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Abstract. In 1967, Andrews found a combinatorial generalization of the Gollnitz-Gordon
theorem, which can be called the Andrews-Gollnitz-Gordon theorem. In 1980, Bressoud
derived a multisum Rogers-Ramanujan-type identity, which can be considered as the
generating function counterpart of the Andrews-Gollnitz-Gordon theorem. Lovejoy gave
an overpartition analogue of the Andrews-Gollnitz-Gordon theorem for ¢ = k. In this
paper, we give an overpartition analogue of this theorem for k£ > i > 1. By using Bailey’s
lemma and a change of base formula due to Bressoud, Ismail and Stanton, we obtain an
overpartition analogue of Bressoud’s identity. We then give a combinatorial interpretation
of this identity by introducing the Gollnitz-Gordon marking of an overpartition, which
yields an overpartition analogue of the Andrews-Gollnitz-Gordon theorem.
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1 Introduction

The purpose of this paper is to give an overpartition analogue of the Andrews-Gollnitz-
Gordon theorem in the general case. In 1967, Andrews [3] found the following combina-
torial generalization of the Gollnitz-Gordon identities [15,17], which has been called the
Andrews-Gollnitz-Gordon theorem.

Theorem 1.1 (Andrews-Gollnitz-Gordon). For k > i > 1, let Cy;(n) denote the number
of partitions \ of n of the form (171, 22 3% ), where f,(\) (or f; for short) denotes
the number of occurrences of t in X\, such that

(1) fi(A) + fa(N) <i— 14
(2) farr(N) <14
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(3) Sfar(A) + farr1(A) + farra(N) <k — 1.
Fork >i>1, let Dy (n) denote the number of partitions of n into parts Z 2 (mod 4)
and #Z 0,4+(2¢ — 1) (mod 4k).
Then for k>1>1 andn > 0,
The Andrews-Gollnitz-Gordon theorem was motivated by a combinatorial generaliza-
tion of the Rogers-Ramanujan identities due to Gordon [16].
Theorem 1.2 (Rogers-Ramanujan-Gordon). Fork > i > 1, let By ;(n) denote the number
of partitions A of n of the form (171, 212 3% ) such that
(1) Ai(N) <i—1
(2) fiA) + firr(N) <k — 1.
For k > i > 1, let Ai(n) denote the number of partitions of n into parts # 0,=+i
(mod 2k +1).
Then fork>1>1 andn > 0,

The analytic proof of Theorem 1.2 was provided by Andrews [2], and in [4], he dis-
covered the following identity, which has been called the Andrews-Gordon identity, see
Kurgungoz [18].

Theorem 1.3 (Andrews). For k >i > 1,

NZ4+NZ+-+NZ_ +Ni++Np_1 i 2k+1—i o 2k+1. 2k+1)

3 q _ (d'q T e g

N Ns S 2N 130 (G DN (G Do - (45 D) iy (45 4)oo

Here and in the sequel, we adopt the standard notation [5]:

o0

SN Cad wa) — (5 @)oo
(a,Q)oo—g(l @) (@O =

and

(a1,a2,. .., 0m; @)oo = (@15 ¢)00(A2; @)oo+ * (Am; @) oo-

Theorem 1.3 can be considered as the generating function version of Theorem 1.2. It
is evident that the generating function of Ay ;(n) in Theorem 1.2 equals the right-hand
side of (1.1). By using ¢-difference equations, Andrews [4] showed that the generating
function of By ;(n) in Theorem 1.2 equals the left-hand side of (1.1). In particular, he
obtained the following formula for the generating function of By ;(m,n), where By ;(m, n)
denotes the number of partitions enumerated by By ;(n) with exactly m parts.
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Theorem 1.4 (Andrews). For k >i>1,

Z By i(m,n)z™q" = Z a

o PO R (L) () PSR Y VA

N12+N22+"'+N/3,1+Ni+"'+Nk—1xN1+"'+Nk—1

(1.2)

Kursungéz [18] gave a combinatorial proof of (1.2) by introducing the notion of the
Gordon marking of a partition.

The generating function version of Theorem 1.1 was found by Bressoud [10, Eq. (3.8)]
in 1980.
Theorem 1.5 (Bressoud). For k >i>1,

1—2N;. 2(NZ+-+N2_ 4+Ni+++Ny_1)

Z = 1 0° )N, 4
NIZNQZZNk—lzo (q2’ q2>N17N2 (q21 q2)N27N3 U (q2? q2>Nk71

(5 0)ela™, 7 0 )

(¢ @)oo

Bressoud [10] also showed that the left-hand side of (1.3) can be interpreted combi-
natorially as the generating function of Cj;(n) in Theorem 1.1. More precisely, he gave
the following formula for the generating function of Cy ;(m,n), where Cy;(m,n) denotes
the number of partitions enumerated by Cy;(n) with exactly m parts.

Theorem 1.6 (Bressoud). For k >i>1,

Z Cri(m,n)x™q"

m,n>0

- 3

N1>N2>...>Nj_12>0

(—gt=2M, (NF+++ N2y +Nit+Ng 1) Ny Ny (1.4)

¢ P g
(q2; q2)N1—N2 (q2; q2>N2—N3 U (q2; q2)Nk71

In recent years, many overpartition analogues of classical partition theorems have
been proved, see, for example, Chen, Sang and Shi [12], Corteel and Mallet [13], Corteel,
Lovejoy and Mallet [14], and Lovejoy [19,20,22,23]. In particular, Lovejoy [20] obtained
an overpartition analogue of the Andrews-Gollnitz-Gordon theorem for ¢ = k. In this
paper, we give an overpartition analogue of the Andrews-Gollnitz-Gordon theorem for
k> > 1. We also obtain an overpartition analogue of Bressoud’s identity (1.3).

Recall that an overpartition of n is a partition of n in which the first occurrence of
a number can be overlined. For an overpartition A of n, let f;(A) (resp. fz(\)) be the
number of occurrences of ¢ (resp. t) in A\, without ambiguity, we write f; (resp. fr) for
short. By the definition of an overpartition, it is clear to see that fr(A) =0 or 1.

We obtain the following overpartition analogue of the Andrews-Gollnitz-Gordon the-
orem.
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Theorem 1.7. For k> i > 1, let Oy ;(n) denote the number of overpartitions of n of the
form (1, 151 202 22 ) such that

(1) i)+ (M) <i—1;

(2) fz(N) + far(N) + fama(N) + farga(N) <k =15

(3) If fars1(A) = 1, then fao(N) <k —2.
For k > i > 1, let Py;(n) denote the number of overpartitions of n with non-overlined

parts # 0,£(2i — 1) (mod 4k —2) and let Py x(n) denote the number of overpartitions of
n into parts not divisible by 2k — 1.

Then for k>1>1 andn > 0,

It should be noted that for an overpartition A counted by Oy ;(n) without overlined
even parts and non-overlined odd parts, if we change overlined odd parts of A\ to non-
overlined odd parts, then we get a partition counted by Cj ;(n). Hence we could say that
Theorem 1.7 is an overpartition analogue of Theorem 1.1.

We also obtained the following overpartition analogue of Bressoud’s identity (1.3),
which can be viewed as the corresponding generating function version of Theorem 1.7.

Theorem 1.8. Fork>1>1,

2. 2 . X
> (—¢* 25 ) w1 (—q 72 @) ey TN N N (7 20
Ni>->Nyp_ >0 ((]2; QQ)NI—NQ e (QQ; QQ)Nk—Q_Nk—l(QQ; q2)Nk—1
(=3 @)oo (¢, 172 g2, g% 2)

N (4;9)o ' (15)

We will first prove Theorem 1.8 by using Bailey’s lemma and a change of base formula
due to Bressoud, Ismail and Stanton [11]. We then use Theorem 1.8 to derive Theorem
1.7. More precisely, let Oy ;(m,n) denote the number of overpartitions counted by Oy ;(n)
with exactly m parts, we shall give a combinatorial proof of the following formula for
the generating function of Oy ;(m,n) by introducing the Gollnitz-Gordon marking of an
overpartition.

Theorem 1.9. Fork>i>1,

Z Oki(m,n)z™q"

m,n>0
D DR i S P C Ry L6)
Ni>-->Ng_1>0 '

2 ... 2 . .
y q2(N1+ +Ng_{+Nip1+ +Nk—1)<1+q2Nz)xN1+ +Nj_1

()N -y (PN (€5 @) N,
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Setting x = 1 in (1.6), we obtain the generating function for Oy ;(n) which is the
left-hand side of (1.5). On the other hand, it is evident that the generating function of
Py ;(n) equals

2i—1 Ak—2i—1 dk—2. A4k—2

ZPk,i(n)q”=<_q;Q)°°(q ’%q-q)qu 0T oo (1.7)

which is the right-hand side of (1.5). Hence we are led to Theorem 1.7 by Theorem 1.8.

