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Abstract. Let pr(n) denote the number of r-component multipartitions
of n, and let S
,� be the space spanned by �(24z)
�(24z), where �(z) is
the Dedekind’s eta function and �(z) is a holomorphic modular form in

M�(SL2(ℤ)). In this paper, we show that the generating function of pr(
mkn+r

24
)

with respect to n is congruent to a function in the space S
,� modulo mk.
As special cases, this relation leads to many well known congruences in-
cluding the Ramanujan congruences of p(n) modulo 5, 7, 11 and Gandhi’s
congruences of p2(n) modulo 5 and p8(n) modulo 11. Furthermore, using
the invariance property of S
,� under the Hecke operator Tℓ2 , we obtain two
classes of congruences pertaining to the mk-adic property of pr(n).

AMS Classification. 05A17, 11F33, 11P83

Keywords. modular form, partition, multipartition, Ramanujan-type con-
gruence

1 Introduction

The objective of this paper is to use the theory of modular forms to derive
certain congruences of multipartitions modulo powers of primes.

Recall that an ordinary partition � of a nonnegative integer n is a non-
increasing sequence of positive integers whose sum is n, where n is called
the weight of �. The partition function p(n) is defined to be the number
of partitions of n. A multipartition of n with r components, as called by
Andrews [2], also referred to as an r-colored partition, (see, for example
[9, 11]) is an r-tuple � = (�(1), . . . , �(r)) of partitions whose weights sum to
n. The number of r-component multipartitions of n is denoted by pr(n).

Multipartitions arise in combinatorics, representation theory, and physics.
As pointed out by Fayers [12], the representations of the Ariki–Koike algebra
are naturally indexed by multiparititions. Bouwknegt [8] showed that the
Durfee square formulas of multipartitions are useful in deriving expressions
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for the characters of modules of affine Lie algebras in terms of the universal
chiral partition functions.

For the partition function p(n), Ramanujan [25–28] proved that

p(An +B) ≡ 0 (mod M), (1.1)

for all nonnegative integers n and for (A,B,M) = (5, 4, 5), (7, 5, 7) and
(11, 6, 11). In general, congruences of form (1.1) are called Ramanujan-type
congruences. For m = 5 and 7, Watson [31] proved that

p(mkn + �m,k) ≡ 0 (mod mrk), (1.2)

where k ≥ 1, �m,k ≡ 1/24 (mod mk), rk = k for m = 5 and rk = ⌊k/2⌋ + 1
for m = 7. The case m = 5 in (1.2) was considered by Ramanujan, see
Berndt and Ono [7]. Atkin [3] showed that (1.2) is also valid for m = 11.
When M is not a power of 5, 7 or 11, Atkin and O’Brien [5] discovered the
following congruence

p(113 ⋅ 13n+ 237) ≡ 0 (mod 13).

Using the theory of modular forms, Ono [23] proved that, for any prime
m ≥ 5 and positive integer k, there is a positive proportion of primes ℓ such
that

p

(

mkℓ3n+ 1

24

)

≡ 0 (mod m) (1.3)

holds for every nonnegative integer n coprime to ℓ. Weaver [32] gave an
algorithm for finding the values of ℓ in (1.3) for primes 13 ≤ m ≤ 31. Re-
cently, Folsom, Kent, and Ono [13] provided a very general theorem which
gives new generalized partition congruences systematically. In this frame-
work, they proved that if 5 ≤ m ≤ 31 is a prime and k is a positive integer,
then there exists an integer Am(b1, b2, k) such that

p

(

mb1n + 1

24

)

≡ Am(b1, b2, k)p

(

mb2n+ 1

24

)

(mod mk) (1.4)

for all positive integers n and b1 ≡ b2 (mod 2) larger than some fixed integer.

Ramanujan-type congruences of pr(n) have been extensively studied, see,
for example [2, 4, 14, 15, 17, 19, 22, 30]. Gandhi [14] derived the following
congruences of pr(n) by applying the identities of Euler and Jacobi

p2(5n+ 3) ≡ 0 (mod 5), (1.5)

p8(11n+ 4) ≡ 0 (mod 11). (1.6)

With the aid of Sturm’s theorem [29], Eichhorn and Ono [11] computed an
upper bound C(A,B, r,mk) such that

pr(An +B) ≡ 0 (mod mk)

2



holds for all nonnegative integers n if and only if it is true for n ≤ C(A,B, r,mk).
For example, to prove (1.5), it suffices to check that it holds for n ≤ 3. In
the same vain, one can prove (1.6) by verifying that it holds for n ≤ 11. Tre-
neer [30] extended (1.3) to weakly holomorphic modular forms and showed
that, for any prime m ≥ 5 and positive integers k, there is a positive propor-
tion of primes ℓ such that

pr

(

mkℓ�rn+ r

24

)

≡ 0 (mod m)

for every nonnegative integer n coprime to ℓ, where �r equals 1 if r is even and
3 if r is odd. Using the methods of Folsom, Kent, and Ono [13], Belmont et
al. [6, Corollary 1.2] generalized congruence (1.4) to the cases of pr(n). They
proved that if the rank of the corresponding space is no more than 1, then
there exists an integer Cℓ(r, b1, b2, k) such that

pr

(

mb1 + r

24

)

≡ Cℓ(r, b1, b2, k)pr

(

mb2 + r

24

)

(mod mk), (1.7)

where n is a positive integer and b1 ≡ b2 (mod 2) are large enough integers.

