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In this work, we revisit the temporal stability of slip channel flow. Lauga & Cossu (Phys.

Fluids 17, 088106 (2005)) and Min & Kim (Phys. Fluids 17, 108106 (2005)) have in-

vestigated both modal stability and non-normality of slip channel flow and concluded that

the velocity slip greatly suppresses linear instability and only modestly affects the non-

normality. Here we study the stability of channel flow with streamwise and spanwise slip

separately as two limiting cases of anisotropic slip and explore a broader range of slip

length than previous studies did. We find that, with sufficiently large slip, both stream-

wise and spanwise slip trigger three-dimensional leading instabilities. Overall, the critical

Reynolds number is only slightly increased by streamwise slip, whereas it can be greatly

decreased by spanwise slip. Streamwise slip suppresses the non-modal transient growth,

whereas spanwise slip enlarges the non-modal growth although it does not affect the base

flow. Interestingly, as the spanwise slip length increases, the optimal perturbations exhibit

flow structures different from the well-known streamwise rolls. However, in the presence

of equal slip in both directions, the three-dimensional leading instabilities disappear and

the flow is greatly stabilized. The results suggest that earlier instability and larger transient

growth can be triggered by introducing anisotropy in the velocity slip.
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I. INTRODUCTION

Fully developed channel flow becomes linearly unstable above Re ≃ 5772, but a subcritical

transition to turbulence can occur way below this Reynolds number at about Re=6601. The non-

normality of the linearized governing equation, via which small disturbances can be transiently

amplified by a large factor, explains a possible energy growth mechanism in the subcritical transi-

tion to turbulence2–5.

The linear stability and non-normality of channel flow with no-slip boundary condition have

been well documented. However, velocity slip of viscous flow can occur on super-hydrophobic

surfaces, such as lotus leaves or some specially textured surfaces that can trap air in the micro- and

nano-structures on the surfaces and cause velocity slip at the liquid-air interfaces. This velocity

slip is usually characterized by a parameter called effective slip length. Though generally very

small on normal surfaces, effective slip lengths as large as hundreds of micron have been achieved

in exerpiments6,7. The reader is referred to8,9 and the references therein for a more comprehensive

discussion on the achieved slip lengths in experiments. This large slip length renders boundary

velocity slip relevant at least to low Reynolds number flows in small systems. There are many

numerical and theoretical works on modeling the velocity slip on super-hydrophobic surfaces and

on the effects of velocity slip on fluid transport in laminar and fully turbulent flows10–17. How-

ever, for stability analysis, usually, a simplification of the complex boundary condition is adopted

which treats the complexity resulting from the texture structures and their interaction with flows as

an effective homogeneous slip length. Though could be questionable for turbulent flows14, a ho-

mogeneous effective slip length in combination with the Navier slip boundary condition has been

shown to apply to various flow problems8,14,18,19. Based on this simplified boundary condition,

linear stability analysis of many flows has been carried out9,20–27. Among these studies, some

were dedicated to investigations of linear instability of single phase channel flow18,20–22,28. These

authors concluded that velocity slip suppresses linear instability. However, they only investigated

the stability of two-dimensional (2-D) modes with zero spanwise velocity, which are known to be

the leading unstable modes in the no-slip case. Lauga & Cossu (2005)21 and Min & Kim (2005)22

also studied the non-modal transient growth of slip channel flow. They showed that streamwise ve-

locity slip suppresses the transient growth, whereas Min & Kim (2005)22 found that spanwise slip

has the opposite effect. Nevertheless, they all concluded that both streamwise and spanwise slip

do not affect the flow structure of the most amplified perturbations which are streamwise rolls as
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in the no-slip case. Besides linear analysis, Min & Kim (2005)22 also carried out direct numerical

simulations and studied the effects of velocity slip on the transition to turbulence. They showed

that an earlier transition was triggered by spanwise slip while streamwise slip delays transition.

