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Abstract

Let G be an edge-colored graph. We use e(G) and c(G) to denote the number of

edges of G and the number of colors appearing on E(G), respectively. For a vertex

v ∈ V (G), the color neighborhood of v is defined as the set of colors assigned to

the edges incident to v. A subgraph of G is rainbow if all of its edges are assigned

with distinct colors. The well-known Mantel’s theorem states that a graph G on n

vertices contains a triangle if e(G) ≥ ⌊n
2

4
⌋ + 1. Rademacher (1941) showed that G

contains at least ⌊n

2
⌋ triangles under the same condition. Li, Ning, Xu and Zhang

(2014) proved a rainbow version of Mantel’s theorem: An edge-colored graph G has a

rainbow triangle if e(G) + c(G) ≥ n(n+ 1)/2. In this paper, we first characterize all

graphs G satisfying e(G)+ c(G) ≥ n(n+1)/2−1 but containing no rainbow triangles.

Motivated by Rademacher’s theorem, we then characterize all graphs G which satisfy

e(G) + c(G) ≥ n(n + 1)/2 but contain only one rainbow triangle. We further obtain

two results on color neighborhood conditions for the existence of rainbow short cycles.

Our results improve a previous theorem due to Broersma, Li, Woeginger, and Zhang

(2005). Moreover, we provide a sufficient condition in terms of color neighborhood for

the existence of a specified number of vertex-disjoint rainbow cycles.
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1 Introduction

Let G be a graph. We use V (G) and E(G) to denote the vertex set and edge set of G,

respectively, and call |G| := |V (G)| and e(G) := |E(G)| the order and the size of G. For

a subset S of V (G), we use G[S] to denote the subgraph of G induced by S, and G−S to

denote the subgraph G[V (G)\S]. When S = {v}, we use G − v instead of G − {v}. For

disjoint subsets S, S′ of V (G), let G[S, S′] denote the bipartite subgraph of G induced by

S and S′, i.e., G[S, S′] has classes S, S′ and edge set {xy ∈ E(G) : x ∈ S, y ∈ S′}.

An edge-coloring of G is a mapping C : E(G) → N, where N is the set of all natural

numbers. When G has such a coloring, we call it an edge-colored graph. Let G be an

edge-colored graph. We use C(G) to denote the set of colors appearing on the edges of

G and let c(G) := |C(G)|. For a vertex v ∈ V (G) and a subgraph H of G, the color

neighborhood of v in H, denoted by CNH(v), is defined as the set of colors assigned to the

edges from v to V (H)\{v}. The color degree of v in H is denoted by dcH(v) := |CNH(v)|;

and the minimum color degree of G, denoted by δc(G), is equal to min{dcG(v) : v ∈ V (G)}.

When there is no fear of confusion, we write CN(v) and dc(v) instead of CNG(v) and

dcG(v) for short, respectively. An edge-colored graph is rainbow if all of its edges receive

distinct colors, and monochromatic if all its edges have the same color. We use Bondy and

Murty [4], and Chartrand and Zhang [8] for notation and terminology not defined here.

For more results on related topics on rainbow subgraphs, we refer the reader to surveys

due to Kano and Li [16], and Fujita, Magnant and Ozeki [13, 14].

We first recall some classical result on the existence of short cycles in uncolored graphs.

Mantel’s theorem (1907) is one important starting point of extremal graph theory, which

is stated as every graph G on n vertices contains a triangle if e(G) ≥ ⌊n
2

4 ⌋, unless G ∼=

K⌈n/2⌉,⌊n/2⌋. Li et al. [17] obtained a rainbow version of Mantel’s theorem.

Theorem 1 (Li, Ning, Xu, and Zhang [17]). Let G be an edge-colored graph of order

n ≥ 3. If e(G) + c(G) ≥ n(n+ 1)/2, then G contains a rainbow C3.

The bound for e(G) + c(G) in the above theorem is best possible. To see this, let G0

be the set of all edge-colored complete graphs which satisfy the following properties (see

Figure 1):

1. K1 ∈ G0;

2. For every G ∈ G0 of order n ≥ 2, c(G) = n − 1 and there is a bipartition V (G) =

V1 ∪ V2, such that G[V1, V2] is monochromatic and G[Vi] ∈ G0 for i = 1, 2.
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One can check that every graph in G0 satisfies that e(G) + c(G) ≥ n(n + 1)/2 − 1 but

contains no rainbow triangles.

In this paper we firstly characterize all the graphs which satisfy e(G) + c(G) ≥ n(n+

1)/2 − 1 but contain no rainbow triangles. Our result shows that all extremal graphs are

included in G0.

v1 v2 vn−1 vn
G1 G2

Figure 1: An example in G0 and the structure of graphs in G0 for n ≥ 2.

Theorem 2. Let G be an edge-colored graph of order n. If e(G) + c(G) ≥
(n+1

2

)

− 1 and

G contains no rainbow triangles, then G belongs to G0.

In 1941, an extension of Mantel’s theorem was obtained by Rademacher in an unpub-

lished manuscript (see [9]). He proved that every graph G on n vertices contains at least

⌊n/2⌋ triangles if e(G) ≥ ⌊n
2

4 ⌋+ 1. So, one may naturally ask whether there is a rainbow

version of Rademacher’s theorem. The following example shows that the answer is no.

Let G1 be the set of all edge-colored complete graphs which satisfy the following prop-

erties:

1. The rainbow C3 is included in G1;

2. For every G ∈ G1 of order n ≥ 4, c(G) = n and there is a bipartition V (G) = V1∪V2,

such that G[V1, V2] is monochromatic and G1 = G[V1] ∈ G1, G2 = G[V2] ∈ G0.

