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Abstract

We investigate the asymptotic normality of the Nadaraya-Watson kernel regression es-
timator for irregularly spaced data collected on a finite region of the lattice Z? where d is
a positive integer. The results are stated for strongly mixing random fields in the sense of
Rosenblatt (1956) and for weakly dependent random fields in the sense of Wu (2005). Only
minimal conditions on the bandwidth parameter and simple conditions on the dependence

structure of the data are assumed.
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1 Introduction

In many situations, practicians want to know the relationship between some predictors and a
response. If the form of the functional relation is unknown then a nonparametric approach is
necessary. This is a natural question and a very important task in statistics. A very popular
tool to handle this problem is the Nadaraya-Watson estimator (NWE) introduced by Nadaraya
[21] and Watson [29]. In this work, we investigate the asymptotic normality of the NWE in
the context of dependent irregularly spaced spatial data. Let d, n and N be positive integers.
Let also (Y}, X;),cz« be a strictly stationary R x R¥-valued random field defined on a probability
space (Q, F,P). We assume that the common law y of the random variables (X;),cz« is absolutely
continuous with respect to the Lebesgue measure on RY. We denote by f the unknown probability
density function of y. Let A, be a finite region of Z? and let (1;);cz« be iid RN-valued random



variables with zero mean and finite variance and independent of (X;);cz«. The regression model is
characterized by the relation Y; = R(X, n;) for i in A, where R is an unknown functional. In our
setting, it is important to note that no regularity condition is imposed on A, which can be very
general (irregularly spaced data). The regression function r is defined for any x in RN by

_ ) E[R(x, m)] if f(x)#0
r(x) = { E[Y,] else,

and the NWE r, of r is defined for any x in RN by
ZieA,, YiK( x;?)

R =1 Tiea K(52)

1
) iEzA:" Y; else,

where |A,| is the number of elements in the region A,, the function K : R¥ — R is a probability
kernel (that is [,y K(t)dt = 1) and the bandwidth parameter b, is a positive constant going to
zero as n goes to infinity. For time series (i.e. for d = 1), the problem which we are concerned
has been extensively studied. One can refer, e.g., to Lu and Cheng [18], Masry and Fan [19],
Robinson [24], Roussas [27] and many references therein. In the spatial case (i.e. for d > 2),
some contributions for strongly mixing random fields were made by Biau and Cadre [1], Carbon
et al. [2], Dabo-Niang and Rachdi [3], Dabo-Niang and Yao [4], El Machkouri [7], El Machkouri
and Stoica [10], Hallin et al. [12] and Lu and Chen [16, 17]. The main motivation of this work is
to provide sufficient simple conditions for the NWE to be asymptotically normal in the context of
mixing but also non-mixing random fields. More precisely, we consider strongly mixing random
fields in the sense of Rosenblatt [25] and weakly dependent random fields in the sense of Wu [30]
(see also [11]). To the best of our knowledge, our work provides the first central limit theorem
(Theorem 2) for the NWE under minimal conditions on the bandwidth parameter and irregularly
spaced dependent spatial data (i.e. b, — 0 and |A,|bY — o0 as n — o0). In particular, our
result improves in several directions a previous central limit theorem for the NWE for spatial
data established by [1] (see the comments after Corollary 1 below).

The paper is organized as follows. Our main results are stated and discussed in Section 2 whereas
proofs of the main results and its preliminary lemmas are deferred to Sections 4 and 5. Finally,
Section 3 is devoted to a numerical illustration of the central limit theorem obtained in Section 2.

2 Main results
Given two o-algebras U” and V, the a-mixing coefficient introduced by Rosenblatt [25] is
a(U, V) = sup{|P(An B) - P(A)P(B)|, A€ U, BE V}.

Let p be fixed in [1, +o0]. The strong mixing coefficients (e ,(n))n>o associated to (X;),cz« are

defined by
o p(n) = sup {a(o(Xy), Fr), k € VAR W=W/AS T < p, p(T, {k}) > n},
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where 71 = o(X;; i € T), [ is the number of element in I" and the distance p is defined for any
subsets I'; and T, of Z? by p(I';,T;) = min{|i - j|, i € Ty, j € T,} with |i - j| = max,<.q |is - js| for
any i = (iy, ..., ig) and j = (j, ..., jq) in Z?. We say that the random field (X;),cz4 is strongly mixing
if lim, . 1 (1) = 0. Let m be a positive integer. We are also going to establish our results for
Bernoulli fields of the form

Xi =G (El‘,s; S Zd) s i€ Zd, (1)

where G : (]R’")Zd — RY is some function and (¢;),cz« are iid R™-valued random variables. Let
(sjf )jeze be an iid copy of (¢),ez« and let X; be the coupled version of X; defined by

X =G (5{_3; S€ Zd) ,
where ¢ = ¢ if j # 0 and g = & Note that X; is obtained from X; by replacing ¢, by its copy
¢;. For any positive integer ¢ and any R’-valued random variable Z € L?(Q, F,P) with p > 0,

we denote |Z], := E [||Z IP ] "7 where |.] is the Euclidian norm of R’. Following Wu [30] and El
Machkouri et al. [11], we define the physical dependence measure

5i,p =X - Xi*”p

as soon as X; is p-integrable for p > 2. We say that X is p-stable if ),,.;4 d;, < oo. Physical
dependence measure should be seen as a measure of the dependence of the function G (defined
in (1)) in the coordinate zero. In some sense, it quantifies the degree of dependence of outputs
on inputs in physical systems and provide a natural framework for a limit theory for stationary
random fields (see [11]). In particular, it gives mild and easily verifiable conditions (see condition
(A3)(ii) below) because it is directly related to the data-generating mechanism. In mathematical
physics, various versions of similar ideas (local perturbation of a configuration) appear. One can
refer for example to Liggett [14] or Stroock and Zegarlinski [28]. As an illustration, the reader
should keep in mind the following two examples:

o Linear random fields: Let (¢;);cz« be i.i.d R™-valued random variables such that ¢; belongs to
LP(Q, F,P), p = 2. The linear random field X defined for all i in 74 by

Xi = Z Asgi—s

sezZd

. . N .
where A; = (g, k,)J1<k<n is a N x m matrix such that Y, ;0 >0 ) D0_; a2, < o is of the
1<k, <m T

form (1) with a linear functional G. For all i in 74,

, N m )
Sip <& — &p * > Ak ks
k1=1 k2=1

So, X is p-stable as soon as . \/Zﬁzl Yokt @ip i, < . Clearly, if H is a Lipschitz con-
tinuous function, under the above condition, the subordinated process Y; = H(X;) is also
p-stable.



« Volterra field : Another class of nonlinear random field is the Volterra process which plays
an important role in the nonlinear system theory. Let i € Z¢ and

Xi = z A, 5, €i-s; €i-s55

51,5674

where a; ,, are real coefficients with a; ;, = 0if s; = s, and (¢;),cz¢ are ii.d. real random
variables with ¢; in L’(Q, F, P), p = 2. By the Burkholder inequality, there exists a constant

C, > 0 such that
5i,p = Cp||£0 - 5(;||p||€0||p x f Y, (ag; + ai,s)2
s€Z4

So, X is p-stable as soon as ;4 \/Zsezd (ag; + a;5)* < 0.

