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Abstract

We derive Cramér type moderate deviations for stationary sequences of bounded random variables. Our results
imply the moderate deviation principles and a Berry-Esseen bound. Applications to quantile coupling inequalities,
functions of φ-mixing sequences, and contracting Markov chains are discussed. To cite this article: A. Name1, A.
Name2, C. R. Acad. Sci. Paris, Ser. I 340 (2005).

Résumé

Déviations modérés de type Cramér pour les séquences stationnaires. Nous dérivons les déviations
modérées de type Cramér pour des séquences stationnaires de variables aléatoires bornées. Nos résultats impliquent
les principes de déviation modérée et un théoreme de Berry-Esseen. Les applications aux inégalités de couplage
quantile, fonctions des séquences de mélange, et des châınes de Markov contractantes sont discutées. Pour citer
cet article : A. Name1, A. Name2, C. R. Acad. Sci. Paris, Ser. I 340 (2005).

1. Introduction

For the stationary sequence (Xi)i∈Z of centered random variables, define the partial sums and the
normalized partial sums process by

Sn =

n∑
i=1

Xi and Wn =
1√
n
Sn,
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respectively. We say that the sequence of random variables {Wn, n > 1} satisfies the moderate deviation
principle (MDP) with speed an → 0 and good rate function I(·), if the level set {x, I(x) ≤ t} are compact
for all t ∈ R, and for all Borel sets B,

− inf
x∈Bo

I(x)≤ lim inf
n→∞

a2
n lnP

(
anWn ∈ B

)
≤ lim sup

n→∞
a2
n lnP

(
anWn ∈ B

)
≤ − inf

x∈B
I(x), (1)

where Bo denotes the interior of B, B the closure of B, and the infimum of a function over an empty set
is interpreted as∞. The MDP is an intermediate behavior between the central limit theorem (an = O(1))
and large deviations (an � 1√

n
).

The MDP results have been obtained by several authors. De Acosta [2] applied Laplace approximations
to prove the MDP for sums of independent random vectors. Dembo [5] showed that the MDP holds for
the trajectory of a locally square integrable martingale with bounded jumps as soon as its quadratic
covariation converges in probability at an exponential rate. Gao [9] and Djellout [6] obtained the MDP for
martingales with non-bounded differences and φ-mixing sequences with summable mixing rate. Dedecker
et al. [3] derived the MDP for stationary sequences of bounded random variables under martingale-type
conditions. It is known that the MDP results for stationary sequences can be applied in a variety of
settings. For instance, Dedecker et al. [3] showed that such type of results can be applied to functions of
φ−mixing sequences, contracting Markov chains, expanding maps of the interval, and symmetric random
walks on the circle.

In this paper we are concerned with Cramér type moderate deviations for stationary sequences. Cramér
type moderate deviations usually imply the MDP results ; see Fan et al. [7] for instance. Furthermore,
Cramér type moderate deviations imply Berry-Esseen bounds ; see Corollary 2.2. Following the excellent
work of Mason and Zhou [13] and Dedecker et al. [3], we apply our results to quantile coupling inequalities,
functions of φ-mixing sequences, and contracting Markov chains.

Our approach is based on martingale approximation and Cramér type moderate deviations for mar-
tingales due to Fan et al. [7]. Cramér type moderate deviations for martingales have been established
by Račkauskas [16,17], Grama [10] and Grama and Haeusler [11,12]. Such type of results are very useful
for study of stationary sequences, for instance, Wu and Zhao [20] applied the results of Grama [10] to
establish Cramér type moderate deviations for stationary sequences with physical dependence measure
introduced by Wu [19], functionals of linear processes and some nonlinear time series. See also Cuny
and Merlevède [1] (cf. Theorem 3.2 therein) for a result similar to Wu and Zhao [20], where Cuny and
Merlevède [1] established a Cramér type moderate deviations for an adapted stationary sequence in Lp.
For relationship among our results and the last two results, we refer to point 3 of Remark 1.

The paper is organized as follows. Our main results are stated and discussed in Section 2. The appli-
cations are given in Section 3. Proofs of theorems are deferred to Section 4.

2. Main results

From now on, assume that the stationary sequence (Xi)i∈Z is given by Xi = X0 ◦ T i, where T : Ω 7→
Ω is a bijective bimeasurable transformation preserving the probability P on (Ω,F). For a subfield F0

satisfying F0 ⊆ T−1(F0), let Fi = T−i(F0). Our theorems and their corollaries treat the so-called adapted
case, that is X0 being F0-measurable and so the sequence (Xi)i∈Z is adapted to the filtration (Fi)i∈Z.
Moreover, we denote the L∞-norm by ‖X‖∞, that is the smallest u such that P(|X| > u) = 0.

Throughout the paper, let m = m(n) be integers such that 1 ≤ m ≤ n. For instance, we may take
m = bnαc, α ∈ (0, 1

2 ), where bxc stands for the largest integer less than x. Denote
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εm =
m

n1/2σn
‖X0‖∞, (2)

γm =
1

m1/2σn

∞∑
j=1

1

j3/2

∥∥∥E[Smj |F0]
∥∥∥
∞

(3)

and

δ2
m =

1

mσ2
n

∥∥∥E[Sm|F0]
∣∣∣∣∣∣2
∞

+
∥∥∥ 1

mσ2
n

E[S2
m|F0]− 1

∥∥∥
∞
, (4)

where σn =
√
EW 2

n > 0. The following theorem gives a Cramér type moderate deviation result for
stationary sequences.
Theorem 2.1 Assume that ‖X0‖∞ < ∞, and that X0 is F0-measurable. Then there exists an absolute

constant α0 > 0 such that when εm ≤ 1
4 , γm ≤ e

−(80)2 and δ2
m + m

n ≤ α0, it holds for all 0 ≤ x ≤ α0ε
−1
m ,∣∣∣∣∣ ln P(Wn ≥ xσn)

1− Φ (x)

∣∣∣∣∣≤Cα0

(
x3εm + x2(δ2

m +
m

n
+ γm| ln γm|)

+(1 + x)
(
εm |ln εm|+ γm| ln γm|+ δm +

√
m

n

))
,

where Cα0
depends only on α0. In particular, the last inequality implies that

P(Wn ≥ xσn)

1− Φ (x)
= 1 + o(1) (5)

uniformly for 0 ≤ x = o(min{ε−1/3
m , δ−1

m , (n/m)1/2, (γm| ln γm|)−1/2}) as m → ∞. Moreover, the same

results hold when replacing
P(Wn ≥ xσn)

1− Φ (x)
by

P(Wn ≤ −xσn)

Φ (−x)
.