G1 G2

Figure 2: The structure of graphs in G1 for n ≥ 4.

Generally, let Gk (k ≥ 2) be the set of all edge-colored complete graphs constructed as

follows: For every G ∈ Gk of order n ≥ 3k, there is a bipartition V (G) = V1∪V2, such that

G[V1, V2] is monochromatic and G[V1] ∈ Gi, G[V2] ∈ Gk−i for some 0 ≤ i ≤ k. It is easy
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to see that for every G ∈ Gk, e(G) = c(G) = n(n − 1) + (k − 1) and G contains exactly

k rainbow triangles. For k = 1, we can show G1 is exactly the set of graphs which satisfy

such properties.

Theorem 3. Let G be an edge-colored graph of order n ≥ 3. If e(G) + c(G) ≥
(n+1

2

)

and

G contains exactly one rainbow triangle, then G belongs to G1.

Aside from the color number condition in Theorem 1, Li et al. [17] also considered

a Dirac-type color degree condition for the existence of rainbow triangles in edge-colored

graphs.

Theorem 4 (Li, Ning, Xu, and Zhang [17]). Let G be an edge-colored graph of order

n ≥ 5. If dc(v) ≥ n/2 for every vertex v ∈ V (G) and G contains no rainbow C3, then the

underlying graph of G is Kn/2,n/2, where n is even.

Returning to related topics in uncolored graphs, let us recall the Ore-type condition,

that is, the condition in terms of the minimum degree sum of non-adjacent vertices in a

graph (see e.g. [20]). This kind of condition was introduced as an extension of the minimum

degree condition for cycles, thereby yielding affluent results in this area. Motivated by this,

when we try to consider some natural extensions from the minimum color degree condition

in edge-colored graphs, what kind of color degree condition would be appropriate?

Perhaps the following theorem due to Broersma et al. [5] gives us a reasonable answer

to this question.

Theorem 5 (Broersma, Li, Woeginger, and Zhang [5]). Let G be an edge-colored graph

of order n ≥ 4 such that |CN(u) ∪ CN(v)| ≥ n − 1 for every pair of vertices u and v in

V (G). Then G contains a rainbow C3 or a rainbow C4.

Unlike Ore-type conditions in uncolored graphs, we look at every pair of vertices in

the edge-colored graph G under the assumption of Theorem 5. This is because we need to

deal with the case that G is an edge-colored complete graph, and even in this special case,

problems for finding rainbow cycles are far from trivial in general (unlike the uncolored

version). An example is a theorem by Li et al. [18] which states that an edge-colored graph

on n vertices contains a rainbow triangle if the color degree sum of every two adjacent

vertices is at least n+ 1.

Motivated by Theorem 5, one may naturally ask whether we can find both a rainbow

C3 and a rainbow C4 under the same condition. The following theorems answer the above

question affirmatively in some sense.
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Theorem 6. Let k be a positive integer, and G an edge-colored graph of order n ≥

105k − 24 such that |CN(u)∪CN(v)| ≥ n− 1 for every pair of vertices u and v in V (G).

Then G contains k rainbow C4’s.

Theorem 7. Let G be an edge-colored graph of order n ≥ 6 such that |CN(u)∪CN(v)| ≥

n− 1 for every pair of vertices u and v in V (G). Then G contains a rainbow C3 unless G

is a rainbow K⌈n/2⌉,⌊n/2⌋.

So far, we have introduced some results on the existence of rainbow short cycles in

edge-colored graphs. As observed, we need quite a strong assumption to guarantee the

existence of rainbow short cycles. Similarly, when we consider a degree condition for the

existence of small cycles in uncolored graphs, it becomes a strong assumption. However,

this is not the case if we just want to find a cycle with no restriction on its length in

uncolored graphs. In contrast to this uncolored case, the situation might not change

drastically even if we just hope for the existence of rainbow cycles with no restriction

on their lengths in edge-colored graphs. Yet we could improve the coefficient of n in the

assumption of Theorem 5 from 1 to 1/2, if we do not restrict the length of rainbow cycles.

Moreover, we could strengthen the conclusion part as “vertex-disjoint” rainbow cycles.

Theorem 8. Let k be a positive integer. If an edge-colored graph G of order n satisfies

|CN(u)∪CN(v)| ≥ n/2+ 64k+1 for every pair of vertices u, v ∈ V (G), then G contains

k vertex-disjoint rainbow cycles.

By this theorem, we obtain the following corollary, although Theorem 4 already implies

it as well.

Corollary 1. Let k be a positive integer. If an edge-colored graph G of order n satisfies

δc(G) ≥ n/2 + 64k + 1, then G contains k vertex-disjoint rainbow cycles.

Comparing with the color degree conditions under the assumptions of Theorem 8 and

Corollary 1, we can observe that our theorem provides a substantial extension in view of

color degree conditions for the existence of vertex-disjoint rainbow cycles.

The organization of this paper is as follows. In Section 2, we prove Theorems 2 and 3.

In Section 3, we prove Theorems 6, 7 and 8. We conclude this paper with some remarks

and problems.
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2 Proofs of Theorems 2 and 3

Before giving the proofs, we first introduce a concept given in [17]. Let v be a vertex in

an edge-colored graph G. A color c is saturated by v if all the edges with the color c are

incident to v. In this case, c /∈ C(G − v). As in [17], the color saturated degree of v is

defined as ds(v) := c(G)− c(G − v).

