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Abstract. Let p.(n) denote the number of r-component multipartitions
of n, and let S, be the space spanned by 7(242)7¢(24z), where n(2) is
the Dedekind’s eta function and ¢(z) is a holomorphic modular form in
M, (SLy(Z)). In this paper, we show that the generating function of pr(meTT)
with respect to n is congruent to a function in the space S, modulo m*.
As special cases, this relation leads to many well known congruences in-
cluding the Ramanujan congruences of p(n) modulo 5,7,11 and Gandhi’s
congruences of py(n) modulo 5 and pg(n) modulo 11. Furthermore, using
the invariance property of S, \ under the Hecke operator Tj2, we obtain two
classes of congruences pertaining to the mF-adic property of p,.(n).
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1 Introduction

The objective of this paper is to use the theory of modular forms to derive
certain congruences of multipartitions modulo powers of primes.

Recall that an ordinary partition A of a nonnegative integer n is a non-
increasing sequence of positive integers whose sum is n, where n is called
the weight of A. The partition function p(n) is defined to be the number
of partitions of n. A multipartition of n with r components, as called by
Andrews [2], also referred to as an r-colored partition, (see, for example
[9,11]) is an r-tuple A = (AM ... A") of partitions whose weights sum to
n. The number of r-component multipartitions of n is denoted by p,(n).

Multipartitions arise in combinatorics, representation theory, and physics.
As pointed out by Fayers [12], the representations of the Ariki-Koike algebra
are naturally indexed by multiparititions. Bouwknegt [8] showed that the
Durfee square formulas of multipartitions are useful in deriving expressions



for the characters of modules of affine Lie algebras in terms of the universal
chiral partition functions.

For the partition function p(n), Ramanujan [25-28] proved that
p(An+ B) =0 (mod M), (1.1)

for all nonnegative integers n and for (A, B, M) = (5,4,5), (7,5,7) and
(11,6,11). In general, congruences of form (1.1) are called Ramanujan-type
congruences. For m =5 and 7, Watson [31] proved that

p(mFn 4+ Bnir) =0  (mod m™), (1.2)

where k > 1, B,x = 1/24 (mod m*), r, = k for m =5 and r, = |k/2] + 1
for m = 7. The case m = 5 in (1.2) was considered by Ramanujan, see
Berndt and Ono [7]. Atkin [3] showed that (1.2) is also valid for m = 11.
When M is not a power of 5,7 or 11, Atkin and O'Brien [5] discovered the
following congruence

p(11° - 13n+237) =0 (mod 13).

Using the theory of modular forms, Ono [23] proved that, for any prime
m > 5 and positive integer k, there is a positive proportion of primes ¢ such
that
mken + 1
b ( 24

holds for every nonnegative integer n coprime to . Weaver [32] gave an
algorithm for finding the values of ¢ in (1.3) for primes 13 < m < 31. Re-
cently, Folsom, Kent, and Ono [13] provided a very general theorem which
gives new generalized partition congruences systematically. In this frame-
work, they proved that if 5 < m < 31 is a prime and k is a positive integer,
then there exists an integer A,, (b1, bs, k) such that

mPin +1\ mPn + 1 &

) =0 (mod m) (1.3)

for all positive integers n and b; = by (mod 2) larger than some fixed integer.

Ramanujan-type congruences of p,.(n) have been extensively studied, see,
for example [2,4,14,15,17,19,22,30]. Gandhi [14] derived the following
congruences of p,.(n) by applying the identities of Euler and Jacobi

pe(bn+3) = 0 (mod 5), (1.5)
ps(1ln+4) = 0 (mod 11). (1.6)

