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Abstract

The shortage of training samples remains one of the main obstacles in applying the neural networks to
the hyperspectral images classification. To fuse the spatial and spectral information, pixel patches are often
utilized to train a model, which may further aggregate this problem. In the existing works, an ANN model
supervised by center-loss (ANNC) was introduced. Training merely with spectral information, the ANNC yields
discriminative spectral features suitable for the subsequent classification tasks. In this paper, we propose a novel
CNN-based spatial feature fusion (CSFF) algorithm which allows a smart integration of spatial information
to the spectral features extracted by ANNC. As a critical part of CSFF, a CNN-based discriminant model is
introduced to estimate whether two pixels belong to the same class. At the testing stage, by applying the
discriminant model to the pixel pairs generated by a test pixel and each of its neighbors, the local structure is
estimated and represented as a customized convolutional kernel. The spectral-spatial feature is generated by
a convolutional operation between the estimated kernel and the corresponding spectral features within a local
region. The final label is determined by classifying the resulting spectral-spatial feature. Without increasing the
number of training samples or involving pixel patches at the training stage, the CSFF framework achieves the
state-of-the-art by declining 20% — 50% classification failures in experiments on three well-known hyperspectral
images.

1 Introduction

A hyperspectral image is taken as a collection of spectral pixels. Each of them records a radiance vector acquired
over a same land-cover, with hundreds of spectral bands across a certain wavelength range [1]. The classification
of these spectral pixels into a set of land-cover materials is a crucial task in hyperspectral images analysis [2]. To
address this issue, an amount of spectrum-based works are proposed mainly by exploiting the abundant spectral
information containing in the data. Among, linear algorithms in dimension reduction and feature classification are
the most investigated, for example, principal component analysis (PCA) [3,4], independent component analysis
(ICA) [5,6] and linear discriminant analysis (LDA) [7]. Nonlinear models and their extensions are also introduced
to achieve better representations of the spectra, including but not limited to support vector machine (SVM) [8],
manifold learning [9], random forest [10] and kernel-based strategies [11,12].

Benefiting the increasing imaging qualities of both spectral and spatial resolutions [13], numerous spectral-spatial
algorithms have been developed in order to obtain more accurate classification performance [14-20]. Specifically,
a multi-scale adaptive sparse representation (MASR) method is proposed in [21], where the spatial information at
different scales is explored simultaneously. In MASR, each neighboring pixel is represented via an adaptive sparse
combination of training samples, and the label of the centering test pixel is determined by the recovered sparse
coefficients. It is noteworthy that although MASR utilizes the spatial information at the testing stage, only spectral
information is engaged at the training stage. This helps to mitigate the shortage of training data to some degree.

Deep learning frameworks, including artificial neural networks (ANN), convolutional neural networks (CNN),
and recurrent neural network (RNN) have been successfully applied in many fields related to machine learning
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and signal processing [22-26]. Recently, the neural network-based models have been utilized in hyperspectral
images classification, achieving remarkable improvements over the traditional methods in terms of classification
performance. Earlier works include the stacked autoencoder (SAE) [27-29], the deep belief network (DBN) [30]
and etc.. More recently, many researches are dedicated to the varieties of CNN and RNN-based models, as studied
in [31-41].

Training with pixel patches is a natural idea to take advantage of both spectral and spatial information, and is
adopted by most of the aforementioned neural network-based studies [31-38,41,42]. Representative works include
the so-called 3D-CNN in [32], where pixel patches are directly fed to the deep model, and the integrated spectral-
spatial features can be extracted from the hyperspectral data. However, it should be noticed that this strategy may
further aggravate the shortage of training data. Different from the numerous accessible RGB images, the labeled
samples are limited in hyperspectral imagery, which are usually insufficient for network training [32]. Compared with
the spectrum-based models, the pixel-patch-based ones aggregate this contradiction from following two aspects: i)
using pixel patches often complicates the model by introducing additional undetermined parameters, thus requiring
more training data, and ii) a hyperspectral image usually contains fewer mutually non-overlapped patches with
specified size than pixel-wise samples.

Several attempts have been made to alleviate the shortage of training samples, including the virtual sample strat-
egy [32] and the pre-training and fine-tuning techniques [37,38]. Moreover, to avoid training with pixel patches,
frameworks have been built based on concatenating a spectrum-based model and a post spatial information inte-
gration scheme. The pixel-pair feature algorithm (PPF) [43] is based on a CNN model trained with pixel pairs.
For testing, pixel pairs are firstly generated by the centering testing pixel and its neighbors, and then classified
by the trained model. A voting strategy is adopted to determine the final classification result. More recently,
the ANNC with adaptive spatial-spectral center classifier (ANNC-ASSCC) is proposed in [39], where the spectral
features are extracted by a well-designed ANN jointly supervised by the softmax loss and the center loss, and the
spectral-spatial fused feature is generated at the testing stage for classification. These two state-of-the-art methods
are briefly revisited in Section 2.

In this paper, we choose the ANNC network in [39] as the spectral feature extraction model, and design a
CNN-based Spatial Feature Fusion (CSFF) algorithm to posteriorly integrate the spatial information !. The main
characters of the proposed classification framework are listed as below.