Lemma 1 (Li, Ning, Xu, and Zhang [17]). Let G be an edge-colored graph. Then
∑

v∈V (G)

ds(v) ≤ 2c(G), and the equality holds if and only if G is rainbow.

Lemma 2. Let G be an edge-colored graph of order n ≥ 2. If e(G) + c(G) =
(n+1

2

)

− 1

and G contains no rainbow triangle, then G is complete and contains a vertex u such that

ds(u) = 1.

Proof. We prove this lemma by induction on the order of G. It is trivial that the result

holds for n = 2, 3. Now assume that it holds for a graph with order smaller than n, where

n ≥ 4.

Claim 1. For every v ∈ V (G), d(v) + ds(v) ≥ n.

Proof. Suppose not. Then there exists a vertex v ∈ V (G) satisfying d(v) + ds(v) ≤ n− 1.

This implies that e(G− v) + c(G− v) = e(G) + c(G)− d(v)− ds(v) ≥
(

n
2

)

. It follows from

Theorem 1 that G− v contains a rainbow triangle, a contradiction.

Claim 2. There exists a vertex u ∈ V (G) such that d(u) + ds(u) = n.

Proof. Suppose not. Then d(v)+ds(v) ≥ n+1 for every v ∈ V (G). It follows from Lemma

1 that

n(n+ 1) ≤
∑

v∈V (G)

(

d(v) + ds(v)
)

≤ 2e(G) + 2c(G) = n(n+ 1)− 2,

a contradiction.

It is easy to see that e(G− u) + c(G− u) = e(G) + c(G)− d(u)− ds(u) =
(n
2

)

− 1. By

the induction hypothesis, the graph G− u is complete.

If d(u) < n− 1 then ds(u) ≥ 2. Let uv, uw be two edges with distinct colors which are

saturated by u. By the definition of saturated colors, neither C(uv) nor C(uw) appears

in G− u. Thus, uvwu is a rainbow triangle, a contradiction. It follows that d(u) = n− 1

and ds(u) = 1. Thus, G is complete and ds(u) = 1. This proves Lemma 2.
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A Gallai coloring is an edge-coloring of the complete graph Kn such that there are no

rainbow triangles in it. (See the references in [15].) The following two classical theorems

on Gallai colorings play an important role in the proof of Theorem 2.

Lemma 3 (Gyárfás and Simonyi [15]). Any Gallai coloring can be obtained by substituting

complete graphs with Gallai colorings into vertices of 2-edge-colored complete graphs with

at least two vertices.

Lemma 4 (Erdős, Simonovits, and Sós [12]). Any Gallai coloring of Kn can use at most

n− 1 colors.

Proof of Theorem 2. We prove this result by induction on the order of G. Obviously,

the result holds for n = 1, 2, 3. Now assume that it holds for any graph with order smaller

than n ≥ 4.

By Theorem 1, we can assume that e(G)+ c(G) =
(n+1

2

)

− 1. It follows from Lemma 2

that G is complete. Since e(G) + c(G) =
(

n+1
2

)

− 1, c(G) = n− 1. Thus the edge-coloring

of G is a Gallai coloring with n−1 colors. By Lemma 3, the coloring of G can be obtained

by substituting complete graphs H1,H2, . . . ,Hk with Gallai colorings into vertices of a

2-edge-colored complete graph Kk, where k ≥ 2, and |Hi| = ni, i = 1, 2, . . . , k. Note that
∑k

i=1 ni = n. By Lemmas 3 and 4,

c(G) ≤
k

∑

i=1

c(Hi) + 2 ≤
k

∑

i=1

(ni − 1) + 2 = n− k + 2.

On the other hand, c(G) = n− 1. Thus k = 2, 3.

It is easy to see that every 2-edge-colored Kk has a monochromatic cut for k = 2, 3.

By Lemma 3, there is also a monochromatic cut in G. Let V1, V2 be the classes of this

monochromatic cut. It follows from Lemma 4 that

n− 1 = c(G) ≤ c(G[V1]) + c(G[V2]) + c(G[V1, V2]) ≤ (|V1| − 1) + (|V2| − 1) + 1 = n− 1.

This implies that

c(G) = c(G[V1]) + c(G[V2]) + c(G[V1, V2]),

which holds if and only if C(G[V1]), C(G[V2]) and C(G[V1, V2]) are pairwise disjoint sets.

Moreover,

c(G[V1]) = |V1| − 1, c(G[V2]) = |V2| − 1 and c(G[V1, V2]) = 1.

By the induction hypothesis, both G[V1] and G[V2] belong to G0. It follows from the

definition of G0 that G ∈ G0.
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The proof is complete. �

The proof of Theorem 3 is based on the following two lemmas.

Lemma 5 (Rademacher [9]). Let G be a graph with order n and size m. If m ≥ ⌊n
2

4 ⌋+1,

then G contains at least ⌊n2 ⌋ triangles.

Lemma 6. Let G be an edge-colored graph of order n ≥ 3. If e(G) + c(G) ≥
(

n+1
2

)

and G

contains exactly one rainbow triangle, then e(G) + c(G) =
(n+1

2

)

and G is complete.

Proof. We prove this result by induction on the order of G. It is trivial for n = 3. Now

we assume that the lemma holds for any graph of order smaller than n ≥ 4. Denote by

v1v2v3v1 the unique rainbow triangle in G. Let V1 = {v1, v2, v3} and V2 = V (G)\V1.

Claim 1. G is not rainbow.

Proof. Suppose that G is rainbow. Then e(G) = c(G) ≥ n2

4 + n
4 ≥ ⌊n

2

4 ⌋ + 1. It follows

from Lemma 5 that G contains at least ⌊n/2⌋ ≥ 2 triangles, which are rainbow triangles

in G, a contradiction.

