PARAMETRIC MARCINKIEWICZ INTEGRALS WITH ROUGH
KERNELS ACTING ON WEAK MUSIELAK-ORLICZ HARDY
SPACES

BO LI

ABSTRACT. Let ¢ : R"x [0, 00) — [0, co) satisfy that ¢(z, -), for any given €
R™, is an Orlicz function and ¢(-, t) is a Muckenhoupt A., weight uniformly
in t € (0, 00). The weak Musielak-Orlicz Hardy space WH?(R™) is defined
to be the set of all tempered distributions such that their grand maximal
functions belong to the weak Musielak-Orlicz space W L¥(R™). For p € (0, oo)
and measurable function f on R", the parametric Marcinkiewicz integral pf)
related to the Littlewood-Paley g-function is defined by
1/2

2
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/I Mf(y) dy 2041 )
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where 2 is homogeneous of degree zero satisfying the cancellation condition.

In this paper, we discuss the boundedness of parametric Marcinkiewicz inte-
gral pg, with rough kernel from weak Musielak-Orlicz Hardy space W H?(R™)
to weak Musielak-Orlicz space W L?(IR™). These results are new even for clas-
sical weighted weak Hardy space of Quek and Yang, and probably new for
classical weak Hardy space of Fefferman and Soria.

1. INTRODUCTION

Suppose that S"~! is the unit sphere in R (n > 2) equipped with normalized
Lebesgue measure do. A function Q(x) defined on R" is said to be in L9(S™"™1)
with ¢ > 1, if Q(x) satisfies the following conditions:

Q(Az) = Q(x) for any z € R" and A € (0, 00),

Qz)do(2") =0

Sn—1

and

/ 192(2)] do(a) < oo,
gn—1
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where 2’ := z/|z| for any = # 0. For p € (0, o) and measurable function f on
R™, the parametric Marcinkiewicz integral g, is defined by

o= ([7|] Eemaf &)

The Marcinkiewicz integral pé, was introduced by Stein [22] in 1958. He showed
that, if Q € Lip,(S™') with a € (0, 1], then pg, is bounded on LP(R"™) with
p € (1, 2] and bounded from L'(R") to weak L'(R"). In 1960, Hérmander [0]
proved that, if Q € Lip,(S™!) with o € (0, 1], then uf, is bounded on LP(R™)
provided that p € (1, oo) and p € (0, 00). Notice that all these results mentioned
above hold true depending on some smoothness condition of 2. However, in 2009,
Shi and Jiang [23] obtained the following celebrated result that uf, is bounded on
LP (R™) without any smoothness condition of 2, where w € A, and A, denotes
the Muckenhoupt weight class.

Theorem A. ([23, Theorem 1.1]) Let p € (0, 00), p, q € (1, o), ¢ :==q/(¢—1)
and Q € LI(S™Y). Ifw? € A, then uf is bounded on LP(R™).

On the other hand, in the past four decades, there has been an increasing
interest in developing the theory of Hardy space. Originally Hardy space appeared
in complex analysis in the study of analytic function on the unit disk. And
its theory was one-dimensional. The higher dimensional Euclidean theory of
Hardy space was developed by Fefferman and Stein [4] who proved a variety
of characterizations for them. As everyone knows, many important operators
are better behaved on Hardy space H?(R") than on Lebesgue space LP(R") in
the range p € (0, 1]. For example, when p € (0, 1], the Riesz transforms are
bounded on Hardy space H?(IR™), but not on the corresponding Lebesgue space
LP(R™). Therefore, one can consider H?(R™) to be a very natural replacement
for L?(R™) when p € (0, 1]. Moreover, when studying the endpoint estimate for
variant important operators, the weak Hardy space W HP(R™) naturally appear
and prove to be a good substitute of Hardy space H?(R") with p € (0, 1]. For
instance, if 6 € (0, 1], T" is a §-Calderén-Zygmund operator and 7%(1) = 0, where
T* denotes the adjoint operator of T', it is known that 7" is bounded on HP?(R™)
for any p € (n/(n+4), 1] (see [1]), but T may be not bounded on Hw+s (R™);
however, Liu [13] proved that T is bounded from H7#+s (R™) to W Hw+s (R™).

Recently, Ky [12] introduced a new Musielak-Orlicz Hardy space H?(R™),
which unifies the classical Hardy space [4], the weighted Hardy space [24], the
Orlicz Hardy space [8, 9, 10, 11], and the weighted Orlicz Hardy space. Its s-
patial and time variables may not be separable. Later, Liang et al. [18] further
introduced a weak Musielak-Orlicz Hardy space W H?(R™), which covers both
the weak Hardy space [5], the weighted weak Hardy space [21], the weak Or-
licz Hardy space and the weighted weak Orlicz Hardy space, as special cases.
Recently, some new characterizations of of W H¥(R™) by means of maximal func-
tions, atoms, molecules and Littlewood-Paley functions, and the boundedness of
Calderén-Zygmund operators in the critical case were obtained in [18]. Apart
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from interesting theoretical considerations, the motivation to study Musielak-
Orlicz-type space comes from applications to elasticity, fluid dynamics, image
processing, PDEs and the calculus of variation (see, for example, [2]). More
Musielak-Orlicz-type spaces are referred to [3, 7, 17, 19, 20, 25]. It should be
pointed out that the monograph [25] provides a detailed and complete survey of
recent developments on the real-variable theory of Musielak-Orlicz Hardy-type
function spaces and lays the foundation for further applications.