We follow Min & Kim (2005)22 and consider the slip of streamwise and spanwise velocity

components separately as the limiting cases of anisotropic slip at the channel wall. With increas-

ingly large slip length achieved in experiments, the effect of velocity slip becomes important even

in flow problems beyond micro-fluidics. For example, in channel flow with a gap width on the

order of millimeter, slip lengths of tens to hundreds of micron6,7 can reach as large as tenths if

normalized by the gap width, much larger than the previously investigated21,22,24. Therefore, in

this work, we perform studies in a broader slip length range the effects of the anisotropy in velocity

slip on the linear stability and non-modal transient growth. We will show that, as the slip length

increases, both streamwise and spanwise slip can trigger different types of linear instability and

different optimal non-modal perturbations compared to previous studies.

II. METHODS

We consider the nondimensional incompressible Navier-Stokes equations

∂u

∂ t
+u ·∇u=−∇p+

1

Re
∇

2
u, ∇ ·u= 0 (1)

for channel flow in Cartisian coordinates (x,y,z), where u denotes velocity, p denotes pressure and

x, y and z denote the streamwise, wall-normal and spanwise coordinates, respectively. Velocities

are normalized by U = 3Ub/2 where Ub is the bulk speed, length by half gap width h and time by

h/U . The Reynolds number is defined as Re = Uh/ν where ν is the kinematic viscosity of the

fluid. The origin of the y-axis is placed at the channel center (see FIG. 1).

FIG. 1. The geometry and axes system for the channel flow considered in this work. Two infinite plates are

separated by a distance of 2h and the flow is driven between the plates in the positive x direction.

We use the Navier slip boundary condition at the channel wall for streamwise and spanwise
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velocities
(

λ{x,z}

∂u{x,z}

∂n
+u{x,z}

)

|y=±1 = 0 (2)

where n is the outward wall-normal direction and λx and λz are streamwise and spanwise slip

lengths, respectively. In fact, the slip lengths need not to be equal on top and bottom walls21,

however, we only consider the case with equal slip length for both walls in the present work.

Impermeability boundary condition is imposed for the wall-normal velocity component, i.e.,

uy(x,±1,z, t) = 0.

A. The linearization

We denote the fully developed base flow as Ub = Ub(y)ex, where ex is the unit vector in the

streamwise direction. Introducing small disturbances u′ and linearizing the Navier-Stokes equa-

tions about the base flow, we obtain the governing equations for u′ as the following,

∂u′

∂ t
+u

′ ·∇Ub +Ub ·∇u
′ =−∇p′+

1

Re
∇

2
u
′, ∇ ·u′ = 0. (3)

The boundary condition (2) is imposed for u′. In the following, we will drop the superscript ′ for

all the perturbative quantities.

B. The adjoint system

Here we choose to adopt the adjoint-based method described in29 for our non-modal analysis,

which can easily work with primitive variables, unsteady base flow, complex boundary condi-

tion and geometry and therefore is more versatile. Besides, this method can obtain the optimal

perturbation as well as its time evolution simultaneously.

Following Barkley et al. (2008)29, the adjoint system of Eqs. (3) can be derived as

−
∂u∗

∂ t
+u

∗ · (∇Ub)
T −Ub ·∇u

∗ =−∇p∗+
1

Re
∇

2
u
∗, ∇ ·u∗ = 0 (4)

with the same boundary condition (2) for u∗ at the channel wall, where the starred quantities are

the respective adjoint of those in Eqs. (3) and the superscript T denotes matrix transpose.
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C. Optimal energy growth

Denoting the kinetic energy of u(τ) at time τ as E(τ) = ‖u(τ)‖2 =
∫

V u(τ) ·u(τ)dV , where

V denotes the integration volume, the maximum possible energy growth at time τ of an initial

perturbation u(0)

G(τ) = max
‖u(0)‖2 6=0

E(τ)

E(0)
(5)

can be calculated as the maximum eigenvalue of the operator A∗(τ)A(τ), where A(τ) and A(τ)∗

are the action operators to map u(0) to u(τ) according to Eqs. (3) and u
∗(0) to u

∗(τ) according

to Eqs. (4), respectively29.

This method does not explicitly derive A(τ) and A∗(τ), instead, directly evaluates the output of

the action A∗(τ)A(τ) given an input u(0) by time-stepping Eqs. (3) forward from t = 0 to t = τ and

Eqs. (4) backward from t = τ to t = 0. Subsequently, the Krylov subspace method is used to iter-

atively approximate the maximum eigenvalue of A∗(τ)A(τ). In this way, the boundary geometry,

incompressibility constraint and boundary condition are taken care of numerically by the solvers

for the Navier-Stokes and adjoint equations. Surely it is more computationally expensive than the

usual algorithm based on singular value analysis of the linearized Navier-Stokes operator3,21, but

still affordable for the current problem at relatively low Reynolds numbers.