Claim 2. e(G) + c(G) =
(n+1

2

)

.

Proof. Suppose that e(G) + c(G) ≥
(n+1

2

)

+ 1. Let e be an edge in the unique rainbow

triangle of G. Then G− e contains no rainbow triangle, and

e(G− e) + c(G− e) ≥ (e(G) − 1) + (c(G) − 1) ≥

(

n+ 1

2

)

− 1.

It follows from Theorem 2 that G− e is complete, a contradiction.

Claim 3. For every v ∈ V1, d(v) + ds(v) ≥ n+ 1; for every v ∈ V2, d(v) + ds(v) ≥ n.

Proof. For every v ∈ V1, G − v contains no rainbow triangle. It follows from Theorem 1

that e(G − v) + c(G − v) ≤
(n
2

)

− 1. Thus d(v) + ds(v) ≥ n+ 1.

Suppose that there exists a vertex u ∈ V2 such that d(u) + ds(u) ≤ n− 1. Then G− u

contains a unique rainbow triangle and e(G−u) + c(G− u) ≥
(n
2

)

+1. It follows from the

induction hypothesis that e(G − u) + c(G− u) =
(n
2

)

, a contradiction.

Claim 4. There exists a vertex u ∈ V2 such that d(u) + ds(u) = n.

Proof. Suppose not. Then, d(v)+ ds(v) ≥ n+1 for every v ∈ V2. By Claim 3 and Lemma

1,

n(n+ 1) ≤
∑

v

(

d(v) + ds(v)
)

≤ 2e(G) + 2c(G) = n(n+ 1).
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Thus
∑

v d
s(v) = 2c(G). It follows from Lemma 1 that G is rainbow, a contradiction to

Claim 1.

Let u be as in Claim 4. Note that G− u contains exactly one rainbow triangle and

e(G− u) + c(G− u) = e(G) + c(G) − d(u)− ds(u) =

(

n

2

)

.

It follows from the induction hypothesis that G− u is complete.

Now we show that d(u) = n−1. Suppose that d(u) < n−1. Then, we obtain ds(u) ≥ 2.

Let uv and uw be two edges with distinct colors which are saturated by u. It is easy to

see that uvwu is a rainbow triangle distinct from v1v2v3v1, a contradiction. Thus, G is

complete, and together with Claim 2, this proves Lemma 6.

Proof of Theorem 3. We prove this result by induction on the order of G. It is trivial

for n = 3. Now assume that the theorem holds for graphs with order smaller than n ≥ 4.

Denote by v1v2v3v1 the unique rainbow triangle in G.

We show that C(v1v2), C(v1v3) are saturated by the vertex v1. It follows from Claim 3

(in the proof of Lemma 6) that d(vi)+ds(vi) ≥ n+1 for each i = 1, 2, 3, and hence ds(vi) ≥

2 for each i = 1, 2, 3. First, suppose that there is exactly one color in {C(v1v2), C(v1v3)},

say C(v1v2), which is saturated by v1. Since ds(v1) ≥ 2, we can choose w ∈ N(v1) such

that w 6= v2, C(v1w) 6= C(v1v2) and C(v1w) is saturated by v1. Since C(v1v3) is not

saturated by v1, we have C(v1w) 6= C(v1v3), and thus w 6= v3. Now C(wv2) 6= C(v1v2)

and C(wv2) 6= C(v1w), and v1v2wv1 is a rainbow C3. Hence there are two rainbow C3’s,

a contradiction. Suppose that none of {C(v1v2), C(v1v3)} is saturated by v1. There are

w, x ∈ N(v1) such that C(v1w), C(v1x) are saturated by v1, so C(v1v2), C(v1v3), C(v1w)

and C(v1x) are distinct. Moreover, v1wxv1 is a rainbow triangle. Hence there are two

rainbow triangles in G, a contradiction. Thus, we have proved that C(v1v2), C(v1v3)

are saturated by the vertex v1. Similarly, C(v2v1), C(v2v3) are saturated by v2, and

C(v3v1), C(v3v2) are saturated by v3. Notice that C(v1v2) is saturated by both v1 and v2.

Thus, C(v1v2) appears only once in G. Similarly, we can see that C(v1v3) and C(v2v3)

appear only once in G.

By Lemma 6, since G is complete, it is easy to see that there is no edge viw satisfying

w ∈ V (G)\{v1, v2, v3} and C(viw) is saturated by vi, for each i = 1, 2, 3.

Let G∗ be the edge-colored graph obtained by replacing the color of v1v2 by C(v1v3).

For any vertex w ∈ V (G)\{v1, v2, v3} and i, j ∈ {1, 2, 3}, since wvivjw is not rainbow in

G and each color on v1v2v3v1 appears only once, C(wvi) = C(wvj). Hence wvivjw is
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not rainbow in G∗. So, G∗ contains no rainbow triangle and c(G∗) = n − 1. It follows

from Theorem 2 that G∗ belongs to G0. Thus there exists a partition V = V1 ∪ V2 (we

can assume {v1, v2, v3} ⊆ V1), such that G∗[V1, V2] is monochromatic and G∗[Vi] ∈ G0 for

i = 1, 2.

It is easy to see that G[V1, V2] is monochromatic and G[V2] = G∗[V2] ∈ G0. More-

over, c(G[V1]) = |G[V1]| and G[V1] contains only one rainbow triangle. By the induction

hypothesis, G[V1] ∈ G1. It follows from the definition of G1 that G ∈ G1.

The proof is complete. �

3 Proofs of Theorems 6, 7 and 8

We need the following lemmas.