The paper is organized as follows. In Section 2, we first review some necessary results
on Bailey pairs and then give a proof of Theorem 1.8 by combining Bailey’s lemma and
a change of base formula. In Section 3, we begin with the notion of the Goéllnitz-Gordon
marking of an overpartition and then give an outline of the proof of the formula for
the generating function of Oy ;(m,n) in Theorem 1.9. It turns out that the proof of
Theorem 1.9 reduces to the proofs of two relations stated in Lemma 3.5 and Lemma 3.6,
respectively. Section 4 and Section 5 are devoted to the bijective proofs of these two
relations respectively. In Section 6, we complete the proof of Theorem 1.9.

2 Proof of Theorem 1.8

We will first give a brief review of some relevant results on Bailey pairs which are required
in the proof of Theorem 1.8. For more information on Bailey pairs, see, for example,
[1,7,8,11,21,24,26]. Recall that a pair of sequences («,(a, q), 5,(a,q)) is called a Bailey
pair with parameters (a, q) (or a Bailey pair for short) if for n > 0,

n

Bula,q) = o (a.9) (2.1)

(@ Q)n—r(aG; Qnr

Bailey’s lemma was first given by Bailey [9] and was formulated by Andrews [6,7] in the
following form.

Theorem 2.1 (Bailey’s lemma). If (ay,(a, q), Bn(a,q)) is a Bailey pair, then (o, (a, q), B (a,q))

15 also a Bailey pair, where

,  (p5Dn(p2; O aq ”a .
an(@4) = (aq/pr; @)n(aq/pa; q)n (plpz) (@:9),

(2.2)

n

: _ N (0o a)(aa/prpa oy (g N,
s = 3 e () o0

J=0

Andrews first noticed that Bailey’s lemma can create a new Bailey pair from a given
one. Hence iterating Theorem 2.1 produces a sequence of Bailey pairs, which has been
called a Bailey chain. Based on this observation, Andrews [6] showed that the Andrews-
Gordon identity (1.1) in Theorem 1.3 holds for ¢ = 1 and i = k by iteratively using the
following specialization of Bailey’s lemma.
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Lemma 2.2 (p1,p2 — oo in Theorem 2.1). If (an(a,q), Bn(a,q)) is a Bailey pair, then
(o (a,q), B (a,q)) is also a Bailey pair, where

o (a,q) = a"q" an(a, q),
N g 2.3
Bi(a.q) =~ Bi(a,q). (23)

Subsequently, Agarwal, Andrews and Bressoud [1] gave an extension of a Bailey chain
known as a Bailey lattice and used the Bailey lattice to prove the Andrews-Gordon identity
(1.1) holds for 1 < i < k. Bressoud, Ismail and Stanton [11] provided an alternative proof
of this identity by combining Bailey’s lemma with the following proposition.

Proposition 2.3. [11, Proposition 4.1] If A € R and (a,,(1,q), Bn(1,q)) is a Bailey pair,

where
(1.0) 1, ifn =20,
apll,q) =
(—=1)ng"™ (qUA=1m 4 g~ (A=Dmy i > 1,

then (a,(1,q), 8. (1,q)) is also a Bailey pair, where

, 1, ifn =0,
a"(l’ q) = n,An?(, An —An .
(=1)"q¢™™ (¢ +q "), ifn>1,

B(1,q) = q"Bn(1,q).

By iteratively using Bailey’s lemma and Proposition 2.3, Bressoud, Ismail and Stanton
[11] also provided a proof of Bressoud’s identity (1.3) in Theorem 1.5. Moreover, they
established new versions of Bailey’s lemma, known as change of base formulas, which
change the base in Bailey pairs from ¢ to ¢* or ¢. Iterating these change of base formulas,
they obtained many new multisum Rogers-Ramanujan identities.

By the definition of Bailey pairs, it is easy to see that the sum of two Bailey pairs
with same parameters (a,q) generates a new Bailey pair with parameters (a,q). Hence,
it follows from Proposition 2.3 that

Corollary 2.4. If A € R and (a,(1,q), Bn(1,q)) is a Bailey pair, where

(1.9) 1, ifn =0,
apll,q) =
(—1)gA™ (qUADm 4 g=(A=Dmy - if g > 1,

then (o, (1,q), 8. (1,q)) is also a Bailey pair, where

' (1.) 1, ifn=0,
a b - .
DTN (L1 (A A (4 )2, ifn > L,

ﬂ;(la Q) = Bn(L Q>(1 + qn)/z
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To prove Theorem 1.8, we shall make use of the following special case of the change
of base formula due to Bressoud, Ismail and Stanton.

Lemma 2.5. [11, Theorem 2.5, B — oo| If (an(a,q),Bn(a,q)) is a Bailey pair, then
(! (a,q), B (a,q)) is also a Bailey pair, where

1+a
/ - n 2 2
anla,q) = o an(a®, q°),
- (_G;Q)%qk 2 9
/87,1 a,q) = —ﬂk a,q ).
( ) kz:% (qQ;q2)n—k ( )

Before giving a proof of Theorem 1.8, we first show the following lemma.

Lemma 2.6. Fork>2 and k>1i>1,

1 1, ifn=0,
an( 7Q> - (_1)nq(2k—1)n2 <q—2(k—z')n 4 q2(l<:—i)n)7 an Z 17

(2.4)
N1+2(N22+N§+-~-+N,§_1+Ni+1+~-+N;H)(1 + 2N

Bn(l,q) = Z (—¢:q)2ni-19

n>N1> >Ny 120 ((]2; q2)n—N1 (q2; qz)N1—N2 T (qQ; q2)Nk—2_Nk—l (qz; qz)Nk—l

is a Bailey pair with (1,q).
Proof. We begin with the unit Bailey pair [25, H(17)],

(0)(1 ) 1, ifn=20,
« s =
n q (_1)nqn2/2<q—n/2 + qn/2)7 ifn 2 1’

(2.5)
1, ifn=0,

0, ifn>1.

@WL@Z{

Applying Lemma 2.2 once to (2.5) yields the following Bailey pair (ag) (1,q), 2 (1,q)),

(1)(1 ) 1, ifn=20,
(0% , =
n q (_1)nq3n2/2(q7n/2 + qn/2)’ if n Z 1’

(2.6)

ﬁ?gl)(LQ) = (q_ q)n'

Plugging (2.6) into Lemma 2.5, we get a Bailey pair (a,(1,¢), 3,(1,q)), where

L0 1, if n=0,
(6] s =
i 2(=1)"¢*, ifn > 1,

P Ny
ﬁ;(l,q): Z (qg( Q7q>2N1_1q

n>N1>0 S )n-n (65 ), ’
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which is (2.4) for k =i = 2.

Applying Lemma 2.2 £ — 2 times and Lemma 2.5 once to (2.6), we get (2.4) for
k=12>3.

17

Applying Corollary 2.4 to (2.6), we get a Bailey pair (. (1,q), 3.(1,q)),

,,(1 ) 1, ifn=0,
a,(1,q) = .
(=1)"g® (g% + ¢ (1 + ") /2, iftn > 1,

(2.7)

" 1 + qn
B,(1,q) = :
(1.9) 2(¢; )

"

Plugging (2.7) into Lemma 2.5, we get a Bailey pair (c, (1,q), 8, (1,q)), where

///(1 ) 17 lf n = O,
a, (1, q) = .
(_1)nq3n2 <q2n + q—2n>, if n 2 17

ﬁm(l q) = Z (—q; @)an,—1¢™ (1 + ¢*M)
n ) (qz;qg)n—]\h (q2;q2)N1

)
n>N; >0

which is (2.4) for k =i+ 1= 2.

Applying Lemma 2.2 k — 2 times and Lemma 2.5 once to (2.7), we get (2.4) for
k=i14+12>3.