Motivated by all of the facts mentioned above, a natural and interesting ques-
tion arises, namely, whether the parametric Marcinkiewicz integral uf, is bounded
from weak Musielak-Orlicz Hardy space W H?(R") to weak Musielak-Orlicz space
W L?(R") under weaker smoothness condition assumed on 2. In this paper we
shall answer this problem affirmatively. Here, what is worth mentioning is that
our results are new even for classical weighted weak Hardy space and probably
new for classical weak Hardy space.

Precisely, this paper is organized as follows. In the next section, we recall some
notions concerning Muckenhoupt weight, growth function and weak Musielak-
Orlicz Hardy space. Then we present the boundedness of pf, from W H?(R™)
to WL?(R™) (see Theorem 2.7, Theorem 2.8, Corollary 2.9 and Theorem 2.10
below). In Section 3, with the help of some auxiliary lemmas and atomic decom-
position theory of W H?(R™), the proofs of main results are presented.

Finally, we make some conventions on notation. Let Z, := {1, 2, ...} and
N := {0} UZ;. For any 8 := (f1,...,0,) € N let |5] := B+ -+ + Bn
and 9° = (8%1)51 e (%)5". Throughout this paper the letter C' will denote a
positive constant that may vary from line to line but will remain independent of
the main variables. The symbol P < @ stands for the inequality P < C'Q. If
P < Q < P, we then write P ~ Q. For any sets E, F C R", we use E° to denote
the set R" \ E, |E| its n-dimensional Lebesgue measure, xg its characteristic
function and E + F the algebraic sum {x +y: = € E, y € F}. For any s € R,
|s] denotes the unique integer such that s — 1 < |s| < s. If there are no special
instructions, any space X(R") is denoted simply by X. For instance, L?(R") is
simply denoted by L?. For any set E C R™, t € [0, co) and measurable function
©(-,1), let o(E, t) := [po(x, t)de and {|f| > t} = {oz € R" : [f(x)] > t}.
For any x € R™, r € (0, o0) and « € (0, c0), we use B(z, r) to denote the ball
{y e R": |y —z| <r} and aB(z, r) to denote B(z, ar) as usual.

2. NOTIONS AND MAIN RESULTS

In this section, we first recall the definition concerning the weak Musielak-Orlicz
Hardy space W H¥, and then present the boundedness of parametric Marcinkiewi-
cz integral pf, from weak Musielak-Orlicz Hardy space WH¥ to weak Musielak-
Orlicz space W L#.

Recall that a nonnegative function ¢ on R™ x [0, oo) is called a Musielak-Orlicz
function if, for any x € R™, ¢(z, -) is an Orlicz function on [0, oo) and, for any
t € [0, o), ¢(-,t) is measurable on R™. Here a function ¢ : [0, co) — [0, 00)
is called an Orlicz function, if it is nondecreasing, ¢(0) = 0, ¢(t) > 0 for any
t € (0, 00), and lim; o ¢(t) = 0.
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Given a Musielak-Orlicz function ¢ on R™ x [0, 00), ¢ is said to be of uniformly
lower (resp. upper) type p with p € R, if there exists a positive constant C' := C,,
such that, for any € R", t € [0, co) and s € (0, 1] (resp. s € [1, 00)),

p(z, st) < CsPp(x, t).
The critical uniformly lower type index of ¢ is defined by
i(p) :=sup{p € R: ¢ is of uniformly lower type p}. (2.1)
Observe that i(¢) may not be attainable, namely, ¢ may not be of uniformly

lower type i(p) (see [16, p.415] for more details).

Definition 2.1. (i) Let ¢ € [1, 00). A locally integrable function ¢(-,t) :
R"™ — [0, 0o) is said to satisty the uniformly Muckenhoupt condition A,
denoted by ¢ € A, if there exists a positive constant C' such that, for any
ball B C R" and t € (0, c0), when ¢ = 1,

|B|/ = ) dx{esgesgp[ ( t)]‘l} e

and, when ¢ € (1, 00),

ﬁ/BW’ ) dx{ﬁ/B[go(x, e dx}ql <c

(ii) Let ¢ € (1, 0o]. A locally integrable function ¢(-,t) : R" — [0, 00) is
said to satisfy the uniformly reverse Holder condition RH,, denoted by
¢ € RH,, if there exists a positive constant C' such that, for any ball
B C R" and t € (0, c0), when ¢ € (1, 00),

[ [ote ot L ot omar) <

and, when ¢ = oo,

1 -1
{E/ oz, t) dm} esssup p(z, t) < C.
B r€EB

Define Ao 1= U 1 o0y Ag- 1t is well known that if ¢ € A, with ¢ € (1, o0],
then ¢° € A1 C A, for any € € (0, 1] and ¢" € A, for some n € (1, c0).
Also, if ¢ € A, with g € (1, 00), then ¢ € A, for any r € (g, 00) and ¢ € Ay for
some d € (1, q). Thus, the critical weight indez of p € A, is defined as follows:

d(0) = int{g € [1, 00) : p € Ag). (2:2)

For uniformly Muckenhoupt (resp. reverse Holder) condition, we have the
following property as the classical case.