With the aid of Sturm’s theorem [29], Eichhorn and Ono [11] computed an
upper bound C(A, B, r, m*) such that

pe(An 4+ B) =0 (mod mF)
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holds for all nonnegative integers n if and only if it is true for n < C(A4, B,r, m*).
For example, to prove (1.5), it suffices to check that it holds for n < 3. In
the same vain, one can prove (1.6) by verifying that it holds for n < 11. Tre-
neer [30] extended (1.3) to weakly holomorphic modular forms and showed
that, for any prime m > 5 and positive integers k, there is a positive propor-
tion of primes ¢ such that

mEetrn + 1
Pr\ — =

) 2o ot

for every nonnegative integer n coprime to ¢, where p, equals 1 if r is even and
3 if r is odd. Using the methods of Folsom, Kent, and Ono [13], Belmont et
al. [6, Corollary 1.2] generalized congruence (1.4) to the cases of p.(n). They
proved that if the rank of the corresponding space is no more than 1, then
there exists an integer Cy(r, by, by, k) such that

mbt + 7 mb2 +r
Dr ( 51 ) = Cy(r, by, ba, k)ps ( 51 ) (mod m*), (1.7)

where n is a positive integer and b; = by (mod 2) are large enough integers.

The aim of this paper is to study congruence properties of p,(n) modulo
powers of primes. For example, we shall derive the following two classes of

congruences
kp2uK—1
Dr m sl ) (mod m*), (1.8)
24
mFlin +r mbEe2Mtin 4
() o, (e nrr d mk), 1.9
p( 51 >p( 51 >(m0m) (1.9)

where r is an odd integer, ¢ is any prime other than 2,3 and m, and p is an
arbitrary positive integer, K and M are fixed positive integers, and n is a
positive integer coprime to /.

To derive congruences of p,.(n), one may consider the congruence proper-

ties of the generating functions of p,(n). For the case of ordinary partitions,
i.e., 7 = 1, Chua [10] showed that

S (m” i 1) " = (242", (242)  (mod m),  (1.10)

24
mn=—1 (mod 24)

where 7(z) is Dedekind’s eta function, -, is an integer depending on m,
and ¢,,(2) is a holomorphic modular form. Ahlgren and Boylan [1] extended
(1.10) to congruences modulo powers of primes, namely,

k
Fok(z) = Z P (M> q" = n(242)m k¢, 1 (242)  (mod m*),

24
mkn=—1 (mod 24)
(1.11)



where 7, x is an integer and ¢, x(2) is a holomorphic modular form.

In order to prove the existence of congruences of p,(n) modulo powers of
primes, Brown and Li [9] introduced the generating function

Z Dr (n;r) ¢"  (mod mF), (1.12)
(m)=-(5)

and showed that Gy, ,(z) is a modular form of level 576m?. Kilbourn [18]
used the generating function

Huo)= Y n (m”%j*)qn (mod m¥),  (113)

Gm,k,r(z)

mn=—r (mod 24)

and proved that H,,,(z) is a modular form of level 576m. However, due
to the large dimensions of the spaces My (To(576m?)) and M, (To(576m)),
it does not seem to be a feasible task to compute explicit bases. In other
words, to derive explicit congruence formulas of p,(n), it is desirable to find
a generating function of p.(n) that can be expressed in terms of modular
forms of a small level.

In this paper, we find the following extension of the generating function
F,.1(2), namely,

Foger(2) = > pr (M) q", (1.14)

24
mkn=—r (mod 24)

where ¢ = €*™#. We show that F}, s ,(z) is congruent to a weakly holomorphic
function modulo m*. More precisely, we find

Fpr(2) = 1(242) 750 gy, 1, (242) - (mod m"), (1.15)

where 7,5, is an integer and ¢, ,(2) is a holomorphic modular form in
My, ... (SL2(Z)). Noting that any element of M) . (SLz(Z)) can be ex-
pressed as a polynomial of the Eisenstein series Fy(z) and Eg(z), this enables
us to derive explicit congruences of the generating function of p,.(n) modulo

mkF.