For k > i+ 1 > 2, alternatively applying Proposition 2.3 and Lemma 2.2 k —i — 1
times to (2.6) yields the following Bailey pair (ai2* >V (1,¢), B 7(1, q)),

(2k—2i—1) 1, ifn=0,
ay (17 Q) =  2k—2i-1 2k—2i—1

(_1)nq2k722i+1n2(q > n _|_ q72 TL), lf n Z 1,

N2 +NZ 44+ N2 +Nij14-+Ng 1

9 q"
BEFEI(1,q) = :
nZNz'-HZ'ZZNklZO ((]; q)n_Ni+1 ((]; Q)Ni+1— i+2 (q; Q)Nk_z—Nk—1(q; q)Nk—l
(2.8)
Applying Corollary 2.4 to (2.8) gives the following Bailey pair (agk*%) (1,q), 5722’“*2” (1,q9)),
. 1, ifn=0,
O‘gk_zl) (17 Q) = { p 2k=2it1,9  _ 2k—2i1,, 2%k—2i-1, n .
(=)~ = "(¢ 2 "+q¢ 2 "(1+qgY)/2, ifn>1,
' 1 ny N2+ N2 4+ +NZ_ 4+ Nip1+-+Ni_1
BER=20)(1 ) — 3 (1+4")q |
n>Ni1>>Njy_1>0 2<q; q)n*Nz‘H (q; q>Ni+1*Ni+2 U (q; q)Nk727Nk71 (q; q>Nk71

(2.9)
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Applying Lemma 2.2 to (2.9) i—1 times yields Bailey pair (as, (2h=i= 1)(1, q), 7(le—@'—1)(1, q),

. 1, ifn=0,

(—1)"¢" 7 ™ (¢~ (L4 )2, ifn>1,

2k:—221+1 n 2k— 21

NF+NF+-+Ni_y+Nip1++Np 1 (1+ qu)

BEFTI(1,q) = > d

n>Na>-->Nj_1 >0 2<q; q)n*NQ (q; Q)NQ*NS e (q; q)Nk72*Nk71 (q; q)Nlcfl
(2.10)

Plugging (2.10) into Lemma 2.5, we get the Bailey pair (2.4) for £ > i+ 1 > 2. Thus,
we complete the proof of Lemma 2.6. |
We are now in a position to prove Theorem 1.8.
Proof of Theorem 1.8. We consider the following two cases.
(1) For k =i =1, Theorem 1.8 obviously holds.

(2) For k > 2 and k > ¢ > 1, by Lemma 2.6 and the definition of a Bailey pair, we see
that

N1+2UV1+N2+~~+N5,1+Dh+1+~~+Ng_n(1 +—q2h@)

Z (—261" Q)2N1 14

RSNy S>> Ny 1 >0 (q ) )n Ny (q q ) (q q )Nk72_Nk71 (q2;q2)Nk71
- a (2.11)
B + Z (2k 1)r? (q—Q(k—z)r 4 qQ(k—z)r)
(q q q)nfr(Q> Q)n+r
Letting n — oo and multiplying both sides by (¢?; ¢?)s in (2.11), we obtain
> (=5 @)aw, 1™ PRI TN ANE N bt N (1 4 2N
Ni>->Nj_1>0 (q2; q2)N1—N2 <q2; qg)Nz—NB e (q2; q2)Nk—2_Nk—1 (qg; qg)Nk—1
(2.12)
_ ((q q (1 + Z (2k 1n (q—Q(k—i)n +q2(k—z)n)> )
Using Jacobi’s triple product identity, we see that
1+ Z 2k 1)n <q 2(k—i)n +gq 2(k—i)n ) _ (q2i71, q4k72ifl,q4k72;q4k72>oo. (2.13)

Substituting (2.13) into (2.12), and noting that

2—2N; 1—2N; 2N2

(—=4; Q)2ni 10" = (=) N1 (= P v
we obtain (1.5) for £ > 2 and k& > i > 1. Thus we complete the proof of Theorem 1.8. 1
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3 The Gollnitz-Gordon marking of an overpartition

In this section, we first introduce the Gollnitz-Gordon marking of an overpartition and
then give an outline of the proof of Theorem 1.9.

Kurgungoz [18] introduced the notion of the Gordon marking of an ordinary partition
and gave a combinatorial proof of Theorem 1.4. The Gordon marking of an ordinary
partition 7 is an assignment of positive integers (marks) to the parts of 7 from smallest
to largest such that the marks are as small as possible subject to the condition that equal
or consecutive parts are assigned different marks. More precisely, let n = (n1, 72, ...,m)
be an ordinary partition where 1 < n; < 1y < --- < mp. Assign 1 to 1. For p > 1,
assume that s is the least positive integer that is not used to mark the parts n; with
np —n; < 1for j < p. Then, we assign s to 7,. For example, the Gordon marking of
n=1(1,1,2,2,2,3,4,5,5,6,6,6) is

G(U) = (117 127 237 247 257 317 427 517 53a 627 645 65)

The Gordon marking of an ordinary partition can also be represented by an array where
the column indicates the size of a part and the row (counted from bottom to top) indicates
the mark listed outside the brackets, so the Gordon marking of n above can be represented
as:

2 6 5

2 6 4

G(n) = 2 5 3
1 4 6 2

1 3 5) 1

We call this array the Gordon marking representation of an ordinary partition. Let N,
denote the number of parts in the r-th row of the Gordon marking representation of an
ordinary partition 7, that is, the number of r-marked parts in the Gordon marking of 7.
From the definition of the Gordon marking of an ordinary partition, it is not difficult to
see that Ny > Ny > --.. Furthermore, if 1 is counted by By ;(n) in Theorem 1.2, then
there are no marks k or greater in the Gordon marking of n, namely, there are at most
k — 1 rows in the Gordon marking representation of 7.

Let By, n,_,.i(n) denote the set of partitions n counted by By ;(n) such that there
are N, parts in the r-th row of the Gordon marking representation of n for 1 <r < k—1.
Define

Kurgungoz [18] established the following identity by introducing backward and forward
moves defined on the Gordon marking of an ordinary partition.

Inl — q
Z 7;.q (

NP+ ANZ_ +Nit-+Ni_y

, (3.1)
q; q)Nl—NQ e <Q7 Q)NK,Q—NIQ;—I (q> Q)Nk,l

10
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where |7| denotes the sum of parts of 7.

Let By, ;(m, n) denote the set of partitions counted by By, ;(m, n) in Theorem 1.4. From
the definition of By, . n,_,.(n), we see that

Byi(m,n) = U Brxoowe(n),

Ny12>->Ng_120
Ni+-+Ng_1=m

SO

Z By.i(m,n)z™q" = Z gV Nt AN Z g, (3.2)

m,n>0 N1>N3>..>Ng_120 NEBN,,...,Ny_15i

Therefore, inserting (3.1) into (3.2) gives rise to Theorem 1.4.

To show Theorem 1.9, we introduce the Gollnitz-Gordon marking of an overpartition
which is different from the Gordon marking of an overpartition introduced by Chen, Sang
and Shi [12]. It should be mentioned that an ordinary partition can be marked with
Gollnitz-Gordon marking, but the Gollnitz-Gordon marking of an ordinary partition is
different from the Gordon marking of an ordinary partition.

In the remainder of this paper, we write an overpartition A in the form (A\y, Ag, ..., Ap)

where \; < \y < --- < )\ are ranked in the following order,

I<1<2<2<---. (3.3)

The ), is called the j-th part of an overpartition A. Denote the size of A; by |A;|. If
|Aj| = a;, then we write \; = @; to indicate that ); is an overlined part and write \; = a;
to indicate that A; is a non-overlined part.

Definition 3.1 (Gollnitz-Gordon marking). The Gélinitz-Gordon marking of an over-
partition X is an assignment of positive integers (marks) to parts of A = (A1, Aa, ..., \y)
from smallest to largest. Assign 1 to A\;. For p > 1, assume that the part A\; has been
assigned a mark for j < p. We consider the following four cases:

(1) If A\, is a non-overlined odd part, then assign 1 to A,,.
(2) If \, is an overlined even part, then assign 1 to A,,.

(3) If A, is an overlined odd part, and s is the least positive integer that is not used
to mark the parts A\; with |A\,| — [A\;| =1 for j < p, then assign s to \,.

(4) If \, is a non-overlined even part, say A, = 2t + 2, define

¢ f to be the least positive integer that is not used to mark the parts A\; with |\,| —
|A;| <2 for j <p,

<& g to be the least positive integer that has been used to mark the parts )\; with
|Ap| — |Aj| =2 for j < p. If such \; does not occur in A, then set g = 0,

11
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then we may assign f or g to A, by considering the following two subcases:

(4.1) If X satisfies four conditions simultaneously: (i) g > 2; (ii) the mark of A\,_; is
g — 1; (iii) 2¢ + 1 or 2t 4+ 2 occurs in A; (iv) 2t + 1 does not occur in A, then assign ¢ to
Ap;

(4.2) Otherwise, assign f to A,.

For example, we consider the overpartition

)\17 )\Qa )‘37 A47 )‘57 )‘ﬁa )‘77 AS) >‘97 )‘10

L A
A=(1, 1, 2, 2 3, 4 6 7, 8 8 )

By Definition 3.1, we see that Ay = 1, Ay = 1 and A\g = 7 should be marked with
1 since they are non-overlined odd parts. On the other hand, A3 = 2 and \¢ = 4 are
overlined even parts, so they are also marked with 1. Hence, we have

)\17 )\27 )‘37 >\47 )\57 >\67 )‘77 /\87 )\97 )\10

N A A
(117 117 §17 27 ga Z17 67 717 87 8 )

The part Ay = 2 should be marked with 2 since it is a non-overlined even part and it does
not satisfy the conditions (4.1) in Definition 3.1. The part A; = 3 is marked with 3 since
it is an overlined odd part and A3 = 2 and )y = 2 are marked with 1 and 2 respectively.
The part A\; = 6 is marked with 2 since it is a non-overlined even part and it does not
satisfy the conditions (4.1) in Definition 3.1. The part A\g = 8 is marked with 2 since it is
a non-overlined even part and it satisfies the conditions (4.1) in Definition 3.1. The part
Ao = 8 is marked with 3 since it is a non-overlined even part and it does not satisfy the
conditions (4.1) in Definition 3.1. So the Gollnitz-Gordon marking of A is

GG(N) = (11,11,21,29,33, 41,62, 71,82, 83).

