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Abstract

We prove the backward uniqueness for general parabolic operators of second
order in the whole space under assumptions that the leading coefficients of the
operator are Lipschitz and their gradients satisfy certain decay conditions. The
point is that the decay rate is related to the exponential growth rate of the solution,
which is quite different from the case of the half-space [12]. This result extends in
some ways a classical result of Lions and Malgrange [14] and a recent result of the
authors [12].
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1 Introduction

The backward uniqueness (BU) problem for parabolic operators is of interest in many
problems; such as the control theory and the regularity theory for PDEs. In [4], Escauriaza
et al. proved the critical Lffw’g regularity for 3D Navier-Stokes equations. The main idea
of their proof consists in reducing the regularity problem to a BU problem for the heat
operator. Their method is then used to deal with the regularity problem for some other
equations, for instance, heat flow of harmonic maps [2]. The BU result also plays a crucial
role in the blow-up analysis for some semi-linear heat equations [3]. On the other side,
this problem is of independent interest as well.

The BU problem for the heat operator is much studied in the past. There are already
many results concerning it in various domains, such as the exterior domain [5], the half-
space [6] and some cones [8, 9, 10].

For general parabolic operators, the BU problem is related to a conjecture proposed
by Landis and Oleinik in 1974, see [11, 13]. The authors [12] proved that BU is valid in
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the half-space under some reasonable assumptions of the leading coefficients. We state
this result as follows.
Let P be a backward parabolic operator on R% x (0,1),

P = @ + (‘3@ (aij(l’, t)ﬁj) = (9t + V- (AV), (1)
where A(z,t) = (a”(z,t))7;_, is a real symmetric matrix such that for some A > X\ > 0,

MEP < a(x, )68 < A€, VEeR™ (2)

We note that throughout this paper V always means the gradient with respect to the x
variables and the Einstein sum convention is used.

Proposition 1.1 ([12]).
1. Suppose {a"(z,t)} satisfy (2) and
|Va" (z,t)] + |0a” (z,t)] < M, (3)
Va?(z,t)] < Ela| ™ (4)
in R x (0,1). Assume that u satisfies

|Pu| < N(Ju| + |Vul|) in R} x (0,1),
lu(z, t)| < NeNll in R x(0,1),
u(z,0) =0 in RT.

Then there exists a constant Ey = Eg(n, A, \), such that when E < Ey, u(xz,t) =0
in R x (0,1).

2. Consider the following system

dyw + 0; (b (z, 1) Ojw) = 0 in R2 x (0,1),
0,1

jw(z,t)] <N in. R x (0,1),
w(z,0) =0 in R2,

with V7| < Ey and |Vb9| < Ey|z| ™t
Then, if B < (W)Q — 1, w(x,t) = 0; if By > 3, this system has a nonzero
solution.

However, the case of the whole space is quite different from that of the half-space. In
this paper, we study the BU problem for general parabolic operators in the whole space.

Now we let P be a backward parabolic operator on R"™ x (0, 1) having the form (1)
with {a¥(z,t)} satisfying (2). Let u be a function satisfying

|Pul < N(Jul +[Vul)

and the growth condition
lu(z,t)] < NeMlel®

for some a € [0, 2], or
e Ny (2, t) € L*(R™ x (0,1)).
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The BU problem is: suppose
u(z,0) =0, z€R",

does u vanish identically in R™ x (0,1)7

Here we set a € [0, 2] because the classical examples of Tychonoff [1] show that BU
fails when o > 2.

First, by Proposition 1.1, we know immediately that BU in the whole space is valid
if {a"(z,t)} satisfy the Lipschitz conditions (3) and the decay at infinity conditions (4)
with £ < Ey(n, A, A) in R™ x (0,1), since the whole space is the union of two half-spaces
and we apply Proposition 1.1 to both of them.

Second, the classical result of Lions and Malgrange [14] showed that BU in the whole
space is valid if u lies in the space

= H'((0,1), L*(R™) N L*((0,1), H*(R™))

and {a"(x,t)} are Lipschitz.