Lemma 7. Let G be an edge-colored graph. Then G contains a spanning bipartite subgraph

H such that 2dcH(v) + 3dH(v) ≥ dcG(v) + dG(v) for every vertex v ∈ V (H).

Proof. We choose a spanning bipartite subgraph H of G such that f(H) := e(H) +
∑

v∈V (H) d
c
H(v) is as large as possible. We will show that 2dcH(v)+3dH (v) ≥ dcG(v)+dG(v)

for every vertex v ∈ V (H).

Suppose that the bipartition of H is (X,Y ). Then any edge xy of G with x ∈ X and

y ∈ Y is also an edge of H. Otherwise, f(H + xy) > f(H), contradicting the choice of H.

One can see that dcH(x) = |CNG[Y ](x)| for x ∈ X, and dcH(y) = |CNG[X](y)| for y ∈ Y .

Suppose that there exists a vertex u ∈ V (H) such that

2dcH(u) + 3dH(u) < dcG(u) + dG(u). (1)

Without loss of generality, we may assume u ∈ X. We claim that |X| ≥ 2. Suppose that

X = {u}. Since eG(X,Y ) = eH(X,Y ), we get 2dcH(u) + 3dH(u) ≥ 2dcH(u) + 3dG(u) ≥

dcG(u) + dG(u), a contradiction. This proves |X| ≥ 2. Let H ′ be the spanning bipartite

subgraph of G with the bipartition (X\{u}, Y ∪ {u}) and edge set E(H) ∪ {ux ∈ E(G) :

x ∈ X \ {u}} \ {uy ∈ E(G) : y ∈ Y }. Then

e(H ′)− e(H) = (dG(u)− dH(u))− dH(u) = dG(u)− 2dH(u). (2)

On the other hand, we obtain

dcH′(u)− dcH(u) = |CNG[X](u)| − |CNG[Y ](u)|

≥ |CNG(u)| − 2|CNG[Y ](u)|

= dcG(u)− 2dcH(u),
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and

∑

v∈V (G)\{u}

(dcH′(v)− dcH(v)) =
∑

v∈X\{u}

(dcH′(v)− dcH(v)) +
∑

v∈Y

(dcH′(v)− dcH(v))

≥
∑

v∈Y

(dcH′(v)− dcH(v))

=
∑

v∈Y

(|CNG[X\{u}](v)| − |CNG[X](v)|)

≥ −
∑

v∈Y

|CNG[{u}](v)| = −dH(u).

Thus

∑

v∈V (G)

dcH′(v)−
∑

v∈V (G)

dcH(v) =
∑

v∈V (G)\{u}

(dcH′(v)− dcH(v)) + (dcH′(u)− dcH(u))

≥ (dcG(u)− 2dcH(u))− dH(u),

that is,

∑

v∈V (G)

dcH′(v)−
∑

v∈V (G)

dcH(v) ≥ dcG(u)− 2dcH(u)− dH(u). (3)

By (1), (2) and (3), we get

f(H ′)− f(H) ≥ dG(u) + dcG(u)− 2dcH(u)− 3dH(u) > 0,

which contradicts the choice of H. The proof is complete.

Lemma 8 (Čada, Kaneko, Ryjáček, and Yoshimoto [7]). Let G be an edge-colored graph

of order n. If G is triangle-free and δc(G) ≥ n
3 + 1, then G contains a rainbow C4.

Lemma 9. Let k ≥ 1 be an integer and G an edge-colored graph of order n ≥ k+3. If G

is triangle-free and δc(G) ≥ n
3 + k, then G contains k rainbow C4’s.

Proof. We prove this lemma by induction on k. The case k = 1 is true by Lemma 8.

Suppose that the lemma holds for k − 1. Let v be a vertex of a rainbow C4 in G, and set

G′ := G − v. Then δc(G′) ≥ δc(G) − 1 ≥ n
3 + k − 1 > |G′|

3 + (k − 1). By the induction

hypothesis, there are k−1 rainbow C4’s in G′, and still in G. So, there are k rainbow C4’s

in G.

We point out that Lemma 9 has the following extension. This result can be proved by

using Lemma 8 and induction, we omit the proof here.
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Proposition 1. Let k ≥ 1 be an integer and G an edge-colored graph of order n ≥ 4k.

If G is triangle-free and δc(G) ≥ n/3 + 2(k − 1) + 1, then G contains k vertex-disjoint

rainbow C4’s.

Lemma 10. Let G be an edge-colored graph of order n such that δc(G) = n− 1 (so G is

complete). For any subset S of V (G) with |S| = 5, G[S] contains a rainbow C4.

Proof. We prove the lemma by contradiction. Suppose that G[S] contains no rainbow

C4. Let S = {x1, x2, x3, x4, x5} ⊂ V (G). Since δc(G) = n − 1, any two incident edges

have distinct colors in G. Thus, we may assume that G[S] contains two monochromatic

independent edges, say, C(x1x2) = C(x3x4) = 1. Without loss of generality, set C(x1x5) =

2 and C(x3x5) = 3. Since G[S] contains no rainbow C4 and any two incident edges have

distinct colors, we obtain C(x2x3) = 2, C(x1x4) = 3, and moreover, C(x2x4) /∈ {1, 2, 3},

say, C(x2x4) = 4. Observing the colors on the edges incident to x2 and x5, we see that

C(x2x5) /∈ {1, 2, 3, 4}, so set C(x2x5) = 5. Consequently, there is a rainbow C4 with colors

1, 3, 4, 5 in G[S\{x1}], a contradiction.