It can also be represented by an array where column indicates the size of a part, and the
row (counted from bottom to top) indicates the mark listed outside the brackets, so the
Gollnitz-Gordon marking of A above would be

3 8 3
GG(\) = 2 6 8 2. (3.4)
12 2 4 7 1

Similarly, we will call this array the Gollnitz-Gordon marking representation of an
overpartition. Note that non-overlined odd parts could be repeated in the first row of the
Gollnitz-Gordon marking representation of A, so for t > 2, we will use (25 + 1)t to denote

12
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that there are t (25 + 1)’s in the first row of the Gollnitz-Gordon marking representation
of A\, and 25 + T' to denote that there are a 2j+1land ¢t —1 (254 1)’s in the first row of
the Gollnitz-Gordon marking representation of .

Let N, denote the number of parts in the r-th row of the Gollnitz-Gordon marking
representation of an overpartition. From the definition of Goéllnitz-Gordon marking, it is
not hard to show that Ny > Ny > ---. For the example above, we have Ny =5, Ny = 3,
and N3 = 2.

From the definition of Gollnitz-Gordon marking, we see that if A is counted by Oy ;(n)
in Theorem 1.7, then f;(A) + f2(A) < i — 1 and there are no marks k or greater in the
the Gollnitz-Gordon marking of A, that is, there are at most £ — 1 rows in the Gollnitz-
Gordon marking representation of A\, and vice versa. More precisely, we have following
proposition.

Proposition 3.2. For k > i > 1, an overpartition X is counted by Oy ;(n) if and only
if the number of occurrences of 1 and 2 in \ does not exceed i — 1 and there are at most
k — 1 rows in the Gollnitz-Gordon marking representation of .

It should be noted that for the parts 2t +2 in A, if foz5(X) =0, f5(A) =0 and

far(A) + far2(N) =k = 1,

and the least positive integer g that has been used to mark the parts 2¢ in A is greater
than 1, and there is at least one 2t + 1 or 2t 4+ 2 in A which will be marked with 1, then
the marks of 2t 4+ 2 will be less than k since there is a 2t + 2 in A marked with ¢ which
satisfies the conditions in (4.1) of Definition 3.1. This is the reason that the marking of
non-overlined even parts in the definition of Gollnitz-Gordon marking of an overpartition
is more complicated.

For k > i > 1, let Oy ;(m,n) denote the set of overpartitions counted by Oy ;(m,n).
We will classify Oy ;(m,n) by considering whether the smallest part of an overpartition
in Oy ;(m,n) is a non-overlined odd part or an overlined even part. Note that the parts
of an overpartition are ordered by (3.3). Let Fy;(m,n) denote the set of overpartitions
in Qg ;(m,n) for which the smallest part is an overlined odd part or a non-overlined even
part, and let Hj ;(m,n) denote the set of overpartitions in Oy ;(m,n) with the smallest
part being a non-overlined odd part or an overlined even part. Obviously,

Op,i(m,n) = Fyi(m,n) UHy,;(m,n). (3.5)

Let Fy;(m,n) = |Fy:(m,n)| and Hy;(m,n) = |Hy;(m,n)|. Then

Oi(m,n) = Fy;(m,n) + Hy;(m,n). (3.6)

There is a relation between Fy ;(m,n) and Hy;(m,n).

13
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Lemma 3.3. Fork >1i> 2,
Fyi(m,n) = Hg;—1(m,n). (3.7)

For k> 1,
Fi1(m,n) = Hgx(m,n —2m). (3.8)

Proof. For k > i > 2, there is a simple bijection between Fy ;(m,n) and Hy;_1(m,n). Let
o be an overpartition in Fy ;(m, n), we consider two cases: If the smallest part of o is an
overlined odd part, say 2t + 1, then change it to a non-overlined odd part 2t + 1. If the
smallest part of o is a non-overlined even part, say 2¢, then change the first 2¢ of o to
an overlined even part 2¢. In either case, we obtain an overpartition 7 in Hy; 1(m,n).
Furthermore, it is easy to see that this process is reversible, and so this map is a bijection.
Hence (3.7) holds for k > i > 2.

For k > 1, we will give a bijection between Fy ;(m,n) and Hy x(m,n — 2m). For an
overpartition o in Fy1(m,n), by the definition of Fy;(m,n), we see that ¢ has m parts
and the size of each part of ¢ is greater than 2. There are two cases: If the smallest part
of ¢ is an overlined odd part, say 2t + 1, where ¢ > 1, then change it to a non-overlined
odd part 2t + 1. If the smallest part of ¢ is a non-overlined even part, then change one
of the smallest parts, say 2t, where ¢t > 2 to an overlined even part 2¢. In either case, we
obtained a new overpartition p for which the size of each part is greater than 2. We then
subtract 2 from each part of p to obtain the resulting overpartition 7 in Hy, x(m,n — 2m).
It is evident to see that this process is reversible, and so this map is a bijection. Hence
we arrive at (3.8). This completes the proof. |

Using the relation (3.6), it is easy to find that the generating function of Oy ;(m,n)
can be deduced from the generating functions of Fj;(m,n) and Hy;(m,n). In light of
Lemma 3.3, we see that the generating function of Hy ;(m,n) can be obtained from the
generating function of Fj;(m,n). Hence, it suffices to derive the following generating
function of Fj ;(m,n) in order to prove Theorem 1.9.

Theorem 3.4. Fork>1>1,

Z Fyi(m,n)z™q"

m,n>0

- ¥

Ni12>-+>Ng_120

(_ 2-2Ni. .2 1-2N;. (N12+~~+N,§_1+NL-+~-+N1€_1)xN1+---+Nk,1

7 ) -1 (= P v ¢
()N (P @) NNy (€5 P Ny

(3.9)

In this paper, we will give a combinatorial proof of Theorem 3.4 based on the Goéllnitz-
Gordon marking of an overpartition. Let Fy, n, ,.i(n) denote the set of overpartitions
A in Fy ;(m,n) such that there are N, r-marked parts in the Gollnitz-Gordon marking of
Aor1<r<k-—1.

14
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Set
Fei i = [ FNa i i (0)-

n>0
From the definition of Fy, . n,_,., it is evident to see that
Fk,i(mv n) = U FNl’n-»Nkfl;i(n)'
Ny12>->Ng_120

N1+...+Nk_1:m

This leads to

Z Fy.i(m,n)z"q" = Z g N1t Ne— Z g™ (3.10)

m,n>0 N1>N2>..>Np_120 AEFN, . Ny s

Hence Theorem 3.4 immediately follows when we show that for £ > i > 1 and N; >
Ny >+ > N1 >0,

_ e A (=M g

(qQ; q2)N17N2 T (q2; qQ)Nk72*Nk71 (qQ; q2)Nk71

2(NZ+++NZ_ | +Ni++Ni_1)

(3.11)

It turns out that the proof of (3.11) is more complicated than the proof of (3.1) due
to Kurgungoz. To prove (3.11), we require to build two bijections. More precisely, let
Gn,...N,_,.i(n) denote the set of overpartitions in Fy, . n, ,.(n) for which there are no
overlined even parts and non-overlined odd parts. Let Ey, n, ,.i(n) denote the set of
overpartitions in Gy, . n,_,.:(n) for which there are no overlined odd parts.

Set
Gle'nka:fl;i = U Glequkfl;i(n%

n>0

and

We will give bijective proofs of the following two relations in Section 4 and Section 5
respectively.

Lemma 3.5. Fork>:¢>1and Ny > Ny > ---> N,_1 >0,

> N == A DY (3.12)
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Lemma 3.6. Fork>i>1and Ny > Ny > ---> N1 >0,

> == DY 4 (3.13)

In Section 6, we first give a proof of Theorem 3.4 by using Lemma 3.5 and Lemma 3.6,
as well as (3.1) due to Kurgung6z. Then we complete the proof of Theorem 1.9 by using
Theorem 3.4, together with Lemma 3.3 and the relation (3.6). In the remaining part of
this paper, we mark parts of an overpartition in the Gollnitz-Gordon marking.

4 Proof of Lemma 3.5

Let Ry denote the set of partitions 7 = (71, 79, ..., 7,) with distinct negative even parts
which lie in [-2N, —2|, that is, 7; is negative and even for 1 < j < ¢ and —2N < 7y <
Ty < -+- <71y < —2. It is easy to see that the generating function for partitions in Ry is:

S @M=+ (1407 = (=)

TGRN
Thus, Lemma 3.5 is equivalent to the following combinatorial statement.