If ¢mir(2) =0, then (1.15) yields a Ramanujan-type congruence as fol-
lows

k
D (%4““) =0 (mod m"). (1.16)

For example, it is easily checked that ¢512(2) = 0 and ¢1112(2) = 0, hence
Gandhi’s congruences (1.5) and (1.6) are the consequences of (1.16). We also
find

p2(5°n+23) =0 (mod 5%), (1.17)
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ps(11*n +81) =0 (mod 11%), (1.18)

since ¢5922(2) = 0 and ¢1125(2) = 0. For more congruences of form (1.16),
see Table 5.2.

On the other hand, if ¢,, 5 ,(2) # 0 in (1.15), we may use Yang’s method
[33] to find congruences of form (1.8). For example, since Fj23(z) is con-
gruent to a modular form in the invariant space Sa; 45 of Ts2 modulo 5%, we

have
(52 21399, 4+ 3
p3\ ————F7—

51 ) =0 (mod 5%).

2 Preliminaries

To make this paper self-contained, we recall some definitions and facts on
modular forms. In particular, we shall use the U-operator, the V-operator,
the Hecke operator, and the twist operator on modular forms.

Let k € %Z be an integer or a half-integer, N be a positive integer (with
4|N if k € Z) and x be a Nebentypus character. We use M (I'g(N), x) to de-
note the space of holomorphic modular forms on I'g(N) of weight k and char-
acter y. The corresponding space of cusp forms is denoted by Si(I'o(NV), x)-
If x is the trivial character, we shall write My (I'o(N)) and Sk(Io(N)) for
M (To(N), x) and Sg(I'o(IN), x), respectively. Moreover, we write SLy(Z) for
Co(1).

Let f(z) € Mg(T'o(N), x) with the following Fourier expansion at oo

f(z) =) aln)q",

n>0
where g = €™, Let us recall some operators acting on f(z).

Let
[ a b
T=\ ¢ da

be a 2 x 2 real matrix with positive determinant. The k slash operator |y is
defined by

(flk7)(2) = (det7)*?(cz + d) ™" f(72), (2.1)
where
_az+b
T d

In particular, let ¢ be an integer and

(0 -1
=\ 0o )



The Fricke involution Wy is given by

FIWe = flive (2.2)

The U-operator U, and V -operator V; are defined by

FEU =S altn)g" (23)

n>0

and

FEVe=>"a(n)g™. (2.4)

n>0

It is known that

WU = Eglgz:f(z))k ( ol ) . (2.5)

Let ¢ be a Dirichlet character. The 1-twist of f(z) is defined by

(f@¥)(z) =Y t(n)

n>0

Let £ be a prime and f(z) € M, 1 (I'o(N), x) be a modular form of half-
integral weight. The Hecke operator T)» is defined by

F(2)| T = Z% (a(e2n> + () (%) A=a(n) + ()P a (%)) q".
B (2.6)

We will use the following level reduction properties of the operators U,
and Tr, = U, + (2~ W, (see [20, Lemma 1] and [10, Lemma 2.2]).

Lemma 2.1 Let k € Z, N be a positive integer, x be a character modulo N,
and f(z) € Mp(To(N),x). Assume that € is a prime factor of N and x is
also a character modulo N/¢.

1. If 2| N, then f|Uy € My(To(N/0), ).

2. If N = { and x is the trivial character, then f|Try € M;(SLy(Z)).

In the proof of congruence (1.15) on the generating function F},, j .(z), we
need the following relation

MlH

n(vz) = €apealcz +d)2n(z), (2.7)



a b
d
Dedekind’s eta function as given by

= %H1—q . (2.8)

where v = ) € SLy(Z), €apea is a 24th root of unity, and n(z) is

As a special case, we have

(=1/2) = \/z/i - n(2). (2.9)

3 The generating function of p,(n) modulo m”

In this section, we derive the congruence of the generating function F,, x ,(2)
defined by (1.14), namely,

mFn +r n
Fokr(2) = Z Dr (T) q -
mkn=—r (mod 24)