Proof of Theorem 6. When δc(G) = n − 1, it follows from Lemma 10 that there are

k rainbow C4’s in G, since the order n ≥ 105k − 24 ≥ 5k. Thus we may assume that

δc(G) ≤ n− 2.

Let u be a vertex with dcG(u) = δc(G) and set t := δc(G). Let T be a subset of NG(u)

such that |T | = t and C(ux) 6= C(uy) for every two vertices x, y ∈ T . Without loss of

generality, set T = {x1, x2, . . . , xt} and assume that C(uxi) = i for i ∈ {1, 2, . . . , t}. Set

G1 = G[T ∪ {u}] and G2 = G−G1. Since |G1| = t+ 1 ≤ n− 1, V (G2) 6= ∅.

First, suppose that there are k vertices z ∈ V (G2) such that |CNG1
(z) \ CN(u)| ≥ 2.

By the choice of T , if v ∈ V (G1) is a neighbor of z such that C(vz) ∈ CNG1
(z) \ CN(u),

then v 6= u. Since |CNG1
(z) \ CN(u)| ≥ 2, choose xr, xs ∈ T with {C(xrz), C(xsz)} ⊆

CNG1
(z)\CN(u), and uxrzxsu is a rainbow C4. Thus, there are k rainbow C4’s.

Now, suppose that |CNG1
(v)\CN(u)| ≤ 1 holds for at least n−t−k vertices v ∈ V (G2).

We say that a vertex v ∈ V (G2) is good if |CNG1
(v) \ CN(u)| ≤ 1.

Claim 1. |CNG2
(v)| = |G2| − 1 for any good vertex v ∈ V (G2).

Proof. First, |CNG1
(v) \ CN(u)| ≤ 1. It follows from |CN(u)| = t that |CN(u) ∪

CNG1
(v)| ≤ t+1. Note that |CN(u)∪CN(v)| ≥ n− 1, we have |CN(v)\CNG1

(v)| ≥ n−

t−2. On the other hand, |CN(v)\CNG1
(v)| ≤ |CNG2

(v)| ≤ dG2
(v) ≤ |G2|−1 = n− t−2.

Thus, |CNG2
(v)| = |G2| − 1, where |G2| = n− t− 1.
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Denote by H ′ the subgraph induced by n − t − k good vertices in G2. By Claim

1, the underlying graph of H ′ is complete. Furthermore, for any vertex v ∈ V (H ′),

dcH′(v) = |H ′| − 1. First suppose that t ≤ n − 6k. Note that |H ′| = n − t − k ≥ 5k.

Applying Lemma 10 to H ′, we see that there are k rainbow C4’s in G2, which are also in

G.

Thus we may assume t ≥ n − 6k + 1. By Lemma 7, there is a spanning bipartite

subgraph H of G such that

2dcH(v) + 3dH(v) ≥ dcG(v) + dG(v) (4)

for every vertex v ∈ V (H). On the other hand, since H is a subgraph of G, it is not

difficult to see that

dH(v)− dcH(v) ≤ dG(v)− dcG(v), (5)

and

dG(v)− dcG(v) ≤ dG(v)− δc(G) ≤ (n− 1)− (n− 6k + 1) = 6k − 2. (6)

Together with (5) and (6),

dcH(v)− dH(v) ≥ 2− 6k. (7)

Recall that dcG(v) ≥ δc(G) = t ≥ n − 6k + 1, and dG(v) ≥ dcG(v). Then, combining (4)

with (7), we obtain

dcH(v) ≥
1

5
(dcG(v) + dG(v) + 6− 18k) ≥

2n− 30k + 8

5
≥

n

3
+ k

when n ≥ 105k − 24. By Lemma 9, there are k rainbow C4’s in H, which are also k

rainbow C4’s in G. The proof of Theorem 6 is complete. �

Proof of Theorem 7. Suppose that G contains no rainbow triangles. First suppose that

there exists a vertex, say u, such that dcG(u) ≤
n−1
2 . For any vertex v which is adjacent to

u, |CN(u) ∪CN(v)| ≥ n− 1. This implies that

dcG(u) + dcG(v) = |CN(u) ∪CN(v)|+ |CN(u) ∩ CN(v)| ≥ (n− 1) + 1 = n.

It follows that dcG(v) ≥ n+1
2 for any vertex v adjacent to u. For any vertex v which is

not adjacent to u, we also have |CN(u) ∪CN(v)| ≥ n− 1. This implies dcG(u) + dcG(v) =

|CN(u)∪CN(v)|+ |CN(u)∩CN(v)| ≥ n− 1. It follows that dcG(v) ≥
n−1
2 for any vertex

v not adjacent to u.
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Set H := G− u. Then, we obtain dcH(v) ≥ dcG(v) − 1 ≥ |H|
2 for any vertex v adjacent

to u, and dcH(v) ≥ dcG(v) ≥ |H|
2 for any vertex v not adjacent to u. By Theorem 4, the

underlying graph of H is isomorphic to Kn−1

2
,n−1

2

, where n is odd. Let (X,Y ) be the

bipartition of H, where X = {x1, x2, . . . , xt}, Y = {y1, y2, . . . , yt}, t =
n−1
2 . We claim that