1. Rather than implicit spatial information utilized in [39], explicit spatial structures are produced by our novel
CNN-based model. Therefore, the CSFF works more reasonably than the averaging fusion strategy in the
previous work [39].

2. The CSFF algorithm shares the same training data with the spectral feature extraction model, which is chosen as
ANNC in this paper. Without increasing the size of the training set, this settlement keeps the whole framework
working on a small amount of training data.

3. To enhance the representative ability of the framework, the spatial structure extraction algorithm in CSFF is
designed to have a totally different network structure from ANNC, such that the two models are distinguished at
feature expression and abstraction levels. To be precise, the ANNC expresses the shallow features of spectra, while
the spatial structure extraction algorithm produces more abstract features with a deeper and more complex model
structure. This helps to alleviate the correlation between these two models, thus increasing the performance of
the whole framework.

Taking advantage of the above characters, without requiring more training data, the proposed CSFF algorithm
allows to achieve the state-of-the-art by declining 20% — 50% classification failures in experiments. In addition, the
spectral-spatial features by the proposed framework are shown to be effective and suitable for different classifiers.

The reminder of this paper is organized as follows. We firstly review the related works in Section 2. The whole
framework outline and the CSFF algorithm are discussed in Section 3. Section 4 reports the experimental results
and analysis on three datasets. In Section 5, some concluding remarks are presented.

IThe code of this work is available at: https://github.com/aalennku/CSFF.
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Figure 1: Structure of the spectral feature extracting network [39].

2 Related works

2.1 Pixel-pair feature algorithm (PPF)

In [43], the PPF framework investigates a pixel-pair-based classification model based on CNN; in order to address
the multi-classification task. Let z1 and zo be two pixels with label ¢(x1) and ¢(z2), respectively. The pixel-pair
for training is generated as (x1,x2), with the label determined by

E(l‘l) if f(xl) = é(mg),
L(x1,20)) =
(@1, 22)) {O otherwise.
The pixel-pair strategy is applied for alleviating the shortage of training data. It is observed that the number of
pixel-pairs computes (];7 ), where N is the size of the training set. This enlarged size of the training set enables the
training of a deep CNN model. The model classifies the pixel-pairs into K + 1 classes with labels 0 and 1,2,..., K,
by

e class i, if two pairing pixels are from the same class i, for 1 <17 < K
e class 0, otherwise.

Here, K is the number of pixel classes. At the testing stage, pixel-pairs are firstly generated by the testing pixel
and its neighbors, and then classified into K + 1 classes by the learned CNN model. The final label of a test pixel
is determined by a voting strategy among the non-zero classification results.

2.2 ANNC with adaptive spatial-spectral center classifier (ANNC-ASSCC)

In [39], an ANN-based feature extraction and classification framework is proposed. The so-called ANNC-ASSCC
algorithm consists of two successive steps, namely i) the spectral feature extraction with ANN, and ii) the adaptive
spatial information fusion and classification.

In the first step, a simple but efficient ANN structure is designed to extract spectral features. As illustrated
in Fig. 1, the network contains 4 fully connected layers, and the numbers of neurons in Layer 1,2 and 3 are set
to 512,256 and 32. A joint supervision of softmax loss and center loss is applied for classification task. During
the training stage, the k class centers, i.e. ci,ca,...c, are updated by averaging the 3-rd layer’s outputs within
respective classes. For a training pixel, the introduced center loss encourages the output of the 3-rd layer to gather
around its corresponding class center in Euclidean space. At the testing stage, the first 3 layers of the learned
network are utilized and the outputs of the 3-rd layer are regarded as the extracted spectral features. In the second
step, the spatial information is merged by averaging the extracted spectral features within neighboring regions of
different sizes. After the resulting features are classified, a voting strategy is applied to generate the final prediction.



3 Framework outline and the CNN-based spatial feature fusion algo-
rithm

In this section, we present an end-to-end spectral-spatial feature extraction and classification framework. The whole
structure is firstly outlined, with detailed explanations on each of the three components. As a key ingredient of
the whole framework, the CSFF algorithm is introduced with emphasis placed on the newly proposed CNN-based
discriminant model, which outputs the predicted probability of two pixels belonging to the same class.

3.1 Framework outline

As discussed previously, training with pixel patches may further aggregate the lack of labeled samples. Based on
this concern, the training stage of the proposed framework is performed merely using the spectral data, while the
spatial information is involved posteriorly at the testing stage. The proposed framework is designed to consist of
three parts, namely

e spectral feature extraction;
e spatial structure extraction and fusion of spectral feature and spatial structure;
e classification of the spectral-spatial feature.

The flowchart of the whole framework is given in Fig. 2.

In the first part, we extract the spectral features of the whole hyperspectral image by directly applying the
ANNC model proposed in [39]. This spectrum-based model is supervised with a joint loss of center loss and
softmax loss, producing discriminative spectral features with inner-class compactness and inter-class variations.
Taking advantage of this, the spectral features obtained by the learned ANNC model is suitable for the successive
spatial information fusion step. In the following, we use the notations x and fannc(z) to denote a given pixel and
its corresponding spectral feature extracted by the ANNC model.