Lemma 2.2. ([12, Lemma 4.5]) Let p € A, with q € [1, 00). Then there exists a
positive constant C' such that, for any ball B C R", X\ € (1, 00) and t € (0, 00),
p(AB, t) < OX"o(B, t).

Lemma 2.3. ([15, Lemma 3.5]) Let r € (1, 00). Then ¢" € Ay if and only if
v € RH,.
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Definition 2.4. ([12, Definition 2.1]) A function ¢ : R™ x [0, c0) — [0, 00) is
called a growth function if the following conditions are satisfied:
(i) ¢ is a Musielak-Orlicz function;
(i) ¢ € Ax;
(iii) ¢ is of uniformly lower type p for some p € (0, 1] and of uniformly upper
type 1.

Throughout the paper, we always assume that ¢ is a growth function.
Recall that the weak Musielak-Orlicz space W L¥ is defined to be the space of
all measurable functions f such that, for some A\ € (0, c0),

sup ¢({|f| -1, §) < oo

te(0, 00)

equipped with the quasi-norm

. t
HfHWLV’ = inf {)\ € (07 OO) o Sup ¢ ({’f’ > t}? X) < 1} .
te(0, 00)
In what follows, we denote by S the space of all Schwartz functions and by S’
its dual space (namely, the space of all tempered distributions). For any m € N,
let S,,, be the space of all 1) € S satisfying |[¢||s,, < 1, where

[¥lls,. == sup  sup (1 + [a]) "D ().
acN"  zeR”
|o| <m+1

Then, for any m € N and f € &, the non-tangential grand mazimal function f},
of f is defined by setting, for all x € R™,

fo (@) == sup sup |f *(y)l,
PESH \y—$|<t
te(0, 00)

where, for any ¢ € (0, 00), ¥;(-) :=t™"(;). When

A

we denote f¥ simply by f*, where ¢(¢) and i(¢) are as in (2.2) and (2.1), respec-
tively.

Definition 2.5. ([18, Definition 2.3]) Let ¢ be a growth function as in Definition
2.4. The weak Musielak-Orlicz Hardy space W H¥ is defined as the space of all
f € 8 such that f* € WL? endowed with the quasi-norm

I fllwee == Iflwre-

Remark 2.6. Let w be a classic Muckenhoupt weight and ¢ an Orlicz function.
(i) If p(z, t) == w(x)p(t) for all (x, t) € R™ x [0, c0), then W H? goes back
to the weighted weak Orlicz Hardy space W H?, and particularly, when
w = 1, the corresponding unweighted space is also obtained.
(ii) If o(z, t) := w(z)t? for all (z, t) € R" x [0, co) with p € (0, 1], then WH?¥
goes back to the weighted weak Hardy space W HEP, and particularly, when
w = 1, the corresponding unweighted space is also obtained.
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Before stating our main results, we recall some notions about ). For any
q € [1, ) and a € (0, 1], a function Q € L?(S™!) is said to satisfy the L%°-

Dini condition if )
/ wq_@ dd < o0
0

Jlta
where y
q
)= sw ([ 1000) - 0w ao())
Ivll<6 \J.sn=t
and v denotes a rotation on 5™~ " with ||| := sup,cgn-1 |7y’ —¥/|. Forany a, 3 €

(0, 1] with 5 < «, it is trivial to see that if €2 satisfies the L% *-Dini condition,
then it also satisfies the L%#-Dini condition. We thus denote by DinZ(S™~!) the
class of all functions which satisfy the L% #-Dini conditions for all 3 < «. For any
a € (0, 1], we define
Din?(S"') := (] Ding(S").
q>1

A routine computation gives rise to

Din’,(S" ') € Din?(S™!) if 1 < g <7 < o0,
and

Ding (S"!) € Din}(S"!) if 0 < f<a <1

The main results of this paper are as follows, the proofs of which are given in

Section 3.