Theorem 3.1 Let m > 5 be a prime, and let k and r be positive integers.
Then there exists a modular form ¢mp.(2) € My, (SL2(Z)) such that

Fogr(2) =n(242) 0 ¢y +(242)  (mod m"), (3.1)
where
mF—mk—1 m,k,r T - .
e if k is odd,
Mo = . (3.2)
(mF —mPyr — B2 f ks even,
24ﬁm,k,r -
Ym,k,r = Ta (33)

and B, i, is the unique integer in the range 0 < B, i, < mF congruent to
/24 modulo m*.

The first step of the proof of Theorem 3.1 is to express Fj, ;,(2) in terms
of a modular form. Consider the n-quotient

Sk (2) = <%> : (3.4)

which is a modular form in M.« _,), (Fo(mk), (E)kr> The following lemma
(mb—1)r

shows that F,, ;,(z) can be obtained from f,,;.(2) by applying the U-
operator and the V-operator.



Lemma 3.2 Let m > 5 be a prime, and let k and r be positive integers.

Then we have
(frner (2)|Upre) | Vou

Fopr(z)= 3.5
Proof. Since
o0 oo 1
pr(n)q" = ;
2 =1y
we find that
—m%_lr - 1 - mFnymFr
frgr(2) = @7 ] e - [T =™
n=1 (1 —4q ) n=1
2k 00 00
= ¢"m rzpr(n>qn H(l_qm n)mr
n=0 n=1
Applying the operator U+ to the above relation, we obtain
m 1 T nymkr
fmger (2)|Upe = q 2amF Zpr(mkn)q : H(l —q")"mr. (3.6)
n=0 n=1

Let 0 < By < m*—1 be the integer uniquely determined by the congruence

248,k = r (mod m*). Substituting n by n + % in the summation in

(3.6), we find

U o = k n+% . ad 1 _on ka
fm,kﬂ’(z)| mk — Zpr(m n+6m,k,r)q 24m H( q ) )

n=0 n=1

which belongs to Z[[g]]. So we deduce that

0 'r(m2k*1)+24ﬁm k,r (2)|[J

% na N )T E P m k. I'm k,r mk
E P (m n+ﬁ Ky )q 24mh | | 7 — '
- r m,k,r nOO_l(l qn)mkr

Applying the operator Vo4, we get

- n 24Bm ke, =T m,k,r\ % Um Va
S (i g = Ui ) [V
e n(24z)mr

(3.7)

Substituting 24n + 245’;2%% by n in (3.7), the sum on the left-hand side
becomes F, k. ,(2). This completes the proof. |

The second step of the proof of Theorem 3.1 is to derive a congruence
relation for f,, 1.,(2)|U,+ modulo m*.



Theorem 3.3 Let m > 5 be a prime, and let k and r be positive integers.
Then there ezists a modular form G, i, (2) € M (SL2(Z)) such that

W, k,r

Fonkr()|Upk = Gger(2)  (mod m*),

where R
%T if ks odd,
Wm k,r = k k—1
sm ’2’2” Ly if k is even.
Proof. Let
cpmk—1p
Ik (z)_ (n(z)m) k
" n(mz) ’
where
1 if k is odd,

C =
2 if k is even.

Since gm k(%) is an n-quotient, using the modular transformation property
due to Gordon, Hughes, and Newman [16,21], see also, [24, Theorem 1.64],
we deduce that

.\ kr
Gmr(2) € Mw (Fo(m)> <E> > .

Moreover, since (1 —¢")™ =1 —¢™ (mod m), we see that
n(z)™ =n(mz) (mod m),

which implies that
Gmrr(2) =1 (mod m"). (3.8)

Since fkr(2) € S k1) (Fo(mk), (E)kr>, using Lemma 2.1 repeatedly,
we obtain that ’

.\ kr
fm,k’,r(z)‘Umk—l € S(mkgl)r (Fo(m), <E> ) .