The aim of this paper is to study congruence properties of pr(n) modulo
powers of primes. For example, we shall derive the following two classes of
congruences

pr

(

mkℓ2�K−1n + r

24

)

≡ 0 (mod mk), (1.8)

pr

(

mkℓin+ r

24

)

≡ pr

(

mkℓ2M+in+ r

24

)

(mod mk), (1.9)

where r is an odd integer, ℓ is any prime other than 2, 3 and m, and � is an
arbitrary positive integer, K and M are fixed positive integers, and n is a
positive integer coprime to ℓ.

To derive congruences of pr(n), one may consider the congruence proper-
ties of the generating functions of pr(n). For the case of ordinary partitions,
i.e., r = 1, Chua [10] showed that

∑

mn≡−1 (mod 24)

p

(

mn + 1

24

)

qn ≡ �(24z)
m�m(24z) (mod m), (1.10)

where �(z) is Dedekind’s eta function, 
m is an integer depending on m,
and �m(z) is a holomorphic modular form. Ahlgren and Boylan [1] extended
(1.10) to congruences modulo powers of primes, namely,

Fm,k(z) =
∑

mkn≡−1 (mod 24)

p

(

mkn+ 1

24

)

qn ≡ �(24z)
m,k�m,k(24z) (mod mk),

(1.11)
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where 
m,k is an integer and �m,k(z) is a holomorphic modular form.

In order to prove the existence of congruences of pr(n) modulo powers of
primes, Brown and Li [9] introduced the generating function

Gm,k,r(z) ≡
∑

( n
m)=−(−r

m )

pr

(

n+ r

24

)

qn (mod mk), (1.12)

and showed that Gm,k,r(z) is a modular form of level 576m3. Kilbourn [18]
used the generating function

Hm,k,r(z) ≡
∑

mn≡−r (mod 24)

pr

(

mn + r

24

)

qn (mod mk), (1.13)

and proved that Hm,k,r(z) is a modular form of level 576m. However, due
to the large dimensions of the spaces M�(Γ0(576m

3)) and M�(Γ0(576m)),
it does not seem to be a feasible task to compute explicit bases. In other
words, to derive explicit congruence formulas of pr(n), it is desirable to find
a generating function of pr(n) that can be expressed in terms of modular
forms of a small level.

In this paper, we find the following extension of the generating function
Fm,k(z), namely,

Fm,k,r(z) =
∑

mkn≡−r (mod 24)

pr

(

mkn+ r

24

)

qn, (1.14)

where q = e2�iz. We show that Fm,k,r(z) is congruent to a weakly holomorphic
function modulo mk. More precisely, we find

Fm,k,r(z) ≡ �(24z)
m,k,r�m,k,r(24z) (mod mk), (1.15)

where 
m,k,r is an integer and �m,k,r(z) is a holomorphic modular form in
M�m,k,r

(SL2(ℤ)). Noting that any element of M�m,k,r
(SL2(ℤ)) can be ex-

pressed as a polynomial of the Eisenstein series E4(z) and E6(z), this enables
us to derive explicit congruences of the generating function of pr(n) modulo
mk.

If �m,k,r(z) = 0, then (1.15) yields a Ramanujan-type congruence as fol-
lows

pr

(

mkn+ r

24

)

≡ 0 (mod mk). (1.16)

For example, it is easily checked that �5,1,2(z) = 0 and �11,1,2(z) = 0, hence
Gandhi’s congruences (1.5) and (1.6) are the consequences of (1.16). We also
find

p2(5
2n+ 23) ≡ 0 (mod 52), (1.17)
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p8(11
2n+ 81) ≡ 0 (mod 112), (1.18)

since �5,2,2(z) = 0 and �11,2,8(z) = 0. For more congruences of form (1.16),
see Table 5.2.

On the other hand, if �m,k,r(z) ∕= 0 in (1.15), we may use Yang’s method
[33] to find congruences of form (1.8). For example, since F5,2,3(z) is con-
gruent to a modular form in the invariant space S21,48 of T52 modulo 52, we
have

p3

(

52 ⋅ 13199n + 3

24

)

≡ 0 (mod 52).

2 Preliminaries

To make this paper self-contained, we recall some definitions and facts on
modular forms. In particular, we shall use the U -operator, the V -operator,
the Hecke operator, and the twist operator on modular forms.

