δ∗ (b)(y)
∣∣∣ dy

. rN+1

∫
|y−x0|<r

|x− x0|−n−N−1
∣∣∣T δ∗ (b)(y)

∣∣∣ dy
.

rN+1

|x− x0|n+N+1

∫
|y−x0|<r

‖b‖L∞
(

r

r + |y − x0|

)n/p
dy

. ‖b‖L∞
rN+1

|x− x0|n+N+1

∫
B
dy

. ‖b‖L∞
(

r

|x− x0|

)n+N+1

. ‖b‖L∞
(

r

|x− x0|

)n/p
,
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which is wished.
For I2, by Taylor’s theorem, T δR(b) ≤ T δ∗ (b), ψ ∈ Sm with integer m ≥ N , (m+ 2)(n+

1) ≥ n+N + 1, Lemma 4.6, the spherical coordinates transform and −1 < n+N − n/p,
we know that, for any x ∈ (4B){,

I2 ≤ t−n
∫
r≤|y−x0|≤|x−x0|/2

∑
|γ|=N+1

∣∣∣∣∣∣
∂γψ

(
x−x0−θ(y−x0)

t

)
γ!

∣∣∣∣∣∣
∣∣∣∣y − x0

t

∣∣∣∣N+1 ∣∣∣T δ∗ (b)(y)
∣∣∣ dy

. t−n
∫
r≤|y−x0|≤|x−x0|/2

∣∣∣∣x− x0 − θ(y − x0)

t

∣∣∣∣−n−N−1 ∣∣∣∣y − x0

t

∣∣∣∣N+1 ∣∣∣T δ∗ (b)(y)
∣∣∣ dy

. t−n
∫
r≤|y−x0|≤|x−x0|/2

∣∣∣∣x− x0

t

∣∣∣∣−n−N−1 ∣∣∣∣y − x0

t

∣∣∣∣N+1

‖b‖L∞
(

r

r + |y − x0|

)n/p
dy

. ‖b‖L∞
rn/p

|x− x0|n+N+1

∫
r≤|y−x0|≤|x−x0|/2

|y − x0|N+1−n/p dy

. ‖b‖L∞
rn/p

|x− x0|n+N+1

∫
Sn−1

∫ |x−x0|/2
0

ρN+1−n/pρn−1dρ dσ(y′)

. ‖b‖L∞
rn/p

|x− x0|n+N+1
|x− x0|N+n+1−n/p . ‖b‖L∞

(
r

|x− x0|

)n/p
,

which is also wished.
For I3, noticing that n/p− n > N , we see that, for any j ∈ [0, N ] ∩ N,

n/p− n− j > 0.(4.6)

From T δR(b) ≤ T δ∗ (b), ψ ∈ Sm with integer m ≥ N , (m + 2)(n + 1) ≥ n + N + 1, Lemma

4.6, the spherical coordinates transform and (4.6), it follows that, for any x ∈ (4B){,

I3 ≤ t−n
∫
|y−x0|>|x−x0|/2

∣∣∣∣ψ(x− yt
)∣∣∣∣+

N∑
j=0

∑
|γ|=j

∣∣∣∣∣∂γψ
(
x−x0
t

)
γ!

∣∣∣∣∣
∣∣∣∣y − x0

t

∣∣∣∣j
∣∣∣T δ∗ (b)(y)

∣∣∣ dy
.
∫
|y−x0|>|x−x0|/2

|ψt (x− y) |+ t−n
N∑
j=0

∣∣∣∣x− x0

t

∣∣∣∣−n−j ∣∣∣∣y − x0

t

∣∣∣∣j
∣∣∣T δ∗ (b)(y)

∣∣∣ dy
. ‖b‖L∞

∫
|y−x0|>|x−x0|/2

|ψt(x− y)|
(

r

|y − x0|

)n/p
dy

+ ‖b‖L∞
∫
|y−x0|>|x−x0|/2

N∑
j=0

1

|x− x0|n+j

rn/p

|y − x0|n/p−j
dy

. ‖ψ‖L1‖b‖L∞
(

r

|x− x0|

)n/p
+ ‖b‖L∞

N∑
j=0

rn/p

|x− x0|n+j

∫
|y−x0|>|x−x0|/2

1

|y − x0|n/p−j
dy

∼ ‖b‖L∞
(

r

|x− x0|

)n/p
+ ‖b‖L∞

N∑
j=0

rn/p

|x− x0|n+j

∫
Sn−1

∫ ∞
|x−x0|/2

1

ρn/p−j
ρn−1dρ dσ(y′)
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∼ ‖b‖L∞
(

r

|x− x0|

)n/p
+ ‖b‖L∞

N∑
j=0

rn/p

|x− x0|n+j

1

|x− x0|n/p−n−j

∼ ‖b‖L∞
(

r

|x− x0|

)n/p
.