Thus, fikr(2)|Upk-1 © gmir(2) is a modular form on I'g(m) of the trivial
character and of weight

cp (mF —mF=Y)r N (mk —1)r
2 2

Wm k,r =
Invoking Lemma 2.1, we find that
Gm,k,r(z) = (fm,k,r(z)|Umk*1 ’ gm,k,r(z)) |Trm (39)

9



is a modular form in M, , (SLa(Z)).

To complete the proof of Theorem 3.3, it remains to show that

(frnker (N Upi=1 + Gk (2)) [ Trm = frngr(2)|Upe - (mod mk), (3.10)

where

W, k,r

Try, = Uy, +m™ 2 LW,

and the operator W), is given by (2.2). By congruence (3.8), we see that the
left-hand side of (3.10) equals

m,k,r 1

Fruder (Uit +m ™27 (frnir ()| Uit + G (2)) (Wi (mod m?F).

To prove (3.10), it suffices to show that

mkr 1

m (Fonker ()| U1+ G (2)) [Wiy =0 (mod m*). (3.11)

We only consider the case when k is odd. The case when k is even can be
dealt with in the same manner. In light of the transformation formula (2.9)
of the eta function, we find that

(m"—m"™" (m"—m"™"

k_yk—1y, (mFomF Ly, 1
gm,k,r(z)|Wm = m 4 (mz) 2 9m. kr (_—>

mz

k—1

e Bl (( mz/z’n(mz»m)m ’"

Vz/in(z)

_ m(mﬂ)?kilr(—z’) (m=t)m" = (U(mz)m>Mk r.
1(2)

Therefore, (3.11) can be deduced from the following congruence

(Sm —1)7"

m Y (fonkr(2) | Upp)| Wi, =0 (mod m"). (3.12)
By the property of the U-operator as in (2.5), we have

(3mk71)'r

m 1 foke(2)| Upet | Wi,

kll

(k+2)m r—(r+4)k 1 W
= g fmkr ’ (mk—1)r ( 0 mkfl ) ’Wm

2

k: 1 -1

(k+2)m 7" (r+4)k Mm _1
= Z fmkr (mk2 1)r ( mk 0 ) (313)

10



Using the transformation formula (2.9) of the eta function, (3.13) can be

written as
mk—l_l 1 mk r
k ( k—l) m — =
etk - e n(mpy Z)

n=0 n(%)
A mk—1_-1
mtr r mkr «
= m 2 kZQﬁ(Z) Z W{fl)T’ (314)
n=0 m-iz

where o, is a 24th root of unity.
For p # 0, we write 1 = m®t where m4t. For u =0, we set s = k — 1 and

t = 0. In either case, there exist integers b and d such that bt +dm*—*~! = —1.
It follows that

mu =1\ t d mst! b
mk 0 - mk:—s—l —b 0 mk:—s—l :

Applying the corresponding slash operator to 7(z), we obtain that

mpz — 1Y\ o1 1 (mfTlz b
A A T

where €, is a 24th root of unity. Since the coefficients of the Fourier expansion
of 11(2) at oo are integers and the coefficient of the term with the lowest degree

mF—s—
is 1, the Fourier coefficients of each term in (3.14) are divisible by m~ 2 Tk

in the ring Z[(s4]. Clearly, 0 < s < k — 1. Thus we have

ko __ 1 k k? k __ k‘
%r—k>m r—k>2 k> k
for m > 5 and k& > 1. Hence the Fourier coefficients of each term in (3.14)
are divisible by m*. So we arrive at (3.12). This completes the proof. |

We are now in a position to finish the proof of Theorem 3.1.