In the second part, a spatial structure extraction algorithm is designed to explore the local structure for a given
pixel within some pre-defined neighborhood. More precisely, the local structure is characterized by a customized
“convolutional kernel”. The fusion of the spectral-spatial information is realized by a “convolutional” operation
between the kernel and the extracted spectral features within the neighborhood. Let N(z) be a neighborhood
centering at pixel z and W(N(x)) be the customized “convolution kernel”. Use the notation fannc(N(z)) to
represent the data cube formed by the extracted spectral features within the neighborhood N(z), where the ¢, j-th
entry is defined by

fannc(N(2))i; = fanno(N(2)i ). (1)

Using fn(z)() to denote the spectral-spatial feature of 2 within the neighborhood N(x), it is defined by

I (@) = W(N(@)) Q) fannc(N (), (2)

where ) indicates the convolutional operation. A more clear interpretation of this model will be given in Section 3.2.

The last part of the framework aims to classify the resulting spectral-spatial feature fx(,(x). In [39], a center
classifier is introduced, which assigns the label to each sample according to its nearest class center. Let ¢1,¢s, ..., ¢
be the class centers estimated from the extracted spectral features of the training set. The label of the spectral-
spatial feature fy(,)(z) is predicted by

Ufn@)(2) = al"g:nin{HfN(m)(x) — ¢ill2}- (3)

Experiments in Section 4.2 will show that the spectral-spatial features are not sensitive to the applied classifiers,
that similar classification accuracies are obtained by using the center classifier, the support vector machine (SVM)
algorithm, and the k-nearest neighbors (kNN) algorithm. However, the center classifier is still the simple and
straightforward one, and is engaged as the default classifier in the proposed framework.
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Figure 2: Flowchart of the proposed framework. The three components are represented by three dashed rectangles.
The training and testing stages are distinguished by thin and thick solid arrows, respectively. The dashed arrows
represent the estimation of class centers of features. The intersection of neighborhood and training samples are
represented by the white pixel, and are excluded at the testing stage.

3.2 Spatial structure extraction algorithm

The most crucial aspect of CSFF is the spatial structure extraction algorithm. This algorithm relies on a CNN-
based discriminant network, which is designed to predict the probability that an input pair of pixels have the same
label. By applying this model to the pixel-pairs generated by the test pixel and its neighbors, the corresponding
local spatial structure can be extracted and represented as a matrix that maps the neighborhood. The procedure
is illustrated in Fig. 3. To be more precise, use D((z,z’)) to denote the predicted probability that the entries of
pixel-pair (z,z’) have the same class label. Let {z} x N(x) = {(z,2’)| V2’ € N(z)} be a set of pixel pairs generated
by the centering pixel z and its neighbors within N(z), we use D({z} x N(z)) to denote the corresponding spatial
matrix, whose i, j-th entry is defined by

D({x} x N(2))i,; = D((z, N(2)i5))- (4)

By applying an element-wise threshold function f, the real-valued D({z} x N(x)) is calibrated to a binary matrix

Di({z} x N(z)) = fil(D({z} x N(x))), (5)

where t is the pre-determined threshold value. The convolutional kernel W (N (z)) in(2) is calculated by normalizing
D;({z} x N(z)) such that all the elements add up to a unit. In essence, the convolutional kernel W (N (z)) records
the positions where the spectra are supposed to have the same class label as the centering test pixel. Thus, only
the neighboring pixels which correspond to the non-zero positions in W (N (z)) will contribute to the estimation of
spectral-spatial feature in(2), in a equal manner. In practice, both the size of neighborhood N (x) and the threshold
value t should be appropriately chosen, as to be analysed in Section 4.2.

To enhance the hierarchical representative capability of the whole framework, the aforementioned discriminant
model is designed to extract the deep features, while the spectral feature extraction model (ANNC) focuses on
exploring the shallow features with a simple network structure. From this point of view, a diverse structure from
ANNC should be considered, in order to make the proposed discriminant model different from ANNC, namely

1. While ANNC uses a structure of fully connected layers, the CNN architecture will be employed in the discriminant
model. A CNN-based model is not only built differently from ANNC model, but is also expected to be more
powerful in expressing hierarchical features.

2. While ANNC uses a shallow structure of 3 layers, a deep model with more layers will be engaged in the discrim-
inant model. In most cases, deep networks enable the extraction of more abstract features than the respectively
shallow ones.
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Figure 3: Flowchart of the spatial structure extraction algorithm. Pixel pairs are firstly generated by the center
pixel and its neighbors and then fed into the model. For each pixel-pair, the model predicts the probability that
the two elements share the same class label. The spatial structure is extracted as the output of this discriminant
model.

It is noteworthy that training a complex discriminant model with a limited number of labeled pixels is possi-
ble. To address the task of distinguishing whether two spectra belong to the same class, the discriminant model
is designed to be fed with pixel-pairs at both training and testing stages. Without considering the geometric in-
formation, the pixel-pairs for training are generated by the pixels chosen from training data. According to this
settlement, the training set can be enlarged to roughly have a squared quantity of training samples. In practice,
the enlarged training set is sufficient for training our discriminant model. More details on the training set is given
in Section 4.2.1.