Let k ∈ 1
2
ℤ be an integer or a half-integer, N be a positive integer (with

4∣N if k ∕∈ ℤ) and � be a Nebentypus character. We use Mk(Γ0(N), �) to de-
note the space of holomorphic modular forms on Γ0(N) of weight k and char-
acter �. The corresponding space of cusp forms is denoted by Sk(Γ0(N), �).
If � is the trivial character, we shall write Mk(Γ0(N)) and Sk(Γ0(N)) for
Mk(Γ0(N), �) and Sk(Γ0(N), �), respectively. Moreover, we write SL2(ℤ) for
Γ0(1).

Let f(z) ∈Mk(Γ0(N), �) with the following Fourier expansion at ∞

f(z) =
∑

n≥0

a(n)qn,

where q = e2�iz. Let us recall some operators acting on f(z).

Let


 =

(

a b
c d

)

be a 2 × 2 real matrix with positive determinant. The k slash operator ∣k is
defined by

(f ∣k
)(z) = (det 
)k/2(cz + d)−kf(
z), (2.1)

where


z =
az + b

cz + d
.

In particular, let ℓ be an integer and


ℓ =

(

0 −1
ℓ 0

)

.
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The Fricke involution Wℓ is given by

f ∣Wℓ = f ∣k
ℓ. (2.2)

The U-operator Uℓ and V -operator Vℓ are defined by

f(z)∣Uℓ =
∑

n≥0

a(ℓn)qn (2.3)

and
f(z)∣Vℓ =

∑

n≥0

a(n)qℓn. (2.4)

It is known that

f(z)∣kUℓ = ℓ
k
2
−1

ℓ−1
∑

�=0

f(z)
∣

∣

∣

k

(

1 �
0 ℓ

)

. (2.5)

Let  be a Dirichlet character. The  -twist of f(z) is defined by

(f ⊗  )(z) =
∑

n≥0

 (n)a(n)qn.

Let ℓ be a prime and f(z) ∈M�+ 1
2
(Γ0(N), �) be a modular form of half-

integral weight. The Hecke operator Tℓ2 is defined by

f(z)∣Tℓ2 =
∑

n≥0

(

a(ℓ2n) + �(ℓ)

(

(−1)�n

ℓ

)

ℓ�−1a(n) + �(ℓ2)ℓ2�−1a
( n

ℓ2

)

)

qn.

(2.6)

We will use the following level reduction properties of the operators Uℓ

and Trℓ = Uℓ + ℓ
k
2
−1Wℓ (see [20, Lemma 1] and [10, Lemma 2.2]).

Lemma 2.1 Let k ∈ ℤ, N be a positive integer, � be a character modulo N ,

and f(z) ∈ Mk(Γ0(N), �). Assume that ℓ is a prime factor of N and � is

also a character modulo N/ℓ.

1. If ℓ2 ∣N , then f ∣Uℓ ∈ Mk(Γ0(N/ℓ), �).

2. If N = ℓ and � is the trivial character, then f ∣Trℓ ∈Mk(SL2(ℤ)).

In the proof of congruence (1.15) on the generating function Fm,k,r(z), we
need the following relation

�(
z) = �a,b,c,d(cz + d)
1
2 �(z), (2.7)
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where 
 =

(

a b
c d

)

∈ SL2(ℤ), �a,b,c,d is a 24th root of unity, and �(z) is

Dedekind’s eta function as given by

�(z) = q
1
24

∞
∏

n=1

(1− qn). (2.8)

As a special case, we have

�(−1/z) =
√

z/i ⋅ �(z). (2.9)

3 The generating function of pr(n) modulo mk

In this section, we derive the congruence of the generating function Fm,k,r(z)
defined by (1.14), namely,

Fm,k,r(z) =
∑

mkn≡−r (mod 24)

pr

(

mkn+ r

24

)

qn.

Theorem 3.1 Let m ≥ 5 be a prime, and let k and r be positive integers.

Then there exists a modular form �m,k,r(z) ∈M�m,k,r
(SL2(ℤ)) such that

Fm,k,r(z) ≡ �(24z)
m,k,r�m,k,r(24z) (mod mk), (3.1)

where

�m,k,r =

{

mk−mk−1

2
r −


m,k,r+r

2
if k is odd,

(mk −mk−1)r −

m,k,r+r

2
if k is even,

(3.2)


m,k,r =
24�m,k,r − r

mk
, (3.3)

and �m,k,r is the unique integer in the range 0 ≤ �m,k,r < mk congruent to

r/24 modulo mk.

The first step of the proof of Theorem 3.1 is to express Fm,k,r(z) in terms
of a modular form. Consider the �-quotient

fm,k,r(z) =

(

�(mkz)m
k

�(z)

)r

, (3.4)

which is a modular form in M (mk
−1)r
2

(

Γ0(m
k),
(

⋅

m

)kr
)

. The following lemma

shows that Fm,k,r(z) can be obtained from fm,k,r(z) by applying the U -
operator and the V -operator.
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Lemma 3.2 Let m ≥ 5 be a prime, and let k and r be positive integers.