Proof of Theorem 3.1. By Theorem 3.3, there exists a modular form G, . (2) €

M, ., (SLa(Z)) such that
Fonder ()| Upe = Grur(2)  (mod m"). (3.15)
Let
¢m,k,r(2’) = %7
A(z) 2

where A(z) = n(z)*! is Ramanujan’s A-function. In the proof of Lemma 3.2,
we have shown that

_ - k n+—r(m2k_1)+i4ﬁm’k’r A s . .n mkr
fm,k,r(z>|Umk - Zpr(m n+ ﬁm,k,r>q 24m H(l q ) s

n=0 n=1

11



which implies that the order of the Fourier expansion of f, x,(2)|U,.» at co

is at least
T(m2k - 1) + 246777,,/4},7‘ o mkr + ’ym,k,r

24mk 24

Thus ¢, k. (2) is a modular form in M) SL5(Z)). Combining (3.15) and
Lemma 3.2, we conclude that

m,k,r(

(265 ) Ve
Fnir(2) = n(24z)m*r
= n(242)" k" 10 (242)  (mod mF),
as required. 1

4 Congruences of p,.(n) modulo m*

In this section, we apply Theorem 3.1 on the congruence relation for the
generating function F,,, x(z) and Yang’s method [33] to derive two classes of
congruences of p,(n) modulo m*.

Let
Sy = {n(242)7¢(242): ¢(2) € MA(SL2(Z))}-

Yang [33] showed that when «y is an odd integer such that 0 < v < 24 and A is
anonnegative even integer, S,y is an invariant subspace of Sx;.,/2(I'o(576), x12)
under the action of the Hecke algebra. More precisely, for all primes ¢ # 2,3
and all f € S, \, we have f|T)2 € S, . By the invariant property of S, », we
obtain two classes of congruences of p,(n) modulo m*.

Theorem 4.1 Let m > 5 be a prime, k be a positive integer, r be an odd
positive integer less than m*, and ¢ be a prime different from 2,3, and m.
Then there exists an explicitly computable positive integer K such that

k€2uK71
o (m . ””) =0 (mod m") (4.1)

for all positive integers p and all positive integers n relatively prime to £.
There is also a positive integer M such that

mklin + r mk M tin 4o L
— | = - 4.2
b (T ) = (M) mednt) )

for all nonnegative integers i and n.

12



Proof. According to congruence relation (3.1), the generating function £, x ,(2)
is congruent to a modular form in S, . NZ[[q]], where Ay, x» and Yy, g
are integers as given in (3.2) and (3.3). It is known that S, , ... NZ[[q]]
has a basis {f1(2),..., fa(2)} of the form

fi(2) = Ea(2)" Ee(2)" A(2)",

where u;,v; and w; are nonnegative integers satisfying 4u; + 6v; + 12w; =
Ak + Ymgr/2 (for more details, see [24]). Suppose that

fi(2) = Y a(n)g™,
n>0
where 1 =1,2,...,d.
To prove (4.1), it suffices to show that there exists a positive integer K
such that for any 1 <1 < d,
a; (") =0 (mod m*) (4.3)

for all n coprime to /.

From the relation ”ym,kmmk = 248, — T, one sees that v, ., and r have
the same parity. Since r < m* is odd, we have 0 < Yy, 1., < 24, and hence

S oA, 18 Invariant under the Hecke operator Ty2. So there exists a d x d
matrix A such that
fi fi
: Tr=A]| (4.4)
Ja Jfa

A 1
X = .
_£7m,k,r+2>\m,k,r_2[d O

Using the property of the basis {fi(2),..., fa(z)} under the action of the

U-operator as given by Yang [33, Corollary 3.4], we obtain
fi fi G fi
U =As | | +B |t [+ ]| Ve, (4.5)
Ja Ja 9d Ja

where s is a positive integer, ¢; = f; ® (?)’ and A,, By, and Cy are d x d
matrices given by

(As A )=(1s 0)X°, (4.6)

mk,r—1)/2
Bs —= —g/\Tn,k,r‘F('Ym,k,r*B)/z ((_1)(/y 2 )/ 12> Asfla

13



Cs — _£7m,k,r+2)\m,k,r_2A87l.