Theorem 2.7. Let p € (0, ), a € (0, 1], § := min{1/2, a} and ¢ be a
growth function as in Definition 2./ with p € (n/(n+ ), 1). Suppose that
Q € L7(S" ") N Din(S" ') with r € (1, 00]. If q and ¢ satisfy one of the
following conditions:

(i) 7€ (L, 1/p] and " € Apg/ima—p);

(i) r € (1/p, o0] and =P € Ay /pni—p),
then g, is bounded from WHY¥ to WL¥?.
Theorem 2.8. Let p € (0, ), a € (0, 1], f := min{1/2, a} and ¢ be a
growth function as in Definition 2./ with p € (n/(n+ B), 1]. Suppose that
Q € Dind(S™ 1Y) with ¢ € (1, 00). If 97 € Apips/m—1/qq, then uf is bounded
from WHY to WL*.
Corollary 2.9. Let p € (0,00), a € (0, 1], f := min{l/2, a} and ¢ be a
growth function as in Definition 2./ with p € (n/(n+ ), 1]. Suppose that Q €
Din*(S™ ). If o € Apaisp/m), then pf is bounded from WHY to WL?.
Theorem 2.10. Let p € (0, 00), Q € LI(S") with ¢ € (1, o], and ¢ be a
growth function as in Definition 2.4 with p == 1 and ¢¥ € A,. If there exists a
positive constant C' such that, for any y, h € R" and M, t € (0, o0),

Oz — Q C
/ @=9) D) o h by de < PR, (24)
[z|>M]y|
then g is bounded from W HY¥ to WL?.

[z —y* fal
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Remark 2.11. (i) It is worth noting that Corollary 2.9 can be regarded as the
limit case of Theorem 2.8 by letting ¢ — oc.

(ii) Theorem 2.7, Theorem 2.8 and Corollary 2.9 jointly answer the question:
when Q € Din? (S™"™1) with ¢ = 1, ¢ € (1, o) or ¢ = oo, respectively, what
kind of additional conditions on ¢ and €2 can deduce the boundedness of
peg from WHY to WL#?

(iii) Let w be a classic Muckenhoupt weight and ¢ an Orlicz function.

(a) When p(z, t) := w(x)o(t) for all (z, t) € R™ x [0, 00), we have
WHY = WH?. In this case, Theorem 2.7, Theorem 2.8, Corollary 2.9
and Theorem 2.10 hold true for the weighted weak Orlicz Hardy space.
Even when w = 1, the corresponding unweighted results are also new.

(b) When ¢(z, t) := w(x)t? for all (z,t) € R™ x [0, 0c0), we have
WHY = WHP. In this case, Theorem 2.7, Theorem 2.8, Corollary 2.9
and Theorem 2.10 are new for the weighted weak Hardy space. Even
when w = 1, the corresponding unweighted results are probably new.

3. PROOFS OF MAIN RESULTS
To show main results, we need some notions and auxiliary lemmas.

Definition 3.1. ([12, Definition 2.4]) Let ¢ be a growth function as in Definition
2.4.

(i) A triplet (¢, ¢, s) is said to be admissible, if ¢ € (q(¢), oo] and s €
[m(¢), 00)NN, where ¢(p) and m(yp) are as in (2.2) and (2.3), respectively.
(ii) For an admissible triplet (¢, ¢, s), a measurable function «a is called a
(¢, q, s)-atom if there exists some ball B C R™ such that the following
conditions are satisfied:
(a) a is supported on B;

(b) llallze(s) < X8|l z4, where

q

1 / 1/
sup a(x)|%(x, t) dx . g€l ),
te(0, 00) [@(B, ) B\ (@)|"e(, 1) [1, o0)

||a||Lg,(B) =
HaHL°°7 q = 00,
and

IxB||Le :==1inf {X € (0, 00) : ¢ (B, A7) < 1};

(¢) Jan a(x)z7dz = 0 for any v € N* with |y] < s.
Definition 3.2. ([18, Definition 3.2]) For an admissible triplet (¢, ¢, s), the weak
atomic Musielak-Orlicz Hardy space W Hiy*? is defined as the space of all f € &'
satisfying that there exist a sequence of (¢, ¢, s)-atoms, {a;, ;}icz, jez, , associated
with balls { B; ; }iez, jez, , and a positive constant C' such that 3, x3, ;(z) < C
for any z € R" and 1 € Z, and [ = > ;> .0y Aija;; in &', where A; ; =

52i||XBi,]- |pe for any i € Z and j € Z,, and C is a positive constant independent
of f, 7 and j.




Moreover, define

2i
£l gz os == inf ¢ inf ¢ A € (0, 00) : sup ng(Bi,j, X) <1% 3,

i€z | jez.
where the first infimum is taken over all decompositions of f as above.
Lemma 3.3. ([18, Theorem 3.5]) Let (¢, q, s) be an admissible triplet. Then
WH? =WHZ7**
with equivalent quasi-norms.

Lemma 3.4. For any a € (0, 1] and q € [1, 00), suppose that Q satisfies L9 -
Dini condition. Let p € (0, 00), f := min{l/2, a} and b be a multiple of a
(p, 00, s)-atom associated with some ball B(xg, r) C R™, where oy € R™ and
r € (0, 00).
(i) If ¢ = 1, then there exists a positive constant C' independent of b such
that, for any R € [2r, 00),

r\n+s
oY (x)| de < Cllbll;o R™ | —
/R o RO < (%)

(ii) If ¢ € (1, 00), then there exists a positive constant C' independent of b
such that, for any R € [2r, 00) and t € (0, 00),

/R<| —20|<2R 1, (0) ()] (. t) da

< Cllu~ [ (Blao. 27), 1)] Y pna (ﬁ)W.