Let (b,).>1 be a sequence of positive real numbers going to zero as n goes to infinity. Denote
K,(x,v) =K (%) for any (x, v) € RN x RN and any integer n > 1. If x € RN and f,(x) # 0 then
a(x) = @u(x)/fu(x), where
Yien, YiKa(x, Xi) Yien, Knlx, Xi)

|An| b [An| by
Recall that f, is the classical Parzen-Rosenblatt estimator of the marginal density f of X, (see
[8, 9, 22, 26]). Similarly, if ¢ is the function defined for any x € RN by ¢(x) = r(x)f(x) then ¢, is
an estimator of ¢. In the sequel, we consider the following assumptions:

Pn(x) = and  f(x) =

(A1) Assume b, — 0 such that |A,|bY — oo and that K is symmetric, Lipschitz and satisfies
Kleo := sup, ey [K(2)| < 00, limpy—eo 1] [K(£)] = 0, fon [K(£)|dt < o0 and [ [t [K(£)|dt < oo
where | .| is the Euclidian norm on R".

(A2) There exists k > 0 such that |f(x, y) - f(x)f(y)| < k for any (x, y) in R¥ x RY and any i in
79\{0}, where f,; is the joint density of (X, X).

(A3) There exists 8 > 0 such that E [|Y0|2*9] < oo and one of the following condition holds:

(i) (Xi)iza is strongly mixingand ), n= 7 — a(n) < oo;
n=1
B . . d(BN+2)0?+(10N+8)0+8N) 0
(ii) (Xi)ieza is of the form (1) and ), |i 2000+2)N 855" < oo.
i€z
(A4) There exists 8 > 0 such that E [|Y0|2+9] < oo and the function x — E [‘I’p (1Yo |Xo = x] is
continuous for p € {1,2,2 + 0} where ¥,(t) = t for any real t. Moreover, the functions f
and ¢ are twice differentiable with bounded second partial derivatives.

Assumptions (A1), (A2) and (A4) are classical conditions in nonparametric statistics (see [2], [16]).
Moreover, one can notice that if 8 = co then (A3)(i) and (A3)(ii) reduce to the conditions obtained
in [8] and [9] respectively where the asymptotic normality of the Parzen-Rosenblatt estimator is

established.

First, we show that ¢, and f, are asymptotically unbiaised estimators of ¢ and f respectively.



Theorem 1 Assume that f and ¢ are twice differentiable with bounded second partial derivatives
and [ |t] [K(t)|dt < eo. Then

sup [E[f,(0)] - f() = 0 (B) and  sup [E[p,(x)] - p(x)] = O (1)

x€RN x€RN

Consequently, if |A,|bY** — 0 as n — oo, then

Lim \J|An|by sup [E [fo(x)] = f(x)] = lim \J[Aq[b sup |E [¢n(x)] = ¢(x)[ = 0.

x€RN x€RN

Our main result is the following central limit theorem for the NWE.

Theorem 2 If (A1), (A2), (A3) and (A4) hold, then for any x € RN such that f(x) > 0,

TR (o) - ) 2 (0, 00),

where o%(x) = % Jex K2(t)dt and V(x) = E [Y2|X, = x] - r(x).

Using Theorem 1, the condition |A,|bN** — 0 can be imposed for the control of the bias of the
estimator and leads immediately to the following corollary (its proof is left to the reader).

Corollary 1 If (A1), (A2), (A3) and (A4) hold and |A,|bY** — 0, then for any x € RN such that
f(x) >0,
JIABY (ru(x) = r(x)) —L——> N (O ag(x))

where o?(x) is defined in Theorem 2.

The asymptotic normality of r, given by Theorem 2 holds under mild conditions on the re-
gions A, and the bandwidth b,, that is b, — 0 and |A,|b) — oo. These conditions on the
bandwidth parameter are sometimes called minimal conditions since these are required for the
asymptotic normality of the Parzen-Rosenblatt estimator f, when the observations are assumed
to be independent (see [22]). To the best of our knowledge, Theorem 2 is the first central limit
theorem for the NWE under minimal conditions on the bandwidth and irregularly spaced de-
pendent spatial data. In particular, we improve in several directions Theorem 2.2 in [1] for
strongly mixing random fields where the authors considered a set of conditions on the band-
width parameter and the mixing coefficients interlaced in a complicated way. More precisely,
using ours notations, Theorem 2.2 in [1] gives the asymptotic normality of the NWE as soon
as [E[exp (|Yo|?)] < oo for some positive real 7, the regions A, are rectangular subsets of Z¢
such that |A,|bY*? — 0 and |A,|bN029D Jog(|A,[) 3¢ — oo for some 0 < § < 1/2, there ex-
ists g, — oo such that g2 = o (B2 log(|A,|)*¥") and |A,| Y, 1% o1 w(ng,) — 0 and
b-NO (log(|A,]))*" Y M 1():l(sm(n) — 0. In particular, it is assumed that Yy, n'af(n) < 0. In
order to compare with our results, one can notice that if § = 6/(2+0) €]0,1/2[ and E [| Y0|2+9] with
0 < 0 < 2 then (A3)(i) reduces to ) -, ndG-0-1 0(1 (n) < co. However, our main result holds even if
Y, does not have finite exponential moments and also for general regions A, (irregularly spaced
spatial data) and under only minimal conditions on the bandwidth (b, — 0 and |A,|bY — o).

5



3 Numerical illustration

In order to illustrate the asymptotic normality of the NWE provided by Theorem (1), we are going
to consider two regression models where the predictors are given by an autoregressive random

field ( AR)) ())ez? and a Volterra random field ( YOD) ())ez? respectively (see Model 1 and Model

2 below). In Model 1, the autoregressive random field (X(fR)) ., is defined by
h (i))eZ
XN = 07X + 015X + e, (2)

where (¢&;;)(;jjezz2 are iid real random variables (N = 1) with standard normal law. From [13], we
know that the stationary solution of (2) is the linear random field given by

S1+ S s 5
Xi(fR) — z Z ( N )(07) (015) Eimsy j-sy+ (3)

5120 5,220

So, we fix a positive integer n; and we simulate the ¢;;’s over the grid [0, 2n;]* n Z? in order to get
the data Xi(jR) for (i,j) in [ny + 1,2n,]* n Z?* following (2) and (3). In Model 2, in order to consider
nonlinearity, we define

, S+ Sy L—S+h—-9 + +
-z () (e e

5120 5520 t1>51 tr>$) sl tl - sl
Since
(Vol) _ S1+ 8 2 25
Xi,j - Z Z (0'7) 1(0'15) Zgi—sl,j—SZﬁi—Sl,j—SZ (4)
510 5,0 N
where

By = zz( . )o7>ﬁ(01s> Eitt ©)

tl >0 tz>0
we fix a positive integer n, and we simulate the ¢;;’s over the grid [0,4n,]* n Z* and we get the
data f;; for (i,j) in [2n, + 1,4n,]* n Z?* using (5) and following the previous implementation of
(Xi(fR))(,-’j)ezz. Starting from the data ¢;;;; for (i,j) in [2n; + 1,4n,]%, we simulate in the same way
the data XSIOD for (i,j) in [3n, + 1,4n,]* using (4). From the two data sets
YA~ sin (Xi(fR)) +&j, (i,j)€[n +1, 2m ]? (Model 1)

1]

and
YYD = sin (XSIOD) +&j,  (i,7) € [Bny + 1,4n,]° (Model 2),

)

we consider 500 replications of \/ ZﬁféfR)(O) rAR)(0) and \/ 2 anOI (0)n2b,,, r"°Y(0) where

Tll nl ny nz

X @R R 1 x VoD
[ECRI S S 1 (5 IO S i |
bnl (ij)€[ny+1,2n, 12 bm n; b"z (ij)elnz+1,2n2]? b”l
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(AR) ¢ [ X2 Vo) ¢ [ X5
Z(i,j)e[n1+1 2n]? Yl] K ( b > Z(i,j)€[3n2+1,4n2 2 Ylj ° K ( b
(AR (0) " (Vol (0) ny
’ 2 b VOl) ’
n1 "1 (0) nzJ n ( )

the kernel K is Gaussian and the bandwidth parameters b,, and b,, are selected by cross validation.
So, in Figure 1 below, we obtain the histograms for

\/2\/— L i (0)niby, r,(fR (0) and \/ 21 an‘)l) Yn2b,, rr(l\Z/ol 0)

with ny, n, € {10,30} along with the standard normal law.