Then we have

Fm,k,r(z) =
(fm,k,r(z)∣Umk) ∣V24

�(24z)mkr
. (3.5)

Proof. Since
∞
∑

n=0

pr(n)q
n =

∞
∏

n=1

1

(1− qn)r
,

we find that

fm,k,r(z) = q
m2k

−1
24

r

∞
∏

n=1

1

(1− qn)r
⋅

∞
∏

n=1

(1− qm
kn)m

kr

= q
m2k

−1
24

r
∞
∑

n=0

pr(n)q
n ⋅

∞
∏

n=1

(1− qm
kn)m

kr.

Applying the operator Umk to the above relation, we obtain

fm,k,r(z)∣Umk = q
m2k

−1

24mk
r

∞
∑

n=0

pr(m
kn)qn ⋅

∞
∏

n=1

(1− qn)m
kr. (3.6)

Let 0 ≤ �m,k,r ≤ mk−1 be the integer uniquely determined by the congruence

24�m,k,r ≡ r (mod mk). Substituting n by n +
�m,k,r

mk in the summation in
(3.6), we find

fm,k,r(z)∣Umk =
∞
∑

n=0

pr(m
kn + �m,k,r)q

n+
r(m2k

−1)+24�m,k,r

24mk ⋅
∞
∏

n=1

(1− qn)m
kr,

which belongs to ℤ[[q]]. So we deduce that

∞
∑

n=0

pr(m
kn+ �m,k,r)q

n+
r(m2k

−1)+24�m,k,r

24mk =
fm,k,r(z)∣Umk

∏∞

n=1(1− qn)mkr
.

Applying the operator V24, we get

∞
∑

n=0

pr(m
kn + �m,k,r)q

24n+
24�m,k,r−r

mk =
(fm,k,r(z)∣Umk) ∣V24

�(24z)mkr
. (3.7)

Substituting 24n +
24�m,k,r−r

mk by n in (3.7), the sum on the left-hand side
becomes Fm,k,r(z). This completes the proof.

The second step of the proof of Theorem 3.1 is to derive a congruence
relation for fm,k,r(z)∣Umk modulo mk.
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Theorem 3.3 Let m ≥ 5 be a prime, and let k and r be positive integers.

Then there exists a modular form Gm,k,r(z) ∈Mwm,k,r
(SL2(ℤ)) such that

fm,k,r(z)∣Umk ≡ Gm,k,r(z) (mod mk),

where

wm,k,r =

{

2mk−mk−1−1
2

r if k is odd,

3mk−2mk−1−1
2

r if k is even.

Proof. Let

gm,k,r(z) =

(

�(z)m

�(mz)

)ck mk−1r

,

where

ck =

⎧

⎨

⎩

1 if k is odd,

2 if k is even.

Since gm,k,r(z) is an �-quotient, using the modular transformation property
due to Gordon, Hughes, and Newman [16, 21], see also, [24, Theorem 1.64],
we deduce that

gm,k,r(z) ∈M ck (mk
−mk−1)r

2

(

Γ0(m),
( ⋅

m

)kr
)

.

Moreover, since (1− qn)m ≡ 1− qmn (mod m), we see that

�(z)m ≡ �(mz) (mod m),

which implies that
gm,k,r(z) ≡ 1 (mod mk). (3.8)

Since fm,k,r(z) ∈ S (mk
−1)r
2

(

Γ0(m
k),
(

⋅

m

)kr
)

, using Lemma 2.1 repeatedly,

we obtain that

fm,k,r(z)∣Umk−1 ∈ S (mk
−1)r
2

(

Γ0(m),
( ⋅

m

)kr
)

.

Thus, fm,k,r(z)∣Umk−1 ⋅ gm,k,r(z) is a modular form on Γ0(m) of the trivial
character and of weight

wm,k,r =
ck (m

k −mk−1)r

2
+

(mk − 1)r

2
.

Invoking Lemma 2.1, we find that

Gm,k,r(z) = (fm,k,r(z)∣Umk−1 ⋅ gm,k,r(z)) ∣Trm (3.9)
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is a modular form in Mwm,k,r
(SL2(ℤ)).

To complete the proof of Theorem 3.3, it remains to show that

(fm,k,r(z)∣Umk−1 ⋅ gm,k,r(z)) ∣Trm ≡ fm,k,r(z)∣Umk (mod mk), (3.10)

where
Trm = Um +m

wm,k,r
2

−1Wm,

and the operator Wm is given by (2.2). By congruence (3.8), we see that the
left-hand side of (3.10) equals

fm,k,r(z)∣Umk +m
wm,k,r

2
−1 (fm,k,r(z)∣Umk−1 ⋅ gm,k,r(z)) ∣Wm (mod mk).