R
Proof. The proof of this lemma, the details of which we omit, can be completed
by the method analogous to that used in the proof of [14, Lemma 4.4]. O

Proof of Theorem 2.7. We need only consider the case r € (1, 00), since the case
r = oo can be derived from the case r = 2. Indeed, when r = oo, a routine
computation gives rise to 2 > 1/p. If Theorem 2.7 holds true for r = 2, by
Qe Le(S" 1Y) c LA(S" Y, 2 > 1/p and o07P) € Ay /p01—p), we know that
Theorem 2.7 holds true for ¢ = co. We are now turning to the proof of Theorem
2.7 under case r € (1, 00). We claim that, in either case (i) or (ii) of Theorem
2.7, there exists some d € (1, pf/[n(1 — p)]) such that

QOT, € Ay and 301/(1_1?) c Ay (31)

We only prove (3.1) under case (ii) since the proof under case (i) is similar. By
e 07P) € Apgin(i-p), we see that there exists some d € (1, p3/[n(1 — p)]) such
that ¢'/(=?) ¢ A;. On the other hand, notice that r’ < 1/(1 — p), then ¢" € Ay
as claimed.

Let (¢, 0o, s) be an admissible triplet. By Lemma 3.3, we know that, for any
f e WH? =WHZ >, there exists a sequence of multiples of (¢, 0o, s)-atoms,
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{bi,;}Yiez, jen, , associated with balls {B; ;}icz, jez, , such that
f=2_ 2 b,
i€Z jELy

. g () <1forany x € R" and i € Z, ||b; ;|1 < 2° for any ¢ € Z and
jEZ+X i, 7 ~y y 5] ~ y
J € Zy, and

22‘
| fllwee ~inf ¢ A € (0, 00) : sup Z © (Bm, —) <1

; A
€L j€Za

Thus, our problem reduces to prove that, for any v, A € (0, co) and f € WH?,
i€Z

@ <{Iu6(f)! >}, %) < sup je%: © (Bi,j7 QX)

To show this inequality, without loss of generality, we may assume that there
exists 79 € Z such that v = 2. Let us rewrite

10—1 00
fzzzbi,j+ZZbi7j:ZF1+F2.
i=—00 jEZy 1=10 jEL

We estimate Fy first. From Theorem A with Q € L7(S"™!) and ¢" € Ay (see
(3.1)), Minkowski’s inequality, the fact that >, ., x5, ;(z) <1 for any z € R"
and ¢ € Z, and the uniformly upper type 1 property of ¢, we deduce that, for
any A € (0, 00),

o (tharr > 20y, 2) 32

/ (= %)
= QO Ty — X
(I, (Fy)|>2i0} A

. 2t0
s [ RGe (n 3 )

Rn
( J 1/d) ¢
' i0—1 27;0
5 2—dlo Z / Z bz,j(x) © (JI, 7) dl‘
i=—o0 |YR" |jez,
(- - 1/dY ¢
B = 9io
5 2fdlo Z 22 Z © (Bi,j7 T)
1=—00 j€Z+
\ L
(. - 1/d) ¢
I I i
ool S liry o (6, 2)
1=—00 L j€Z+

\
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i0—1 .
9t
1 d)io (Z 2 (1— 1/d)z> sup Z © (Bi,ja X)

i=—00 ez JELy

~supg Y g (Bi,jv 2;) ,

€L =N

which is desired.
Next let us deal with F5. Denote the center of B; ; by z; ; and the radius by
i j- Set

- U U B> (3.3)
i=ig JEZ+

where B = B(w; ;, 2(3/2)=0)/ 4By, ) To show that

200 2
( F2 |>210} )\) Ssup Z"O(Bi’j’ X) ,

€L =N

we cut {|uf(Fy)| > 2%} into A, defined in (3.3) and {z € (4;,)° : & (F)(x)] >
200},

For A;,, from Lemma 2.2 with ¢ € Ay144/n) (since /0P € Ajg/1,1-p)), and
the uniformly lower type p property of ¢, it follows that, for any A € (0, co0),

()-S5 )

1=1ig jEL+

e 3 (i—io)p 9i
SE () )

i=io jET 1

©° 3\ —io)p 9i
22(D) e(ne )

i=io jET 1

2i
5 Sup Z 2 (Bi7ja X) ;

€L jeZy

which is also desired.
It remains to estimate (A4;,)°. Applying the inequality || - |« < | - [l with
€ (0, 1), we conclude that, for any A € (0, c0),

o ({re s W) >20} 5) 35)
< g-ior /() ENOP o (2. 5 )

53 3 ITSIE I O S P

1=ig JEL4+ (Bi.5)
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Below, we will give the estimate of integral

io
= [ bbb e (o %) i
(Bi, )¢

E, = (2’““1”3;) \ (2’@;) .