In this paper we will prove a result which extends the above two results in some ways.
We observe that in the case of the whole space there is a link between the decay rate of
|Va" (z,t)| and the exponential growth rate of u, which is quite different from the case of

the half-space. We denote (z) = /1 + |z|2 and
B(a) =max{0,a — 1}, «€]0,2].
Our main result is the following.
Theorem 1.2. Suppose {a"(x,t)} satisfy (2) and
\Va" (z,t)] + |0ra” (z,t)] < M, |Va"(x,t)| < E{z)™? (5)
in R™ x (0,1). Assume that u satisfies
|Pul < N(Jul + |Vul) 6)

and
lu(z,t)| < NNl op e Nl (2 1) € L2 (R x (0,1)). (7)

If, further, u(x,0) = 0 in R", then u vanishes identically in R™ x (0, 1).
Remark 1.3.

1. In the case of the whole space, the decay rate of |Va¥(x,t)| is related to the exponen-
tial growth rate of u, i.e. B(a) = max {0, — 1}, while in the case of the half-space,
the decay rate of |Va(z,t)| is always E|x|™', where E is small.

2. When a € [0,1], 8 = 0. Theorem 1.2 tells us that the Lipschitz conditions are
sufficient for BU and we don’t need to assume that u € H. This extends the result
of Lions and Malgrange [14] in some ways.

3. When a = 2, the smallness of E is required for BU in the half-space. However as
for the whole space, we don’t require such a condition.



A favourite method to prove BU is the so-called Carleman estimate, which was first
introduced by Carleman [15] to prove the unique continuation for elliptic equations. S-
ince then Carleman estimate has caused great concern and been applied to solve many
problems. For Carleman estimate for parabolic operators and its applications, one could
refer to [16] and references therein for more information.

To prove our result we need the following Carleman estimate.

Proposition 1.4. Suppose {a} satisfy (2) and (5). For any v € Cg°(R™ x (0,1)) and
any v > 0, we have

_ (z)™
/ (2K 2 G
R™x(0,1)

</ o )e27(t_K_1)_b<m>t+K|PU]2dacdt,
7 (0,1

where b = SLA and K = K(n,A,\, M, E, a).

It is worthwhile to mention [17, 18] and related results, which discuss BU problem
when u € H and {a"”(z,t)} are non-Lipschitz. However, here we just assume that u
satisfies (7).

The paper is organized as follows. First we use Carleman inequality (8) to prove
Theorem 1.2, then we prove this Carleman inequality:.

2 Proof of the main result
In this section, we prove Theorem 1.2. First, we extend u and a¥ as follows:

u(x,t) =0, if t<O0;
a’(z,t) =a"” (z,0), if t<0.

The proof of Theorem 1.2 is based on the following lemma.

Lemma 2.1. Suppose {a”} and u are the same as those in Theorem 1.2. Then there
exists Ty = T1 (A, N) > 0, such that u(z,t) =0 in R™ x (0,77).

Proof. We use Carleman inequality (8) to prove this lemma, mainly following the argu-
ments of the corresponding parts in [5] and [12]. We just give the proof for the case that
lu(z,t)] < NeMN=I" since the proof of the other case is similar.

Without loss of generality we assume that o € [1,2], for when a € [0,1), |u(z,t)] <
NeNkl™ < NeNll and g(a) = (1) = 0.

Step 1. By the regularity theory for solutions of parabolic equations (see, for example,
[19]), we have
[u(z, )] + [Vu(z, 8)] < Cln, AN, M, N)e N ©

when (z,t) € R™ x (0, %) In the following, we always denote C' = C(n, A, \, M, N). Let

. 1 b
T:mlﬂ{l,ﬁ,8—N}. (10)



We denote
u(z,t) = U(TZL’, 7'2(t — —))

and 1
a(x,t) = a" (Tx, 3 (t — 5))

for (z,t) € R" x (0,1). Then it is easy to see that
\Va (z,t)| + 0,07 (z,¢)| < TM < M,
and

1>)’ < tE(re)? < Er' 7 (a)™? < B(x)™7.