Model 1 Model 2
o
; - = 7 s
™ _] ] - ] 5
= T 4 AN
o | -
o]
N o
o =]
S 7 =
= o
e g T I T T T | S T | — I R
3 -2 A 0 1 2 3 3 1 0 1 2 3 4
100 observations 100 observations
Model 1 Model 2
i, P
= - 5 i
o
& TN
o o
2 -
o
o ™
(=]
a 7 =z =
= _] =
2 T T T | = T I T | T |
-4 -2 1] 2 4 3 -2 1 0 1 2 3
900 observations 900 observations

Figure 1: Histograms for \/ 2 anR) 0)n? b, r*®(0) (Model 1) and \/ 2 \/—anol) 0)n2 by, r{VV(0)
(Model 2) along with the standard normal density.



4 Preliminary lemmas

In the sequel, for any sequences (a,),>: and (b,),>; of real positive numbers, we denote a, = b,
if and only if there exists k > 0 (not depending on n) such that a, < xb,. For any real x, we
define also [x] = [ x| + 1, where | x| is the largest integer less than x. We shall need the following
technical lemmas.

Lemma 1 Assume (Al), (A2) and (A4) and let x € RN. If®; : R — R and ®, : R — R are two
functions such that x — E [®:(Y;)|Xy = x] is continuous and the conditions sup,pn |P2(K(2))| < oo,
Limy o0 2] |2(K(2))] = 0 and [y |®, (K(2))| dt < oo are satisfied then

lim E [@,(Y0)®, (Kn(x, X)))]
n—oo br]:]

= E[®,(Y)[Xo = x] f(x) /RN d, (K(v)) dwo.
Moreover, we have also supj_efg E [[Ku(x, Xo)Kn(x, X;)|] = 2V
j
Proof. Let x € RN and let n be a positive integer. It is obvious that
E [®,(Yy)®, (Ka(x, Xp))] = BY [RN E [P, (Yo)| Xo = x — vb,] D, (K(v)) f(x - vb,)dwv.
By Theorem 1A in [22], we have
lim E[®; (Yy) | Xo = x - vb,] D, (K(v)) f(x — vb,)dv

n—oco JoN

~E[®, (Y)| X = x]f(x) /R 0, (K(o) do.

Consequently,
lim S q;ij”(x’ XN _ g o, (1)1 % = 210 / @, (K(v) do, (6)

In the other part, keeping in mind assumptions (A1) and (A2) and using (6), we derive

suE)IE [|Kn(x, XO)K,,(x,X})” <k (/RN K, (x, u)| du) + (B [Ka(x, Xo)[1)* = b2V,

The proof of Lemma 1 is complete. O

Lemma 2 If(A3) holds, then there exists a sequence (my,),> of positive integers satisfying

ON
lim m, = +o0, lim m¢bi’ =0 and

n—o0 n—oo

O(N+2)+2N

lim, o by 7 Y [i907° = 0 if (A3)(ii) holds.

[ lim, o by?® Yy 22 (i) =0 if(A3)(i) holds

Notice that when |A,|bY — oo, we have m? = o (|A,)).
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Proof. First, we assume (A3)(i). So, we have E [|Y0|2*9] <ooand )z i
0 >0.Let y > (4+0)/(2+0) be fixed and let (m,),.; be defined by

S al +9(|1|) < oo for some

1

dy
-ON
m, = max | vy, bd(“g)( > i al*9(| |)> and v, = [0 ].

[i|>vn

Since v, — oo, we have m, — oo as n goes to infinity. Moreover,

d b ziNs % ON
mnb";m < max + Z | 2+9 0(2+9(|l|) " bﬁﬁ; 0.

l|>‘Un n—oo

Since v, < m,, we have
1

d 4‘94% 2+99 2+9
m, b = | 3 i e (i)
|i|>my

Consequently,
y(2+6)-4-6
_oN P b 4:0) d(4+6) r@+0)
5 5 aan < (misf) S 0% ot < 5 1% a2
|i|>mp, |i|>m, [i|>my,
_oN
Since y > (4 + 0)/(2 + 0), we derive lim, o bn*" ;.. af;‘j i) = 0
Similarly, assume (A3)(ii) holds and define
Iy
=N dGN2P(oN8)0sN) 0\ ((N + 2)9 + ZN)(Q + 4)
m, = max { v, | b*" i 200+ ON 550 with > .
' K ' 20(6 + 2N
Then, arguing as before, we derive
ON 9(N+2)+2N 0
lim m¢bi? =0 and lim b, ™" ¥ |i46%° =
n—oo n—oo | ‘>mn
The details of the proof are left to the reader. The proof of Lemma 2 is complete. O

For any i in Z¢, any positive integer n and any x € R, we denote
Kn(x, Xl) -E [Kn(x, Xo)] YiKn(x, Xl) -E [Y()Kn(x, Xo)]

VoY oY

Lemma 3 Assume (A1), (A2) and (A4). If there exists @ > 0 such that E [|Y0|2+9] < oo, then
N
max{|Aol3.¢. |Oolse} = bn’".

A; = and O, = (7)



Proof. Let 6 > 0 such that E [|Yy|**?] < oo, we have

2 "Kn(xa X0)||§+9 n 2 (E [Kn(x’ XO)])2

[20lz.6 <
' by by

and
2 ” YOKn(x» XO)”§+9 + 2 (E [YOKn(x> XO)])2

100]3.9 <
’ by by

Keeping in mind that [K|., := sup,~ [K(#)| < 0 and using Lemma 1, we derive

E [IKi(x X)) = bY, B (K, (x X0)] | = 87,

E [|YoK,(x, Xo)**?] = bY  and ‘E[YOK,,(x,XO)]‘ < b,

_en
Consequently, we obtain max{|Ao[3.4,[©l5.4} = b.?". The proof of Lemma 3 is complete. o

Lemma 4 Assume (A1), (A2) and (A4). Then, sup,,. E [|A0Aj|] = bY. Moreover, if E [|Y0|2+9] < o
J#0
for some 6 > 0 then
o o
sup E [|®0®j|] =2 by’ and supE [|®0Aj|] =2 byl

jEZd jEZd
Jj#0 Jj#0

Proof. Let j # 0 in Z4, then

E [IKn(x, Xo)Ka(x, X))[] + 3 (E [Ka(x, X)|])?
bN '

n

E [|80A]] <

Applying Lemma 1, we get
supE [[AoA)]] = b
jezd
J#0

Let L > 1. We have

E [1Y0 YK, (¢, Xo)Kn(x, X)|] + 3 (E [| YoKu(x, Xo)|1)*

by

E [|0,6;]] < (8)

and

E []Y0 YKn(x, Xo)Ko (6, )| =E [|Y0Y] Lyyyjr LygjerKa(x Xo)Ka(x, X))
+ I [|Y0 Y] Wpyyjcr, Ty K (e, Xo) K (x, X)) ]
+E [|YY) 1yyer 1y, <. K (x, Xo)Ka(x, X)]
+E [|Y0Yj Ty, Wy - Ka(x, XO)Kn(x"Xj)l] :

10



By Cauchy-Schwarz’s inequality, we derive
E [|Yo YiKa(x, Xo)Ku(x, X))| | <L°E [[Ka(x, Xo)Kn(x, X))|]
+ B [Y2K(r, X0) |\ E [Y2 130K, X0)]

+ B [¥2 130K e X0) B [ YERE (x, X0)]
+ E [YOZ ]1|y0|>LKi(x, Xo)] .