D. Discretization and time-stepper

The linearized incompressible systems (3) and (4) are solved using a Fourier spectral-Chebyshev

collocation method. In the streamwise and spanwise directions, periodic boundary conditions are

imposed and Fourier spectral method is used for the spatial discretization. In the wall normal

direction, Chebyshev-Gauss-Lobatto grid points and Chebyshev-collocation method30 are used

for the spatial discretization. For the channel geometry, the (α,β ) mode of velocity and pressure

is expressed as

B(x,y,z, t)(α ,β ) = B̂(α ,β )(y, t)e
(iαx+iβ z)+ cc., (6)

where α and β are the streamwise and spanwise wave numbers, respectively, B̂(α ,β ) is the Fourier

coefficient of the mode (α,β ) and cc. represents complex conjugate. The integration in time is

performed using a second-order-accurate Adams-Bashforth/backward-differentiation scheme and

the incompressibility condition is imposed using the projection method proposed by31.
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E. Velocity-vorticity formulation

For the study of linear instability of the flow, we need to search for unstable eigenvalues with

four varying parameters, i.e., Re, α , β and slip length. The vast parameter space to explore makes

the adjoint method described above expensive, especially when the modal growth is itself very

slow near the critical Reynolds numbers and when Re is high such that it takes very long time

for the modal growth to outweigh the non-modal one. Therefore, we adopt the velocity-vorticity

formulation of the linearized Navier-Stokes equations3 and directly calculate the eigenvalues of

the linear operator. The linearized equations in this formulation read

(

∂

∂ t
+Ub

∂

∂x

)

∇2uy −
d2Ub

dy2

∂uy

∂x
= 1

Re
∇4uy, (7)

(

∂

∂ t
+Ub

∂

∂x

)

η +
dUb

dy

∂uy

∂ z
= 1

Re
∇2η , (8)

where η = ∂ux/∂ z− ∂uz/∂x is the y-component of the vorticity. Using the incompressibility

condition, ux and uz can be derived in spectral space as

ûx = 1
i(α2+β 2)

(

βη̂ −α
∂ ûy

∂y

)

(9)

ûz =
1

i(α2+β 2)

(

−αη̂ −β
∂ ûy

∂y

)

. (10)

Further, the boundary condition for η can be derived using the slip boundary condition (2). It

should be noted that η and uy are coupled via this boundary condition. Therefore, we have four

boundary conditions coupling η and uy, two on each wall, and uy(y = ±1) = 0, which together

are the six boundary conditions needed for our system. The same Fourier spectral-Chebyshev

collocation discretization for the adjoint method is used here for discretizing the linear operator.

III. RESULTS

A. Method validation

We validated our adjoint method against the transient growth calculated by3 for channel flow

with no-slip boundary condition. We chose the case of Re = 3000, α = 1 and β = 0, which is

a two-dimensional mode with zero spanwise velocity component. For the numerical simulation

of the forward and backward linear systems, we used 64 grid points in the wall normal direction

and a time-step size of ∆t= 0.01. Typically 5∼8 iterations are sufficient for achieving a converged
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FIG. 2. (a) G(t) for Re=3000 with α = 1 and β = 0. Our result (line) is compared with the result of Reddy

& Henninson (1993)3 (symbols). (b) The critical Reynolds number of 2-D (β = 0) modes as a function of

λx. The reference values from Ghosh et al. 201424 are plotted as a solid line.

value (with a threshold of 10−3) for the largest eigenvalue using the Krylov subspace method.

Figure 2(a) shows the comparison of our result with the reference values and obviously the two

sets agree well. Therefore, our method can accurately calculate the transient growth of small

perturbations. Note that for unstable modes, G(t) will exponentially grow at sufficiently large

times. We also calculated the critical Reynolds numbers of β = 0 modes for a few streamwise

slip lengths using the velocity-vorticity formulation and compared with the reference values from

Ghosh et al. 201424. Note that the Reynolds number definition is different in24 and the values

were converted to our definition for comparison. FIG. 2(b) shows that our method can accurately

obtain the unstable eigenvalues.