Remark 1 Let us comment on the results of Theorem 2.1.

(i) Assume that

∞∑
n=1

1

n3/2

∥∥∥E[Sn|F0]
∥∥∥
∞
<∞, (6)

and that there exists σ > 0 such that

lim
n→∞

∥∥∥ 1

n
E[S2

n|F0]− σ2
∥∥∥
∞

= 0. (7)

The conditions (6) and (7) were introduced by Dedecker et al. [3]. Assume that m → ∞ and
m/
√
n → 0 as n → ∞. By Lemma 29 of Dedecker et al. [3], the assumptions of Theorem 2.1 hold

with max{εm, γm, δm} → 0 as n→∞.
(ii) If (Xi,Fi)i∈Z is a martingale difference sequence, then Theorem 2.1 gives a Cramér type moderate

deviation result with

γm = 0 and δ2
m =

∥∥∥ 1

mσ2
n

m∑
i=1

E[X2
i |F0]− 1

∥∥∥
∞
,

which is similar to the main theorem of Grama and Haeusler [11] (see also Fan et al. [7]).
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(iii) The range of equality (5) can be very large. For instance, if limn→∞ σ2
n = σ2 > 0,

∥∥E[Sn|F0]
∥∥
∞ =

O(1) and
∥∥ 1
nE[S2

n|F0] − σ2
n

∥∥
∞ = O

(
1
n

)
as n → ∞, then, by taking m = bn2/7c, equality (5) holds

uniformly for 0 ≤ x = o(n1/14/
√

lnn) as n→∞.
(iv) For stationary processes, results similar to Theorem 2.1 can be found in Wu and Zhao [20] and

Cuny and Merlevède [1]. Wu and Zhao [20] showed that it is possible to prove the relative error of
normal approximation tends to 0 for a certain class of stationary processes represented by functions
of an i.i.d. sequence as soon as the partial sum process can be well approximated by martingales.
Following the work of Wu and Zhao [20], Cuny and Merlevède (see Theorem 3.2 of [1]) proved
that under certain conditions for Lp-norm, the relative error of normal approximation tends to 0
uniformly for 0 ≤ x = O(

√
lnn), that is (5) holds uniformly for 0 ≤ x = O(

√
lnn). Now Theorem

2.1 shows that the last range could be as large as 0 ≤ x = o(nα) for some positive constant α ∈ (0, 1
2 )

(cf. point (iii) of this remark) under the conditions for L∞-norm (instead of Lp-norm).

(v) The absolute constant e−(80)2 is very small. However, it can be improved to a larger one, provided
that the absolute constant 80 in the inequality of Peligrad et al. [14] (cf. inequality (28)) can be
improved to a smaller one.

(vi) Notice that the quantities γm and δm can be estimated via the quantities

η1,n := sup
k≥n
‖E[Xk|F0]‖∞ and η2,n := sup

k,l≥n
‖E[XkXl|F0]−E[XkXl]‖∞.

Indeed, it is easy to see that

γm ≤
1

m1/2σn

∞∑
j=1

1

j3/2

( mj∑
i=1

η1,i

)
≤ 1

m1/2σn

∞∑
i=1

η1,i

∑
j≥i/m

1

j3/2

≤ C1

m1/2σn

( m∑
i=1

η1,i +
√
m
∑
i≥m

η1,i

i1/2

)
(8)

and

δ2
m ≤

1

mσ2
n

[( m∑
i=1

η1,i

)2

+

m∑
i=1

‖E[X2
i |F0]−E[X2

i ]‖∞

+ 2

m−1∑
i=1

m∑
j=i+1

‖E[XiXj |F0]−E[XiXj ]‖∞
]
,

where C1 is an absolute constant. Splitting the last sum as follows∑
1≤i≤m/2

∑
i+1≤j≤2i

+
∑

1≤i≤m/2

∑
2i+1≤j≤m

+
∑

m/2≤i≤m−1

∑
i+1≤j≤m

,

we infer that

δ2
m ≤

C2

mσ2
n

[( m∑
i=1

η1,i

)2

+
∑

1≤i≤m/2

iη2,i + ‖X0‖∞
∑

1≤i≤m/2

∑
j≥2i

η1,j +m
∑
i≥m/2

η2,i

]
, (9)

where C2 is an absolute constant. Moreover, if

lim
n→∞

σ2
n = σ2 > 0 and max

i=1,2
{ηi,n} = O(n−β)
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for some constant β > 1, by (8) and (9), then we have γm = O(m−1/2) and

δm =


O(m−1/2), if β > 2,

O(m−1/2
√

lnm), if β = 2,

O(m−(β−1)/2), if β ∈ (1, 2).

(vii) Assume that limn→∞ σ2
n = σ2 > 0. If maxi=1,2{ηi,n} = O(n−β) for some constant β ≥ 3/2,

with m = bn2/7c, then equality (5) holds uniformly for 0 ≤ x = o(n1/14/
√

lnn) as n → ∞. If
maxi=1,2{ηi,n} = O(n−β) for some constant β ∈ (1, 3/2), with m = bn1/(3β−1)c, then equality (5)
holds uniformly for 0 ≤ x = o(n(β−1)/(6β−2)) as n→∞.

Theorem 2.1 implies the following Berry-Esseen bound.
Corollary 2.2 Assume the conditions of Theorem 2.1. Then

sup
x

∣∣∣P(Wn ≤ xσn)− Φ (x)
∣∣∣ ≤ C(γm| ln γm|+ εm |ln εm|+ δm +

√
m

n

)
, (10)

where C is an absolute constant.
Remark 2 Let us comment on Corollary 2.2.