V& (z,t)| = 7|Va" (Tx, 2 (t — B

We denote ) B
P =0, +0,(a"0;),
then by (6) and (10) we have

il < wN(lal +|Vil) < S| + V). (1)
By (9) and (10) we have
iz, t)| + |Vii(z, t)| < Ce2N™ 1 < ceN7lel® < Ceil@)” (12)
when (z,t) € R" x (0,1), and
a(z,t) =0 (13)

when (z,t) € R x (0, 1].
Step 2. In order to apply Carleman inequality (8), we choose two smooth cut-off

functions such that
(r) = 1, ifr < R;
MIT=N 0, ifr>R+1,

where R is large enough, and

1, ift<3;
”2@2{ 0, ift>1
Y 8

Furthermore, 0 < ny,m2 < 15 |94, 77|, 5| and |n5]| are all bounded.
Let n(x,t) = m(|z|)n2(t) and v = na. Then supp v C R™ x (0,1). By (11) we have

|Pv| =|nPa + uPn 4 2a% 9101l

<gn(lal + [Val) + C(lal + [Val)(|9m] + [Vn| + [V*n]) (14)

— Do

<5 (vl + Vo)) + Cxallal +[Val),
where Yq is the characteristic function of 2 and

1
Q={0<n<1, §<t<1}.



Moreover,

1 1
Q={0<m <1, nn>0, §<t<1}u{n1:1, 0<m<l1, §<t<1}

3 7
- <t< <y
<

1 7
={R < |z| < R+1, §<t<§}u{|x|<R, 1

Step 3. We apply Carleman inequality (8) for P and v, then
J= / e R (RN G
R"x(0,1)
< / et 1= |Pv|2dxdt
R"x%(0,1)

By (14) we have

3 . ne
J< ST+ 0/ e -D=HEEE (1 ) ddt,
Q

J<O/ 2y(t— K —1)—
—Je

J<C / 2V =D=3) oy
Q

:C< / + / ) 2 E=D)=30 gt
{R<|z|<R+1, t<t<1} {lz|<R, 3<t<Z}

:2J1 + Jg.

thus

(|u| + | Va|)?dxdt.

By (12) we obtain

Step 4. Now we estimate both sides of the above inequality.
Estimate of J;.

J, <Ce?*-1) / e~ 3@ g
{R<|z|<R+1}

<O iR / e 4
{R<|z|<R+1}

K+1 b
<Ce¥ iR

Estimate of J,.

J, < CePD 1] / e~ 3@ dp < CeID -1,
{lz|<R}

Estimate of J. For an arbitrary [ € (3, %),

J Z/ 2K =1)—
{lz|<R, i<t<i}

S 2K ) / o
{lz|<R, $<t<i}
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(|u|2 + | Va|?)dzdt

b(z

(|u|2 + | Va|?)dxdt.

(16)

(17)



We combine (15)-(18), then we have

/ PR (G2 4 (Vi) dedt
{lz|<R, %<t<l}

<O (=175 (GQK“”/—%R“ + 627[(%)4{—1])‘

In the above inequality, we fix v and let R — oo, then we obtain

bx)®

/ R (G2 4 (Va2 dedt < Cel
R (1,1)

2K,

Now we fix [ and let v — oo, then we have a(z,t) =0 in R™ x (3,1).
Since [ is an arbitrary number in (3,2), then @(z,t) = 0 in R™ x (3,3). That is,
u(z,t) =0 in R™ x (0, %)
Finally we let
72 .11 b?
- = ln{_7 PN E —}7
4 4> 16N?" 256 N2
then Ty = T1(A, N) and u(z,t) =0 in R™ x (0,7T7).
Thus we proved this lemma. O

T1:

Next we give the complete proof of Theorem 1.2. The argument is similar to that in
the proof of Lemma 5.4 in [4].

Proof of Theorem 1.2. By Lemma 2.1, we know that u(z,t) = 0 in R” x (0,77). Now we
define
U(1)<.T, t) :U(\/ 1— T1 x, (1 — Tl)t -+ Tl);

aij(l)(x, t) :aij(\/ 1-T) z, (1 =Tt +Ty),

for (z,t) € R x (0,1). It is easy to verify that {a”(M} satisfy (2) and (5), u(!) satisfies
|IPWyW]| < N(|uW] + |[Vub))
and (7). Using again Lemma 2.1, we have uM(z,t) = 0 in R" x (0,7}), i.e, u(z,t) = 0 in

R"™ x (0,T5), where
Ty=(1—T)T + T

Next we define

u(Q)(x,t) =u(\/1 =Ty z,(1 = To)t +T3)

After iterating k steps, we obtain that u(x,t) = 0 in R"™ x (0, Tk1), where
Tk+1 = (1 - Tk>T1 -+ Tk

It is easy to see that Ty, — 1 as k — oo. This proves Theorem 1.2. O]



3 Proof of the Carleman inequality

In this section, we prove Carleman inequality (8). We need two lemmas in our proof.
The first one is due to Escauriaza and Ferndndez [7, Lemma 1], however we make some
changes here, see also [11, Lemma 4.5] and [13, Corollary 3.2].
In the following, we write
A = @(aij(?j)
and denote by - the inner product on R".