B. Streamwise slip

Streamwise slip at the wall will change the base flow. Figure 3 shows the analytical solutions

of the the base flow with λx = 0, 0.1, 0.2 and 0.5. The velocity profiles are still parabolas but with

different boundary velocities. As λx increases, the slip velocity at the wall increases. At the limit

of λx → ∞, the full slip boundary condition ∂ux/∂n = 0, as for inviscid flow, is approached. For

all cases, the total volume flux (or bulk speed) in the channel is fixed to the value for the no-slip

case and the Reynolds number is therefore the same for all cases.
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FIG. 3. The velocity profiles of the base flow with λx = 0, 0.1, 0.2 and 0.5

1. Linear stability

Plane Poiseuille flow becomes linearly unstable above Recr ≃ 5772 and the leading unstable

modes are spanwise invariant (β = 0) modes, which are two-dimensional flows with zero spanwise

velocity component. Interestingly, as shown in FIG. 4(a,b), streamwise slip can trigger three-

dimensional (3-D) leading instabilities rather than two-dimensional ones. For a given slip length,

the unstable region in the wave number plane shrinks as Re decreases. The critical Reynolds

number Recr, at which instability first occurs, can be searched by decreasing Re step by step. For

examples, for λx = 0.05, Recr ≃ 5900 and the leading unstable mode is the (α = 0.61,β = 0.96)

mode, and for λx = 0.2, Recr is a bit higher at 6280 and the leading unstable mode is (α = 0.56,β =

1.06). Figure 4(c, d) visualize the detailed flow field of the latter case. In the z-y plane, alternating

high speed and low speed streaks arranged in the spanwise direction can be observed with rather

complicated in-plane velocity field (see the vectors). In the x-z plane at y= 0.8, which cuts through

the streaks, the flow exhibits straight structures tilted with respect to the streamwise direction.

To determine when 3-D leading instabilities set in as λx increases, the critical Reynolds number

Recr as a function of λx is calculated and shown in FIG. 5 (the blue bold line). For comparison,

Recr of 2-D modes is also calculated (the red thin line). As λx increases, Recr associated with

2-D modes increases rapidly, as reported in previous studies21,22,24. We find that the leading

instability is still 2-D below λx ≃ 0.008 but becomes 3-D at larger λx. This transition implies that,

as slip length increases, the least stable modes have already switched from 2-D to 3-D ones before

the system becomes linearly unstable. Above λx ≃ 0.008, Recr does not undergo a monotonic

increase, rather first decreases as λx increases. Interestingly, it even drops below 5772 in the range

0.07 . λx . 0.11 (see the inset), indicating that streamwise slip even slightly destabilizes the flow
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FIG. 4. The stability boundary for λx = 0.05 (a) and 0.2 (b) in the α-β plane. The regions enclosed by the

curves are linearly unstable regions. The leading unstable mode (α ≃ 0.56,β ≃ 1.06) of the Re = 6280 and

λx = 0.2 case visualized in the z-y plane at x = 0 (c) and x-z plane at y=0.8 (d). In panel (c) ux is plotted

as the colormap with yellow representing positive and blue representing negative values with respect to the

base flow. In (d) uy is plotted as the colormap.

in this small slip range. As λx increases further, Recr starts to increase but only exhibits a much

slower growth compared to that of 2-D modes. This is consistent with that the unstable regions for

Re=8000 and 10000 only shrink slightly as λx increases from 0.05 to 0.2, see FIG. 4(a,b).

2. Non-modal stability

In this section we investigate the non-modal stability of slip channel flow in the linearly sta-

ble regime. Figure 6 shows the effects of streamwise slip on the non-modal transient growth of

small perturbations. Clearly, streamwise slip reduces the transient growth and postpones the in-
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FIG. 6. G(t) of the 3-D mode (α = 0,β = 1) (a) and the 2-D mode (α = 1,β = 0) (b) at Re = 1000 for

λx = 0, 0.1, 0.2 and 0.5. See the velocity profiles of the base flow in FIG. 3.