Let 0 > 0 such that E [|Y,[**?] < co. Applying Lemma 1, we get

E [|Y YK, (x, XK (x, X))

o s PN+ L+ L0 < 12BN + 1702 (9)

_2N
Making the choice L = b,*’ and combining (8), (9) and Lemma 1, we obtain

N
SupE [‘@()@]H = béw.
jezd
J#0

Now,
E [|YoKa(x, Xo)Kn (6, X))|] + 3E [|YoKn(x, Xo)|] E [Ko(x, Xo)|]

by

E [|©.4)]] <

So, if L’ > 1 is fixed then

L'E [[Ka(, X)Kn(x, X)) E [|Yol 1yyypor K, Xo)Ka(x, X))
by ’ by

. 3E [| VoK, (x, Xo)[] E [|Kn(x, Xo)|]
bN

n

E @] <

By Cauchy-Schwarz’s inequality, we get

E {1l By Ko, Xo)Ko(x, X)I] < L2 [| Y0220 (e, X0) | [K (. X0).
Appplying Lemma 1 and making the choice L’ = b;%, we obtain

supE [|@A)]] 2 L'BY + L7 + b)) = b
jezd
70

The proof of Lemma 4 is complete. O

The following proposition is a crucial tool in the proof of the asymptotic normality for the NWE
(Theorem 2) when the random field (X;),cz« is of the form (1).

11



Proposition 1 Let n and M be two positive integers and let x € RN, If A is a finite subset of Z°
and® : R — R is a measurable function such that |®(Y,)|,,s < oo for some 6 €]0, +o0] then for any
family (¢;)iea of real numbers and any (p, q) € [2, +0o[x]0, +00] such that p + q < 2 + 0, we have

P 9 a4
Y Wi <8pMIKIZ C(p.q) [¥ ctbi® Y. 857,
ieA » icA li=M
where
Win 1= O(Y)K,(x, X;) - E [D(Y))K,(x, Xi)| Hi,M] > (10)
2p+ % % CD(R(X, )) - (D(R( 5 ))
C(p, g) = 252 1OV, IKIE + KT | sup (2B M) = SRy, 1)
(x,y)eRN xRN ||x - y"
X#Yy )
and K K
M= o(oesll < M) and Ky, = sup ) —KO)
(x,y)eﬂiN «RN "x -y "
x#y

Proof. Let M and n be two positive integers and let x in RY and i in Z¢ be fixed. Recall that Y; =
R(X;, n;). We follow the same lines as in the proof of Proposition 1in [11]. Let 2 < p < 2 + § and
denote by H,, the measurable function such that W;, = H,(H;.) with H;, = ¢ (m, is;s € Z4 )
Then, we define the physical dependence measure coefficient 5,»(;) associated to W;, by 51-(;) =
|Win = Wi, lp, where W) = H,(H;,) and H]_, = o (m, £ ¢3S € Zd) keeping in mind that ¢ = ¢ if
j # 0and ¢ = ¢. In other words, we obtain W;, from W, by just replacing ¢ by its copy ¢, (see
[30]). Let 7 be a bijection from Z to Z¢ and ¢ in Z be fixed. We define the projection operateur P, by
P, f = E[f|F;]-E[f|F;-1] for any integrable function f, where F, = o (ET(S); s<t ) Consequently,
by stationarity, we have

P Wil = [E [Woul T'Fe] - E [Wo,|T'Fe]

where T'F, = ¢ (ET(S)_,»; s<{ ) Keeping in mind that W, , = H, (H,), we derive

1P W, = [B [H, (o) | T'Fe] - E[H, () | TF]| < [Ha (Fow) - H, (152)

‘P
ir)

where Hélof,) =0 (11, 8;([)_1., £5:;8 € ZN{i- T(()}) It means that Hé’m is obtained from H, . by
replacing &,-; by its copy g;( o~ Consequently, using again the stationarity of the random field
and noting that

T My =0 (’7i—r(t’), Eir(t)-s> S € Zd) = Hie(t)eor
T OHG) = 0 (Miceteys & Eete535 € ZN{i = 7(0)}) = Hi_ 0

we obtain

[PeWil, < [Ha (T Ho) = Hy (T HED)| = | Wiriorn = Wiaion
P

_ s
=0, (D)

12



Moreover, since W;, = ). ,c; Pt Wi, we have

2 GWin| =
jEA

2, 2 P Wi,

(€7, jEA

p

Since (Z jen GiPr W}n) rer is a martingale difference sequence with respect to the filtration (¥;) ez,
the Burkholder inequality (see [6], remark 6, page 85) implies

s<zpz > s<zpz (z|cj|<\vavj,n\»p)> . (12)
» e teZ, \JEA

Moreover, by the Cauchy-Schwarz inequality, we have

2

2 Win

jeA

>, P Win
jeA

P

2
<Z |Cj| HP[ vv}n‘b,) = Z Ciz HPf Vvi,n”p x Z ”Pl’ M/]n"p (13)
JEA ieA JEA

Using (11), we have sup,;, 3 icza [Pe Winlp < ez 5](;) So, combining (12) and (13), we obtain

2 Win

jeA

i€EA  (eZ

< <2p Y 5}_(’;) Yy HP[ M/L"Hp> )
jezd

p

Using (11) and keeping in mind that 7 is a bijection, we have sup,;i 3,z [P Winlp < Xjeze 5]{;,).
Hence, we derive

< (zpz cf)z PRI (14)

JEA jezd

2 G Win

jeA

P

Now, since
E [0(Y)Ka(x, X)[Hin] = E [RRX;, 1))Kalx, X)) H; ]

where H; ), = o (n;, ¢ ; |s| =< M), we have

W, = ®(ROX, 1))Ka(x, X;) = E [ORX, 7:))Kn(x, XM, ] -

Moreover,
E [®(Y)K,(x, Xp)|[Hin] = E [(Y)K,(x, X)|Him v H; ]
and
E [©(R(X], 7:)Ka(x, X)), 5] = E [RROG, 7))Ka(x, X))y v Hing] -
Consequently,

8 = [Win = Wi|, < 2[ @R, 7))Ka(x, Xi) = DR, 1)Ka(x, X)), - (15)

13



Let L > 0 be fixed. From (15), we derive

5% < 2[@(R(X,, ) (Kal(x, X)) ~ Ko, X)) — (@(RX;, 1) ~ B(R(XG, 7)) Ko, X))

[@(R(x, m0)) = P(R(y, mo))|

5, ) o
< 2L K]l b—p + 4Kl [(Yo) |5t g + 2[K]e

()eRN RN Ix =yl o
X#Yy b
Optimizing this last inequality in L, we get
(n) v o ik
8ty < 2[KI&* Cp, q)bi* 8y, (16)
where
o i i D(R(x, - O(R(y,
C(p, @) = 25 [V IKIET + [KIET| sup [2EC10) = ARG )
ez Ix =yl
x#y

P

Now, by stationarity, we have 51-(;) = |Win - Wif"”p < 2| Wy, Let £ > 0 be a fixed integer. We
denote by T, the set of all j in Z“ such that |j| = £ and we define

t t
a 1= Y |0l = 1+2d ¥ (2j + 1)
j=0 Jj=1

If u=(u,...,ug) and v = (vy, ..., vy) are distinct elements of Z¢, the notation u <j, v means that
either u; < v; or for some k in {2,...,d}, uy < vr and us = v, for 1 < s < k (lexicographic order).
Let 7, :]0, +0o[nZ — Z< be the bijection defined by

° TO(]') = 0>
e To(s) €T ifa,y <s<ayand ¢ > 0,
o To(S) <1ex To(t)if ap.y <s<t < ayand £ > 0.