Lemma 3.1. Suppose F' is differentiable, Fy and G are twice differentiable and G > 0.
Then the following identity holds for any v € C§° (R” x [0, T]) :

1 —A
- / My Gddt + / <2DG L (2E-ac F)A) Vo - VoGdadt
2 Jrexo1] R % [0,T] G
_ / VAV - V(F — Fy)Gdadt = 2 / Lo(Pv — Lv)Gdadt (19)
R x[0,T] R™ x[0,7]
T q T
+ [ AV Vdea:‘ 4= / VFGdz| |
R 0 2 Jpn 0
where 7
Lv = 0w — AVv - Vlog G + 3
A )
and
0,(log G)

D¢ = a* 9 (log G)a" + (a"0pa + a’*Opa"* — a"0ka”) + SO,

2

Proof. We prove this identity by the method of integration by parts. For simplicity of
notations, during this proof we denote

Q=R"x[0,T], Ov=v, Ow=1v, Oyv=uvy.
First,

Lv(Pv — Lv)Gdzdt

J
=2 / (vy — AVu - Vlog G + gv)(Av + AVv - Vleg G — gv)dedt (20)
Q
8



where

I :2/ UtAUGdSL’dt,
Q
Is :2/ v, AVo - VGdrdt,
Q
I; = — / FGuvdzdt,
Q

I, =—2 / AV - VGAvdzdt,
Q

2
Iy = — 2/ Mdm’dt,
0 G

I :2/ FvAVv - VGdxdt,
Q

I :/ FGuvAvdzdt,

Q

1

I = — —/ F2Gv?dxdt.
2Jq

Next we compute these integrals.
I :2/ Uy (aijvj)idedt,
Q
=— 2/ Vg aijijdxdt — 2/ vtaijUjGidxdt,
Q Q

:3[171 — 2/ UtAVU . Vdedt,
Q

where

L= —2/ Vg aijijdxdt.
Q
Using integration by parts with respect to t,

. T ..
L =— 2/ Uia”ijdx‘ + 2/ viay v;Gdxdt
+ 2/ viaijijtdxdt + 2/ viaijvtde:cdt

Q Q

=—2 AVv - VuGdx

R

+ 2/ AVv - VoGdzdt — 1 4,
Q

T g
+2/ ay v;v;Gdxdt
0 Q

then

T
Iy =— AV - VUGC&‘
Rn O

9

+ / alvyv;Gdrdt + / AVv - VoG, dudt.
Q Q

(21)

(22)

(23)



Combining (22) and (23), we have

T
L =— | AVo. Wde‘

R™ 0

+ / a? viv;Gdzdt + / AV - VoGidadt — 1. (24)
Q Q

For I3, we use integration by parts with respect to ¢, then

1

1 T o1
Ii=—= / (v?) FGdxdt = ——/ v2FGd£U‘ + 5 / (F,G + FGyv*dadt. (25)

In order to compute I, we need to use integration by parts three times.

I, =— 2/ alelUj (a™v;)pdxdt

¢ (26)

:2/(alel)k aikvivjdxdt+2/ aikalelvivjkdxdt.
Q Q

For the second term of the above line, we use integration by parts with respect to z;, then

2/ akdi G, vivjpdrdt = — 2/(aikalel)jvivkdiL‘dt = 2/ aikalelvkvijdxdt. (27)
Q Q Q

In the right-hand side of (27), for the first term we interchange subscript & with j, and
for the second term we use integration by parts with respect to z;, then

—2/(aikalez)jvwkd1‘dt: —2/(aijalez)kUind$dt; (28)
Q Q

—2/ a* a9 Gy, v;dxdt :2/(alel aikvk)ivjdxdt
:2/(alel)iaikvkvjdxdt+2/ alelvj (a™vy)dadt.
Q Q

In the right-hand side of (29), for the first term we interchange subscript k& with 7, and
for the second term we notice that it is exactly —I4, then we can rewrite (29) as