Theorem 4.1. For k > ¢ > 1 and Ny > Ny > --- > Ny_1 > 0, there is a bijection ®
between Fy,  n,_,i and Ry, 1 X G, N,y such that for X € Fy, . N, and ®(\) =
(7-7 :u) € Rlel X Gle--kafl?i? we have ’)‘| = |T| + |:u‘

Note that Gy, . n, . is the set of overpartitions in Fy, . n, ,; for which there are
no overlined even parts and non-overlined odd parts, so the key point in the construction
of the bijection ® is to remove overlined even parts and non-overlined odd parts from
an overpartition in Fy, _n, ,; to obtain a new overpartition in Gy, . n, ,s. To this
end, we will first define three subsets Fu, .~ :ips FNh,._7Nk_l;i,p and F oy, wn, ,4p Of
Fn,,..N,_;i- Then we build a bijection ®, between Fy, n,_,.ip, and FNI,-n;Nkfl;iyp and
a bijection ®(,) between Fy, N, ,.up and F oy, N, .ip- It turns out that @, can be
obtained by iteratively using the bijection ®, and plays a crucial role in the construction
of the bijection ® in Theorem 4.1.

Let A be an overpartition in Fy, _ n, 4. For1 <7 < k—1, define \(") = ()\Y), )\g), o
)\5\7,2) to be the r-th sub-overpartition of A whose parts are r-marked parts in the Goéllnitz-
Gordon marking of A, where A" < Ay” <. <A{). The A" are called the j-th part of
the r-th sub-overpartition A" of .

Let Kk > ¢ > 1and Ny > Ny > --- > N1 > 0 be given. For 1 < p < Ny,
the subsets Fn,  n 1:ip Fva---ka—lﬂap and F n, . n, ,.ip are described by using the first
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sub-overpartition A\(V) = ()\gl), )\gl), o Aﬁf) of an overpartition A in Fy, n, ., where
1 1 1
A <Al <<

O Fny..Ne_yip 1S the set of overpartitions A in Fy, ., such that (1) )\él) is a

non-overlined odd part or an overlined even part; (2) A

;' 1s an overlined odd part or a
non-overlined even part for all j € {p+1,..., N;}.

O FN17-~-7Nk—1§i7p is the set of overpartitions A in Fy, n, ,.; such that (1) )\,(Jl) is an

(1)
p+1

an overlined even part; (3) >\§-1) is an overlined odd part or a non-overlined even part for
allje{p+2,...,N}.

overlined odd part or a non-overlined even part; (2) A, is a non-overlined odd part or

O ﬁN _N._..ip 18 the set of overpartitions Ain Fy,  n, ,.; such that AW is an overlined
13V —15%,P p 1y dVE—15 J
odd part or a non-overlined even part for all j € {p,..., N1}.

By definition, it is easy to see that for 1 < p < N; — 2,
FNt e Nevsip © Fv N ot © FNI,...,Nkfl;i,pH-

We are ready to present the bijection ®, between Fy, n, ., and Fy,  n, ., and

the bijection @,y between Fy, . n, ,.ip and F n, . n,_,:ip- The following lemma gives the
bijection ®,, which will be proved at the end of this section.

Lemma 4.2. For1 < p < Ny, there is a bijection @, between Fn, N, ,.ip and FNl,...,Nk_l;i,p-
Furthermore, for X € Fn,  n,_,ip and p= ®,(N) € FNI,---ka—Iﬂ,P? we have

=\ +2. and N =" forj#Epp+1, (4.1)

(1)

where )\§-1) (resp. ;') is the j-th part of the first sub-overpartition of A (resp. ).

Applying Lemma 4.2 repeatedly gives the following lemma.

Lemma 4.3. For 1 < p < Ny, there is a bijection @,y between Fy, . n, ,.ip and

ﬁNl,m’Nkfl;i,p. Furthermore, for X\ € Fyn, . N, _,ip ond jt = <I>(p)()\) S N, N 15ips
we have
| = |\ + 2Ny —2p+2, and /\5-1) =" forj <p. (4.2)

J

Proof. Define ®,) = ®n, On—1--- %, by Lemma 4.2, it is easy to verify that ®(,) is a

bijection between Fn, . n, ,.ip and F n,  n,_,:ip as desired. |

Before giving a proof of Lemma 4.2, we give a proof of Theorem 4.1. Note that
Gny....N_,: is the set of overpartitions in Fy,  n, ,; for which there are no overlined
even parts and non-overlined odd parts, so we could use the bijection @, in succession
to remove all overlined even parts and non-overlined odd parts from an overpartition in
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Fn,,..N_15i- Let A be an overpartition in Fy, . n, ,ip and g = @,)(A), by Lemma 4.3,
we see that the number of non-overlined odd parts and overlined even parts in p is one
less than that in A. Applying Lemma 4.3 repeatedly in A\, we can obtain an overpartition
belonging to Gy, ... n,_,:-

Proof of Theorem 4.1. Let A be an overpartition in Fy, n,_,;. We aim to define
®(A\) = (7, p) such that 7 is a partition in Ry, _; and u is an overpartition in Gy, n,_,
satisfying |A| = |7| + |u|. We consider two cases.

Case 1. If there are no overlined even parts and non-overlined odd parts in A, then
set = A and 7 = (). It is easy to see that u € Gy, n,_,: and |A] = ||

Case 2. If there are s > 1 overlined even parts or non-overlined odd parts in A, then
by the definition of Go6llnitz-Gordon marking, we see that these parts are marked with 1.

If we assume that A1) = ()\gl), Aél), . ,)\%1)) is the first sub-overpartition of A, then there
are s overlined even parts or non-overlined odd parts in A("), which are )\ﬁ), )\g), e

)‘2)_1 and /\5-1), where 1 < 77 < Jo < - -+ < js < Ni. Under this assumption, we see that A

is an overpartition in Fu,  n, ... Note that the smallest part of A is an overlined odd
part or a non-overlined even part, so j; > 1. Set

T=(=2(Ny—j1+1),-2(Ny —jo+1),..., =2(Ny —js+1)),

obviously, 7 is a partition in Ry,_;. The overpartition p can be obtained from A by
employing the bijection in Lemma 4.3 s times. We denote the intermediate overpartitions
by 7%, 41, ..., 4% with 4 = X and 4* = u. For 1 < b < s, the intermediate overpartition
4* can be obtained from 7*~! by using P, _p,1) in Lemma 4.3, that is, for 1 <b < s,

’yb = q)(js—b+1) (Vb_l)‘

Note that v° € Fn, . N, .., S0 by Lemma 4.3, we see that
71 € Flemsz—l?iyjs—l and h/l‘ = ’)‘| + 2(N1 —Js T+ 1)7
and the first (j, — 1) 1-marked parts in the Gollnitz-Gordon marking of 4! and 7% = \
are the same.
Employing Lemma 4.3 repeatedly, we derive that for 1 <b < s —1,

b
71) S ]FNlrnszflﬂzjsfb and |7b| = |)‘| + QZ(NI — Js—r41 T 1)7

r=1
and

78 € F1\71,-~~J\71971§i7j1 and h/s| = |>“ +2 Z(Nl o jS*TJrl + 1>'

r=1
Furthermore, for 1 < b < s, the first (js_p11 — 1) 1-marked parts in the Gollnitz-Gordon
marking of 7* and 7 = )\ are the same. From the preceding fact, we see that the first
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(j1 — 1) parts in the first sub-overpartition of A are non-overlined even parts or overlined
odd parts, and so we derive that there are no overlined even parts or non-overlined odd
parts in v°. Hence

= 75 € GNI,--kafl?i and ‘:u‘ = ’)‘| + QZ(Nl — Js—r41 T 1)7
r=1

and it is easy to check that |7| + |u| = |A|. Therefore ® is well-defined.

To prove that ® is a bijection, we shall give a brief description of the inverse map
U of ®. Let p be an overpartition in Gy, . n, ., and 7 be a partition with distinct
negative even parts lying in [2 — 2Ny, —2]. We shall define W(7, u) = A such that X is an
overpartition in Fu,  n,_,. and |A| = |7| + |p|. There are two cases.

Case 1. 7 = (. In this event, set A\ = u. Note that Gy, . N, € Fn,..N_:is SO
A € Fn,...~,_,.: and there are no overlined even parts and non-overlined odd parts in A.