Let Gy = o (170, €)1 < 8 < M) and recall that Hyy = o (1o, e-5;|s| < M). Since 1 < s < ay if
and only if |7(s)| = M, we have G,,, = H, . Consequently,

WO,n = Z D[ Where Dg = ]E [q)(R(Xo, Uo))Kn(x, X0)|g[] — ]E [q)(R(Xo, T]()))Kn(x, Xo)|g[_1] .

{>ap

Since (Dy),, is a martingale difference sequence with respect to the filtration (G,),>1, we apply
Burkholder’s inequality ([6], remark 6, page 85) and we obtain

1/2
e, < (20 5 108) @
Let L > 0 be fixed. Denoting X;, = G (}70, e;o(t,), £:SE Zd\{—ro(t’)}), we have
E [®(R(Xs, Uo))Kn(x: X0)|gt’—1] =K [(D(R(X(;,g, Uo))Kn(X, X(;,f)|gf] .

14



Then
IDl < |@(ROKG, m))K, (x, Xo) = SR 1 1)Ko, X

= [@(RO%, 7o) (Kulee. X0) = Kux, 3,)) = (RCROG . 0) = SR, ) Kol X, )]

_ LIKL,

s D(R(x, - ®(R(y,
< + 2K L P [D(Yo)],%g + [Kleo | sup [D(R(x, 170)) = D(R(y 1m0))|

(xRN xRN lx - I
X+Y p

Xo = Xo, Xo = Xy
P P

Optimizing in L, we obtain

e 7
I, < K& Clp. )b - x|

lp <

Moreover, by stationarity, we have

”Xo - X , =16 (6555 €27) = G (e 35 € Zd\{_f‘)(f)})up

=G (E—To([)—s ;S € Zd) -G (5(/), g—’l‘o([)—s ;S € Zd\{_TO([)})”p

= 1 Xoge) — X—*TO(I)HP
= 5—T0([),P‘

So, we derive

-4 9
IDell, < K& C(p. )b Ol (18)

Combining (17) and (18), we obtain
9 9
[Wonl, < IKI& \/_C(P 9) b‘”’ % 0y S KIS \/_C(P Qbi” Z ip’ (19)
and N . N
sup 85 < 2| Waul, < 2J2pIKIET C(p, q)bi z o (20)
So, from (16) and (20), we get
9
¥ &)< 2\/_|K|”C(p Qb (M? + 1) > 8 (21)
lEZ [ji|>M
Finally, combining (14) and (21), we derive
dye| 7o = 7
= 8pMF[K|&" C(p, q)(Zc?) b Z Ofp'-

ieA

Z Ci ‘/Vi,n

€A

P

The proof of Proposition 1 is complete. O

Now, we denote by V(Z) the variance of any square-integrable R-valued random variable Z.
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Lemma 5 Assume (A1) (A4). For any x € RN such that f(x) > 0, we have
lim ALYV [£,09] = ) | Ko0de
lim |A, 1LYV [a(x)] = E [ V71X = x] f(x) / K*(t)dt,
lim 4,15 Covln(a), ()] = rCf () | K(0)ds

RN

Proof. Let n > 1 and x € RY such that f(x) > 0 be fixed. Then,

Al by V [fu(x)] = E

| fl| jezd
j#0
Consequently,
18,183V 1)) - E [85] | < T [E A0 ]
JEZ
j#0
where

E [Ag] _ E [Kn(x, XO)] ;]\(]E [Kn(x’ XO)]) .

Applying Lemmas 1 and 4, we get

lim E [A}] = f(x) / 2(v)dv
and o
sup ‘E [AOA]-” = bY < b,

where 6 > 0 is given by (A3). Similarly, we have
2
ZieA,, ®i
[ Al

ANV [9,()] - E [©]

ABYV [a(x)] = E

]EZd
j#0

So, we derive

<y

jezd
Jj#0

E [€,6)] ) ’

where E [Y2K(x, X0)] - (E [YoKo(x, X))
YZKA(x, Xp)| - (B [YoKa(x, X0)])°
E[©3] = o :

Applying again Lemma 1, we obtain

n—oo

lim E [€]] =E [Y7|X = x] f(x)/ K*(v)dv.
]RN

16

<ZTA>]E[ g S - IE ()

=E[0}] + IAI2|A n (A, - )| E [6,0)] .

(22)

(23)

(24)

(25)

(26)



By Lemma 4, we have also
6N

sup [E [@06) ]’ = byl (27)
Arguing as before, we write
A6 Cov (90, () = O] + 7 T I (A~ B [O0]
n| jezd
0
Consequently,
[ 1BY Cov (gu(). £u()) ~ E [@6o] | < X [E [004)] | (28)
jezd
j#0

where, using Lemma 1, we have

E [V (x. X0)] - E [YoK,(x, X)] E [K, (x, X,)]

E [00A] = N r(x)f(x)/ K(v)dv. (29)
n n—oo RN
By Lemma 4, we have also
ON
sup [E [@0 ” = b2 0 < bl (30)

Now, we assume that (A3)(i) holds and we introduce the letter = which can be replaced in the
sequel by either A or ©. By Rio’s inequality (see [23]), for j # 0, we have

2a1,05(11)
E[55)]| < 2/ O (wydu where Qs (1) = inf{t > 0|P(E| > 1) < u}.
0
Using Lemma 3 and noting that Qs (u) < w20 | 2|, we derive

B [20E)]| = a2 1ok = b2 2 (l). (31)

Combining (24), (27) and (31) and using Lemma 2, we obtain

v [E [Eozj]‘ mibi0 4 b mz a2 (|j)) —— o, (32)
jezd >my,
j#0

where m,, is given by Lemma 2. Combining (22), (23), (25), (26) and (32), we get
lim |A,|BYV [£,(x)] =f(x)/ K*(t)dt and hm |AL| BNV [n(x)] [Y2 | Xo = x f(x)/ KA(t)dt.
n—oo RN
Applying again Rio’s inequality, we have
2011,00(|j])
Elon][<2 [ 7 Gawey(wd
0

17



and by Lemma 3, we derive
B R ¢.)
u 2+0 bn

®0||2+9

and QO (u) < u 70 A RS

__ON_
Z+6 bn 2(2+0)

Qe,(u) < u "2
for any u €]0, 1[. Consequently, we obtain
B [@u]| = b2 a2 ()

Combining (30) and (33), we derive
3 [E [0 ]| = mibi + 0,5 3 ail (i) ——o.
[j1>mn

jezd
J#0
where m,, is given by Lemma 2. Finally, combining (28), (29) and (34), we obtain

hm |AL|BY Cov [@n(x), fu(x)] = r(x)f(x) / KA(t)dt.