(i) Assume that limn→∞ σ2
n = σ2 > 0 and maxi=1,2{ηi,n} = O(n−β) for some constant β > 1. By

point (vi) of Remark 1, if β ≥ 2, then, with m = bn1/3c, bound (10) reaches its minimum of
order n−1/6 lnn. If β ∈ (1, 2), then, with m = bn1/(β+1)c, bound (10) gives its minimum of order
n−(β−1)/(2β+2) lnn.

(ii) When (Xi)i∈Z is a uniformly mixing sequence, we refer to Rio [18] for a result similar to Corol-
lary 2.2. In the paper, Rio [18] gave a Berry-Esseen bound of order n−1/2 under the condition∑∞
k=1 kθk <∞, where (θk)k≥1 is the sequence of uniformly mixing coefficients.

(iii) If (Xi,Fi)i∈Z is a stationary martingale difference sequence, Corollary 2.2 gives the following Berry-
Esseen bound

sup
x

∣∣∣P(Wn ≤ xσn)− Φ (x)
∣∣∣ = O

( m

n1/2
lnn+

∥∥∥ 1

mσ2
n

m∑
i=1

E[X2
i |F0]− 1

∥∥∥
∞

)
. (11)

When X0 is Lp-bounded (instead of L∞-bounded), Dedecker et al. [4] have obtained some rather tight
Berry-Esseen bounds. Notice that Dedecker et al. [4] assumed a martingale coboundary decomposition
while we do not. On the other hand Dedecker et al. [4] worked in Lp and we work in L∞, so the
results are of independent interest. It is worth noticing that the best rates (for martingales) provided
by Dedecker et al. [4] and us are the same.

Theorem 2.1 gives an alternative proof for the following moderate deviation principle (MDP) result
which is implied by the functional MDP result of Dedecker et al. [3] under the conditions (6) and (7).
Corollary 2.3 Assume the conditions of Theorem 2.1. Assume that limn→∞ σ2

n = σ2 > 0, and that
max{γm, δm} → 0 as m → ∞. Let an be any sequence of real numbers satisfying an → 0 and ann

1/2 →
∞ as n→∞. Then for each Borel set B ⊂ R,

− inf
x∈Bo

x2

2σ2
≤ lim inf

n→∞
a2
n lnP

(
anWn ∈ B

)
≤ lim sup

n→∞
a2
n lnP

(
anWn ∈ B

)
≤ − inf

x∈B

x2

2σ2
, (12)

where Bo and B denote the interior and the closure of B, respectively.
The following theorem gives a Bernstein type inequality for the stationary sequences. Although such

type of inequalities are less precise than Cramér type moderate deviations, they are available for all
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positive x. Moreover, they are very useful for establishing quantile coupling inequalities ; see Theorem
2.5.
Theorem 2.4 Assume the conditions of Theorem 2.1. Then for any x > 0,

P
(
Wn ≥ xσn

)
≤ exp

{
− (1− γm| ln γm|)2x2

2
(
1 + τ2

m + 2
3εm(1− γm| ln γm|)x

)} + 4
√
e exp

{
− | ln γm|

2

2 · (81)2
x2

}
, (13)

where τ2
m = δ2

m +
m

n
+ 4ε2

m.

Assume that γm → 0 as m→∞. Then γm| ln γm| → 0 and | ln γm| → ∞ as m→∞. Thus the second
term in the r.h.s. of (13) is much smaller than the first one for any x > 0 as m→∞. So when m satisfies

m→∞ and m/
√
n→ 0, the bound (13) behaves like exp

{
− x2

2(1+δ2m)

}
for any x > 0.

Next, we apply Theorems 2.1 and 2.4 to quantile coupling inequalities for stationary sequences. We
follow Mason and Zhou [13], where such type of inequalities have been established for arbitrary random
variables under some Cramér type moderate deviation assumptions. Using Theorems 2.1, 2.4 and Theorem
1 of Mason and Zhou [13], we obtain the following result.
Theorem 2.5 Assume the conditions of Theorem 2.1, and that γm + εm + δm +

√
m
n → 0 as n → ∞.

Let Ŵn = Wn/σn. Then, there exist two positive absolute constants α and Cα, a standard normal random

variable Z and a random variable Yn can be constructed on a new probability space such that Yn =d Ŵn

and

|Yn − Z| ≤ 2Cα

(
Y 2
n + 1

)(
γm| ln γm|+ εm |ln εm|+ δm +

√
m

n

)
, (14)

whenever

|Yn| ≤ α
(
γm| ln γm|+ εm |ln εm|+ δm +

√
m

n

)−1

(15)

and n is large enough, where =d stands for equality in distribution. Furthermore, there exist two positive
absolute constants C and λ such that for n large enough, we have for all x ≥ 0,

P

(
|Yn − Z|

γm| ln γm|+ εm |ln εm|+ δm +
√
m/n

≥ x
)
≤ C exp

{
− λx

}
. (16)

Assume that limn→∞ σ2
n = σ2 > 0 and maxi=1,2{ηi,n} = O(n−β) for some constant β > 1. By point

(i) of Remark 2, if β ≥ 2, then, with m = bn1/3c, the term γm| ln γm|+ εm |ln εm|+ δm +
√

m
n is of order

n−1/6 lnn. If β ∈ (1, 2), then, with m = bn1/(β+1)c, the term γm| ln γm| + εm |ln εm| + δm +
√

m
n is of

order n−(β−1)/(2β+2) lnn.

3. Applications

In this section, we present some applications of our results. For more interesting applications, such as
expanding map and symmetric random walk on the circle, we refer to Corollary 18 and Proposition 20
of Dedecker et al. [3]. Under their corresponding conditions, the conditions of Theorem 2.1 hold.
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3.1. φ-mixing sequences

Let Y be a random variable with values in a Polish space Y. If M is a σ-field, the φ-mixing coefficient
between M and σ(Y ) is defined by

φ(M, σ(Y )) = sup
A∈B(Y)

∥∥∥PY |M(A)−PY (A)
∥∥∥
∞
. (17)

For a sequence of random variables (Xi)i∈Z and a positive integer m, denote

φm(n) = sup
im>...>i1≥n

φ(F0, σ(Xi1 , ..., Xim)),

and let φ(k) = limm→∞ φm(k) be the usual φ-mixing coefficient. Under the following conditions∑
k≥1

k1/2φ1(k) <∞ and lim
k→∞

φ2(k) = 0, (18)

Dedecker et al. [3] obtained a MDP result for bounded random variables. See also Gao [9] for an earlier
MDP result under a condition stronger than (18), that is

∑
k≥1 φ(k) <∞.