stant when the maximum transient growth Gmax := maxt G(t) is reached, hereafter referred to as

tmax. This is expected because streamwise slip flattens the basic velocity profile (see FIG. 3) and

therefore reduces the shear of the base flow all through the flow domain. The reduced shear results

in weaker velocity streaks that streamwise vortices can generate by convecting the streamwise

momentum in the radial direction. Therefore, the lift-up mechanism should be subdued. For in-

stance, Gmax is reduced by more than a half with λx = 0.2 and by about 80% with λx = 0.5 for

the 3-D mode (α = 0,β = 1). For the 2-D mode (α = 1,β = 0), Gmax is relatively less reduced.
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For example, Gmax is reduced only by about 40% even when λx is increased to 0.5. Compared to

the 3-D mode (α = 1,β = 0), tmax of this 2-D mode seems to be more sensitive to the slip: tmax

nearly doubles with λx = 0.5, see FIG. 6 (b). This is because, the transient growths of 2-D modes

and 3-D modes come from different mechanisms. For 2-D modes, the transient growth mainly

results from the Orr-mechanism, i.e., the amplification of disturbances initially tilted against the

background shear until they are aligned with the shear under the distortion of the shear32. Conse-

quently, the growth occurs on a convection time scale given by the background shear. Therefore,

the reduced background shear under streamwise slip will significantly enlarge the duration of the

growth of 2-D modes, i.e., tmax. But for 3-D modes, the transient growth mainly results from the

lift-up mechanism, i.e., the energy growth due to that long-lived streamwise vortices (rolls) con-

tinuously convect the streamwise momentum and generate strong streaks before they decay due to

viscosity. As a consequence, the reduced background shear mainly reduces the magnitude of the

streaks generated via the lift-up mechanism, i.e., Gmax.

To show the effects of the slip on different modes, the contours of Gmax and tmax for the Re =

1000 and λx = 0.2 case are plotted in the α-β wave number plane, see Fig. 7. The results show

that Gmax is reduced by roughly a factor of two compared to the no-slip case, for nearly all wave

numbers considered in our study, whereas tmax is not significantly affected, except for that of 2-D

modes which is considerably enlarged by the reduced shear as discussed before.

However, in comparison with the no-slip case, no significant change can be observed in the

distribution of both Gmax and tmax: Gmax still peaks at α = 0 and β ≃ 2 and tmax still peaks at

α = 0 and β ≃ 1. This suggests that streamwise slip does not change the dominant flow structure

during the transient growth stage of small perturbations.

C. Spanwise slip

Unlike streamwise slip, spanwise velocity slip does not affect the velocity profile of the base

flow, i.e., the parabolic velocity profile Ub = (1− y2)ex stays unchanged regardless of the value

of the slip length and so does the background shear.
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FIG. 7. Contours in the wave number α −β plane of the maximum transient growth Gmax (a, c) and the

corresponding tmax (b, d) for Re = 1000 with no-slip boundanry condition (a, b) and with streamwise slip

length λx = 0.2 (c, d).

1. Linear stability

Surprisingly, we find that spanwise slip can cause linear instability way below the critical

Reynolds number Recr=5772 for the no-slip case, although the base flow is not affected by the

slip. Similar to the streamwise slip case, spanwise slip also can trigger 3-D leading instabili-

ties, see FIG. 8(a, b). The figure also shows that the unstable region in the α-β wave num-

ber plane shrinks as Re decreases for a given slip length. Similarly, we search for the critical

Reynolds number by varying Re. In our calculation, instability first occurs at Recr ≃ 1660 for

λz = 0.05 and at Recr ≃ 394 for λz = 0.2. The leading unstable mode is (α ≃ 0.46,β ≃ 1.04) and

(α ≃ 0.6,β ≃ 1.27), respectively. Besides, FIG. 8(a, b) also show that the unstable region in the

wave number plane expands rapidly as λz increases, see the Re = 1660 case. The visualization

of the flow field of the latter case is shown in FIG. 8(c, d). It seems that the flow structure is