(33)

(34)

From now on, we assume (A3)(ii) holds. Keeping in mind that = stands for either A or ©, we

define =; = E [H,|H, m ] for any i in Z?. Note that (£;),cz¢ is a 2m,-dependent random field (it

means that if |i - j| > 2m, then E; and Z; are independent) and

(22)]-2|(z=) |

€A,
Using Proposition 1 and Lemma 2, we obtain

< b,

> (5-5)

2 €A,

™M
w)

i€EA,

-E

E

202+0)

O(N+2)+2N 60
Y '8 ——— 0.
n—oo

/1> mn

Y (Ei-E)

i€Ap

|An|—1/2

2

In the other part, since (Z;),cz¢ is 2m,-dependent, we have

|

2

1 = = 1
E (z E,-) =E[E§ +— Y |Aun (M-

|An| €A, |An| jeZAN{0}

ll<2my
and consequently
1 =2 = =

-E [:0] (2m, + 1)* sup E [Z, :j]’.
jGZd

Jj#0

(2]

i€EA,

Al

n—oo

Moreover, using (19) and Lemma 2 and noting that |=,|, = 1, we have also

_€(N+2)+2N 0
2(2+0) 2+0
b > 5y ——

2 ”50”2 HEO - Eo”z =
|j1>mn

=0

‘E [52] _E [22]
18

(35)

2

(36)

(37)

0.



So, using (23) and (26), we derive

n—oo

lim E [Eﬁ] - {(x0)f(%) /R K0, (38)

where £(x) =1if Z=Aand &é(x) = E [Y02|X0 = x] if Z = ©. Similarly, using (19), we obtain

S o O(N+2)+2N L
md sup ||E [E,5)] | - [E [E0F] |‘ <2ml S, [Eo - Bof, = b0 7 Y |j|?65 ——— 0.
jezd /1> mn n—ee
Jj#0

ON
Using Lemma 4, we have sup . [E [E E] | = by and consequently, by Lemma 2, we get
Jj#0

_ B(N+2)+2N

db4+9 + b T 220 Z l]l +9 5 0. (39)

lj‘>mn n—oo

Combining (37), (38) and (39), we obtain

(Z f) ] - € [ Ko (40)

li
s [

Combining (35), (36) and (40), we get

1
e A

e|(z=) ] - e [ R

So, we have shown

lim AV 9] = ) [ Kot and - Jim A5V [gn()] = E [ = 2] 5 [ Ko

Now, it sufficies to prove

B [A,J5) Cov [gu(x), 0] = () | Koy

when (A3)(ii) holds. If we define

_ 1
X) E |Ku(x, X)|Him,| and o,(x)=

[YiK,(x, X0)|Hm, ]

then
|An|bf:]COV [@n(x), fu(x)] = C1 + Co + G5 + Gy,

19



where

Ci = [AlbYE [(n(x) - 7,(x)) ( n<x )]

Cz = [ABYE [(@u(x) - 7,(x)) (F.( [f (0])]

Cs = |AB)E [(@,(x) - E [7,(x)]) (fn(x ~f4(0)]

Ci = |AJBYE [(7,(x) - E [7,(0)]) (f.(x) - E [F,(0)])] -

Using Proposition 1, we have

1 - 1 = B )
Gl < 2, (©:-0)) x > (A=Al = | bn 2, 17657 ) = o(1).
|Ay| ||iErs ) |AL| ||iErs ) lil>my
From (40), we have |A,[ ||} s Zj”z = Land [A,[™ |3 ea, @jHZ s 1. So,
1 1 — - 802N i
Gl < >, (©i-0))|| ~ YA =l T Y i85 =
|A| ||i€an |Aq| |[jEr lil>my
2 2
and
1 1 o) - i@
Gl < 2 (A= Ay~ 2, 6jf| = b Y 183" = o(1).
|An| i€Ap 9 |An| JEAR 9 |i|>m,

Finally, since

Cy = E [6pA,] + Y 1A (A, - DIE [€p4],

|An| jezN{o}

lil<2my,
we obtain
[@OZO] < (Zmn + 1)d sup E [@ozj] ’ . (41)
jezd
40

Using (19) and keeping in mind that |A,|, = 1 and |0y, = 1, we have also

— . _ O(N+2)+2N 0
<O, Ao = Ao, + |Aol, [€0 - o, = bn ™7 ¥, 85 =

|il>ms

‘E [602] - E [@0AA,]

Moreover, using Lemma 1, we have
1
E [0040] = 77 (E [YoK;(x, Xo)] - E[Ky(x, Xo)] E [YoKn(x, Xo)]) ——— r(x)f (x) / K¥(t)dt
. n—oo RN

and consequently, we obtain

lim E [@pA] = r(x)f(x) / K%(t)dt. (42)
n—oo RN
Now, using (19) and Lemma 2, we have
d x = - . d 575
i sup [ (O] |- 1 [006] | < i (j€ [B0 = Aol + 180l [80 - ©0f,) = bu 7" 3 L1405 = o)
jezd >Mmy
Jj#0
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o o
Using Lemma 4, we have sup . [E [®0Aj] = by < by’ and consequently, by Lemma 2, we get
j#0
L _ O(N+2)+2N
m¢ sup [E [0,4;]| = db4 Tab, Ty jlYsE ——— 0. (43)
e
Combining (41), (42) and (43), we obtain
C,— r(x)f(x)/ KA(t)dt.
n—oo RN

The proof of Lemma 5 is complete. O

5 Proofs of Theorems

In this section, we present the proofs of Theorems 1 and 2.

Proof of Theorem 1. Let n > 1 be fixed. Since K is symmetric such that [y [v]* [K(v)|dv < oo
and f and ¢ are twice differentiable with bounded second partial derivatives, by Taylor’s for-
mula, we get

sup [B (0] - )| = sup | [ (7(x - wby) - ) K(ehde] = 8 [ Jof (oo
xeRN x€RN ' JRN RN
and
sup [E [pa(x)] - p(x)| = sup / (p(x - vby) - p(x) K()do| = b / ol [K(o)ldo.
x€RN xeRN ' JRN RN
The proof of Theorem 1 is complete. O

Proof of Theorem 2. Let n > 1 and x € RY such that f(x) > 0 be fixed. Then

Elon()] _ (@n(x) = E[@n()]) E [fa(x)] = (fa(x) — E [fa(x)]) E [@n(x)]

E [fa(x)] Fa(0)E [fa(x)]

Combining Lemma 5 and Theorem 1, we obtain that f,(x) converges in probability to f(x) as n —

co. Moreover, we have also lim,_,, E[[‘]f”(x)] = r(x). So, using Slutsky’s lemma and assumptions

(A1) - (A4), it is sufficient to prove that
A An | (n(x) = ) + A IABY (Fu(x) - E [f(0)]) ——— N (0, p*(x)) .

where p?(x) = (XE [YZ[X) = x] + 24 4,7(x) + A2) x f(x) fn KA(t)dt for any (A;, 4,) € R2.

rn(x) -

Let (A1, A;) € R? be fixed. Then
M AR|BY (0a() = E [@n(x)]) + Ao |AL[ Y (fu(x) = E [fa(x)]) = |An|71/2 2 U

€A,
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where
(A Y + A2) K, Xi) = E [(A Yo + A2) Ki(x, Xo)]

Vol
with ©; and A; defined by (7). For the asymptotic normality of r, when (X;);cz« is of the form (1),

we are going to use an approximation by 2m,-dependent random fields. So, recall that H;,,, =
o (n;, &i-s; |s| < m,) and define

[]i = /11@1' + /‘{ZAi =

Zi = E [Ai|Hi,m,,] 5 @i = E [®i|Hi,m,,] and Ui = AI@i + AZZi = ]E [l-]i|Hi,m,,] .