When the random variables (Xi)i∈Z are bounded, it holds η1,n = O(φ1(n)) and η2,n = O(φ2(n)) as
n→∞. By point (vii) of Remark 1, we have the following result.
Proposition 3.1 Assume that the random variables (Xi)i∈Z are bounded, limn→∞ σ2

n = σ2 > 0 and

max
i=1,2
{φi(n)} = O(n−β), n→∞,

for some constant β > 1.

[i] If β ≥ 3/2, then (5) holds uniformly for 0 ≤ x = o(n1/14/
√

lnn) as n→∞.
[ii] If β ∈ (1, 3/2), then (5) holds uniformly for 0 ≤ x = o(n(β−1)/(6β−2)) as n→∞.

3.2. Functions of φ-mixing sequences

Let (εi)i∈Z = (ε0 ◦ T i)i∈Z be a stationary sequence of φ-mixing random variables taking values in a
subset A of a Polish space X . Denote by φε(n) the coefficient

φε(n) = φ(σ(εi, i ≤ 0), σ(εi, i ≥ n)),

where φ is defined by (17). Let H be a function from AN to R satisfying the following condition

(A) : for any i ≥ 0, supx∈AN, y∈AN

∣∣∣H(x)−H(x(i)y)
∣∣∣ ≤ Ri, where Ri decreases to 0,

where the sequence x(i)y is defined by (x(i)y)j = xj for j < i and (x(i)y)j = yj for j ≥ i. Define the
stationary sequence Xk = X0 ◦ T k by

Xk = H((εk−i)i∈N)−E[H((εk−i)i∈N)]. (19)

Dedecker et al. [3] gave a MDP result for (Xk)k≥1, see Propositions 12 therein. From the proof of
Propositions 12 of [3], it is easy to see that

max
i=1,2
{ηi,n} = O

(
Rn +

n∑
i=1

Rn−iφε(i)
)
.

Notice that when σ2 :=
∑
k∈Z E[X0Xk] > 0, it holds limn→∞ σ2

n = σ2. By point (vii) of Remark 1, we
have the following Cramér type moderate deviations.
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Proposition 3.2 Let (Xk)k∈Z be defined by (19), for a function H satisfying condition (A). Assume

Rn +

n∑
i=1

Rn−iφε(i) = O(n−β), n→∞, (20)

for some constant β > 1, and σ2 :=
∑
k∈Z E[X0Xk] > 0.

[i] If β ≥ 3/2, then (5) holds uniformly for 0 ≤ x = o(n1/14/
√

lnn) as n→∞.
[ii] If β ∈ (1, 3/2), then (5) holds uniformly for 0 ≤ x = o(n(β−1)/(6β−2)) as n→∞.

3.3. Contracting Markov chains

Let (Yn)n≥0 be a stationary Markov chain of bounded random variables with invariant measure µ
and transition kernel K. Denote by ‖ · ‖∞,µ the essential norm with respect to µ. Let Λ1 be the set of
1-Lipschitz functions. Assume that the chain satisfies the following condition :

(B) : there exist two constants C > 0 and ρ ∈ (0, 1) such that

sup
g∈Λ1

‖Kn(g)− µ(g)‖∞,µ ≤ Cρn,

and for any m ≥ 0,

sup
f,g∈Λ1

∥∥∥Kn
(
fKm(g)

)
− µ

(
fKm(g)

)∥∥∥
∞,µ
≤ Cρn.

We shall see in the next proposition that MDP result holds for the sequence

Xn = f(Yn)− µ(f) (21)

as soon as the function f belongs to the class L introduced by Dedecker et al. [3]. Let L be the class
of functions f : R 7→ R such that |f(x) − f(y)| ≤ g(|x − y|), where g is a concave and non-decreasing
function and satisfies

1∫
0

g(t)

t
√
| ln t|

dt <∞. (22)

Clearly, (22) holds if g(t) ≤ c| ln(t)|−γ for some constants c > 0 and γ > 1/2. In particular, L contains
the class of α-Hölder continuous functions from [0, 1] to R, where α ∈ (0, 1].

Dedecker et al. [3] gave a MDP result for (Yn)n≥0, see Propositions 14 therein. From the proof of
Propositions 14 of [3], it is easy to see that

max
i=1,2
{ηi,n} = O

(
g(Cρn)

)
,

where C is given by condition (B).
Proposition 3.3 Assume that the stationary Markov chain (Yn)n≥0 satisfies condition (B), and let Xn

be defined by (21). Assume f ∈ L,

σ2 := σ2(f) = µ
(

(f − µ(f))2
)

+ 2
∑
n>0

µ
(
Kn(f) · (f − µ(f))

)
> 0

and

g(Cρn) = O(n−β), n→∞, (23)
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for some constant β > 1.

[i] If β ≥ 3/2, then (5) holds uniformly for 0 ≤ x = o(n1/14/
√

lnn) as n→∞.
[ii] If β ∈ (1, 3/2), then (5) holds uniformly for 0 ≤ x = o(n(β−1)/(6β−2)) as n→∞.

Notice that if g(t) ≤ D| ln(t)|−β for some constants D > 0 and β > 1, then (23) is satisfied.

4. Proofs of Theorems and Corollaries

The proofs of our results are mainly based on the following lemmas, which give some exponential
deviation inequalities for the partial sums of dependent random variables.