Case 2. 7 # (). In this event, assume that
T = <_2(N1 _jl + 1)7 _2<N1 _j2 + 1)7 ceey _2(N1 _js + 1))5

where 1 < j; < jo < -+ < js < Nj. The overpartition A\ can be recovered from p by
using the bijection in Lemma 4.3 s times. We denote the intermediate overpartitions by
0%, ..., 8% with 0* = pand 0° = \. For 1 < b < s, the intermediate overpartition §°~*
can be obtained from §° by using the bijection q>(j1—b+1) , that is 67! = (I)(ji_b+1)(5b>‘ It
follows from Lemma 4.3 that A is an overpartition in Fy,  n,_,. and || = |7| + |p], and
U(®(N) = A for any A in Fy,  n,_,4. Hence ® is a bijection between Fy,  n, .. and
Rn,—1 X Gn,,.. N,_,:i- This completes the proof of Theorem 4.1, and hence Lemma 3.5 is
verified. 1

It remains to show Lemma 4.2. To this end, we shall divide Fy, . n, ,., into four

disjoint subsets IFg\l,)l Ny_iip (1 <1 <4) and divide Fn,...N._,.ip into four disjoint subsets
Fﬁlv)lekfm (1 <1< 4). We then construct the bijection @, consisting of four bijections

®, , between Fs\l,)lekilmp and FE@I,M,NFM (1 <1< 4), which are presented in Lemmas
4.4, 4.5, 4.6 and 4.7 respectively.

For 1 < p < Ny, let AV = (A§”, AS), . ,/\5\2) be the first sub-overpartition of A in

Fny.. .N._y:ip, Dy definition, we see that /\}(71) is a non-overlined odd part or an overlined
(1)
J
{p+1,...,N;}. The subsets FE@MNHM (1 <1< 4) can be described in terms of the
first sub-overpartition of \.

even part and Ay’ is an overlined odd part or a non-overlined even part for all j €

1
(1) Fy,,
overlined odd part; (ii) if ])\;1_)1] < [AY| = 2, then there are no non-overlined even
parts of size \)\,(31)] +1in A\

o Ng—q3i,p 72 2T PRY EE VTR G REREEES A S S N
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(2) FE\Z,I)’M,NMUW is the set of overpartitions A in Fy, . n, ., such that (i) AW s a non-
overlined odd part; (ii) |)‘z(71—)1| < |/\z(>1)| — 2; (iii) there is at least one non-overlined

even part of size |)\§,1)| +1in A

(3) Fg\?;l)meil;i’p is the set of overpartitions A in Fy, N, .., such that (i) A s an

overlined even part; (ii) there is no overlined odd part of size |/\1(71)| + 1in A

(4) Fgél)meil;i’p is the set of overpartitions A in Fy, n, ., such that (i) AN s an

overlined even part; (i) there is an overlined odd part of size A"+ 1 in A.

B For 1 < p < Ny, let pM) = (,ugl), ugl), e ,,ug\l,l)) be the first sub-overpartition of u in
Fn, ... N._:ips Dy definition, we see that ul(jl) is an overlined odd part or a non-overlined
even part, /L;lll is a non-overlined odd part or an overlined even part, and pgl) is an

overlined odd part or a non-overlined even part for all j € {p + 2,..., N;}. We shall

divide the set Fyn, . n,_,., into four disjoint subsets ng)lquIcfl;i,P (1 <1<4)in terms of

(1)

the first sub-overpartition of p. When p > Ny, we see that p,/,

does not occur in p. For
convenience, set | ,ug\}l) 1] = o0
1 F(l) . is the set of overpartitions p in Fy, n, .., such that (i M s an
Ni,...;Ng—15i,p H 1y Ng—1;2,P Hp
overlined odd part; (ii) if | u1(31421| > | u;1)| + 2, then there are no non-overlined even

parts of size \,uz(,l)] +1in p.

(2) Fﬁi..“Nkil;i’p is the set of overpartitions y in Fy,  n, ., such that (i) u s a

non-overlined even part: (ii) there is an overlined odd part of size |p5”|+1 in g (iii)
if | ,%(71421‘ > | /Lg(yl)| + 2, then there are no non-overlined even parts of size | u](gl)| +2in
L.

(1)

(3) FS\B;I) is the set of overpartitions p in Fy, n, ,.,p such that (i) pp’ is a

non-overlined even part; (ii) there is no overlined odd part of size | u,(})| + 1in p.

Ng—138,p

(4) FE@?W is the set of overpartitions p in Fy, . n,_,.ip such that (i) if i) s an
(1)

overlined odd part, then | Ngﬂ > |up’| + 2 and there is at least one non-overlined

Ng—13i,p

even part of size | ,uj(gl)l +1in g5 (ii) if 18 is a non-overlined even part, then | ,u;lﬁl] >
| ,ué,l)| + 2 and there are an overlined odd part of size |,LL;(71) | +1 and at least one
non-overlined even part of size |,u;()1)| +2in p.

N =
We are now ready to define the bijections ®;, between IF‘S\Z,)I’M’NFMP and ]ng)l,...,Nk,l;i,p

(1<1<4).
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Lemma 4.4. For 1 < p < Ny, there is a bijection @1, between FS&B,...,Nkfl;i,p and
=1 =(1)
I]ENI’ Ny_yip- FPurthermore, for X\ € ]F N ip Ond L= D1p(A) € Fyy o nyysipr WE
ave
Wl =\ +2, and A§-1) =5 forj#pp+1.
Proof. Let A1) = ()\g ), )\gl), e )\5\1,1)) be the first sub-overpartition of A in IF§\1737...,Nk_1;i,p'

By definition, we see that )\1(01) is a non-overlined odd part, set )\él) = 2t + 1. Since

A€ Fg\l,l)meil;i,p, we see that if \ASA] < 2t — 1, then 2t + 2 does not occur in A, and
)\5-1) is an overlined odd part or a non-overlined even part for all j € {p +1,..., N1}

When 1 < p < Ny, set )\;jl = 2a+1 (resp. 2a + 2), it follows from the definition of
Gollnitz-Gordon marking that a > ¢ + 1.

For 1 < p < Ny, define o = ®; ,(\), which can be obtained from X by performing the
following two operations.

(1) Replace )\]()1) =2t+1by 2t + 3.

(2) When 1 < p < Ny, replace )\;(;1421 = 2a + 1 (resp. 2a+2) by 2a + 1 (resp. 2a + 2);
When p = Ny, we shall do nothing.

Obviously, |u| = || + 2. We first prove that the parts from A in g have the same
marks as in A and the newly generated parts 2t + 3 and 2a + 1 (resp. 2a + 2) in p are
marked with 1. This leads to p € Fn, . n,_,.. By the definition of p, it is obvious that
this assertion is true for the parts of size not exceeding 2¢ + 1 in u. We next show that
the parts 2t + 2 in p have the same marks as 1n )\ and the newly generated part 2t + 3
in p is marked with 1. There are two cases: if )\p L =2t or 2t, or 2t + 1, or 2t + 1, then

M;()121 = 2t, or 2t, or 2t + 1, or 2t + 1, it follows from the definition of Gollnitz-Gordon

marking that the parts 2¢42 in y have the same marks as in A even if the part )\ () —92t+1
has been replaced by 2t + 3 in p. Furthermore, the newly generated part 2t +31in pis
marked with 1 since there is no 1-marked part of size 2t + 2 in p. If |)\ ] <2t -1,
then 2t + 2 does not occur in A, and so neither in p. It follows that the newly generated
part 2¢t + 3 in p is marked with 1. Therefore, in either case, the parts 2t + 2 in u have
the same marks as in A and the newly generated part 2¢ + 3 in p is marked with 1. By
the definition of Gollnitz-Gordon marking, it is easy to see that the newly generated part
2a + 1 (resp. 2a + 2) in p replacing )\1(31421 is marked with 1, which has the same size with

)\;21 in A\, and so the parts of size larger than 2¢ + 2 in y have the same marks as in \.

Thus, we arrive at our assertion and prove that p € Fn, . n, .-
Let ) = (,ugl), ,ugl), - ,MN ) be the first sub-overpartition of u. It follows from the

above proof that A = /L; ) for j # p,p+ 1. Furthermore, uz(o) = 2t + 3, uéﬁl is a non-

j
overlined odd part (resp. an overlined even part), and pgl) is an overlined odd part or a
non-overlined even part for all j € {p +2,..., N;}. Moreover, if |,up1+1] > 2t + 5, then

2t + 4 does not occur in p. This is because that if |)\p+1| > 2t +5 and )\ =2t + 1, then
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(1)

2t +4 does not occur in X. Therefore, 1 € Fle---aNk—l;i,p'

Furthermore, it is not difficult to

show that @, , is reversible. So, we conclude that ®, , is a bijection between ]FEQ Ne_1iip

1)

and F§V1,...,Nk,1;i,p' This completes the proof. |

For example, for p = 3, let

6 3
GG(\) = 2 4 71 2
1 32 6 1

be the Gollnitz-Gordon marking representation of A in IFS%J;&?,. Applying the bijection

®, 3 to A, we get

6 3
GGp)= | 2 4 7 2
1 3 5 6 1

C = (D)
which is in Fy 3,5 5.

Lemma 4.5. For 1 < p < Nj, there is a bijection ®y, between Fggl)kafl;i,p and

—=(2) 2 =(2)
IENL...,N;H;W' Furthermore, for \ € Fg\,l)“.kailﬂ’p and = $y,(N) € FN17~~-»Nk—1§i7p7 we
ave

l =1\ +2, and A = forj #pp+1.