12



0 0.5 1

α

0.5

1

1.5

2

2.5

β

(a) λ
z
=0.05

Re=3000

Re=2500

Re=2000

Re=1700

Re=1660

0 0.5 1

α

0.5

1

1.5

2

2.5

β

(b) λ
z
=0.2 Re=1660

Re=1000

Re=500

Re=400

Re=394

(c) z-y plane

0 1 2 3 4

z

-1

-0.5

0

0.5

1

y

(d) x-z plane

0 5 10

x

0

1

2

3

4

z

FIG. 8. The stability boundary for λz = 0.05 (a) and λz = 0.2 (b) in the α-β plane. The regions enclosed by

the curves are linearly unstable regions. The leading unstable mode (α ≃ 0.6,β ≃ 1.27) of the Re = 394

and λz = 0.2 case visualized in the z-y plane at x=0 (c) and x-z plane at y=0.75 (d). In (c) ux is plotted as the

colormap with yellow representing positive and blue representing negative values with respect to the base

flow. In (d) uy is plotted as the colormap.

very similar to that of the unstable mode in the streamwise slip case as shown in FIG. 4(c, d), ex-

hibiting alternating high speed and low speed streaks that are tilted with respect to the streamwise

direction.

However, for 2-D modes, we find that spanwise slip does not affect the instability, which still

first occurs at Re ≃ 5772 with α ≃ 1.02 regardless of the value of λz. This is reasonable because

2-D modes are of zero spanwise velocity and therefore are not affected by the slip.

In order to find out the critical slip length for the appearance of 3-D leading instabilities, the

critical Reynolds number Recr is calculated as a function of λz up to λz = 0.25 and shown in

FIG. 9(a). Our results show that the leading unstable modes stay as 2-D and are not affected
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FIG. 9. The critical Reynolds number Recr as a function of λz (a) and the spanwise wavenumber associated

with the leading unstable mode at the critical Reynolds number, βcr, as a function of λz (b).

by the spanwise slip up to λz = 0.02, evidenced by the constant Recr = 5772 and the constant

corresponding spanwise wavenumber βcr = 0 (see panel (b)). As the slip increases further, the

leading instability suddenly becomes 3-D and Recr sharply drops. However, at large λz, Recr only

undergoes a slow decrease and reaches about 336 at λz = 0.25. βcr as a function of λz shows a

jump at λz = 0.02, indicating that, before instability sets in, 3-D modes have already become the

least stable modes as λz increases. This is the reason for the seemingly sudden appearance of 3-D

leading instabilities far away from the β axis in the α-β plane.

2. Non-modal stability

The non-modal stability is also investigated in the linearly stable regime. Figure 10 shows the

transient growth as a function of time of the 3-D mode (α = 0,β = 1) at Re=1000 given different

spanwise slip lengths. We can see that the slip results in larger transient growth. For instance, Gmax

doubles with λz = 0.2 and nearly triples with λz = 0.5. On the other hand, it results in only slightly

longer growth time window, i.e., tmax. In addition, it takes longer for perturbations to eventually

decay due to viscosity when the slip is larger. In contrast, the transient growth of the 2-D mode

(α = 1,β = 0) is not affected by the slip, regardless of the value of the slip length. Figure 10

(b) clearly shows that G(t) for different λz’s exactly coincide. This is reasonable because for 2-D

modes, the working amplification mechanism is the Orr-mechanism, which amplifies the tilted

disturbances by shearing them and the growth solely depends on the background shear. In fact,
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FIG. 10. G(t) of the 3-D mode (α = 0,β = 1) (a) and the 2-D mode (α = 1,β = 0) (b) at Re = 1000 for

spanwise slip lengths λz = 0, 0.1, 0.2 and 0.5.

for 2-D modes, the spanwise velocity component is zero and the slip boundary condition actually

does not cause velocity slip in the spanwise direction.

Figure 11 shows the contours of Gmax and tmax for Re = 1000 in the α-β wave number plane.

Comparison is made between the no-slip (a, b) and λz = 0.2 (c,d) cases. For 3-D (β 6= 0) modes,

spanwise slip enlarges the transient growth and triggers a linearly unstable region. But in most part

of the linearly stable region the patterns of the distribution of Gmax and tmax in the two cases are

roughly the same. However, a notable difference is that Gmax peaks at a small α value (about 0.1)

rather than α = 0 as in the no-slip and streamwise slip cases. This indicates that the maximally

amplified perturbations are no longer streamwise invariant (α = 0) modes (see FIG. 7) but those

with small finite streamwise wave numbers (long wavelengths). Figure 12 shows the transient

growth of the β = 2 modes with a few small α’s for λz = 0.2. The most amplified mode has an

axial wave number of about α = 0.1, with Gmax roughly 6% higher than that of the α = 0 mode