4.1. Preliminary lemmas

Let (ξi,Fi)i=0,...,n be a sequence of martingale differences, defined on some probability space (Ω,F ,P),
where ξ0 = 0, {∅,Ω} = F0 ⊆ ... ⊆ Fn ⊆ F are increasing σ-fields. Set

M0 = 0, Mk =

k∑
i=1

ξi, k = 1, ..., n. (24)

Then M = (Mk,Fk)k=0,...,n is a martingale. Denote 〈M〉 the quadratic characteristic of the martingale
M , that is

〈M〉0 = 0, 〈M〉k =

k∑
i=1

E[ξ2
i |Fi−1], k = 1, ..., n. (25)

Assume the following two conditions :

(C1) There exists εn ∈ (0, 1
2 ] such that∣∣∣E[ξki |Fi−1]

∣∣∣ ≤ 1

2
k!εk−2

n E[ξ2
i |Fi−1], for all k ≥ 3 and 1 ≤ i ≤ n;

(C2) There exists ιn ∈ [0, 1
2 ] such that ‖ 〈M〉n − 1‖∞ ≤ ι2n.

Clearly, condition (C1) is satisfied for bounded martingale differences ‖ξi‖∞ ≤ εn.
In the proof of Theorem 2.1, we need the following Cramér moderate deviation expansions for martin-

gales, which is a simple consequence of Theorems 2.1 and 2.2 of Fan et al. [7].
Lemma 4.1 Assume conditions (C1) and (C2). Then there is an absolute constant α0 > 0 such that for
all 0 ≤ x ≤ α0 ε

−1
n and ιn ≤ α0,∣∣∣∣ ln P(Mn ≥ x)

1− Φ (x)

∣∣∣∣ ≤ Cα0

(
x3εn + x2ι2n + (1 + x) (εn |ln εn|+ ιn)

)
, (26)

where Cα0
depends only on α0. Moreover, the same equality remains true when P(Mn≥x)

1−Φ(x) is replaced by
P(Mn≤−x)

Φ(−x) .

In the proof of Theorem 2.4, we make use of the following Freedman inequality [8].
Lemma 4.2 Assume that ξi ≤ a for some constant a and all 1 ≤ i ≤ n. Then for all x ≥ 0 and vn > 0,

9



P
(
Mn ≥ x and 〈M〉n ≤ v2

n

)
≤ exp

{
− x2

2(v2
n + a

3x)

}
. (27)

We also use the following exponential inequality of Peligrad et al. [14] (cf. Proposition 2 therein), which
plays an important role in the proof of Theorem 2.4.
Lemma 4.3 Let (Xi)i∈Z be a stationary sequence of random variables adapted to the filtration (Fi)i∈Z.
Then for all x ≥ 0,

P

(
max

1≤i≤n
|Si| ≥ x

)
≤ 4
√
e exp

{
− x2

2n(‖X1‖∞ + 80
∑n
j=1 j

−3/2‖E[Sj |F0]‖∞)2

}
. (28)

4.2. Proof of Theorem 2.1

Let k = k(n,m) = bn/mc be the integer part of n/m. The initial step of the proof is to divide the
random variables into blocks of size m and to make the sums in each block

Xi,m =

im∑
j=(i−1)m+1

Xj , 1 ≤ i ≤ k, and Xk+1,m =

n∑
j=km+1

Xj .

It is easy to see that Sn =
∑k+1
i=1 Xi,m. Define

Di,m = Xi,m −E[Xi,m|F(i−1)m], 1 ≤ i ≤ k.

Then (Di,m,Fim)1≤i≤k is a stationary sequence of bounded martingale differences, that is

‖Di,m‖∞ ≤ 2m‖X0‖∞.

Notice that

E[D2
i,m|F(i−1)m] = E[X2

i,m|F(i−1)m]− (E[Xi,m|F(i−1)m])2,

and that, by stationarity, it follows that

1

n

∥∥∥ k∑
i=1

(E[Xi,m|F(i−1)m])2
∥∥∥
∞
≤ 1

m

∥∥∥E[Sm|F0]
∥∥∥2

∞
.

Moreover,

∥∥∥ 1

n

k∑
i=1

E[X2
i,m|F(i−1)m]− σ2

n

∥∥∥
∞
≤ 1

n

k∑
i=1

∥∥∥E[X2
i,m|F(i−1)m]−mσ2

n

∥∥∥2

∞
+
n−mk

n
σ2
n

≤
∥∥∥ 1

m
E[S2

m|F0]− σ2
n

∥∥∥2

∞
+
m

n
σ2
n.

Consequently, it holds

∥∥∥ 1

n

k∑
i=1

E[D2
i,m|F(i−1)m]− σ2

n

∥∥∥
∞

≤
∥∥∥ 1

n

k∑
i=1

E[X2
i,m|F(i−1)m]− σ2

n

∥∥∥2

∞
+

1

n

∥∥∥ k∑
i=1

(E[Xi,m|F(i−1)m])2
∥∥∥
∞

10



≤
∥∥∥ 1

m
E[S2

m|F0]− σ2
n

∥∥∥2

∞
+
m

n
σ2
n +

1

m

∥∥∥E[Sm|F0]
∥∥∥2

∞

=
(
δ2
m +

m

n

)
σ2
n

and

‖n−1/2Di,m‖∞ ≤ 2σnεm.

Denote ξi = Di,m/(n
1/2σn) and Mk =

∑k
i=1 ξi. Then it is obvious that

|ξi| ≤ 2εm and ‖〈M〉k − 1‖∞ ≤ δ2
m +

m

n
.

Assume εm ≤ 1
4 and δ2

m + m
n ≤ α0, where α0 ∈ (0, 1

2 ] is given by Lemma 4.1. By Lemma 4.1, we have for
all 0 ≤ x ≤ α0ε

−1
m ,∣∣∣∣ ln P(Mk ≥ x)

1− Φ (x)

∣∣∣∣ ≤ C ′α0

(
x3εm + x2(δ2

m +
m

n
) + (1 + x)

(
εm |ln εm|+ δm +

√
m/n

))
, (29)

where C ′α0
depends only on α0. Notice that for all x ≥ 0 and |ε| ≤ 1

2 ,

1− Φ (x+ ε)

1− Φ (x)
= exp

{
θ
√

2π(1 + x)|ε|
}

(30)

and

1√
nσn

∥∥Xk+1,m

∥∥
∞ ≤

1√
nσn

(n− km)
∥∥X0

∥∥
∞ ≤ εm,

where |θ| ≤ 1. It is obvious that

Mk +
1√
nσn

Xk+1,m =
1√
nσn

(
Sn −

k∑
i=1

E[Xi,m|F(i−1)m]
)
.