—2/ aikalelvkvijd:Bdt = 2/(alel)kaikvivjdmdt — 1. (30)
Q Q
Now we combine (26), (27), (28) and (30), then we obtain
I, = / (4(alel)kaik — 2(aijalel)k)Uindxdt — 1.
Q

Hence

@\@\

(d"Gy)pa™ — (a" (zlel)k> vv;dxdt

QaZkalal] + (QaZk Lj akla?)Gl — aij(alel)k>vivjdxdt.
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Notice that
/aikaljvivjdxdt:/ajka”vivjdxdt
Q Q

and
—/ a’(a"G)) v dadt = —/ a'l AGu;v;dadt = —/ AV - VoAGdzdt,
Q Q Q
then
I, = / (2@““6’“@” + (a™*a + a’*ali - akla;f)GOvivjdxdt — / AV - VoAGdzdt. (31)
Q Q
Next we compute I and [7.
]6 :/ F CLijGi (UQ)de]dt,
Q
T / (FjaijGi + F(aijGi)j)Udedt, (32)
Q

=— / (AVF - VG + FAG)v’dxdt.
Q

I :/ FGu(a“v;);dzdt
Q
:—/F}Gvaijvjdxdt—/FGivaijvjd:cdt—/FGviaijvjdxdt
Q Q Q

=— / vAVv - VFGdzdt — %/ Fa” G;(v?);dxdt — / FGAVv - Vudzdt.
Q Q Q

For the second term of the above line, integrating by parts we have

1 g 1 . -
——/ F a"G;(v?);dxdt :—/ (F;a"G; + F(a"G,);)v*dadt
2 Jq 2 Jq
1 -
25/ (AVEF - VG + FAG)v*dudt,
Q

then

I; =— / vAVv - VFGdxdt — / FGAVv - Vodxdt
Q Q

+ % / (AVF - VG + FAG)vdadt.
Q

11



Now we combine (20), (21), (24), (25), (31), (32) and (33), then we obtain

2/ Lv(Pv — Lv)Gdxdt +
Q 0 2

1 )
= / (EG + F(G, — AG — FG) — AVF - VG) vidzdt
Q

R"

T T
AVU-Vdex‘ 4= / UQFGd(E)
n 0

+/ (2aikala” + (alk b4 kg - akla?)Gl + aijG>vivjdxdt
Q

AV -VG)’ )
— 2/ %dmdt + / (Gy — AG — FG)AVv - Vudzdt
Q Q

— / vAVv - VFGdzdt.
Q

Notice that )
(AVv-VG)

a™ G (log G)klaljvivj = aZkala“vivj — G ,

then

2/ Lv(Pv — Lv)Gdxdt +
Q

R

T 1 T
AVU-Vdex‘O +5 / UZFde‘O

[\3|>—l
\

F,G+ F(G,— AG — FG) — AVF - VG) vidzdt
Q

—i—/Q (QaikG(log G + (a™al + a*alf — a™a)G) + a?G) vv;drdt

- (34)
+ / (Gy — AG — FG)AVv - Vudzdt — / vAVv - VFGdzxdt
Q Q
1 -
= / (FG+ F(G.— AG - FG) — AVF - VG )o*dudt
Q
- A
+ / <2DG L (2EZAG F)A) Vo - VoGdrdt — / VAV - VEGdxdt
Q G Q
Using again integration by parts, we have
1 -
/ vAVv- VFGdadt = —3 / (AVFO : VG+AF0G>v2da:dt. (35)
Q Q
Finally, combining (34) and (35), we obtain (19). O

The second one is concerned with the properties of mollified {a%}.

Lemma 3.2. Suppose {a”} satisfy (2) and (5). Let

ant) = [ @ y.t)o.(o)dy

where ¢ is a smooth function satisfying ¢ > 0, supp ¢ = {z, |z| < 1} and ||¢]|r = 1;
e =L and 6.(y) = e "H(L).

12



Then {a¥“} have the following properties:

1) AP <af(x, )68 < AJEPP,  VE e R,

2) |Va (z,t)| < M; |Va" (z,t)] < 2E(x)™"  when |z| > 1; (36)
3) |a¥ (2, t) — a (2, t)| < 2A;  |a¥(x,t) — a¥(x,t)| < E{x)™" when |z| > 1;

4) |Oa? (z,t)| < e(n)M; |0ka” (x,1)| < c(n)E{x)™® when |z| > 1.