Based on above discussions, we choose to modify the pixel-pair features (PPF) model proposed in [43] and use
the resulting network as the discriminant model in our spatial structure extraction algorithm.

Fortunately, the PPF model is not only CNN-based, but also has a relatively deep structure with 9 convolutional
or fully connected layers and 3 pooling layers. This meets the directions discussed above for structure design of our
discriminant model. Moreover, the binary classification task in our problem is relatively easier than the original
multi-classification task in PPF, that should be well-tackled by a similar model with PPF. By modifying the first
data layer and the last two fully connected layers, the structure is able to address different datasets and is suitable
for the binary classification task. The modified structure of PPF model is applied as our discriminant model, which
is a part of the spatial feature extraction algorithm.

The structure details of the discriminant model are illustrated in Fig. 4. Considering the slim shape of the
input data, namely (2, L), with L being the number of spectral channels, the convolution kernels and the pooling
regions are chosen as narrow rectangular ones instead of the traditional squared ones. All the strides of the
convolutional layers are set to be 1 and the pooling layers are defined to use the max-pooling function. In order to
introduce nonlinearity to the CNN-based model, the commonly-used rectified linear unit (ReLU) function, defined
by ¢(z) = max{0, z}, is applied after every convolutional and fully connected layer.

4 Experimental settings and result analysis

4.1 Datasets description

Experiments are performed on three real hyperspectral images, namely the Pavia University scene, the Salinas
scene, and the Pavia Centre scene?. The first data is the Pavia University scene, acquired by the Reflective Optics
System Imaging Spectrometer (ROSIS) sensor. After removing the noisy bands and a blank strip, a sub-image of
610 x 340 pixels with 103 spectral bands are retained for analysis. The image is characterized by a spatial resolution
of about 1.3 meters. As summarized in TABLE 1, this area is known to be mainly composed by K = 9 classes of
materials, denoted by labels from 1 to 9. The background pixels are represented by label 0, and will not be taken
into account for classification. Fig. 5 presents the false color composite and groundtruth map.

The second one is the Salinas scene collected by the Airborne Visible Infrared Imaging Spectrometer (AVIRIS).
This dataset contains 512 x 217 pixels, and is characterized by a resolution of 3.7 meters. After removing the
water absorption bands, the remaining 204 (out of 224) bands are utilized. According to the available groundtruth
information in TABLE 2, there are K = 16 composition categories of interest, with the background pixels represented
by label 0. False color composite and groundtruth map of the Salinas scene are shown in Fig. 6.

2The datasets are available online: http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
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layers, but only one connection is drawn for simplicity.

Table 1: Reference classes and sizes of training and testing sets of Pavia University image

No. Class Cardinality | Train | Test
1 Asphalt 6631 200 6431
2 Meadows 18649 200 | 18449
3 Gravel 2099 200 1899
4 Trees 3064 200 2864
5 | Painted metal sheets 1345 200 1145
6 Bare Soil 5029 200 4829
7 Bitumen 1330 200 1130
8 Self-Blocking Bricks 3682 200 3482
9 Shadows 947 200 747

Total 42776 1800 | 40976
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Figure 5: The false color composite (band 10, 20,40) and groundtruth representation of Pavia University



Table 2: Reference classes and sizes of training and testing sets of Salinas image

No. Class Cardinality | Train | Test
1 Brocoli green weeds 1 2009 200 1809
2 Brocoli green weeds 2 3726 200 3526
3 Fallow 1976 200 1776
4 Fallow rough plow 1394 200 1194
5 Fallow smooth 2678 200 2478
6 Stubble 3959 200 3759
7 Celery 3579 200 3379
8 Grapes untrained 11271 200 | 11071
9 Soil vinyard develop 6203 200 6003
10 | Corn senesced green weeds 3278 200 3078
11 Lettuce romaine 4wk 1068 200 868
12 Lettuce romaine 5wk 1927 200 1727
13 Lettuce romaine 6wk 916 200 716
14 Lettuce romaine 7wk 1070 200 870
15 Vinyard untrained 7268 200 7068
16 Vinyard vertical trellis 1807 200 1607

Total 54129 3200 | 50929
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Figure 6: The false color composite (band 180,100, 10) and groundtruth representation of Salinas



The last image is the Pavia Centre scene, which is also returned by the ROSIS sensor over Pavia, northern Italy.
A sub-image of 1096 x 715 pixels with 102 relative clean bands is taken into account, where the geometric resolution
is 1.3 meters. Ignoring the background pixels, the groundtruth labels fall into K = 9 reference classes, as given in
TABLE 3. The false color composite and the groundtruth map of Pavia Center are shown in Fig. 7.

Table 3: Reference classes and sizes of training and testing sets of Pavia Centre image

No. Class Cardinality | Train | Test
1 Water 65971 200 65771
2 Trees 7598 200 7398
3 Asphalt 3090 200 2890
4 | Self-Blocking Bricks 2685 200 2485
5 Bitumen 6584 200 6384
6 Tiles 9248 200 9048
7 Shadows 7287 200 7087
8 Meadows 42826 200 42626
9 Bare Soil 2863 200 2663

Total 148152 1800 | 146352
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Figure 7: The false color composite (band 10, 20,40) and groundtruth map of Pavia Centre

4.2 Experimental settings
4.2.1 Training and testing sets

Before further processing, each dataset is firstly normalized to have zero mean and unit variance. To form the
training set, 200 pixels are randomly chosen from each class. The two neuron networks, i.e., the ANNC model and
discriminant model, are trained by employing the same training set. TABLES 1-3 present the sizes of training and
testing sets in three datasets.