Finally, combining the estimates of I1, I2 and I3, we obtain that (4.3) holds true. This
finishes the proof of Lemma 4.7.

Lemma 4.8. Let ϕ be a growth function as in Definition 2.2 with p ∈ (0, 1), and δ :=
n/p− (n+ 1)/2. Suppose b(·) is a multiple of a (ϕ, ∞, N)-atom associated with some ball
B := B(x0, r) ⊂ Rn, where N := bn(1/p− 1)c. If ϕ ∈ A1 and n(1/p− 1) /∈ N, then there
exists a positive constant C independent of b such that, for any λ ∈ (0, ∞),

sup
α∈(0,∞)

ϕ
({(

T δR(b)
)∗
m
> α

}
,
α

λ

)
≤ Cϕ

(
B,
‖b‖L∞
λ

)
.

Proof. We show this lemma by borrowing some ideas from the proof of [26, Theorem 5.2].
Write

sup
α∈(0,∞)

ϕ
({(

T δR(b)
)∗
m
> α

}
,
α

λ

)
≤ sup

α∈(0,∞)
ϕ
({
x ∈ 4B :

(
T δR(b)

)∗
m

(x) > α
}
,
α

λ

)
+ sup
α∈(0,∞)

ϕ
({
x ∈ (4B){ :

(
T δR(b)

)∗
m

(x) > α
}
,
α

λ

)
=: I1 + I2.

To estimate I1, we claim that (
T δR(b)

)∗
m

.M (M(b)) ,(4.7)

where M denotes the Hardy-Littlewood maximal operator as usual. Indeed, since 0 < p <
1 and δ = n/p− (n+ 1)/2, then δ > (n− 1)/2. In this case, it is well known that

T δ∗ (b) .M(b) (see also [34]).

In addition, it is well known that, for any g ∈ Lq with q ∈ [1, ∞), g∗m . M(g). Conse-
quently, we infer that (

T δ∗ (b)
)∗
m

.M (M(b)) ,

which, together with T δR(b) ≤ T δ∗ (b), implies that (4.7) holds. By the uniformly upper type
1 property of ϕ, (4.7), the boundedness on L2(Rn, ϕ (· , t)), uniformly in t ∈ (0,∞), of the
Hardy-Littlewood maximal operator M , and Lemma 4.4 with ϕ ∈ A1, we know that

I1 = sup
α∈(0,∞)

∫
{x∈4B: (T δR(b))∗m(x)>α}

ϕ
(
x,
α

λ

)
dx
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≤
∫

4B
ϕ

(
x,

(
T δR(b)

)∗
m

(x)

λ

)
dx

.
∫

4B

(
1 +

(
T δR(b)

)∗
m

(x)

‖b‖L∞

)2

ϕ

(
x,
‖b‖L∞
λ

)
dx

.
∫

4B
ϕ

(
x,
‖b‖L∞
λ

)
dx+

1

‖b‖2L∞

∫
4B

[(
T δR(b)

)∗
m

(x)
]2
ϕ

(
x,
‖b‖L∞
λ

)
dx

. ϕ

(
4B,

‖b‖L∞
λ

)
+

1

‖b‖2L∞

∫
4B

[M(M(b))(x)]2ϕ

(
x,
‖b‖L∞
λ

)
dx

. ϕ

(
4B,

‖b‖L∞
λ

)
+

1

‖b‖2L∞

∫
B
|b(x)|2ϕ

(
x,
‖b‖L∞
λ

)
dx

. ϕ

(
4B,

‖b‖L∞
λ

)
+

∫
B
ϕ

(
x,
‖b‖L∞
λ

)
dx

. ϕ

(
B,
‖b‖L∞
λ

)
,

which is wished.
For I2, from Lemma 4.7, Lemma 4.4 with ϕ ∈ A1, and the uniformly lower type p

property of ϕ, we deduce that, for any λ ∈ (0, ∞),

I2 . sup
α∈(0,∞)

ϕ

({
x ∈ (4B){ : ‖b‖L∞

(
r

|x− x0|

)n/p
> α

}
,
α

λ

)

. sup
α∈(0,∞)

ϕ

({
x ∈ Rn : r ≤ |x− x0| <

(
‖b‖L∞
α

)p/n
r

}
,
α

λ

)

. sup
α∈(0, ‖b‖L∞ )