Lemma 3.2 can be proved with only minor changes to the proof in Appendix A of [12].

Now we begin to prove Proposition 1.4.

Proof of Proposition 1.4. We use identity (19) to prove Carleman inequality (8).

In (19), we let
2y (1K 1) H2)2HE

G=ce R
then
9,G — AG _ b{@)* — a0 () e miz; + K N ab(z)*?(a” + Ohaz;) o IR,
G 12 t
Let 212/, \20—4 _ij 2 i
o b{x)® — a®b (a:)t;‘_ a’zix; + K n ab(x)a_t a’—d o KK,
where d is a positive constant to be determined, and
R - b(x)™ — a?b*(z)? e ww; + K N ab(z)*2a? — d oKt

t2 t

In the following arguments, we denote by I, the identity matrix of R", C' are generic
constants depending on n, A, \, M, £ and o«. We need some estimates which we list in the
following lemma.

Lemma 3.3. Set b= SLA and d = %. For K > Ko(n,A,\, M, E,«), we have

0,G — AG AK
-t = > 71-
2D + (— F)A 27, (37)
9,G — AG bE ()@
-t == > .
OF + F(= F) 2= (38)
~ Clx)™
|AFp| < <tQ> ; (39)
C a—1
v - R <0 (40)

We will prove this lemma later.
First by (37) we have

- A
/ <2DG + (M — F)A) Vo - VoGdzdt

K 2
2>\— Iv—UlGal:zcalt.

8 Jrx(o,1)

13



Next we estimate My. By (40) and

ViegG = —a?b<x> z

we have

C T 200—2
AV(F — ) 1og G < AIV(F — )|[V1og 6| < C00 < €4

Then by (38), (39) and (42) we have

_A ~
bK ()
> (— —
<16 C) t3 ?
thus ) LK
- / My*Gdzdt > (— — C) / @ v2Gdadt.
2 R"x(0,1) 32 R”x(0,1) t

By the Cauchy inequality and (40) we have
’ / VAV - V(F — FO)Gda;dt‘
R™x(0,1

<A/ |V (F — Fy)||v||Vu|Gdzdt
R™x ( 01)

<C / |v||VU|Gd$dt
Rn x 01
204 2 2
<C / 2Gda:dt—|—(§’/ VU Gapar
R"x%(0,1)
2
c/ 2Gd:vdt+0/ VU g,
Rrx(0,1) b

Finally, by (19), (41), (43), (44) and the Cauchy inequality, we have

DK
/ Pul2Gdadt > (——c)/
R (0,1) 32 R x (0,1)

if we choose K > Ky(n, A, A\, M, E, «) large enough, we obtain

@ AK
I:Z UzGdl’dt—i-(——C)/

/ | Pv|*Gdxdt > / (v + |Vv|?)Gdzdt.
R”x(0,1)

R”x(0,1)
Thus we proved Carleman inequality (8).
There is only Lemma 3.3 left to be proven.

Proof of Lemma 3.3. We estimate them one by one.

14
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Estimate of 2D + (% — FA.

By direct computations we have

A
2DG+(@§%T—Q—JUA
2ab 200(2 — a)b ,
= — %<x>a72A2 + OZ(—OK)<:C>O‘74A:€<A$)
ab, 4o kia lj kjq li klg _ij ija kl i, d
— —(2)* "y (a™Opa” + a™ Opa” — a™Oka” — a¥0ga )+8taj+¥A
20bA? b . . o y 5 o\
> — at (x)* L, — %(x)a’le(ak@ka” + a"opa" — aF'0a — a¥0pa*) + 0,0 + TI"'

Next we estimate the lower bounds of the matrices in the above line. We just need to
estimate matrix 2;a*0,a¥ and 0,a”. For any £ € R”,

1" 06| < nPAEx|(2) 77 ) I&]1E| < nPAE ) PIEP,
i

then
—n*AE(2)' T, < 1;0"0,a" < nPAE(z) 7 1,
Similarly,
[Giav6:65) < MY J&11E] < MnléP,
i,J
then

—Mnl, < 0,a” < Mnl,,.
Thus we have
0,G - AG
G

Notice that « —2 < 0 and a — § — 1 < 0, and if we choose d = d(n, A, \, M, E, «) large
enough, then

B 20cbA? B 4abn*AE Ad

(2)* Pt — Mn + =)L,

2D
a+( ; ;

()22

F)A > (

@Elég—mAzﬁﬂw
G ot

Estimate of 0,F + F(@ —F).