Since ged(m, £) = 1, the matrix X (mod mF) is invertible in the ring M
consisting of 2d x 2d matrices over Z,,x. By the finiteness of M, we see that
there exist integers a > b such that X and X° are linearly dependent over
Lo, i.€., there exists a constant ¢ € Z,x such that X* = ¢X° (mod m").
Thus XX = clyy (mod m*), where K = a — b. In view of the relation

( Ak Auk—a ) = c“( I; 0 ) (mod mk),
we find that A1 =0 (mod m*). Hence, from (4.5) it follows that

S 9 N1
U =B | r |+ Cuka | 0 || Ve (mod mb).

Ja 9a Ja
Applying the U-operator U, and observing that

9ilUr = fi ® (-) ’ U =0,

4
relation (4.5) leads to the following congruence
S S
UV = Cuka |2 || Ve (mod mP),
Ja Ja
namely,

Z a; (M5 )" = Z a;(n)¢™  (mod m"),

n>0 n>0
which implies (4.3).
We now turn to the proof of congruence (4.2). By the finiteness of M,

we see that there exists a positive integer M such that X = Iy (mod m*).
Thus matrix equation (4.6) reduces to the following congruence

( Ay Ay ) = ( I; O ) (mod m*).

It follows that Ay, = I; (mod m*) and By = Cy = 0 (mod m*). Thus,
relation (4.5) implies

fi fi

: U = : (mod m").

Ja Ja
So the coefficient of ¢" is congruent to the coefficient of ¢ "in f;(z) modulo
m* for all i and n. Since F,;.(2) is a linear combination of f;(z) with integer
coefficients, we obtain congruence (4.2). This completes the proof. |
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5 Examples

In this section, we present some consequences of Theorem 3.1 and Theo-
rem 4.1. We first give some examples for the congruences of the generating
function F,, . (z) of p.(n).

Example 5.1 By Theorem 3.1, we find
Frer(2) = n(242) 0 g (242)  (mod m*),

where Y, k. 1 an integer, G i.r(2) is a polynomial of A(z) and the Eisenstein
series E4(z) and Eg(z). Table 5.1 gives the list of explicit expressions of
()b b1 0(2) form <19 and 2 <r < 7.

11 | 2n(2)° Ey(2)?

13 | 8n(2)*

17 | 5n(2)"Ey(2)?

19 | n(2)1°(14E4(2)? + 12A(2))

1110

13 | n(2)°(4E4(2)® + 6A(2))

1710

19 | n(2)(2E4(2)3 + 3Es(2) A(2))
T 5 [ () 'Enle)

710

11| n(2)*(3E4(2)" + 8E4(2)A(2))

13 | n(2)®(7TEy(2)® + 4A(2))

17 | n(2)*(6E4(2)" + 11E4(2)*A(2) + 4E4(2)A(2)?)

19 | n(2)® (16 E4(2)® + 18E4(2)2A(2) + 2A(2)?)
5 5| n(z)" Ea(2)?

7| n(z)PEg(2)

1110

13 | () BB + 1B AG) + 5A()?)

17 | () (6B + 16E,(2)PA(2) + 4E4(2°A(2)?)

19 | n(2)(5FEs(2)" + 15Fs(2)°A(2) + 16 E(2)3A(2)?)
6 510

7| n(2)°(6E4(2)° + 6A(2))

1| (=) (10B,(2)0 + By(=)°A(2))

13 | n(2)"¥(TE4(2)® + 8E4(2)3A(2) + 6A(2)?)

15



17 | n(2)"B(3E4(2)? + 3E4(2)°A(2) + 5E4(2)3A(2)?)
19 | n(2)8(6E4(2)'? + Ey(2)°A(2) + 14A(2)%)
7 510
7| n(z)" Es(2)°
1110
13 | n(2)°(10E4(2)? + 6 E4(2)°A(2) + 9E4(2)2A(2)? + 11A(2)3)
g g(z)(7E4(z)13 +2E4(2)1°A(2) + Ey(2)"A(2)? + 3E4(2)*A(2)?)