It follows from Holder’s inequality that, for any A € (0, 00),

I<Z{ 1y <>rd]{[E[¢(27)}d}

On the one hand, by Lemma 2.3 with ¢'/(1=?) € A, C A, (see (3.1)), we have ¢ €
RH; /(1—p)- Thus, thanks to Lemma 2.2 with ¢/0=P) € A, and ¢ € RH, (1), it

follows that, for any A € (0, o0),
B 2i0 1-p
o (28 5|

i 1 1-p
20 1—-p
olr, — dx
VB3] )
- . l—p- i—ig
1 Qio 3\ nt8
< |lp=s (B, .. — ok [ Z
sl (o0 5)) P G)

“np Qto
S (ri) T (Bm 7)

r i—igq nd(1-p)
2k; § n+pB
2
On the other hand, since d < pf/[n(1 —p)], we may choose an o € (0, )
such that d < pB/[n(1 —p)], where 8 := min{1/2, a}. By the assumption
Q € Din},(S"1), we know that (2 satisfies the L*®Dini condition. Then Lemma
3.4(i) yields that

For any k € N, let

1-p

IN

i—ig T

/Ek e (big) ()] dr £ 2° (1 )" [2k (g) W] B.

The above three inequalities give us that, for any A € (0, 00),

i—ig ] nd—ndp—pg

i 21'0 OO 3 n+p
< DERO

k=0

Substituting this inequality into (3.5) and using the uniformly lower type p prop-
erty of ¢, we obtain that, for any A € (0, 00),

® ({x € (A)': b (F)(@)] > 21-0}7 ?) o
sy )EROT

1=10 JEL 4
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< sup Z%‘)(Bw ) ZZ[ <>

€2 | ez, i=io k=0

i 1(]]nd ndp— pﬁ

~ sup §:¢<Bm7§> :

€2 | ez,

where the last “~” is due to d < pB/[n(1 — p)].
Finally, combining (3.2), (3.4) and (3.6), we obtain the desired inequality. This
finishes the proof of Theorem 2.7. OJ

Proof of Theorem 2.5. We need only consider the case p < 1. The proof of the
case p = 1 is similar and easier. Once we prove Lemma 3.4(ii), the proof of
this theorem is quite similar to that of Theorem 2.7, the major change being the
substitution of

<E [ wmaens () [ (- 5)ed”
I<Z{ 1, (b (Wx]p{/];k [90(9%2—;)]11?@}”

But to limit the length of this paper, we leave the details to the interested reader.
O

for

Proof of Corollary 2.9. By ¢ € Apu4s/m), we see that there exists some d €
(1, o0) such that ¢ € A,qig/m). For any ¢ € (1, 00), by the fact that p >
n/(n + ), some tedious manipulation yields (p+p8/n—1/q)¢ > p(1+5/n) and
hence ¢ € A(yips/n—1/9¢- Thus, we may choose ¢ := d/(d — 1) such that

0! = ¢ € Mprsmr/on
and hence Corollary 2.9 follows from Theorem 2.8. OJ

Proof of Theorem 2.10. Since the proof of Theorem 2.10 is similar to that of
Theorem 2.7, we use the same notation as those used in the proof of Theorem 2.7.
Rather that give a completed proof, we just give out the necessary modifications
with respect to the estimate of (4;,). Reset

A= U B,

=10 JELy+

where B\Z? = B(x; 5, 2(3/2)7™r, ). For any A € (0, o), we have

o ({re @l @i > 20} T)

<27 /
(Aig)"

i)

e (o 5 ) do
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<2035 [ i@l (s )

C
1=10 JEL+ Bi,j)
—. 9o E E I
i=io jE€Zy

For any A € (0, 00), let us write

2=, 5473, Q(z —y)
[ ([ e
(B ;)¢ ( 0 \ yln—r i)

1/2 ,
2 dt 20Y
zr, — | dx
i, z—y|<t |:1: - g2t v A

1/2 .
[e%] 210

+/N (/ ) gp(x,—)dx::thIQ.
(Bi, ;)° le—ws, j|+7i, 5 A

Below, we will estimate I; and 12, respectively.
For I;, noticing that = € (B ) and y € B; j, we know that

o =yl ~ o — x4 ~ o — x| + i,
which, associated with the mean value theorem, implies that

1 1

z =y (Jo— i +ri )%

Ti,j
~ o=yt

From Minkowski’s inequality for integrals, the above inequality and Holder’s in-
equality, it follows that, for any \ € (0, o),

Q(JT — y) lz—, j|+7i, 5 dt 1/2 oo
IS/ / —bi»y‘ / — dy 90<$,—>dx
el VI e AV AR 22 X
i Q(.CE— )| 9to
< 24 (ry, ~)1/2/ / ’—dy ® (x, _) dr
" Jene \Us,, e -yt A
~ 2 (1) 1=yl (2"
2 Tz] Z/ |:/L‘7]k |x_y|n+1/2¢ /\ dz d
1/q
i 1/2 |Q xr — )|q
< 2 T'L J Z/ (/ W dl’
1/q

1 2i0\ 17

On the one hand, x € Ej, and y € B; ; imply that 0r; ; < |v — y| < 50r; ;, where
0 := 2%(3/2)0—0)/n  Therefore, we have

1 1/q
( / 2 — y)|? dx) " / @)
B v —y|n 12 — \Jor j<|z<50rs |2|n+1/2
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1/q
50r;, ; ’Q
nfl /
(/Sn ) /0” ) un+1/2 dudo (z ))

—1/2
~ (Ori, )

On the other hand, according to Lemmas 2.2 and 2.3 with ¢? € A, it follows
that, for any A € (0, 00),

1 20\17
- - 2\ 4
/Ek & — g2 {“” (‘” ) )} !
/ 1
10 q
~ (6ri7j)fn/q’,1/2q/ {/ {30 <I, 2_>:| dx}
Ey A

/ / ! QZO
< (Qri,j)_n/q —1/2d gn/a (ﬁyj)_n/q@ (Bi,ja —) .