To train the ANNC model, the original training set is enlarged by virtual samples [32,39], until the size of each
class reaches 80000. Using z1,x2 to denote two training pixels chosen from the same class ¢, a virtual sample &
with the same label is generated by & = gx1 + (1 — q)x2, where ¢ is a random number chosen from the uniform
distribution on [—1,2]. The testing set is composed by all the unused pixels, which are directly fed to the learned
ANNC model at the testing stage.

To train the discriminant model in the spatial feature extraction algorithm, the pixel-pairs should be firstly
generated. Let Tr; be the set of training pixels with label i, for ¢ = 1,2,..., K. The positive training set is
expressed by

Try = U Tr; x Tr;

z 6
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The negative training set is generated by taking the Cartesian product between any two different classes of
training pixels, namely

Tr_ = UT’M x Tr;
i#]
= U{(xl,xg)WCL’l € Try, xo € Try}.
i#]

(7)

Compared with the original training set with 200 pixels for each class, the enlarged training set composed by pixel
pairs is sufficient to train the discriminant model without causing overfitting problem. Taking Pavia University for
example, the original training set consists of 200 x 9 = 1800 samples. According to (6) and (7), the sizes of the
positive training set T'r; and the negative training set T'r_ compute 360000 and 2880000, respectively. In practice,
considering that the size of negative training set T'r_ is overwhelmingly greater than that of the positive set T,
only half of the negative pixel pairs are randomly chosen for training. It is also noteworthy that, the training pixels
are excluded from either the testing samples or their neighbors on all the three datasets.

4.2.2 Networks configurations

The parameters in the ANNC network are set as recommended in [39]. To be precise, the weight of center loss
is set to be A = 0.01. To train ANNC, the stochastic gradient descent (SGD) is applied with a mini-batch size
512, and the learning rate is initialized by 0.01 and decays by multiplying 0.3162 every 20000 steps. This model is
implemented on the open source deep learning framework Caffe [44].

The discriminant model has a softmax layer at the top followed by the cross entropy loss function. At the training
stage, the SGD algorithm is used with the mini-batch size set to be 512, where the learning rate is initialized by 0.01
and decays every 50 epochs by multiplying 0.1. For the convenience of using rectangular convolutional kernels, this
model is implemented on the compatible machine learning framework Tensorflow [45], following the codes of [43].

4.2.3 Hyperparameter selection

We discuss how to select the two crucial hyperparameters introduced by the proposed CSFF framework, i.e., the size
of neighborhood N(z), and the calibration threshold value ¢ in (5). Firstly, to study the influence of neighborhood
size on classification accuracies, we vary this parameter within some range, while fixing the threshold to a modest
value with ¢ = 0.01. Experiments are performed on datasets Pavia University and Salines, with the neighborhood
size varying within the sets {1 x 1,3 x 3,...,19 x 19} and {1 x 1,3 x 3,...,39 x 39}, respectively. As presented
in Figure 8, an increasing neighborhood size generally leads to improvements on classification performance. This
phenomenon is not surprising. Because of the good property of the convolutional kernel, only the useful spatial
information from the neighboring spectra will contribute to the fusion of the spectral-spatial feature corresponding
to the centering test pixel. A relatively larger neighborhood usually accounts for more useful spatial information,
thus being favorable to boost the classification performance. However, it is also noticed that at the testing stage, a
doubled neighborhood radius will quadruple the computational complexity. By balancing the computational cost
and the classification accuracy, the neighborhood size is set to be 19 x 19 for Pavia datasets and 39 x 39 for Salinas
dataset.

Secondly, we validate the selection of threshold value ¢ in (5), which calibrates the probabilities in the spatial
matrix into binary predictions. Experiments are performed on Pavia University and Salinas datasets by varying ¢
within interval [0, 1], where the neighborhood sizes are fixed as 19 x 19 and 39 x 39, respectively. As the learned
discriminant model allows to estimate whether two paring pixels belong to the same class (probability near 1) or
not (probability near 0), the elements presented in spatial matrices are generally distributed close to 0 and 1. Thus,
the classification performance tends to be particularly sensitive to the values of ¢ close to 0 and 1. Accounting for
this fact, the threshold value ¢ is set by ¢ = ﬁ, where x € N and x € [-9,11]. Two extreme cases with ¢t =0
and t = 1 are also examined. It is noticed that with ¢ = 0, the proposed spectral-spatial feature fusion algorithm
in (2) is reduced to a simple average-over-neighborhood algorithm, while with ¢ = 1, the algorithm does not exploit
any spatial information for feature fusion. The classification results using different threshold values are given in
Figure 9. As observed, on both datasets, small threshold values close to ¢ = 0 lead to promising classification
accuracies, that are much more advantageous over the results obtained by ¢ = 0 and ¢ = 1. In this paper, we apply
a unified threshold value with ¢ = 0.01 in all the experiments on three datasets.
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Figure 8: Comparisons of classification accuracies in terms of AA and OA, along with varying neighborhood sizes,
on (a) Pavia University and (b) Salinas.