To prove (3.10), it suffices to show that

m
wm,k,r

2
−1 (fm,k,r(z)∣Umk−1 ⋅ gm,k,r(z)) ∣Wm ≡ 0 (mod mk). (3.11)

We only consider the case when k is odd. The case when k is even can be
dealt with in the same manner. In light of the transformation formula (2.9)
of the eta function, we find that

gm,k,r(z)∣Wm = m
(mk

−mk−1)r
4 (mz)−

(mk
−mk−1)r

2 gm,k,r

(

−
1

mz

)

= m−
(mk

−mk−1)r
4 z−

(mk
−mk−1)r

2

(

(
√

mz/i �(mz))m
√

z/i �(z)

)mk−1r

= m
(m+1)mk−1r

4 (−i)
(m−1)mk−1r

2

(

�(mz)m

�(z)

)mk−1r

.

Therefore, (3.11) can be deduced from the following congruence

m
(3mk

−1)r
4

−1 (fm,k,r(z)∣Umk−1)∣Wm ≡ 0 (mod mk). (3.12)

By the property of the U -operator as in (2.5), we have

m
(3mk

−1)r
4

−1 fm,k,r(z)∣Umk−1 ∣Wm

= m
(k+2)mkr−(r+4)k

4

mk−1−1
∑

�=0

fm,k,r(z)
∣

∣

∣

(mk
−1)r
2

(

1 �
0 mk−1

)

∣

∣

∣
Wm

= m
(k+2)mkr−(r+4)k

4

mk−1−1
∑

�=0

fm,k,r(z)∣ (mk
−1)r
2

(

�m −1
mk 0

)

. (3.13)
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Using the transformation formula (2.9) of the eta function, (3.13) can be
written as

m
mkr
2

−kz−
(mk

−1)r
2

mk−1−1
∑

�=0

(

�(m�− 1
z
)m

k

�(m�z−1
mkz

)

)r

= m
mkr
2

−kz
r
2 �(z)m

kr
mk−1−1
∑

�=0

��

�(m�z−1
mkz

)r
, (3.14)

where �� is a 24th root of unity.

For � ∕= 0, we write � = mst where m ∤ t. For � = 0, we set s = k− 1 and
t = 0. In either case, there exist integers b and d such that bt+dmk−s−1 = −1.
It follows that

(

m� −1
mk 0

)

=

(

t d
mk−s−1 −b

)(

ms+1 b
0 mk−s−1

)

.

Applying the corresponding slash operator to �(z), we obtain that

�

(

m�z − 1

mkz

)

= ��m
s+1
2 z

1
2 �

(

ms+1z + b

mk−s−1

)

,

where �� is a 24th root of unity. Since the coefficients of the Fourier expansion
of �(z) at∞ are integers and the coefficient of the term with the lowest degree

is 1, the Fourier coefficients of each term in (3.14) are divisible by m
mk

−s−1
2

r−k

in the ring ℤ[�24]. Clearly, 0 ≤ s ≤ k − 1. Thus we have

mk − s− 1

2
r − k ≥

mk − k

2
r − k ≥

mk − k

2
− k ≥ k

for m ≥ 5 and k ≥ 1. Hence the Fourier coefficients of each term in (3.14)
are divisible by mk. So we arrive at (3.12). This completes the proof.

We are now in a position to finish the proof of Theorem 3.1.

Proof of Theorem 3.1. By Theorem 3.3, there exists a modular formGm,k,r(z) ∈
Mwm,k,r

(SL2(ℤ)) such that

fm,k,r(z)∣Umk ≡ Gm,k,r(z) (mod mk). (3.15)

Let

�m,k,r(z) =
Gm,k,r(z)

Δ(z)
mkr+
m,k,r

24

,

where Δ(z) = �(z)24 is Ramanujan’s Δ-function. In the proof of Lemma 3.2,
we have shown that

fm,k,r(z)∣Umk =
∞
∑

n=0

pr(m
kn + �m,k,r)q

n+
r(m2k

−1)+24�m,k,r

24mk ⋅
∞
∏

n=1

(1− qn)m
kr,

11



which implies that the order of the Fourier expansion of fm,k,r(z)∣Umk at ∞
is at least

r(m2k − 1) + 24�m,k,r

24mk
=
mkr + 
m,k,r

24
.

Thus �m,k,r(z) is a modular form in M�m,k,r
(SL2(ℤ)). Combining (3.15) and

Lemma 3.2, we conclude that

Fm,k,r(z) ≡

(

Δ(z)
mkr+
m,k,r

24 �m,k,r(z)

)∣

∣

∣

∣

V24

�(24z)mkr

= �(24z)
m,k,r�m,k,r(24z) (mod mk),

as required.