By construction, (U));ez¢ is 2m,-dependent (it means that if |i - j| > 2m, then U, and U, are
independent). So, if (A3)(ii) holds, applying Proposition 1 with &(¢) = At + A, for any t € R, then

_9(!;];2);—2N d 0
=2 bn @0 Z |l| 5550 T 0 (by Lemma 2)

[i|>my,

|An|—l/2 z (U'I_Ul)

i€Ap

2

Consequently, when (X;),cz« is of the form (1) it sufficies to establish the asymptotic normality of
|An[ "2 Y iea, Ui. From now on, we denote

7 _ Uy if (X})ieze is strongly mixing
"7 1 U; if (X))eza is of the form (1)

and
M o= if (X})icza is strongly mixing
" | 2m, if (X]),za is of the form (1).

Lemma 6 lim, ., E [ZOZ] = p?(x).

Proof. We have

= [17] = E [(4 Yo + A) K (x, X)) b—N(E (1Yo + 2) Ko, Xo)])*

Applying Lemma 1, we get

lim E [U7] = E [(M Yo + A)*| X0 = x] £(x) / K*(t)dt = p*(x).

n—oo RN
Moreover, by Proposition 1 and Lemma 2 and using |Uy|, = 1, we derive

—2 2 7T _% -1d % N
‘E [UO] -E [Uo] <2 ||U0||2 ”UO - Uﬂ”z = by z |l| Si’g n—sco 0.

[i|>M,

So, lim,,_,, E [Uz] = p?(x). The proof of Lemma 6 is complete. O
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Let (&);eze be iid. normal random variables independent of (X;);cz« and (7;);cze. Assume that
E[&]=0and E [¢2] = E [Z2]. For any i € Z% we define

T,= —— and y,~=i.
[Anl [An]

Let g be the unique function from [1, |A,|] n Z to A, such that g(k) <jex g(£) for 1 < k < ¢ < |A,,
where <y is the lexicographic order on Z¢. For all integer 1 < k < |A,|, we put

k |An|
Seo(T) = Zi Ty and  Syp(y) = Z;C Ye(s)

with the convention Sy()(T) = Sga,.1)(¥) = 0. Let ¢ be any measurable function from R to R. For

any 1 < k< ¢ < |An|, we 1ntr0duce the notation ¥, = lﬁ( () (T) + S"’([)(y)). Leth : R - R
be a four times continuously differentiable function such that maxo< ;< [h?]e < 1. It suffices to

prove lim,_,, [L,| = 0, where
Zi &i )
h — || -E|h —
(ig/\:n \/|An|> [ (zez/\: |An|

Using Lindeberg’s idea [15] (see also [5]), we have

L, :=

Al

Ly = E [ha a1 = hos] = 3B [iger = hicis]
=1

[An|

= kZ (E [hk,k+1 - hk—l,k+1] -E [hk—l,k - hk—l,k+1] )
=1

Applying Taylor’s formula, we get

|An] )
’ 2 ’7 , 9 .
L,= 1; (E [Tg(k)hk—l,k+1 Tg(k ik Ok - E [Yg(k)hk—l,k+1 + 5)/g(k)hk_1’k+1 + Wk] >,

where |v] < g(k) (1 A |Tg(k)|) and [w| < Ygz (k) (1 A Ye( )|) Since y;(k) and hy , .., are independent,
E[Z
E [Yg(k)hk—l,kﬂ] =0and E [Ygz(k)] = |E\ I], we obtain
|An| , 1 5 E [ZOZ] .,
La= kzl E [Towhiorien] + 2B N Lo - ™ R | + Eloe—wid ).

Since & is a gaussian random variable with zero mean and variance E [Z?] and E [ 2] < E [UZ],
we have

i E 6] (E[u)™
E Wk .
Z s |AL| |A,|
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By Lemma 1, We have E [UOZ] = 1 and consequently, we obtain lim,_, Zl,i\zl‘ E[|wk|]] = 0. Let

t= (JALBY) ™ T Then,

A , ) [|U0|2+9]
I;EHUICH < d,E [Z ] +1E [Z \Zol>dnf1An] | S < diE [UO] dOA|P2

Using Lemma 3, we get

, — 0.

—1 =2d
N neo

z: -E (2
(k) ’
( £ 2|An| : > k—l,k+1] ) = 0. (44)

For any integers n > 1 and 1 < k < |A,|, we define

(_ ]
(M) _

Forany 1 < k < £ < |A,|and any function ¢ from R to R, we define also ¢, ", = ¥/ (S%’;)(T) + Sg([)(y)).
Using Taylor’s formula, we have

, _ (M) (Mp) (My)
T vier = Tatohirren + Teo (Seen(T) = St (1) b, + o

[An|
kz El|vk]] = d, +
=1

Now, we have to prove that

lim Z <E [Tewohi1i1] +E

g(k) and |j - g(k)| > Mn} and S (k) =y T.

i€E}, (m)

with
0] < 2| Ty (Syaen(T) = SEAD)) (1 AISye(T) = S (D).

In order to obtain (44), we have to prove

A
lim ' E [ g(k)hk( 1nl)<+1] =0, (45)

n—o0 j._q
|As|

lim } E [ g(k)( w-(T) =S (k)(T)) k- 1k)+1] =0 (46)

n—oo k

lim 5 [|o{/] = 0, (@)

n— k21

and
A

[(ZZ(k) E[Z}]) h 1pn] = O (48)

TP
First, we are going to prove (45). Since y is 1ndependent of T, then E [ Tywh' ( a(k+1) )] 0.

Consequently, if 77 is a one to one map from [1, |E % | ]nZto E;C") such that |7(i)-g(k)| < |7(i-1)-g(k)
then

|

E [ Tuwh ] = E [ Tow (B0 = (i) = 21 Cov (Tyu: B = Bi-1)
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where i = h’ (S,,(,-)(T) + Sg(kﬂ)(y)) and Sy(o)(T) = 0. If (X;) ez« is strongly mixing then, using Rio’s
inequality ([23], Theorem 1.1) and keeping in mind that |7z(i) - g(k)| = |z(i - 1) - g(k)|, we get

B 20 (i) -g (k)

<2 gl QTg(k)(u) Qﬁi—ﬁi-1 (w)du.

0

‘E [Tewhilfi]

For any u €]0, 1[, noting that K is Lipschitz, we have

2 | Z | 2|
U 290 || Lollasg U *% 1 %oll2+0
Or () < L2 g gy () < L2l
BN A
ON
Moreover, by Lemma 3, we have | Z|3,, < |Us|5,4 = b»>° and consequently, we obtain

b 20 A EP

Z 3, @i (1n() - g(K) < b ¥ i (li).

n k=1 i=1 [i|>M,

[ Tewoh ]| =

|As|
Y [E
k=1
Using Lemma 2, we get (45).