ϕ

({
x ∈ Rn : |x− x0| <

(
‖b‖L∞
α

)p/n
r

}
,
α

λ

)

∼ sup
α∈(0, ‖b‖L∞ )

ϕ

([
‖b‖L∞
α

]p/n
B,

α

λ

)

. sup
α∈(0, ‖b‖L∞ )

(
‖b‖L∞
α

)p
ϕ
(
B,

α

λ

)
. sup

α∈(0, ‖b‖L∞ )

(
‖b‖L∞
α

)p( α

‖b‖L∞

)p
ϕ

(
B,
‖b‖L∞
λ

)
∼ ϕ

(
B,
‖b‖L∞
λ

)
,

which is also wished.
Combining the estimates of I1 and I2, we obtain the desired inequality. This finishes

the proof of Lemma 4.8.

Proof of Theorem 4.1. It is well known that T δR is a linear operator and is bounded on L2

(see [8, p. 354]). By Lemma 4.8, applying Theorem 2.12 with q =∞ and N = bn(1/p−1)c,
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we know that, T δR extends uniquely to a bounded operator from Hϕ to WHϕ. This finishes
the proof of Theorem 4.1.

Lemma 4.9. Let ϕ be a growth function as in Definition 2.2 with additional assumption
that ϕ ∈ A1, and δ > max{N + (n− 1)/2, n/p− (n+ 1)/2}, where N := bn(1/p− 1)c. If
a(·) is a (ϕ, ∞, N)-atom associated with some ball B := B(x0, r) ⊂ Rn, then T δR(a) is a
harmless constant multiple of a (ϕ, ∞, N, ε)-molecule.

Proof. First, we need to verify the size condition of T δR(a). Let p1 := 2n/(n+ 1 + 2δ) < p.
For any (x, t) ∈ Rn × (0, ∞), set ϕ1(x, t) := ϕ(x, t)tp1−p. Then ϕ1 is a Musieelak-Orlicz
function of uniformly lower type p1 and of uniformly upper type 1 + p1 − p. It is easy to
see that

a1 := ‖χB‖−1
Lϕ1‖a‖

−1
L∞a

is a (ϕ1, ∞, N)-atom associated with the ball B. By T δR(a) ≤ T δ∗ (a) and Lemma 4.6, we
know that, for any x ∈ Rn,∣∣∣T δR(a)(x)

∣∣∣ ≤ ∣∣∣T δ∗ (a)(x)
∣∣∣ = T δ∗ (‖a‖L∞‖χB‖Lϕ1a1) (x)

. ‖a‖L∞
(

r

r + |x− x0|

)n/p1
. ‖a‖L∞ ,

which, together with (b) of Definition 2.8(ii), implies that∥∥∥T δR(a)
∥∥∥
L∞

. ‖χB‖−1
Lϕ .(4.8)

The next thing is to check the pointwise estimates of T δR(a). Let Ej := (2j+1B) \ (2jB)
with j ∈ N and ε := 1/p1. By δ > max{N +(n−1)/2, n/p− (n+1)/2}, it is easy to check
that (ϕ, ∞, N, ε) is an admissible quadruple. From T δR(a) ≤ T δ∗ (a), the size condition of
a and Lemma 4.6, it follows that, for any x ∈ Ej with j ∈ N,

∣∣∣T δR(a)(x)
∣∣∣ . ‖a‖L∞ ( r

r + |x− x0|

)n/p1
. ‖χB‖−1

Lϕ

(
1

2j

)n/p1
∼ 2−njε‖χB‖−1

Lϕ .(4.9)

Finally, by (4.8), (4.9) and the cancellation moment condition of T δR(a) (which is guar-
anteed by (4.4)), we know that T δR(a) is a harmless constant multiple of a (ϕ, ∞, N, ε)-
molecule. This finishes the proof of Lemma 4.9.

Proof of Theorem 4.2. It is well known that T δR is a linear operator and bounded on L2

(see [8, p. 354]). By Lemma 4.9, applying Theorem 2.13 with q = ∞, we know that
T δR extends uniquely to a bounded operator from Hϕ to Hϕ. This finishes the proof of
Theorem 4.2.
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5 Conclusions

What we have seen from the above are the completeness of weak Musielak-Orlicz Hardy
space and two boundedness criterions for some operators from Hϕ to WHϕ or from Hϕ

to Hϕ. As applications, we establish the boundedness of Bochner-Riesz means from Hϕ

to WHϕ or from Hϕ to Hϕ, which generalizes the corresponding results under the setting
of both of the weighted Hardy space (see, for example, [33]) and the Orlicz Hardy space
(see, for example, [10, 12]), and hence has a wide generality.
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