2D¢ + (

Direct computations give us

- A
O F + F(a’*GTG — F)
_(d+ ab(x)* 200" x; — 2)(b(x)* — &®0*(x)** azix; + K)
= 5
@??(x)** 10 iy + (d — ab{z)*2a)(d + ab{z)*20;a"x; — 1)

t2

b a—2 [ 0]
ab(z)**0ha | 2yKt 2 (K +1 — (d + ab(x)**dia ;).

t

15



Notice that
(2)* 2|00y <Cla)* P a] < Cla)* 7t < C,
<x>2a 4@”13 i §A<x>2a74’$‘2 < A(SL’>20‘*2 < A<{E>o¢7
<x>2a—4|ata2]xixj| §C<{E>2a_4|x|2 < C<x>a7
then we have

0,G — AG

OF + F( e —F)
_([@=O)((b = ®PA) (@) + K)  Cla)* + (d+C)
— t3 t2

- % + 29Kt KK —d - O).

Recall that b = and thus o?b?A < 4b°A = % If we choose d large enough, then

e
O F + F(@ - F)
. (d—CO)(%{z)* + K) —tsc<x>a —d+C)2-C K2 2)
> 5 -0 +t§d — Ok -2 + 29Kt K2(K — 2d).
We choose d = %, then
OF + F(—atG (_; AG F)> (%K - 0) @a + KR > bll(é?a
Estimate of AFO.
Direct computations show that
ARy =0 Ay - ST A tanay) + CA() ), (19)

and
A((x)*) = o) 2(a® 4 0,07 x;) + a(a — 2)(z)**a x5,

A(z)* 0 z1;) = (20 — 4)(2a — 6) () Baka¥ v, a2
+ (20 — 4) ()™~ 6(( Ma + 2a" 00w j2p + (4a™a + a"*a ”):Uixj>
+ (z)2et ((aklﬁkla? + ™00 )iy + (20ra a + 4aM Opa )z + 2aijaij>,
A((z)* 20" =(a — 2)(a — 4) (2)* Sa oz
+ (o = 2)(@)* (@070l + 2070;0)z; + a''al*)
+ (2)*2(a" 0;;a"* + ;0" 0;aF").
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By Lemma 3.2 we know that a¥/, Va¥, a¥, Va¥ and V2a¥ are all bounded, then it is easy
to verify that

[A({))] <)+ (@)*7%) < Cla)*
IA(CL‘)“ tafwiwy)] SC((2)* 70+ ()70 + (2)*7%) < Cla >2°“ % (46)
[A((2)*2ad) SC({a)* ™ + (@)~ + (2)*7*) < Cla)*”

Finally by (45) and (46) we have

. C, o . a2y Clx)®
|AFo| < 5 ({2) (@) 4 (2)*7?) < v
Estimate of |V(F' — F)|.
Since 22 ;
Q o 17 « a— [ 1
F—F = 12 <£E>2 4(& aj)xix] - 7(37) Q(ae a )7
then

22 . . . .
V(F — Fy) :at2 <(2a — 4)(z)** % (a¥ — a")zwjx + 2(x)** (@ — a2,V

+ (2)** H(Vad¥ — Vaij)xixj>
ab a—4y i i a—2 ii i
(@ =2)@)" (@ = a")r + (@) X(VaZ = Va")).
Notice that a”/, Va", a¥ and Va¥ are all bounded, then

(@)% + (@) Vel — VaY|[z[*) + %((@“‘3 + (@)%, (A7)

Bl Q

IV(F - Fy)| <
By 2) of (36), when |z| < 1,
|Va" — Va"||z|* < 2M|z|* < 2M,
and when |z| > 1,
Vag — Va"|[a]* < (2E(x)™" + E{x)™")|z[* < 3E(z)*™"

In both cases we have

a? — Va"|x < Cx)=". 48
Vai — Va||z|* < C{z)*?
By (47) and (48) we have
C o e C(z)o—?
V(E B < G 4 (o) 4 SO
Since 2a — f — 2 < a — 1, then
C _ o Clx)*2  C(x)>!
V(F - R < G+ e+ T < 9
Thus we proved Lemma 3.3. O]
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