The following lemma is a simple consequence of Lemma 4 (its proof is left to the reader).

ON
Lemma 7 sup,,.E [|U0 Uj|] =2 by’
J#0

Since (X;);cz« is assumed to be strongly mixing, we have Z; = U, for any i € Z%. Using Lemma 2
and Lemma 4, we have

|An| Z: ON
Y. E[lvl]l <2E(|Z]| Y. |1Zi||[1 A D —| / <2 ) E[JGU]] = Mgb,;“g —0
k=1 |l|i/\61n Mi]gu | n| |i|'§/Wn n—o0

and

Y E[|GU] = Mdb‘“" ——0.
[i1<Mn
i#0

1Al
kgl E [Ty (See-n(T) = Sg (D) B ]| <

So, we obtain (46) and (47).

Now, it suffices to prove (48). Let f > 1 be a positive integer. In the sequel, for any j € Z¢,
the notation Eg[Z;] stands for the conditional expectation of Z; with respect to the o-algebra
0(Z;:; i <iex jand |i — j| = p). Then,

An]
kz [( g(k) E[Zz]) k1k+1] <L+,
where
‘AV!‘
L= |A | & )E Zz Eﬂ[zéz(k)]) ;cl—l,k+1:| and L, = A kZ::l E [(Eﬁ[Z;(k)] -E [ZZ]) " 1k+1]

The next result can be found in [20].
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Lemma 8 Let U and V be two c-algebras and let X be a random variable which is measurable
with respect to U". If 1 < p < r < oo, then

[E[X[V] - E[X]], < 22" + 1) (U, V)" |X]).

Assume that (Xj),cz« is strongly mixing. Using Lemma 8 with p = 1 and r = (2 + 6)/2 and keeping
ON

in mind that | 2., = |Uo)3.s = ba”"?, we have

I, < ”E,;[ZOZ] -E [Zoz] 60{2*9(ﬁ) ||ZO||2+9 < 6b, 70 2+9(ﬂ)

Now, we make the choice

)\
ﬂ — "bn (2d—1)9+6d—2“ ) (49)
Consequently, using (A3)(i), we obtain
(2d- 1)9+6d 2 0
L=sp 7 alg(f) — 0

In the other part, noting that E [(Z 2

"(B) -

E [(Zgz(k) - Eﬁ[zgz(k)]) ;</71,k+1] =E [(Zgz(k) - Eﬁ[Z§<k>]) ( 2’71,k+1 - hk&?kﬂ)] :
So, we obtain

L<E|2A|Y (Z2 +Eg[27])].
H<ﬁ

J:n

i<]ex0
If L >0, then
L ; 2 2] _ 2 2
™ Eﬂ E[1 2021 + 2E [Z Nizp] + 2|y [Z] -E [Z]] +| 2 > J_n E[2].
i i<]ex0

Recall that Z; = U, for any i in Z. Since E [U?] = 1 and |Uy[3,, = b;,m, we derive from Lemma 7
that

6N
d7 1,4+0
Lb}? _ON (2d-1)6+6d
LSE—JL+L$m2+ﬁL%ii2ww)
|AL| H<ﬁ Ay
l<lex
Now, we make the choice
1
A7
L= ———— (50)
W
ﬂ 1+0 bn
and we obtain
-0 0%(2+0)(d-1)N 10s :
I = (|An|bﬁv) a0 b’(ll+9)(4+9)((2d‘-1)9+ed-2) + ﬂ(Zd 1é+6d-2 2+9 (ﬂ) Z Ui
Gi<s ~f|A]
i<]ex0 2
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Moreover,

2

Ui @f+1)'E[U7] 1 d J_ .
l\<\1<ﬁ A < A + |An|j_e% [-B. 1% n ([-B. B] ‘])’ ‘IE [Uon”
p )
v E [UZ] +j§Zg E[U()Uj” ,

Using (32) and (34), we have ) . [E [UO UJ] ‘ = 0(1). Consequently, we get
j#0

2

Ul- _ B 1 _ 1
l‘(‘;{’ n |A | |An|br(% h |An|b£1\]‘
So, we obtain
64(2+0)(d-ON (2d-1)0+6d-2 0 1

= (JAGBY) T bR | gROE o )

VIAalby e

Finally, if (X});ez¢ is strongly mixing, then (48) holds. In order to complete the proof of Theorem
2, we only need to prove (45), (46), (47) and (48) when (X;);cz« is of the form (1). So, assume that
(X)ieza is of the form (1) and (A3)(ii) holds. Then (Z)icz¢ = (U))ieze is M,-dependent. Conse-
quently, E [ g(k)hk . k+1] = 0 and (45) follows.

Lemma 9 sup . E [|Uoﬁj|] =0 (M,;d).
J#0

Proof. We have

sup [E [[UsU)l] - E [ Ul]| < 21l |y = T, -
JEZ
j#0

Combining (19), Lemma 2 and Lemma 7 and keeping in mind |U|, = 1, we obtain

_ B(N+2)+2N 0

M supE [[U,T,] = MIbi? + by, 7 3 j|?6%7 =—— 0.
jezd =M, e
J#0
The proof of Lemma 9 is complete. O
Applying Lemma 9, we have
A 1Zi _
YE[vl <2E|Z]| X 1ZI||1n Y ——|| <2 X E[[UU]] —— 0
k=1 i i |An] i n—eo
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and
[An]

Y

k=1

< Y E [|U0Ui|] —0.
i< Mn n—eo
i#0

E [Ty (Sen(T) = Sy (1) B3]

So, we obtain (46) and (47). Moreover, we have

E [(Z;(k) -E[Z [ ]) hk(];/lkll] =E [(Uz(k) -E [ ]) hk(q/jk)ﬂ] = 0.

Consequently,
1 ‘A | 2 ’” 1 a 772 772 ’” " (Mp)
|A | ‘]E g(k) E[ZOD hk—l,k+1] = m kX::l E [(Ug(k) -E [Uo]) (hk—l,k+1 - hk—l,k+1)]
ﬁi —2 —2
<E||l2a] ) — <U0+E UO]) .
1500 N1l
9N

As before, if L > 0, then using | U0H2+9 1Uol.p = bn*, we get
ey M,‘li[/ supjgfg E [|U0E|] - T,
E -E[Z2]) b o]l = ! +L7%,? +E [U? d

|A | ’ g(k 0 ) k-1,k 1] |An| [ 0] |f|§/{6 |An|
I<]ex

2

Applying Lemma 9 and keeping in mind that £ [Uoz] = 1 then

2 P
U, @M, + 1) E [UO] 1

h =My, M, —M,, M, d_j E UU
Z’”o [l Al IAIVZ‘ Il 1-J)| [ [0:0)]
o ,
Md Md
= n ]E U2 Md E U U - n'
g |[E LU+ M supE ([0 | = (2
j#0
Then,
1 |An| , B MSL/ Supj]Eng [|ﬁovjl] » o 3/2
]E[( w0~ BLZ1) Ly ]| = ™ L0, + L
For
[ A
L = .
1+0
(M sup .« E [[UoU; |]> i
j#0
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we get

0
1+0
(Mg sup,..« E [|U,Uj]] )
Jj#0

1 144l [( 9 2) ] Md/Z
Y E[(22 - E122]) By ]| = s o
=1 8® 0L kL (|A,|bY) A

Finally, using again Lemma 9 and keeping in mind that M? = 0 (|A,|) (see Lemma 2) we derive
(48). The proof of Theorem 2 is complete. O
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