Proof. Let \(V) = (A§”, )\gl), e /\5\2) be the first sub-overpartition of A in Fg\%)

5o, NE—135,p°
By definition, we see that )\](;1) is a non-overlined odd part, set )\él) =2t+1, ])\]()1_)1’ <2t—-1

1)
41

(resp. a non-overlined even part), set )‘;(;21 = 2a+ 1 (resp. 2a + 2). From the definition
of Gollnitz-Gordon marking, we see that a > ¢ + 1.

and there is at least one part 2t 4+ 2 in A\. Furthermore, A /, is an overlined odd part

To define ®,,, we introduce an index r which is related to the marks of the parts
2t 4+ 2 in A. If there exists b such that there are b-marked parts 2t and 2t 4+ 2 in A, then
set r = b; Otherwise, we define r as the largest mark of the parts 2t + 2 in A. Since 2t + 2
occurs in A\ and )\1(71) = 2t + 1, by the definition of Gollnitz-Gordon marking, we deduce
that the marks of the parts 2¢ + 2 in A are larger than 1. Hence r > 2.

For 1 < p < Ny, define p = ®,,()), which can be obtained from A by doing the
following two operations.

(1) Replace )\él) = 2t+1 by 2t + 2 and replace the r-marked part 2t +2 in A by 2¢ + 3.

(2) When 1 < p < Ny, replace /\](,1J21 = 2a + 1 (resp. 2a + 2) by 2a + 1 (resp. 2a + 2);
When p = Nj, we shall do nothing.

Obviously, |p] = |A| +2. We first show that p is an overpartition in Fy,  n,_,4. To
this end, we shall show that the parts from A in g have the same marks as in A and the
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newly generated parts 2t 4+ 2 and 2a + 1 (resp. 2a + 2) in p are marked with 1, and the
newly generated part 2t + 3 in p is marked with r. By the definition of u, it is obvious
that the marks of parts of size not exceeding 2t + 1 in p are the same as in A\. Note
that |A1(0121| <2t—1, \Y =2t + 1 and |)\2(71£1| > 2t + 1, this implies that there are no
1-marked parts 2t, 2t and 2t + 1 in A, and there is only one part 2¢ + 1 in A, that is Aél).
Therefore there are no 1-marked parts 2¢, 2t, 2¢t + 1 and 2¢ + 1 in p. By the definition
of Gollnitz-Gordon marking, we see that the newly generated part 2¢ + 2 in p replacing
)\g) = 2t + 1 should be marked with 1 and the parts 2¢ + 2 from A in p have the same
marks as in A. We proceed to show that the newly generated part 2t 4+ 3 in u replacing
the r-marked part 2t + 2 in A is also marked with r. By the definition of Gollnitz-Gordon
marking, we see that there are 2-marked, ..., (r — 1)-marked (2t + 2)’s in A. It follows
from the preceding proof that there are also 1-marked, ..., (r — 1)-marked (2t +2)’s in p.
Therefore the newly generated part 2¢ + 3 in u replacing the r-marked 2t 4 2 in X is also
marked with 7. Again, from the definition of Gollnitz-Gordon markinlg), it is easy to see

that the newly generated part 2a + 1 (resp. 2a + 2) in u replacing )\; 1 is marked with

1, which has the same size with /\I(,IJB1 in A, and so the parts of size larger than 2¢ 4+ 1 in u

have the same marks as in A\. Thus, we prove that p is an overpartition in Fn,  n, -

Let pM = ( 5”, ,uél), e ,uﬁf) be the first sub-overpartition of p. From the above
proof, we see that A§1) = ,ug-l) for 7 # p,p + 1. Furthermore ,ui(,l) = 2t + 2, ,%(71421 is a non-
overlined odd part (resp. an overlined even part), and uEl) is an overlined odd part or a
non-overlined even part for all j € {p+2,...,N1}. This proves that u is an overpartition
in Fn, . n,_,ip- Again by the preceding proof, we also see that there is an r-marked
2t + 3 in pu. Furthermore, from the definition of A, we see that if \)\1()21] > 2t + 4, then
2t + 4 does not occur in A, otherwise, it contradicts to the assumptions that /\1(71) =2t+1

and |/\;1+)1| > 2t 4+ 4. Hence, we derive that if |,u1(01£1| > 2t 4 4, then 2t + 4 does not occur

)

in p. This proves that p is an overpartition in FE\Q, Moreover, it can be checked

1oy N 158,07
that @, is reversible. So we conclude that ®,, is a bijection between ]Fﬁj No_yiip o0
—(2 .
Fg\,l)MNkil;i’p. This completes the proof. ]

For example, for p = 3, let

4 8 3
GG(\) = 2 4 8 I 2
1 4 7 10 13 1

be a Gollnitz-Gordon marking representation of A in Fé?)lg;?)ﬁ. Applying the bijection ®; 3
to A\, we get

4 9 3
GG(p) = 2 4 8 1 2,
1 4 8 10 13 1
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. ..o =(2)
which is in Fg o5 5.

Lemma 4.6. For 1 < p < Nj, there s a bijection ®3, between Fg\?;l)kafl;i’p and

=(3) 3 =(3)
IENL..-,N;H;LP' Furthermore, for \ € FEVBW.’NFM’Z) and p = P3,(\) € ]Flem,Nkfl;iyZW we
ave

el =1\ +2, and A = forj #pp+1.

Proof. Let A® = AW A0 )\5\1,3) be the first sub-overpartition of A in Fﬁz,...,qu;i,p'

By definition, we see that /\1(91) is an overlined even part, set )xj(gl) = 2t. Note that )\ €
Fﬁj o Ne_yips S0 2t +1 does not occur in A and /\5-1) is an overlined odd part or a non-

overlined even part for all j € {p+ 1,..., N;}. This implies that there are no parts of
size 2t + 1 in A. Set )\1()21 =2a + 1 (resp. 2a + 2), where a >t + 1.

To define ®3,, we introduce an index 7 which is related to the marks of the parts 2¢
in A. There are three cases: If )\I(Bl =2t—2,0or2t—2,0r 2t — 1, or 2t — 1, then set r = 1;

It |/\I(,1,)1| < 2t — 3 and there exists b such that there are b-marked parts 2¢ — 2 and 2¢ in A,
then set r = b; Otherwise, set r to be the largest mark of the parts of size 2¢ in \. Since
)\]()1) = 2t, we see that r > 1.

For 1 < p < Ny, define pt = ®3,(\) which can be obtained from A by the following
two operations:

1) When r = 1, replace A = 27 by 2t + 2: When r > 2, replace A\ = 2Z by 2¢ and
( p Yy p y
replace the r-marked part 2¢ in A by 2t + 2.

(2) When 1 < p < Ny, replace /\I()IJZ1 = 2a+ 1 (resp. 2a + 2) by 2a + 1 (resp. 2a + 2);
When p = Nj, we shall do nothing.

Obviously, |u| = |A| +2. We first show that x is an overpartition in Fy, . n,_,.. We
assert that the parts from A in p have the same marks as in A\ and the newly generated
part 2a + 1 (resp. 2a + 2) in g is marked with 1; When r > 1, the newly generated part
2t + 2 in pu replacing the r-marked part of size 2t is marked with r; When r > 2, the
newly generated part 2t replacing )\pl) —= 2t is marked with 1. From the construction of
it and the definition of Gollnitz-Gordon marking, it is obvious that the marks of parts of
size not exceeding 2t — 1 in p are the same as in A. We proceed to show that this assertion
holds for parts of size not exceeding 2t + 2 in pu. We consider the following two cases:

(1) When r = 1, there are two subcases:

(1.1) When )\;1_)1 =2t —2,0r 2t —2, or 2t — 1, or 2t — 1, by the definition of Gollnitz-
Gordon marking, we see that the parts 2t from A in p have the same marks as in A and
the newly generated part 2t + 2 in u replacing /\;1) = 2t should be marked with 1. Since
there are no parts of size 2t + 1 in A, from the construction of i, we see that there are no
parts of size 2t + 1 in u. Note that the newly generated part 2t 4+ 2 in p is marked with
1, so we conclude that the marks of parts 2¢ + 2 from X in p are the same as in \.

(1.2) When |)\](Dl_)1| < 2t —3, and there is only one part of size 2¢ in A, that is, )\S) = 2t,
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from the construction of u, we see that there are no parts of size 2t or 2¢ 4+ 1 in p and the
newly generated part 2¢ + 2 in u replacing )\1()1) = 2t is marked with 1. Furthermore, the
marks of the parts 2t 4+ 2 from A in u stay the same as in \.