Therefore, by (29) and (30), for all 0 ≤ x ≤ α0ε
−1
m ,

P(Sn −
∑k
i=1 E[Xi,m|F(i−1)m] ≥ xσnn1/2)

1− Φ (x)

≤ P(Mk ≥ x+ εm)

1− Φ (x+ εm)
· 1− Φ (x+ εm)

1− Φ (x)

≤ exp

{
Cα0

(
x3εm + x2(δ2

m +
m

n
) + (1 + x)

(
εm |ln εm|+ δm +

√
m/n

))}
.

Similarly, we have for all 0 ≤ x ≤ α0ε
−1
m ,

P(Sn −
∑k
i=1 E[Xi,m|F(i−1)m] ≥ xσnn1/2)

1− Φ (x)

≥ exp

{
− Cα0

(
x3εm + x2(δ2

m +
m

n
) + (1 + x)

(
εm |ln εm|+ δm +

√
m/n

))}
.

The last two inequalities imply that for all 0 ≤ x ≤ α0ε
−1
m ,

11



∣∣∣∣ ln P(Sn −
∑k
i=1 E[Xi,m|F(i−1)m] ≥ xσnn1/2)

1− Φ (x)

∣∣∣∣
≤ Cα0

(
x3εm + x2(δ2

m +
m

n
) + (1 + x)

(
εm |ln εm|+ δm +

√
m/n

))
. (31)

By Lemma 4.3, we derive that for all x ≥ 0,

P
(∣∣∣ k∑

i=1

E[Xi,m|F(i−1)m]
∣∣∣ ≥ xσnn1/2

)
≤ 4
√
e exp

{
− nσ2

nx
2

2k(
∥∥E[Sm|F0]

∥∥
∞ + 80

∑k
j=1 j

−3/2‖E[Sjm|F0]‖∞)2

}
≤ 4
√
e exp

{
− x2

2 · (81)2γ2
m

}
. (32)

It is easy to see that for all x ≥ 0,

P
(
Wn ≥ xσn

)
≤P

(
Sn −

k∑
i=1

E[Xi,m|F(i−1)m] ≥ (1− γm| ln γm|)xσnn1/2

)

+ P

( k∑
i=1

E[Xi,m|F(i−1)m] ≥ γm| ln γm|xσnn1/2

)
. (33)

By the inequalities (31)-(33), it follows that for all 0 ≤ x ≤ α0ε
−1
m ,

P(Wn ≥ xσn)

1− Φ (x)
≤ 1− Φ ((1− γm| ln γm|)x)

1− Φ (x)

× exp

{
Cα0

(
x3εm + x2(δ2

m +
m

n
) + (1 + x)

(
εm |ln εm|+ δm +

√
m

n

))}
+

4
√
e

1− Φ (x)
exp

{
− 1

2 · (81)2
(ln γm)2x2

}
.

Using the following two-sided bound on tail probabilities of the standard normal random variable

1√
2π(1 + x)

e−x
2/2 ≤ 1− Φ(x) ≤ 1√

π(1 + x)
e−x

2/2, x ≥ 0, (34)

we deduce that for all γm ≤ e−(80)2 and 1 ≤ x ≤ α0ε
−1
m ,

P(Wn ≥ xσn)

1− Φ (x)
≤ exp

{
Cα0

(
x3εm + x2(δ2

m +
m

n
+ γm| ln γm|) + (1 + x)

(
εm |ln εm|+ δm +

√
m

n

))}
+ C1 × exp

{
− 1

4 · (81)2
| ln γm|x2

}
≤ exp

{
Cα0

(
x3εm + x2(δ2

m +
m

n
+ γm| ln γm|) + (1 + x)

(
εm |ln εm|+ δm +

√
m

n

))}
+ C2γm| ln γm|x2

≤ exp

{
C ′α0

(
x3εm + x2(δ2

m +
m

n
+ γm| ln γm|) + (1 + x)

(
εm |ln εm|+ δm +

√
m

n

))}
.
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(35)

Notice that for x ≥ 0,

P
(
Wn ≥ xσn

)
≥P

(
Sn −

k∑
i=1

E[Xi,m|F(i−1)m] ≥ (1 + γm| ln γm|)xσnn1/2

)

− P

( k∑
i=1

E[Xi,m|F(i−1)m] ≤ −γm| ln γm|xσnn1/2

)
. (36)

By an argument similar to the proof of (35), we deduce that for all 1 ≤ x ≤ α0ε
−1
m ,

P(Wn ≥ xσn)

1− Φ (x)

≥ exp

{
− C ′α0

(
x3εm + x2(δ2

m +
m

n
+ γm| ln γm|) + (1 + x)

(
εm |ln εm|+ δm +

√
m

n

))}
. (37)

Combining (35) and (37) together, we obtain the desired equality for all 1 ≤ x ≤ α0ε
−1
m . Next, we consider

the case where x ∈ [0, 1]. Notice that (31) holds also for (−Xi)i∈Z. Thus, from (31), we have

sup
|x|≤2

∣∣∣P(Sn − k∑
i=1

E[Xi,m|F(i−1)m] ≥ xσnn1/2
)
−
(
1− Φ (x)

)∣∣∣ ≤ Cα0

(
εm| ln εm|+ δm +

√
m/n

)
. (38)

For all x ∈ [0, 1], we deduce that

P
(
Wn ≥ xσn

)
−
(

1− Φ (x)
)

≥ P
(
Sn −

k∑
i=1

E[Xi,m|F(i−1)m] ≥ (x− γm| ln γm|)σnn1/2
)
−
(

1− Φ (x)
)

− P

( k∑
i=1

E[Xi,m|F(i−1)m] ≥ γm| ln γm|σnn1/2

)
≥ −Cα0

(
εm| ln εm|+ δm +

√
m

n

)
−
∣∣∣(1− Φ (x− γm| ln γm|)

)
−
(

1− Φ (x)
)∣∣∣

− P

( k∑
i=1

E[Xi,m|F(i−1)m] ≥ γm| ln γm|σnn1/2

)
≥ −Cα0

(
εm| ln εm|+ γm| ln γm|+ δm +

√
m/n

)
,

where the last line follows by (32). Similarly, we have for all x ∈ [0, 1],

P
(
Wn ≥ xσn

)
−
(

1− Φ (x)
)
≤ Cα0

(
εm| ln εm|+ γm| ln γm|+ δm +

√
m/n

)
.