4.2.4 Classifiers

To evaluate the performance of the spectral-spatial features fx ;) (), a comparative study is performed by classifying
them using three classifiers, namely the center classifier mentioned in(3), the kNN algorithm [46], and the SVM
algorithm [47]. Without involving extra training data, these three classifiers are trained based on the same training
pixels as used in training the ANNC model and the discriminant model. Precisely, by applying a transfer learning
strategy [48], the classifiers are trained with spectral features (with their respective labels) extracted by the learned
ANNC model from the training pixels. Here, the spectral-spatial features of the training pixels are not directly used
for training the classifiers, for the sake that no additional information from the pixels other than the training ones
should be used before the testing stage. For a given training pixel z, its neighborhood N () used for spectral-spatial
feature generation may contain the pixels from the testing set. Hence, the resulting spectral-spatial feature fx (,(x)
may contain the information from the testing set, and is not proper for training the classifiers. In practice, the
class centers in center classifier are estimated by averaging the spectral features of training pixels within each class.
Concerning kNN, it assigns a test spectral-spatial feature to the class most common among its k nearest training
spectral features, where two cases with £ = 5 and k = 10 are considered in the experiments. Similar to the kNN
algorithm, the SVM algorithm is also trained by the spectral features with their respective labels. The rbf kernel
is applied and the multi-class classification is handled according to a one-vs-one scheme. The Python packages
SciPy [49] and Scikit-learn [50] are applied directly for kNN and SVM algorithms, with the parameters set to be
the default values.?

4.3 Results analysis

We evaluate the classification performance of the proposed framework on the aforementioned datasets. In this
framework, the models are trained merely based on spectral pixels without using any spatial information, as the
latter is likely to coincide with the testing set. From this aspect, three state-of-the-art methods are considered,
which are the traditional method MASR [21], the CNN-based PPF [43], and the ANN-based ANNC-ASSCC [39].
As the state-of-the-art baseline of CNN models, the 3D-CNN [32] is also compared, which is trained based on pixel
patches. For fair comparison, all the comparative methods are trained using the training sets of same size, namely
200 random pixels for each class.

Three commonly-used metrics are adopted to evaluate the classification performance globally, which are the
overall accuracy (OA), the average accuracy (AA), and the Kappa coefficient (). Briefly, OA represents the overall
percentage of testing samples that are correctly classified, while AA calculates the average value of the accuracies
of each class on testing samples. The x coefficient measures the agreement between the predicted labels and
groundtruth labels.

Figure 10 visualizes the spatial distribution of spectral features extracted by ANNC and ANN models in [39],
on testing samples from Pavia Centre. As expected, the features extracted by ANNC have smaller within class

3The softwares are available at: https://www.scipy.org/ and https://scikit-learn.org/.
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and (b) Salinas.
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(a) Spectral features under ANNC

Figure 10:

(b) Spectral features under ANN

Visualization of the spectral features extracted by (a) ANNC and (b) ANN, on Pavia Centre. 2

coordinates (i,7) out of 32 dimensions are visualized. For each of the K =9 classes, 2000 randomly chosen testing
samples are utilized. Features from various classes are marked with different colors.
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Table 4: Classification accuracies in percentage (mean + standard deviation), averaged over 5 runs, of MASR,
MASR-t, PPF, 3D-CNN, ANNC-ASSCC and CSFF on Pavia University scene
MASR MASR-t PPF 3D-CNN ANNC-ASSCC

Asphalt 89.97 +£1.81 45.21 £ 3.61 97.25+0.35 95.18 £1.33 98.69 £ 0.78 98
Meadows 98.78 £ 0.36 94.75 + 1.26 95.24 +£0.42 98.90 £ 0.28 99.97 £0.03 9¢
Gravel 99.78 £ 0.47 81.15 £+ 4.51 94.17 £ 0.49 95.55 £ 1.63 93.85 £ 2.15 96
Trees 97.47 £ 0.42 95.75 £ 0.89 97.20 £ 0.30 99.12 £ 0.50 96.68 £+ 0.99 98
Painted metal sheets 100.00 £ 0.00 100.00 £ 0.00 100.00 £ 0.00 100.00 £ 0.00 100.00 £ 0.00 9¢
Bare Soil 99.87 +0.23 78.49 + 2.81 99.37 £ 0.19 98.23 +£1.14 100.00 £ 0.00 10
Bitumen 100.00 £+ 0.00 99.56 + 0.14 96.16 £ 0.21 91.04 £ 5.60 96.88 +£1.24 9§
Self-Blocking Bricks 98.76 £+ 0.63 86.79 £ 3.87 93.83 £0.59 98.17£0.79 93.11 £ 2.50 F
Shadows 92.17 £ 1.78 47.98 £ 2.28 99.46 £ 0.15 99.68 + 0.56 97.62 £0.37 10
OA(%) 97.42 £0.36 83.25 +0.93 96.25 £ 0.20 98.14 £ 0.10 (298.55 + 0.16 @9
AA(%) (297.42 £ 0.40 81.08 £0.77 96.97 £ 0.08 97.32 £ 0.68 (297.42 £ 0.22 ®9
K 0.9654 + 0.0048 | 0.7764 + 0.0119 | 0.9499 + 0.0026 | 0.9687 + 0.0015 | (2)0.9805 £+ 0.0021 |()0.9!

distances and bigger between class distances, compared to the case with ANN.