(see the comparison between the green-diamond and blue-down triangle curves). The optimal

perturbation for (α = 0.1, β = 2) is visualized in FIG. 13. The velocity field plotted on the z-y

cross-section of the channel (panel (a)) shows that the flow does not feature streamwise rolls as

in the no-slip case. Nevertheless, lift-up of low speed flow towards the channel center by the

wall-normal velocity component appears to be dominant, suggesting that the dominant growth

mechanism is still the lift-up mechanism. Besides, panel (b) shows the structure of the flow on the

x-z cut-plane at y= 0.5, which presents straight flow structures tilted with respect to the streamwise

direction by a small angle, similar to the linearly unstable modes shown in FIG. 4 and 8 but with
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FIG. 11. Contours in the wave number α − β plane of Gmax (a, c) and tmax (b, d) for Re = 1000. (a, b)

No-slip case. (c, d) λz = 0.2. The blank areas represent linearly unstable regions.

much larger streamwise wavelength. Panel (c) plots the velocity profiles of uz, uy and ux at the

position (x,z)=(0, 0), which clearly show a central symmetry for uz and ux and a mirror symmetry

for uy about the channel mid-plane. Note that the streamwise velocity of this optimal perturbation

is one order of magnitude smaller than the other two components and its value in the figure is

scaled by a factor of 10.

Regarding tmax, except for the linearly unstable region caused by spanwise slip, there is no

significant change in either the magnitude or distribution for both 2-D and 3-D modes. This

indicates that spanwise slip does not significantly affect the transient growth time window of small

perturbations.
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FIG. 12. The influence of spanwise slip on the most amplified perturbations for Re = 1000 and λz = 0.2.

Transient growth G(t) for β = 2 with α = 0, 0.05, 0.1, 0.15 and 0.2 are plotted.

FIG. 13. The optimal perturbation of the mode (α = 0.1, β = 2) for Re = 1000 and λz = 0.2, corresponding

to the blue-down triangle curve in FIG. 12. (a) Velocity field on the z-y cross-section at x = 40. Arrows

represent the in-plane velocities and the colormap represents ux. Blue color marks low speed regions and

yellow high speed regions. (b) Contours of ux on the x-z plane of the channel at y = 0.5. (c) The velocity

profiles of uy, uz and 10ux at the position (x,z) = (0,0)

D. Isotropic slip

With equal slip in streamwise and spanwise directions (we refer to as isotropic slip), Lauga

& Cossu (2005)21 have investigated the modal instability of 2-D modes for small values of slip

length up to 0.03 and showed that the slip greatly suppresses the instability. They showed that the
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critical Reynolds number of 2-D modes increases to nearly 20000 with λx = λz = 0.03. We extend

the slip to larger values and find that instability first occurs at Re ≃ 1.85×105 for λx = λz = 0.05

and the most unstable mode is still 2-D. This sharp increase of the critical Reynolds number

indicates a strong sensitivity of the instability on the slip length, agreeing with previous studies21.

Surprisingly, the 3-D instabilities in the pure streamwise and spanwise cases (see FIG. 4 and 8) do

not occur in the presence of isotropic slip.
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FIG. 14. G(t) of the 3-D mode (α = 0, β = 2) (a) and the 2-D mode (α = 2, β = 0) (b) for Re=1000 with

isotropic slip of λx = λz = 0.2 (green dashed in (a) and green star in (b)). For comparison, the no-slip (black

solid) case, the pure streamwise slip case with λx = 0.2 (red dotted) and the pure spanwise slip case with

λz = 0.2 (blue dash-dotted in (a) and triangle in (b)) are also plotted.

Lauga & Cossu (2005)21 and Min & Kim (2005)22 showed that the non-modal transient growth

is only modestly affected by the slip. Here we only briefly compare the non-modal transient growth

of the isotropic slip case with the pure streamwise and spanwise slip cases and investigate the slip

in which direction has the dominant effect. Figure 14 shows the transient growth of the 3-D mode

(α = 0, β = 2) and the 2-D mode (α = 2, β = 0) as a function of time for various slip settings.