The last two inequalities imply that for all x ∈ [0, 1],∣∣∣P(Wn ≥ xσn
)
−
(

1− Φ (x)
)∣∣∣ ≤ Cα0

(
εm| ln εm|+ γm| ln γm|+ δm +

√
m/n

)
.

The last inequality implies the desired equality for all x ∈ [0, 1].
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Since (−Xi)i∈Z also satisfies the conditions of Theorem 2.1, the same equalities remain true when
P(Wn≥xσn)

1−Φ(x) is replaced by P(Wn≤−xσn)
Φ(−x) .

4.3. Proof of Corollary 2.2

We only need to consider the case where max{γm, εm, δm,m/n} ≤ 1/10. Otherwise, Corollary 2.2 holds
obviously for C large enough. Denote

κn = α0 min{γ−1/4
m , ε−1/4

m , δ−1/4
m , (m/n)−1/4},

where α0 is the absolute constant given by Theorem 2.1. It is easy to see that

sup
x

∣∣∣P(Wn ≤ xσn)− Φ (x)
∣∣∣≤ sup
|x|≤κn

∣∣∣P(Wn ≤ xσn)− Φ (x)
∣∣∣

+ sup
|x|>κn

∣∣∣P(Wn ≤ xσn)− Φ (x)
∣∣∣

= sup
|x|≤κn

∣∣∣P(Wn ≤ xσn)− Φ (x)
∣∣∣

+ sup
x<−κn

P(Wn ≤ xσn) + sup
x<−κn

Φ (x)

+ sup
x>κn

P(Wn > xσn) + sup
x>κn

(1− Φ (x)). (39)

By Theorem 2.1 and the inequality |ex − 1| ≤ |x|e|x|, we have

sup
|x|≤κn

∣∣∣P(Wn ≤ xσn)− Φ (x)
∣∣∣

≤ sup
|x|≤κn

(
1− Φ(|x|)

)∣∣∣∣eCα0

(
x3εm+x2(δ2m+m

n +γm| ln γm|)+(1+x)(εm|ln εm|+γm| ln γm|+δm+
√
m/n)

)
− 1

∣∣∣∣
≤ Cα0,1

(
γm| ln γm|+ εm |ln εm|+ δm +

√
m/n

)
. (40)

Using the last inequality, we deduce that

sup
x<−κn

P(Wn ≤ xσn) = P(Wn ≤ −κnσn)

≤Cα0,2

(
γm| ln γm|+ εm |ln εm|+ δm +

√
m/n

)
+ Φ (−κn)

≤Cα0,3

(
γm| ln γm|+ εm |ln εm|+ δm +

√
m/n

)
. (41)

Similarly, it holds that

sup
x>κn

P(Wn > xσn)≤Cα0,4

(
γm| ln γm|+ εm |ln εm|+ δm +

√
m/n

)
. (42)

It is obvious that

sup
x>κn

(1− Φ (x)) = sup
x<−κn

Φ (x) = Φ (−κn) ≤ Cα0,5

(
γm| ln γm|+ εm |ln εm|+ δm +

√
m/n

)
. (43)

Combining the inequalities (39)-(43) together, we obtain the desired inequality.
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4.4. Proof of Corollary 2.3

Let m =
√
an
√
n. Then it holds that m→∞ as n→∞. Thus max{γm, δm} → 0 as n→∞.

First, we prove that

lim sup
n→∞

a2
n lnP

(
anWn ∈ B

)
≤ − inf

x∈B

x2

2σ2
. (44)

For any given Borel set B ⊂ R, let x0 = infx∈B |x|. Then, it is obvious that x0 ≥ infx∈B |x|. Therefore,
by Theorem 2.1,

P

(
anWn ∈ B

)
≤ P

( ∣∣∣Wn

σ

∣∣∣ ≥ x0

anσn

)
≤ 2

(
1− Φ

( x0

anσn

))
exp

{
C

(
(
x0

anσn
)3εm + (

x0

anσn
)2
(
δ2
m +

m

n
+ γm| ln γm|

)
+ (1 +

x0

anσn
)
(
εm |ln εm|+ γm| ln γm|+ δm +

√
m

n

))}
.

Notice that
εm/an = ‖X0‖∞/

√
m→ 0

as n→∞. Using (34) and the fact limn→∞ σ2
n = σ2, we deduce that

lim sup
n→∞

a2
n lnP

(
anWn ∈ B

)
≤ − x2

0

2σ2
≤ − inf

x∈B

x2

2σ2
,

which gives (44).
Next, we prove that

lim inf
n→∞

a2
n lnP

(
anWn ∈ B

)
≥ − inf

x∈Bo
x2

2σ2
. (45)

We may assume that Bo 6= ∅, otherwise the last inequality holds obviously because the infimum of a
function over an empty set is interpreted as ∞. For any ε1 > 0, there exists an x0 ∈ Bo, such that

0 <
x2

0

2σ2
≤ inf
x∈Bo

x2

2σ2
+ ε1. (46)

Without loss of generality, we may assume that x0 > 0. For x0 ∈ Bo, there exists small ε2 ∈ (0, x0), such
that (x0 − ε2, x0 + ε2] ⊂ B. Then it is obvious that x0 ≥ infx∈B x. By Theorem 2.1, we deduce that

P

(
anWn ∈ B

)
≥P

(
Wn ∈ (a−1

n (x0 − ε2), a−1
n (x0 + ε2)]

)
≥P

(
Wn > a−1

n (x0 − ε2)
)
−P

(
Wn > a−1

n (x0 + ε2)
)

Using Theorem 2.1, (34) and the fact limn→∞ σ2
n = σ2 again, it follows that

lim inf
n→∞

a2
n lnP

(
anWn ∈ B

)
≥ − 1

2σ2
(x0 − ε2)2.
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Letting ε2 → 0, we get

lim inf
n→∞

a2
n lnP

(
anWn ∈ B

)
≥− x2

0

2σ2
≥ − inf

x∈Bo
x2

2σ2
− ε1.