NG(u) ⊆ X or NG(u) ⊆ Y . Suppose that NG(u)∩X 6= ∅ and NG(u)∩Y 6= ∅. Without loss

of generality, suppose that ux1 ∈ E(G) and uy1 ∈ E(G). Since dcG(x1) ≥
n+1
2 = dG(x1)

and dcG(y1) ≥
n+1
2 = dG(y1), we have equality in both cases, and thus C(x1u) 6= C(x1y1)

and C(y1u) 6= C(x1y1). This implies that C(x1u) = C(y1u). We also can derive that

all edges incident to u have the same color, that is, dcG(u) = 1. For two vertices x, u,

|CN(u) ∪ CN(x1)| = |CN(x1)| = n+1
2 < n − 1 when n ≥ 4, a contradiction. Thus,

we have shown that NG(u) ⊆ X or NG(u) ⊆ Y . Without loss of generality, suppose

that NG(u) ⊆ X. For any vertex v ∈ Y , we have |CNG(u) ∪ CNG(v)| = n − 1 and

|CNG(v)| = |X| = n−1
2 . Thus, |CNG(u)| =

n−1
2 and CNG(u) ∩CNG(v) = ∅. This implies

that the underlying graph of G is Kn+1

2
,n−1

2

. For any two vertices v1, v2 ∈ Y , by the

condition |CN(v1) ∪CN(v2)| ≥ n− 1, we can derive that any two edges incident to v1 or

v2 have distinct colors. Since v1, v2 ∈ Y are chosen arbitrarily, G is a rainbow Kn+1

2
,n−1

2

.

Now assume that dcG(v) ≥
n
2 for any vertex v ∈ V (G). By Theorem 4, n is even and

the underlying graph of G is Kn

2
,n
2
. Arguing similarly as above, we see that G is a rainbow

Kn

2
,n
2
. The proof is complete. �

Let D be a digraph with the vertex set V (D) and arc set A(D). For v ∈ V (D), the

out-degree of v in D, denoted by d+D(v), is the number of out arcs from v.

Lemma 11 (Alon [1]). Every digraph with minimum out-degree at least 64k contains k

vertex-disjoint directed cycles.

Proof of Theorem 8. By contradiction, suppose that G contains no k vertex-disjoint

rainbow cycles. Let G1, G2, · · · , Gr be r vertex-disjoint rainbow cycles in G, where |Gi| ∈

{3, 4, 5} (possibly, r = 0). We may assume that G1, G2, . . . , Gr are chosen so that r is as

large as possible. Obviously, r ≤ k − 1. Let H := G1 ∪G2 ∪ . . . Gr, and G′ := G− V (H).

Note that 0 ≤ |H| ≤ 5r.

Now choose u, v ∈ V (G′) with uv ∈ E(G), and S1 = {x1, x2, . . . , xs1} ⊂ NG′(u)\{v}

and S2 = {y1, y2, . . . , ys2} ⊂ NG′(v)\{u}, so that the following two conditions hold:

(1) for any 1 ≤ i < j ≤ s1, C(xiu) 6= C(xju), C(xiu) 6= C(uv); for any 1 ≤ i < j ≤ s2,

C(yiv) 6= C(yjv), C(yiv) 6= C(uv); and for any i ∈ {1, 2, . . . , s1}, j ∈ {1, 2 . . . , s2},

C(xiu) 6= C(yjv); and,
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(2) subject to (1), s1 + s2 is maximized.

Since G′ contains no rainbow C3, S1 ∩ S2 = ∅. Set G∗ := G[S1 ∪ S2 ∪ {u, v}]. Note that

s1 + s2 + 1 = |CNG′(u) ∪ CNG′(v)| ≥ |CN(u) ∪ CN(v)| − 2|H| ≥ n/2 + 64k + 1− 2|H|,

and

|G∗| = s1 + s2 + 2 ≥ n/2 + 64k + 2− 2|H|.

In what follows, we construct a digraph D from G∗ by the following operations:

(a) Set V (D) = S1 ∪ S2;

(b) For any pair of vertices xi, xj ∈ S1 with xixj ∈ E(G), xixj ∈ A(D) if C(xixj) =

C(uxj); and xjxi ∈ A(D) if C(xixj) = C(uxi);

(c) For any pair of vertices yi, yj ∈ S2 with yiyj ∈ E(G), yiyj ∈ A(D) if C(yiyj) = C(vyj);

and yjyi ∈ A(D) if C(yiyj) = C(vyi);

(d) For any pair of vertices xi ∈ S1, yj ∈ S2 with xiyj ∈ E(G), C(xiyj) ∈ {C(uxi), C(vyj),

C(uv)}, or there is a rainbow C4. If C(xiyj) = C(uv), then we do not add an

arc to D; if C(xiyj) = C(uxi) then yjxi ∈ A(D); and if C(xiyj) = C(vyj) then

xiyj ∈ A(D).

By the construction, note that there is a directed cycle in D if and only if there is a rainbow

cycle in G∗. Furthermore, if there are (k−r) vertex-disjoint directed cycles inD, then there

are (k − r) vertex-disjoint rainbow cycles in G∗, and together with the r vertex-disjoint

rainbow cycles, this contradicts the assumption that G does not contain k vertex-disjoint

rainbow cycles. Thus, there are no (k− r) vertex-disjoint directed cycles in D. By Lemma

11, we can see there is a vertex, say w1 ∈ S1 ∪ S2, such that d+D(w1) ≤ 64(k − r) − 1.

If d+D(u) ≥ 64(k − r) + 1 for any vertex u ∈ V (D)\{w1}, then d+D′(u) ≥ 64(k − r), in

which D′ := D − w1. By Lemma 11, there are k − r directed cycles in D, and k rainbow

cycles in G, a contradiction. Thus, there are two vertices, say w1, w2 ∈ S1 ∪ S2, such that

d+D(w1) ≤ 64(k − r)− 1 and d+D(w2) ≤ 64(k − r).