Table 5.1: Explicit congruences derived from Theorem 3.1.

Example 5.2 Let 0 < 3 < mF be an integer with 3 = r/24 (mod m*).
If ¢mpr(z) = 0 (mod m*), using Theorem 3.1, we obtain the following
Ramanujan-type congruences of multipartition functions

pe(mfn4+B)=0 (mod m"). (5.1)
The values of m and B forr <9 and k = 1,2 are given in Table 5.2.

O 0| || O =W DN —| =3

Table 5.2: Ramanujan-type congruences of multipartitions.

It can be seen that Table 5.2 contains the Ramanujan congruences (1.1)
of p(n) modulo 5,7 and 11, as well as Gandhi’s congruences (1.5) for ps(n)
and (1.6) for ps(n). The congruences marked by * in the table seem to be
new.

The following examples demonstrate how to derive certain congruences
of p.(n) with the aid of Theorem 4.1.

Example 5.3 For the values of ¢ and K, as given in Table 5.3, we have

2uk -1
. (7 ¢ - ”+3) =0 (mod7) (5.2)

for all positive integers p and all positive integers n not divisible by ¢.

16



¢(5 11 13 17 19 23 29 31 37 41 43 47 53 59
a6 4 0 4 3 6 2 5 3 0 0 3 5 5
K6 7 2 6 8 7 7 8 3 2 2 8 3 8

Table 5.3: Eigenvalues a; of F7; 3(2) acted by Tj2 and the corresponding K.

Proof. By Theorem 3.1, we find
Fr13(2) = 3n(242)°Es(242)  (mod 7).

Since 1(242)® Eg(24z) belongs to the 1-dimensional space S, for any prime
¢ £ 23,7, there exists an integer a, such that

F7’173(2)|T52 = a,gF7’173(Z) (mod 7)
Inspecting the proof of Theorem 4.1, we obtain the corresponding orders K,
for which congruence (5.2) holds. ]
Example 5.4 We have

52 . 13199 3
i (P Ly a5

for all integers n coprime to 13 and

52 -13in + 3 52 .13%00+ip 13
— | = d 52
P3 ( Y ) D3 ( o1 ) (mod 57)

for all nonnegative integers n and i.

Proof. By Theorem 3.1, F5 5 3(%) is congruent to a modular form in the space
So1,48 of dimension 5. Setting

fi = n(242) B,(242)307 9 A(242) 1

for 1 <1i < 5. Clearly, fi, fa,..., fs form a Z-basis of Sy 45 N Z[[g]]. Let A
be the matrix of Tj» with respect to this basis. By computing the first five
Fourier coefficients of f; and f;|T132 and equating the Fourier coefficients of

both sides of (4.4), we find

17 21 18 3 3
0 19 5 5 5

A= 0 0 22 4 19 (mod 57),
0 0 0 22 10
0 0 0 0 12

with the corresponding orders K = M = 100. Setting ¢ = 1 in Theorem 4.1,
we complete the proof. |

Below are two more examples for p3(n) and ps(n) modulo 72. The proofs
are analogous to the proof of the above example, and hence are omitted.
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Example 5.5 We have

7211291 4+ 3
Ps3

o )zo (mod 7%)

for all positive integers n coprime to 7 and

72 11'n+ 3 72116, 13
— | = d 7?
P3 ( 9 > D3 ( o (mod 77)

for all nonnegative integers n and i.

Example 5.6 We have

72 . 17195TL + 5
Y2 Y

) =0 (mod 7%)

for all positive integers n coprime to 17 and

7 1Tn+5\ 721788 i 4+ 5 9
Ps (T) 5( o ) (mod 7%)

for all nonnegative integers n and i.
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