Because ε1 can be arbitrarily small, we obtain (45). This completes the proof of Corollary 2.3.

4.5. Proof of Theorem 2.4

Recall the notations in the proof of Theorem 2.1. It is easy to see that

‖Di,m/(n
1/2σn)‖∞ ≤ 2εm

and ∣∣∣∣∣∣ 1

nσ2
n

k+1∑
i=1

E[D2
i,m|F(i−1)m]− 1

∣∣∣∣∣∣
∞
≤
∣∣∣∣∣∣ 1

nσ2
n

k∑
i=1

E[D2
i,m|F(i−1)m]− 1

∣∣∣∣∣∣
∞

+
∣∣∣∣∣∣ 1

nσ2
n

E[D2
k+1,m|Fkm]

∣∣∣∣∣∣
∞

≤ δ2
m +

m

n
+ 4ε2

m = τ2
m.

Applying Lemma 4.2 to ξi = Di,m/(σnn
1/2), we have for all x ≥ 0,

P

(
Wn −

1√
n

k+1∑
i=1

E[Xi,m|F(i−1)m] ≥ xσn
)
≤ exp

{
− x2

2(1 + τ2
m + 2

3xεm)

}
.

By an argument similar to the proof of (32), we obtain for all x ≥ 0,

P

(∣∣∣ k+1∑
i=1

E[Xi,m|F(i−1)m]
∣∣∣ ≥ xσnn1/2

)
≤ 4
√
e exp

{
− x2

2 · (81)2γ2
m

}
. (47)

Using (33) again, we obtain the desired inequality.

4.6. Proof of Proposition 2.5

For each integer n ≥ 1, let

Fn(x) = P(Ŵn ≤ x), x ∈ R,

be the cumulative distribution function of Ŵn. Then its quantile function is define by

Hn(s) = inf{x : Fn(x) ≥ s}, s ∈ (0, 1).

Let Z be a standard normal random variable. Denote

Yn = Hn(Φ(Z)). (48)

Then Yn =d Ŵn; see Mason and Zhou [13]. Denote

Kn = n1/2
(
γm| ln γm|+ εm |ln εm|+ δm +

√
m

n

)
. (49)

By Theorem 2.1, there exist an absolute constants β ∈ (0, 1] and Cβ ≥ 1 such that when n is large enough,
we have for all 0 ≤ x ≤ β n1/2σn/(m‖X0‖∞),
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ln

∣∣∣∣∣P
(
Yn > x

)
1− Φ (x)

∣∣∣∣∣ ≤ Cβ(1 + x3)
Kn

n1/2
(50)

and

ln

∣∣∣∣∣P
(
Yn < −x

)
Φ (−x)

∣∣∣∣∣ ≤ Cβ(1 + x3)
Kn

n1/2
, (51)

where Cβ depends only on β. By Theorem 1 of Mason and Zhou [13], then whenever n ≥ 64C2
βK

2
n and

|Yn| ≤
( βσn
m‖X0‖∞

∧ 1

8CβKn

)
n1/2 (52)

≤
(
β ∧ 1

8Cβ

)(
γm| ln γm|+ εm |ln εm|+ δm +

√
m

n

)−1

, (53)

we have

|Yn − Z| ≤ 2Cβ

(
Y 2
n + 1

)(
γm| ln γm|+ εm |ln εm|+ δm +

√
m

n

)
, (54)

which gives (14) with α = β ∧ 1
8Cβ

and Cα = Cβ . Notice that there exists an integer n0 such that

n ≥ 64C2
βK

2
n for all n ≥ n0.

Next we give the proof of (16). Set for brevity

ςn = γm| ln γm|+ εm |ln εm|+ δm +

√
m

n
.

By (14), we have for all 0 ≤ x ≤ 1
4Cα

ς−2
n ,

P
(
|Yn − Z| > x ςn

)
≤P

(
|Yn − Z| > x ςn, |Yn| ≤ α ς−1

n

)
+ P

(
|Yn| > α ς−1

n

)
≤P

(
2Cα

(
Y 2
n + 1

)
> x

)
+ P

(
|Yn| > α ς−1

n

)
, (55)

Notice that

1− Φ (x) ≤ exp{−x2/2}, x ≥ 0.

When 0 ≤ x ≤ 1
8Cα

ς−2
n , by the inequalities (50) and (51), it holds that

P
(

2Cα
(
Y 2
n + 1

)
> x

)
≤ 2 exp

{
− 1

4
(
x

2Cα
− 1)

}
≤ exp

{
1− x

8Cα

}
, (56)

and that

P
(
|Yn| > ας−1

n

)
≤ 2 exp

{
− 1

4
(ας−1

n )2

}
≤ 2 exp

{
− 2Cαα

2x

}
. (57)

Returning to (55), we obtain for all 0 ≤ x ≤ 1
8Cα

ς−2
n ,
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P
(
|Yn − Z| > xςn

)
≤ 2 exp

{
1− c′x

}
, (58)

where c′ = min{ 1
8Cα

, 2Cαα
2}. For x > 0, it is easy to see that

P
(
|Yn − Z| > xςn

)
≤P

(
|Yn| >

1

2
xςn

)
+ P

(
|Z| > 1

2
xςn

)
. (59)

Clearly, it holds for all x > 1
8Cα

ς−2
n ,

P
(
|Z| > 1

2
xςn

)
≤ 2 exp

{
− 1

8
x2ς2n

}
≤ 2 exp

{
− 1

64Cα
x

}
.

By Theorem 2.4, there exists a positive constant λ such that for all x > 1
8Cα

ς−2
n ,

P
(
|Yn| >

1

2
xςn

)
≤ (1 + 4

√
e) exp

{
− λx

}
.

Returning to (59), we have for all x > 1
8Cα

ς−2
n ,

P

(
|Yn − Z| > xςn

)
≤ (3 + 4

√
e) exp

{
− c′′x

}
, (60)

where c′′ = min{λ, 1
64Cα
}. Combining (58) and (60), we get the desired inequality.
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