4 Congruences of pr(n) modulo mk

In this section, we apply Theorem 3.1 on the congruence relation for the
generating function Fm,r,k(z) and Yang’s method [33] to derive two classes of
congruences of pr(n) modulo mk.

Let
S
,� = {�(24z)
�(24z) : �(z) ∈ M�(SL2(ℤ))}.

Yang [33] showed that when 
 is an odd integer such that 0 < 
 < 24 and � is
a nonnegative even integer, S
,� is an invariant subspace of S�+
/2(Γ0(576), �12)
under the action of the Hecke algebra. More precisely, for all primes ℓ ∕= 2, 3
and all f ∈ S
,�, we have f ∣Tℓ2 ∈ S
,�. By the invariant property of S
,�, we
obtain two classes of congruences of pr(n) modulo mk.

Theorem 4.1 Let m ≥ 5 be a prime, k be a positive integer, r be an odd

positive integer less than mk, and ℓ be a prime different from 2, 3, and m.

Then there exists an explicitly computable positive integer K such that

pr

(

mkℓ2�K−1n+ r

24

)

≡ 0 (mod mk) (4.1)

for all positive integers � and all positive integers n relatively prime to ℓ.
There is also a positive integer M such that

pr

(

mkℓin + r

24

)

≡ pr

(

mkℓ2M+in + r

24

)

(mod mk) (4.2)

for all nonnegative integers i and n.

12



Proof. According to congruence relation (3.1), the generating function Fm,k,r(z)
is congruent to a modular form in S
m,k,r ,�m,k,r

∩ℤ[[q]], where �m,k,r and 
m,k,r

are integers as given in (3.2) and (3.3). It is known that S
m,k,r ,�m,k,r
∩ ℤ[[q]]

has a basis {f1(z), . . . , fd(z)} of the form

fi(z) = E4(z)
uiE6(z)

viΔ(z)wi ,

where ui, vi and wi are nonnegative integers satisfying 4ui + 6vi + 12wi =
�m,k,r + 
m,k,r/2 (for more details, see [24]). Suppose that

fi(z) =
∑

n≥0

ai(n)q
n,

where i = 1, 2, . . . , d.

To prove (4.1), it suffices to show that there exists a positive integer K
such that for any 1 ≤ i ≤ d,

ai(ℓ
2�K−1n) ≡ 0 (mod mk) (4.3)

for all n coprime to ℓ.

From the relation 
m,k,rm
k = 24�m,k,r− r, one sees that 
m,k,r and r have

the same parity. Since r < mk is odd, we have 0 < 
m,k,r < 24, and hence
S
m,k,r ,�m,k,r

is invariant under the Hecke operator Tℓ2 . So there exists a d×d
matrix A such that

⎛

⎜

⎝

f1
...
fd

⎞

⎟

⎠

∣

∣

∣

∣

∣

∣

∣

Tℓ2 = A

⎛

⎜

⎝

f1
...
fd

⎞

⎟

⎠
. (4.4)

Let

X =

(

A Id

−ℓ
m,k,r+2�m,k,r−2Id 0

)

.

Using the property of the basis {f1(z), . . . , fd(z)} under the action of the
U -operator as given by Yang [33, Corollary 3.4], we obtain

⎛

⎜

⎝

f1
...
fd

⎞

⎟

⎠

∣

∣

∣

∣

∣

∣

∣

Us
ℓ2 = As

⎛

⎜

⎝

f1
...
fd

⎞

⎟

⎠
+Bs

⎛

⎜

⎝

g1
...
gd

⎞

⎟

⎠
+ Cs

⎛

⎜

⎝

f1
...
fd

⎞

⎟

⎠

∣

∣

∣

∣

∣

∣

∣

Vℓ2, (4.5)

where s is a positive integer, gi = fi ⊗
(

⋅

ℓ

)

, and As, Bs, and Cs are d × d
matrices given by

(

As As−1

)

=
(

Id 0
)

Xs, (4.6)

Bs = −ℓ�m,k,r+(
m,k,r−3)/2

(

(−1)(
m,k,r−1)/212

ℓ

)

As−1,

13



Cs = −ℓ
m,k,r+2�m,k,r−2As−1.

Since gcd(m, ℓ) = 1, the matrix X (mod mk) is invertible in the ring ℳ
consisting of 2d× 2d matrices over ℤmk . By the finiteness of ℳ, we see that
there exist integers a > b such that Xa and Xb are linearly dependent over
ℤmk , i.e., there exists a constant c ∈ ℤmk such that Xa ≡ cXb (mod mk).
Thus XK ≡ cI2d (mod mk), where K = a− b. In view of the relation

(

A�K A�K−1

)

≡ c�
(

Id 0
)

(mod mk),

we find that A�K−1 ≡ 0 (mod mk). Hence, from (4.5) it follows that
⎛

⎜

⎝

f1
...
fd

⎞

⎟

⎠

∣

∣

∣

∣

∣

∣

∣

U�K−1
ℓ2 ≡ B�K−1

⎛

⎜

⎝

g1
...
gd

⎞

⎟

⎠
+ C�K−1

⎛

⎜

⎝

f1
...
fd

⎞

⎟

⎠

∣

∣

∣

∣

∣

∣

∣

Vℓ2 (mod mk).