As illustrated in TABLES 4-6, competitive classification results are obtained by the proposed CSFF method on
all the three datasets. On the Pavia University scene, the CSFF provides the best classification accuracy in terms
of OA, AA, and k, which signifies a 20% — 30% drop in prediction failures over the second best ANNC-ASSCC.
For the Pavia Centre scene, the CSFF still leads to slight improvements on all the metrics, considering the high
classification accuracies achieved by the comparing counterparts. On the Salinas image, it is MASR that leads
to the best classification results, second by CSFF. We observe that CSFF yields over 1.5% increase in OA when
compared to the ANNC-ASSCC, the value corresponding to around 50% fewer prediction failures. Specifically,
noteworthy improvements are achieved by CSFF over the methods PPF and ANNC-ASSCC on addressing two
difficult classification tasks, i.e., the Grapes untrained and the Vinyard untrained. Concerning the phenomenon
that CSFF is inferior to MASR, one explanation is that the latter utilizes multiscale neighborhoods at the testing
stage, without excluding the training pixels [39]. To keep a fair comparison, the influence brought by train-test
overlap to classification result should be eliminated. Following [39], supplementary experiments are carried out
using a modified version of MASR, termed MASR-t, on all the datasets. At the testing stage, the MASR-t is
designed to exclusively deteriorate training information by replacing all the training pixels with a vector of identical
elements 0.01. As observed from TABLE 5, MASR-t results to over 2% decreases in terms of both OA and &, and
is outperformed by the proposed CSFF on the Salinas image. To conclude, the proposed CSFF leads to promising
classification results compared to the state-of-the-art methods on all the datasets.

The proposed CSFF generates explicit spectral-spatial features that can be classified using different classification
algorithms. To examine the effectiveness of the features obtained by the CSFF under various classifiers, experiments
are performed by using the default center classifier, kNN, and SVM, on all the datasets. The results are given in
TABLES 7-9. We observe that on all the images, the three classifiers yield stable and similar classification accuracies
in terms of all the quantitative metrics. It demonstrates that the spectral-spatial features generated by the proposed
framework are effective and robust against different classifiers.

4.4 Computational Cost

The testing time of all the comparing methods are reported in Table 10. Experiments are performed on a machine
equipped with CPU of Intel Xeon E5-2660@2.6GHz and GPU of NVIDIA TitanX. As for the proposed CSFF, both
the total testing time and the time of applying discriminant model are presented. In fact, it is the testing data
preparation in discriminant model, namely the generation of pixel-pairs using the centering pixel and each spectrum
within the neighborhood, that is the most time-consuming. To alleviate computational burden, a slightly decreased
neighborhood size can be adopted in practice. On one hand, this does not deteriorate the classification accuracies
too much, as shown in Figure 8. On the other hand, a declined neighborhood size reduces the computational
complexity of testing data preparation, which computes O(n?) with n being the neighborhood size.
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Table 5: Classification accuracies in percentage (mean + standard deviation), averaged over 5 runs, of MASR,
MASR-t, PPF, 3D-CNN, ANNC-ASSCC and CSFF on Salinas