For the 3-D mode, the transient growth is smaller and slower (the green-dashed line) compared to

the no-slip case (the black solid line). At large times, however, the transient growth is larger and

decreases more slowly than the no-slip case. Comparing to the pure streamwise slip (the red dotted

line) and pure spanwise slip (the blue dash-dotted line) cases, the trend seems to suggest that, at

least for this (nearly) optimally amplified mode, Gmax is dominated by streamwise slip whereas

tmax and the decay at large times are more strongly influenced by spanwise slip. Whereas, for the
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2-D mode, the results for the isotropic slip and pure streamwise slip cases are identical, indicating

that the transient growth is solely determined by the streamwise velocity slip. This is consistent

with the analysis in section III C 2 that spanwise slip does not affect the transient growth of 2-D

modes.

IV. DISCUSSION AND CONCLUSION

In this work, we studied the stability of channel flow with large slip lengths considering the

increasingly large effective slip length achieved in experiments6,7. We found that streamwise slip

suppresses the instability at small slip length and the most unstable modes are still 2-D modes, in

agreement with previous findings21,22,24. However, as λx is above about 0.008, 3-D instabilities

cut in at lower Re compared to 2-D ones. Recr first slightly decreases and then modestly increases

as λx increases. It only reaches 6700 at λx = 0.25, the largest slip length considered in our study.

Overall, instability is only slightly suppressed in terms of critical Reynolds number. Interestingly,

streamwise slip even destabilizes the flow in a small slip length range between 0.07 and 0.11,

with Recr slightly below 5772. Similarly, at small slip length, spanwise slip does not affect the

instability. However, above λz = 0.02, 3-D leading instabilities appear and Recr sharply decreases

as the slip increases. Recr is lower than 5772 by more than an order of magnitude at large slip

lengths and the trend shows a monotonic and slow decease if λz increases further. We investigated

the flow field of the 3-D unstable modes for both streamwise and spanwise slip and found that

the flow manifests straight flow structures tilted with respect to the streamwise direction. These

three-dimensional instabilities were not reported in former studies21,22,24 seemingly because the

instability was only studied for 2-D modes and as a result, the suppression of the instability by

streamwise slip was overestimated. Nevertheless, 3-D leading instabilities and the dual effect of

the slip were observed in multi-fluid channel flows with slip boundary condition9,23–25,33.

Streamwise slip was shown to reduce the transient growth of all perturbations because it

subdues the lift-up mechanism by reducing the background shear, in agreement with previous

studies21,22. However, it does not change the distribution of the maximal transient growth Gmax

in the wave number plane, indicating that it will not change the dominant flow structures during

the transient growth process of small perturbations. In our study, the optimal perturbations are

still streamwise rolls with α = 0 and β ≃ 2, which agrees with the findings of21,22. Streamwise

slip slightly enlarges the growth time window tmax of 3-D modes and significantly enlarges that
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of 2-D modes. In contrast, spanwise slip does not affect the base flow, therefore, the background

shear remains unchanged regardless of the spanwise slip length. However, our results showed that

it enlarges the transient growth of small disturbances compared to the no-slip case, in agreement

with22. Interestingly, as the spanwise slip length increases, the distribution of the maximum tran-

sient growth in the wave number plane changes, with Gmax peaking at small finite α instead of

α = 0 as in the no-slip, streamwise slip and small spanwise slip cases22. Therefore, in the presence

of large spanwise slip, the most amplified flow structures during the transient growth process will

be long-streamwise wavelength stuctures tilted with respect to the steamwise direction, instead of

streamwise rolls.

When equal slip length in streamwise and spanwise directions present, we found that the three-

dimensional leading instabilities that would occur in pure streamwise and spanwise slip cases are

removed, therefore, the linear instability is greatly suppressed. Besides, the non-modal transient

growth is dominated by the streamwise slip and consequently is also suppressed. Hence, earlier

instability and larger transient growth can only be triggered by introducing anisotropy in the ve-

locity slip with large spanwise slip but small streamwise slip, which may be interesting for some

applications that require increasing mixing rate of mixtures. Besides, it will be interesting to study

the transition to turbulence when modal and non-modal growth mechanisms both exist and cause

comparable energy growth, which is our ongoing work.
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