Applying the U -operator Uℓ and observing that

gi∣Uℓ = fi ⊗
( ⋅

ℓ

)∣

∣

∣
Uℓ = 0,

relation (4.5) leads to the following congruence
⎛

⎜

⎝

f1
...
fd

⎞

⎟

⎠

∣

∣

∣

∣

∣

∣

∣

U�K−1
ℓ2 Uℓ ≡ C�K−1

⎛

⎜

⎝

f1
...
fd

⎞

⎟

⎠

∣

∣

∣

∣

∣

∣

∣

Vℓ (mod mk),

namely,
∑

n≥0

ai(ℓ
2�K−1n)qn ≡

∑

n≥0

ai(n)q
ℓn (mod mk),

which implies (4.3).

We now turn to the proof of congruence (4.2). By the finiteness of ℳ,
we see that there exists a positive integer M such that XM ≡ I2d (mod mk).
Thus matrix equation (4.6) reduces to the following congruence

(

AM AM−1

)

≡
(

Id 0
)

(mod mk).

It follows that AM ≡ Id (mod mk) and BM ≡ CM ≡ 0 (mod mk). Thus,
relation (4.5) implies

⎛

⎜

⎝

f1
...
fd

⎞

⎟

⎠

∣

∣

∣

∣

∣

∣

∣

UM
ℓ2 ≡

⎛

⎜

⎝

f1
...
fd

⎞

⎟

⎠
(mod mk).

So the coefficient of qn is congruent to the coefficient of qℓ
2Mnin fi(z) modulo

mk for all i and n. Since Fm,k,r(z) is a linear combination of fi(z) with integer
coefficients, we obtain congruence (4.2). This completes the proof.
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5 Examples

In this section, we present some consequences of Theorem 3.1 and Theo-
rem 4.1. We first give some examples for the congruences of the generating
function Fm,k,r(z) of pr(n).

Example 5.1 By Theorem 3.1, we find

Fm,k,r(z) ≡ �(24z)
m,k,r�m,k,r(24z) (mod mk),

where 
m,k,r is an integer, �m,k,r(z) is a polynomial of Δ(z) and the Eisenstein

series E4(z) and E6(z). Table 5.1 gives the list of explicit expressions of

�(z)
m,1,r�m,1,r(z) for m ≤ 19 and 2 ≤ r ≤ 7.

r m �(z)
m,1,r�m,1,r(z)
2 5 0

7 3�(z)10

11 2�(z)2E4(z)
2

13 8�(z)22

17 5�(z)14E4(z)
2

19 �(z)10(14E4(z)
3 + 12Δ(z))

3 5 4�(z)9

7 3�(z)3E6(z)
11 0
13 �(z)9(4E4(z)

3 + 6Δ(z))
17 0
19 �(z)15(2E6(z)

3 + 3E6(z)Δ(z))
4 5 4�(z)4E4(z)

7 0
11 �(z)4(3E4(z)

4 + 8E4(z)Δ(z))
13 �(z)20(7E4(z)

3 + 4Δ(z))
17 �(z)4(6E4(z)

7 + 11E4(z)
4Δ(z) + 4E4(z)Δ(z)2)

19 �(z)20(16E4(z)
6 + 18E4(z)

3Δ(z) + 2Δ(z)2)
5 5 �(z)−1E4(z)

2

7 �(z)13E6(z)
11 0
13 �(z)7(8E4(z)

6 + 11E4(z)
3Δ(z) + 5Δ(z)2)

17 �(z)11(16E4(z)
8 + 16E4(z)

5Δ(z) + 4E4(z)
2Δ(z)2)

19 �(z)(5E6(z)
7 + 15E6(z)

5Δ(z) + 16E6(z)
3Δ(z)2)

6 5 0
7 �(z)6(6E4(z)

3 + 6Δ(z))
11 �(z)6(10E4(z)

6 + E4(z)
3Δ(z))

13 �(z)18(7E4(z)
6 + 8E4(z)

3Δ(z) + 6Δ(z)2)
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17 �(z)18(3E4(z)
9 + 3E4(z)

6Δ(z) + 5E4(z)
3Δ(z)2)

19 �(z)6(6E4(z)
12 + E4(z)

9Δ(z) + 14Δ(z)4)
7 5 0

7 �(z)−1E6(z)
3

11 0
13 �(z)5(10E4(z)

9 + 6E4(z)
6Δ(z) + 9E4(z)

3Δ(z)2 + 11Δ(z)3)
17 �(z)(7E4(z)

13 + 2E4(z)
10Δ(z) + E4(z)

7Δ(z)2 + 3E4(z)
4Δ(z)3)

19 0

Table 5.1: Explicit congruences derived from Theorem 3.1.