If we plug the above two inequalities back into I;, we obtain that, for any A €
(0, o0),

o
WSS [, oo (5, 5y
i—ig

. 210 /92\ 2n 2%
~2@§ 02 (B, =) ~2 (2 B, —.
e ()0 R >\ 3 ()0 A )\

For Iy, it is apparent from ¢ > |v—x; ;|+r; j that B, ; C {y e R" : |z —y| < t}.
From this, the vanishing moments of b; ; and Minkowski’s inequality for integrals,

it follows that, for any A € (0, 00),
1/2 ,
2 dt 9i0
dy ey oz, ~ dx

> Qzr —vy
IQ = /N / / ( _n—)pbi’j(y>
(B, ;)t |w—x;, j|+ri, 5 1V |e—y|<t |$ - y|
1/2
*° dt
<[ e | dy
(B;, ;)¢ B; j |z—z;, 4 gzt

Qx —y) Qz —z;,5)

[z —yl*r o =il
2o

X @ (:)j, 7) dz
Qx — Uz — x;

= C/N / n(—p y) i : ’i) |bi,5(y)| dy
(Bi, ;)t Bi, ‘x_y‘ |‘r—$i’j‘ |'r_xi,j|
2io
X ( 3 ) dx

Qa-y)  Qa-y)

<of ./
(Bi, ;)¢ B, ;

|bl ]( )|dy)

|z =y rlr — @l o -yl
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2io
X @ (x, 7) dz
N C/ / Q—-y) Qa—z)
(Bi,;)t \/Bi,;

2o
- bi,j(y)| dy w(,—)dﬂc
‘l’—y‘n ‘$—$i,j|” ’ J( )’ > Y
= 0(121 +122>.

On the one hand, using the mean value theorem again, we obtain that, for any
x € (BZ,])C and Yy e Bi,j7

1 1
o — @i 4lr oyl

ly — x5 ] < ly — @i 4" < (ri )"
o=yl T o= g TR S o= g

which, together with the same argument as that used in Iy, implies that, for any

A€ (0, 00),
2o
dy) % (33, T) dx

I S 22/ / ‘ (x y,)|
(B;, ;)¢ Bi,; |z —y|"r

: Qz —y)| 2t0
cro [ ([ 12,
~ (T,]) (é:])c 5 ’x_y’n+1/2 ylel\w, \ Xz

4]

i—ig .
. 2 2n 2740
<92 B, ).

On the other hand, the condition (2.4) gives that, for any A € (0, 00),

Ly < 21/ / Qz—y) Qz—=z)
|y—:ci7j|<n-,j \x—zi,j\>(3/2)<i7¢0>/"ri,j
10

lz—y|" |-
N2i/ / go(x—ka:m, —) dzdy
lyl<ri,j J |z|>(3/2)0 70/, A
iQ

1 1

|z =257 Jo—yl

20
X @ (x, T) dzdy
i i—ig

Qz—y) Q)
2\ = 210 2\ = 2i0
<2 = i — ) dy <27 2 Bij, — ).
<2 [ G) ol ) ws2(5) " ()

lz—ylm fzf
Collecting the estimates of Iy, Iy; and Iy, we obtain that, for any A € (0, o0),

i—ig

~ +1 21 22 A5 3 1,7 )\
and hence

o ({re @l bl > 20}, 3) <20 >y

i=ip JEL 4

i—ig

X 2\ 20 > 2\ =" 2!
sy 32 (5) e (0 )22 2 (5) T e (o0 5)

1=10 jEL+ 1=10 jEL
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21’
g sup Z @ (B’i,j7 X) 3

€L €T

where we used the uniformly lower type 1 property of ¢ in the second “<”. The
proof is completed. O

Remark 3.5. We should point out that, if ¢ is a growth function of uniformly
lower type 1 and of uniformly upper type 1, then WH?¥ = WH;(,J) and WLY =

WL}O(_J). In fact, there exists a positive constant C' such that, for any z € R"
and t € (0, c0),

c! to(z, 1) = o1 to(x, t/t) < p(z, t) < Ctp(z, 1),
which implies that
sup @ ({|f] >t} t) ~ sup o ({|f] >t} 1)t.

te(0, 00) te(0, 00)

Thus, we have WL? = WL, ). Analogously, WH? =WH]_ .
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many useful discussions and for the guidance over the past years.

REFERENCES

1. J. Alvarez and M. Milman, H? continuity properties of Calderdn-Zygmund-type operators,
J. Math. Anal. Appl. 118 (1986), no. 1, 63-79.