MASR MASR-t PPF 3D-CNN | ANNC-ASSCC CSFF
Brocoli_green_weeds_1 100.00 100.00 99.98 100.00 100.00 99.97
£0.00 +0.00 +0.03 £0.00 +0.00 +0.03
Brocoli_green_weeds.2 99.97 99.95 99.58 99.64 100.00 100.00
£0.05 £0.07 +0.09 £0.39 +0.00 £0.00
Fallow 100.00 100.00 99.61 95.95 100.00 100.00
+0.00 +0.00 +0.17 +3.76 +0.00 £0.00
Fallow_rough._plow 99.89 99.66 99.73 100.00 99.53 95.54
£0.08 +0.18 +0.08 +0.00 +0.41 +3.64
Fallow smooth 99.58 99.56 97.43 99.92 99.67 99.39
+0.14 +0.10 +0.28 +0.10 +0.17 +0.29
Stubble 100.00 99.98 99.66 100.00 100.00 99.93
+0.01 +0.03 +0.16 +0.00 +0.00 +0.05
Celery 99.95 99.97 99.93 99.18 100.00 99.94
+0.09 +0.02 +0.04 +0.87 +0.00 +0.05
Grapes_untrained 97.82 87.72 84.81 92.00 92.34 95.61
+0.46 +0.84 +0.94 +2.13 +0.69 £1.19
Soil_vinyard_develop 99.99 99.99 99.15 98.72 99.99 99.97
£0.02 +0.01 +0.78 +0.69 +0.01 +0.04
Corn_senesced_green_weeds 99.90 99.59 96.73 99.39 99.44 98.98
£0.08 +0.36 +0.46 +0.69 +0.23 +0.15
Lettuce. romaine. 4wk 100.00 100.00 99.45 100.00 100.00 99.88
+0.00 £0.00 +0.15 £0.00 +0.00 +0.13
Lettuce romaine. 5wk 99.98 99.96 100.00 100.00 100.00 100.00
£0.03 +0.05 +0.00 +0.00 +0.00 +0.00
Lettuce romaine. 6wk 100.00 99.86 99.50 100.00 99.50 99.09
£0.00 +0.20 £0.07 £0.00 +0.80 +1.08
Lettuce. romaine. 7wk 99.90 99.66 99.47 100.00 99.63 98.00
+0.24 +0.09 +0.30 £0.00 +0.28 +1.28
Vinyard_untrained 99.22 96.34 81.80 96.38 90.79 98.14
+0.32 +0.80 +4.30 +0.48 +2.42 +1.41
Vinyard_vertical_trellis 99.99 99.59 98.81 99.50 99.99 99.95
‘ £0.02 £0.50 +0.41 £0.99 +0.02 +0.10
OA(%) (099.38 96.74 93.61 95.91 96.98 (298.53
+0.32 +0.80 +0.64 +0.87 +0.39 +0.34
AA(%) (099.76 98.86 97.23 98.79 98.81 (299.02
+0.02 £0.50 +0.32 +0.29 +0.13 4+0.20
(»0.9930 | 0.9635 0.9285 0.9480 0.9662 (20.9835
& 4+0.0009 | +0.0007 | £0.0072 | £+0.0108 +0.0044 +0.0038

14



Table 6: Classification accuracies in percentage (mean + standard deviation), averaged over 5 runs, of MASR,
MASR-t, PPF, 3D-CNN, ANNC-ASSCC and CSFF on Pavia Centre
MASR MASR-t PPF 3D-CNN ANNC-ASSCC
Water 99.87 +0.11 99.82 +0.14 99.15+0.18 99.93 +0.11 100.00 4+ 0.00 100
Trees 94.22 +0.45 90.25 + 0.86 97.96 +0.24 98.26 + 0.31 98.75 + 0.62 98.
Asphalt 99.45 + 0.46 97.04 +0.65 97.37 +0.18 94.98 +£1.97 99.26 +0.16 98.
Self-Blocking Bricks 99.98 +0.05 94.91 4+ 2.87 99.27 +0.11 98.48 +2.11 99.96 &+ 0.04 99.
Bitumen 98.75 £ 0.51 96.17 £ 1.03 98.79 £ 0.16 99.67 £ 0.18 99.35 + 0.28 99.
Tiles 80.23 + 1.78 46.58 + 4.98 98.95 + 0.08 99.29 + 0.41 99.73 +0.06 99.
Shadows 99.34 +0.47 92.63 + 1.06 94.36 + 0.35 97.88 £ 0.97 97.49 +0.64 98.
Meadows 99.90 + 0.04 99.86 + 0.02 99.90 + 0.03 99.99 + 0.01 99.41 +0.06 99.
Bare Soil 84.80 +1.02 64.36 = 1.16 99.96 + 0.05 99.15 £ 0.75 98.72 + 0.56 99.
OA(%) 98.02 £0.12 94.77+0.31 99.03 £ 0.08 99.60 + 0.07 (299.73 £ 0.05 ®99
AA(%) 95.17 +0.20 86.85 + 0.56 98.41 +0.06 98.58 +0.47 (299.25 £+ 0.09 @99
K 0.9719 + 0.0018 | 0.9256 + 0.0043 | 0.9862 + 0.0011 | 0.9845 + 0.0010 | (2)0.9937 4+ 0.0011 | (1)0.99

Table 7: Classification accuracies in percentage (mean + standard deviation), averaged over 5 runs, of kNN, SVM

and center classifier on spectral-spatial feature of Pavia University scene

ENN (5) ENN (10) SVM C-Classifier

OA(%) 98.92 +£0.19 98.93 £0.23 98.91 £0.12 98.90 +0.14

AA(%) 98.54 £0.23 98.53 £0.25 98.54 +£0.10 98.49 £0.13
K 0.9857 £ 0.0026 | 0.9858 £ 0.0031 | 0.9856 £+ 0.0015 | 0.9852 4+ 0.0018

5 Conclusion

In this paper, we investigated a novel ANN and CNN based classification framework that properly integrates the
spatial information to the spectral-based features, and generates spectral-spatial features suitable for various classi-
fiers. Based on a limited number of labeled pixels and without using any local information, both a spectral feature
extraction model and a discriminant model were trained. Using the learned discriminant model, the local structure
was extracted and represented as a customized convolutional kernel. The spectral-spatial feature was obtained
by a convolutional operation between the kernel and the corresponding spectral features within a neighborhood.
Experiments on three real hyperspectral images validated the performance of the proposed method in terms of
classification accuracies, when compared to the state-of-the-art algorithms. We also studied the characteristics of
the learning features, which showed robustness and stableness against various classifiers. Future works will focus

on extending the proposed framework to multiple-model fusion.
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