Example 5.2 Let 0 ≤ � < mk be an integer with � ≡ r/24 (mod mk).
If �m,k,r(z) ≡ 0 (mod mk), using Theorem 3.1, we obtain the following

Ramanujan-type congruences of multipartition functions

pr(m
kn + �) ≡ 0 (mod mk). (5.1)

The values of m and � for r ≤ 9 and k = 1, 2 are given in Table 5.2.

r (m, �) (m2, �)
1 (5, 4), (7, 5), (11, 6) (25, 24), (49, 47), (121, 116)
2 (5, 3) (25, 23)∗

3 (11, 7), (17, 15) (121, 106)∗

4 (7, 6) (49, 41)∗

5 (11, 8), (23, 5) (121, 96)∗

6 (5, 4) (25, 19)
7 (5, 3), (11, 9), (19, 9) (25, 18), (121, 86)
8 (7, 5), (11, 4) (121, 81)∗

9 (17, 11), (19, 17), (23, 9)

Table 5.2: Ramanujan-type congruences of multipartitions.

It can be seen that Table 5.2 contains the Ramanujan congruences (1.1)
of p(n) modulo 5, 7 and 11, as well as Gandhi’s congruences (1.5) for p2(n)
and (1.6) for p8(n). The congruences marked by ∗ in the table seem to be
new.

The following examples demonstrate how to derive certain congruences
of pr(n) with the aid of Theorem 4.1.

Example 5.3 For the values of ℓ and Kℓ as given in Table 5.3, we have

p3

(

7 ⋅ ℓ2�Kℓ−1n + 3

24

)

≡ 0 (mod 7) (5.2)

for all positive integers � and all positive integers n not divisible by ℓ.
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ℓ 5 11 13 17 19 23 29 31 37 41 43 47 53 59

aℓ 6 4 0 4 3 6 2 5 3 0 0 3 5 5

Kℓ 6 7 2 6 8 7 7 8 3 2 2 8 3 8

Table 5.3: Eigenvalues aℓ of F7,1,3(z) acted by Tℓ2 and the corresponding Kℓ.

Proof. By Theorem 3.1, we find

F7,1,3(z) ≡ 3�(24z)3E6(24z) (mod 7).

Since �(24z)3E6(24z) belongs to the 1-dimensional space S3,6, for any prime
ℓ ∕= 2, 3, 7, there exists an integer aℓ such that

F7,1,3(z)∣Tℓ2 ≡ aℓF7,1,3(z) (mod 7).

Inspecting the proof of Theorem 4.1, we obtain the corresponding orders Kℓ

for which congruence (5.2) holds.

Example 5.4 We have

p3

(

52 ⋅ 13199n+ 3

24

)

≡ 0 (mod 52)

for all integers n coprime to 13 and

p3

(

52 ⋅ 13in + 3

24

)

≡ p3

(

52 ⋅ 13200+in + 3

24

)

(mod 52)

for all nonnegative integers n and i.

Proof. By Theorem 3.1, F5,2,3(z) is congruent to a modular form in the space
S21,48 of dimension 5. Setting

fi = �(24z)21E4(24z)
3(5−i)Δ(24z)i−1

for 1 ≤ i ≤ 5. Clearly, f1, f2, . . . , f5 form a ℤ-basis of S21,48 ∩ ℤ[[q]]. Let A
be the matrix of Tℓ2 with respect to this basis. By computing the first five
Fourier coefficients of fi and fi∣T132 and equating the Fourier coefficients of
both sides of (4.4), we find

A ≡

⎛

⎜

⎜

⎜

⎜

⎝

17 21 18 3 3
0 19 5 5 5
0 0 22 4 19
0 0 0 22 10
0 0 0 0 12

⎞

⎟

⎟

⎟

⎟

⎠

(mod 52),

with the corresponding orders K =M = 100. Setting � = 1 in Theorem 4.1,
we complete the proof.

Below are two more examples for p3(n) and p5(n) modulo 72. The proofs
are analogous to the proof of the above example, and hence are omitted.
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Example 5.5 We have

p3

(

72 ⋅ 112351n + 3

24

)

≡ 0 (mod 72)

for all positive integers n coprime to 7 and

p3

(

72 ⋅ 11in+ 3

24

)

≡ p3

(

72 ⋅ 111176+in+ 3

24

)

(mod 72)

for all nonnegative integers n and i.

Example 5.6 We have

p5

(

72 ⋅ 17195n+ 5

24

)

≡ 0 (mod 72)

for all positive integers n coprime to 17 and

p5

(

72 ⋅ 17in + 5

24

)

≡ p5

(

72 ⋅ 17588+in + 5

24

)

(mod 72)

for all nonnegative integers n and i.
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