Claim 1. |G− (V (G∗) ∪ V (H))| ≥ n/2 + 64k − 2|H| − 128(k − r)− 1.

Proof. We divide the proof into two cases.

First, we assume that w1, w2 belong to a same set of S1, S2, say, w1, w2 ∈ S1. In this

case, we know that all edges incident to w1 or w2 in G∗ can have at most 3+(128(k−r)−1)

colors, where the term 3 comes from the fact that uw1, uw2, together with the possibly
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existing edge incident to w1 or w2 with the color C(uv), correspond to three colors. Since

|CN(w1) ∪ CN(w2)| ≥
n
2 + 64k + 1, there are at least

n1 := n/2 + 64k + 1− 2|H| − 3− (128(k − r)− 1) = n/2 + 64k − 2|H| − 128(k − r)− 1

colors between {w1, w2} and V (G −G∗ −H) in G. Let C∗ be the set of these n1 colors.

Notice that C∗ ⊂ CNG′−G∗(w1) ∪ CNG′−G∗(w2). For any vertex w′ ∈ V (G′)\V (G∗) such

that w1w
′, w2w

′ ∈ E(G) and {C(w1w
′), C(w2w

′)} ∩ {C(uw1), C(uw2)} = ∅, it follows

from G′ contains no rainbow C4 that C(w1w
′) = C(w2w

′). Furthermore, every common

neighbor of w1, w2 in G′ − G∗ with the color in C∗ must correspond to one new color.

Thus, there are at least n/2+64k− 2|H|− 128(k− r)− 1 vertices in G− (V (G∗)∪V (H)).

Thus, we may assume that w1, w2 belong to different sets, say, w1 ∈ S1 and w2 ∈

S2. In this case, we know that all edges incident to w1 or w2 in G∗ can have at most

3 + (128(k − r)− 1) colors, where the term 3 comes from the fact that uw1, vw2, together

with the possible existing edge incident to w1 or w2 with the color C(uv), correspond to

three colors. So, there are at least

n/2 + 64k + 1− 2|H| − 3− (128(k − r)− 1) = n/2 + 64k − 2|H| − 128(k − r)− 1

colors in C∗ = CNG′−G∗(w1)∪CNG′−G∗(w2). For any vertex w′ ∈ V (G′)\V (G∗) such that

w1w
′, w2w

′ ∈ E(G) and {C(w1w
′), C(w2w

′)} ∩ {C(uw1), C(vw2), C(uv)} = ∅, it follows

from G′ contains no rainbow C5 that C(w1w
′) = C(w2w

′). Thus, every common neighbor

of w1, w2 in G′ − G∗ with the color in C∗\{C(uw1), C(vw2), C(uv)} corresponds to one

new color. Thus, there are at least n/2 + 64k − 2|H| − 128(k − r) − 1 vertices in G −

(V (G∗) ∪ V (H)).

By Claim 1,

|G| = |G∗|+ |H|+ |G− (V (G∗) ∪ V (H))|

≥ n/2 + 64k + 2− 2|H|+ |H|+ n/2 + 64k − 2|H| − 128(k − r)− 1

= n+ 128k − 3|H| − 128(k − r) + 1

≥ n+ 113r + 1

≥ n+ 1,

a contradiction. The proof of Theorem 8 is complete. �

Remark 1. Bermond and Thomassen [2] conjectured that every directed graph with min-

imum out-degree at least 2k− 1 contains k vertex-disjoint directed cycles. Alon [1] gave a

16



linear bound by proving that 64k suffices (Lemma 11). Recently, Bucić [6] proved a better

bound 18k towards this conjecture. One may find that if we apply Bucić’s new bound in-

stead of Alon’s bound to our proof of Theorem 8, then we can improve the constant in the

second term of Theorem 8.

4 Concluding remarks

Extending Mantel’s theorem, Erdős [9] proved that a graph of order n and size ≥ ⌊n
2

4 ⌋+ l

contains at least l⌊n/2⌋ triangles, provided l ≤ 3 < n/2. Erdős [10] further conjectured

that the same conclusion holds when l < n/2. A slightly weaker form of Erdős’ conjecture

was proved by Lovász and Simonovits [19]. (See also Bollobás [3, pp.302].) One may

ask for the rainbow version of Erdős’ conjecture. Furthermore, we can pose the following

related problem.

Problem 1. Let k ≥ 1 be an integer. Let G be an edge-colored graph of order n. Determine

an integer valued function f(k) as small as possible, such that if e(G) + c(G) ≥ n(n +

1)/2 + f(k) and n is sufficiently large, then G contains at least k rainbow C3’s.

Recently, Xu et al. [21] proved a rainbow version of Turán’s theorem. Maybe it is also

interesting to characterize the extremal graphs in their main theorem.

Furthermore, our Lemma 7 is motivated by the following theorem due to Erdős.

Theorem 9 (Erdős [11]). Let G be a graph. Then G contains a spanning bipartite subgraph

H, such that dH(v) ≥ 1
2dG(v) for all vertices v ∈ V (G).

We can naturally consider the counterpart of of Erdős’ theorem for edge-colored graphs.

Indeed, our Lemma 7 can be regarded as our attempt in this viewpoint. Along this line,

it might be interesting to consider a degree condition for the existence of rainbow (or

properly colored) spanning bipartite subgraphs in edge-colored graphs.
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[7] R. Čada, A. Kaneko, Z. Ryjáček, and K. Yoshimoto, Rainbow cycles in edge-colored

graphs, Discrete Math. 339 (2016), no.4, 1387–1392.

[8] G. Chartrand and P. Zhang, Chromatic Graph Theory, Chapman & Hall, Landon,

2008
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