2. L. Diening, P. A. Hast6 and S. Roudenko, Function spaces of variable smoothness and
integrability, J. Funct. Anal. 256 (2009), no. 6, 1731-1768.

3. X. T. Duong and T. D. Tran, Musielak-Orlicz Hardy spaces associated to operators satisfying
Davies-Gaffney estimates and bounded holomorphic functional calculus, J. Math. Soc. Japan
68 (2016), no. 1, 1-30.

4. C. L. Fefferman and E. M. Stein, H? spaces of several variables, Acta Math. 129 (1972),
no. 3-4, 137-193.

5. R. Fefferman and F. Soria, The space weak H', Studia Math. 85 (1986), no. 1, 1-16.

6. L. Hormander, Estimates for translation invariant operators in LP spaces, Acta Math. 104
(1960), 93-140.

7. K.-P. Ho, Intrinsic atomic and molecular decompositions of Hardy-Musielak-Orlicz spaces,
Banach J. Math. Anal. 10 (2016), no. 3, 565-591.

8. R. Jiang, D. Yang and Y. Zhou, Orlicz-Hardy spaces associated with operators, Sci. China
Ser. A 52 (2009), no. 5, 1042-1080.

9. R. Jiang and D. Yang, New Orlicz-Hardy spaces associated with divergence form elliptic
operators, J. Funct. Anal. 258 (2010), no. 4, 1167-1224.

10. R. Jiang and D. Yang, Predual spaces of Banach completions of Orlicz-Hardy spaces asso-
ciated with operators, J. Fourier Anal. Appl. 17 (2011), no. 1, 1-35.

11. R. Jiang and D. Yang, Orlicz-Hardy spaces associated with operators satisfying Davies-
Gaffney estimates, Commun. Contemp. Math. 13 (2011), no. 2, 331-373.

12. L. D. Ky, New Hardy spaces of Musielak-Orlicz type and boundedness of sublinear operators,
Integral Equations Operator Theory 78 (2014), no. 1, 115-150.

13. H. Liu, The weak H? spaces on homogeneous groups, Harmonic analysis (Tianjin, 1988),
113-118, Lecture Notes in Math. Vol. 1494, Springer, Berlin, 1991.

14. C.-C. Lin and Y .-C. Lin, HF-LP boundedness of Marcinkiewicz integral, Integral Equations
Operator Theory 58 (2007), no. 1, 87-98.



15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

WEAK MUSIELAK-ORLICZ HARDY SPACES 17

Bo Li, M. Liao and Baode Li, Boundedness of Marcinkiewicz integrals with rough kernels
on Musielak-Orlicz Hardy spaces, J. Inequal. Appl. 2017 (2017), 228.

Y. Liang, J. Huang and D. Yang, New real-variable characterizations of Musielak-Orlicz
Hardy spaces, J. Math. Anal. Appl. 395 (2012), no. 1, 413-428.

Y. Liang, E. Nakai, D. Yang and J. Zhang, Boundedness of intrinsic Littlewood-Paley
functions on Musielak-Orlicz Morrey and Campanato spaces, Banach J. Math. Anal. 8
(2014), no. 1, 221-268.

Y. Liang, D. Yang and R. Jiang, Weak Musielak-Orlicz Hardy spaces and applications.
Math. Nachr. 289 (2016), no. 5-6, 634—-677.

F.-Y. Maeda, Y. Mizuta, T. Ohno and T. Shimomura, Duality of non-homogeneous central
Herz-Morrey-Musielak-Orlicz spaces. Potential Anal. 47 (2017), no. 4, 447-460.

Y. Mizuta, E. Nakai, T. Ohno and T. Shimomura, Maximal functions, Riesz potentials and
Sobolev embeddings on Musielak-Orlicz-Morrey spaces of variable exponent in R™. Rev.
Mat. Complut. 25 (2012), no. 2, 413-434.

T. Quek and D. Yang, Calderén-Zygmund-type operators on weighted weak Hardy spaces
over R™. Acta Math. Sin. (Engl. Ser.) 16 (2000), no. 1, 141-160.

E. M. Stein, On the functions of Littlewood-Paley, Lusin, and Marcinkiewicz. Trans. Amer.
Math. Soc. 88 (1958), 430-466.

X. Shi and Y. Jiang, Weighted boundedness of parametric Marcinkiewicz integral and higher
order commutator. Anal. Theory Appl. 25 (2009), no. 1, 25-39.

J.-O. Stromberg and A. Torchinsky, Weighted Hardy spaces. Lecture Notes in Math. Vol.
1381, Springer-Verlag, Berlin, 1989.

D. Yang, Y. Liang and L. D. Ky, Real-Variable Theory of Musielak-Orlicz Hardy Spaces,
Lecture Notes in Math. Vol. 2182, Springer-Verlag, Cham, 2017.

CENTER FOR APPLIED MATHEMATICS, TTANJIN UNIVERSITY, TTIANJIN 300072, CHINA.
E-mail address: bli.math@outlook.com



	1. Introduction
	2. Notions and main results
	3. Proofs of main results
	References