(2) When r > 2, then either there are r-marked parts 2t — 2 and 2t in A, or 7 is the
largest mark of the parts 2t in A\. By the definition of Gollnitz-Gordon marking, we see
that there are 1-marked, ..., r-marked parts of size 2t in A. It follows that the marks of
the parts 2t +2 in A are greater than r. Note that |)\](J]‘_)1| < 2t — 3, so the newly generated

part 2t in p replacing )\1()1) = 2t is marked with 1 and the marks of parts 2¢ from X in g
are the same as in A. This means that there are 1-marked, ..., (r — 1)-marked 2¢’s in
. Since there are no parts of size 2t + 1 in u, we deduce that the newly generated part
2t + 2 in u replacing the r-marked part 2t in A\ is marked with » and the marks of the
parts 2t + 2 from A in p are the same as in A. Furthermore, r is the smallest mark of the
parts 2t + 2 in p.

It remains to show that the assertion holds for parts of size greater than 2¢+2 in y. By
the definition of Gollnitz-Gordon marking, it is easy to see that the newly generated part
2a + 1 (resp. 2a + 2) in p replacing AI(,IJZI is marked with 1, which has the same size with

)\](021 in A. Furthermore, it should be noted that the newly generated r-marked part 2t + 2
in p replacing the r-marked part of size 2t in A could affect the mark of the r-marked part
of size 2t + 3 (resp. 2t +4) in p. Hence it suffices to show that the r-marked part of size
2t + 3 (resp. 2t +4) from A in p is also marked with r in p. We consider the following
two cases:

(1) If # = 1 and note that A} = 27 and |A\),| > 2¢ + 3, then A}, = 20+ 3 (resp.
2t 4+ 4), this part will become 2t + 3 (resp. 2t + 4) in p, and by the definition of Géllnitz-
Gordon marking, we see that 2t + 3 (resp. 2t +4) in p is also marked with 1.

(2) If r > 2, then we shall first show that there is no r-marked 2t + 3 in u. By the
definition of A\, we see that the marks of the parts of size 2t + 2 in A are greater than r.
It follows that 2¢ 4+ 3 in A is marked with 1, and so there is no r-marked 2¢ + 3 in u. If
there is an r-marked 2t +4 in A, then there are 2-marked, ..., (r —1)-marked parts 2t + 4
and a l-marked 2t + 3 (resp. 2t +4) in A\. Note that )\2(31421 = 2t + 3 (resp. 2t +4) will
become 2t + 3 (resp. 2t +4) in p, which is also marked with 1 in p. Moreover, there is
no l-marked 2t 4+ 2 or 2t 4+ 2 or 2t 4+ 3 in u, and r is the smallest mark of the parts 2t + 2
in p, so the r-marked part 2t + 4 in A will also be marked with r in p.

Hence we have proved that the assertion holds for parts of size greater than 2t + 2 in
(. So we conclude that p is an overpartition in Fn,  n, .-

Let p® = (utV, 1V, ,ug\l,l)) be the first sub-overpartition of u. From the above

proof, we see that )\21) = ug.l) for j # p,p + 1. Furthermore, u](gl) is a non-overlined

even part, Nj(olle is a non-overlined odd part (resp. an overlined even part), and ugl) is an

overlined odd part or a non-overlined even part for all j € {p+2,..., N1 }. Again, by the
above proof, we see that there is no overlined odd part of size | ,uj(gl)\ + 1 in . This proves
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=(3)
that ne FN17...,Nk—1;i7p.

To prove that ®3, is a bijection, we construct the inverse map W3, of ®3,,. Let put) =

(ugl), ,ugl), . ,ug\l,f) be the first sub-overpartition of x in FS\?;E,...,Nk_l;i,p'

see that u,(jl) is a non-overlined even part and M1(;1421 is a non-overlined odd part (resp.

By definition, we

an overlined even part). Let uél) = 2t and /Lz(igl = 2a + 1 (resp. 2a+2). Note that
p > 1,s0t > 2. By the definition of Gollnitz-Gordon marking, we see that a > t. Since
JIRS Fﬁf,m,wl;i,p, 2t + 1 does not occur in .

To define V3, we define an index r’ related to the sizes of /Lg(yl) = 2t and /i;(olll =2a+1
(resp. 2a+2). If a = ¢, or a >t and 2t + 2 does not occur in u, then set ' = 1; If a > ¢

and 2t 4+ 2 occurs in pu, then set 7’ to be the smallest mark of the parts 2t + 2 in pu.
For 1 < p < Ny, define A = W3 ,(1) which is obtained from p by doing the following

two operations.
(1) When p = Nj, we shall do nothing; When 1 < p < Nj, replace N;1421 =2a+1
(resp. 2a + 2) by 2a + 1 (resp. 2a + 2).

(2) When " = 1, replace ,uél) = 2t by 2t — 2; When ' > 2, replace the r’-marked
2t + 2 in p by 2t and replace ) = 2t by 27.

Obviously, |p| = |[A| + 2. It can be proved that A = U3 ,(p) € Ff}f
is the inverse map of ®3,. So, we conclude that ®3, is a bijection between F

and F(B)

Ni,.o;Ng—15i,p°

and \Ijg’p

~7Nk—1§i717
(3) ‘
Niy...;Ng_1358,p

This completes the proof. |

For example, for p = 5, let

4 10 147 3
GG(\) = 2 4 7 10 14
1 32 6 10 13 1

be the Gollnitz-Gordon marking representation of A in Fé?%73;3’5. It can be checked that
r = 3. Applying the bijection ®35 to A, we get

4 12 14 3
GG(p) = 2 4 7 10 14 2
1 32 6 10 13 1

which is in FS;&%. Applying W55 to p, we see that 7 =3 and Ws5(u) = A

For another example, for p = 5, let

4 147 3
GG(\) = 2 4 8 14| 2
1 4 7 8 13 1
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be the Gollnitz-Gordon marking representation of A in Féﬁg;&g,. Applying the bijection
®35 to A, we see that r = 1 and

4 147 3
GG(u) = 2 4 8 ul 2,
1 1 72 10 13 1

which is in Fg;;s,a Applying W55 to p, we obtain that v’ =1 and U35(u) = A.

Lemma 4.7. For 1 < p < Nj, there s a bijection ®4, between FS\A;l),...,Nk,l;i,p and

Fﬁfmm_m. Furthermore, for A € F%i.”,Nkil;i’p and 1 = ®,4,(N) € Fﬁfp_m_lw, we
have
1 1 :
=N +2, and N =uY forj£pp+1.
Proof. Let A® = AW A0 )\5\1,3) be the first sub-overpartition of A in F%E,..‘,Nkfl;i,p'

By definition, we see that )xj(ol) is an overlined even part, set /\S) = 2t, and 2t + 1 occurs in
A, assume that it is marked with s in A. From the definition of Go6llnitz-Gordon marking,
it follows that s > 2. Note that )\;1) is an overlined odd part or a non-overlined even

part for all j € {p+1,..., N1}, set )\;1421 = 2a+ 1 (resp. 2a + 2), by the definition of
Gollnitz-Gordon marking, we see that a >t 4 1.

To define ®4,, we also need to use the index r defined in the bijection ®3,. Recall

that if )‘;5)121 =2t —2,0r2t—2,0r2t — 1, or 2t —1, then r = 1. If |[\,_1] < 2¢t—3 and there
exists b such that there are b-marked parts 2t — 2 and 2t in A, then » = b. Otherwise, set

r to be the largest mark of the parts of size 2t in A\. By definition, we see that s > r > 1.

For 1 < p < Ny, define yp = ®,,(\) which can be obtained from A by doing the
following two operations.

(1) When r = 1, replace )\1(,1) = 2t by 2t + 1 and replace the s-marked 2t + 1 in \ by
2t + 2; When r > 2, first replace )\5,1) = 2t by 2t, and then replace the r-marked 2t in A
by 2t + 1 and the s-marked 2¢ + 1 in A by 2t + 2.

(2) When 1 < p < Ny, replace /\]E}JZ1 = 2a + 1 (resp. 2a+2) by 2a + 1 (resp. 2a + 2);
When p = Ny, we shall do nothing.

Obviously, x| = |A| + 2. We first show that p is an overpartition in Fy, v, .. We
will assert that the parts from A in 4 have the same marks as in A and the newly generated
parts in p replacing the parts in A have the same marks as their original parts in A\. By
the definition of p, it is obvious that the marks of parts of size not exceeding 2t — 1 in p
stay the same as in A. We proceed to show that the marks of parts of size 2¢t and 2t + 1
from X in p are the same as in A, the newly generated part 2¢ + 1 replacing /\;1) = 2t is
marked with 1 when » = 1, and the newly generated part 2t replacing )\1(91) = 2t is marked
with 1 and the newly generated part 2t 4+ 1 replacing the r-marked 2¢ in A is marked with
r when r > 2. It should be mentioned that 2¢ + 1 does not occur in A\. We consider the
following two cases:
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(1) When r = 1, in this case, we see that 2t — 2 < ‘)‘;521’ <2t—1,0r | Ay <2t—3
and there is only one part of size 2¢ in A. There are two subcases:

(1.1) When )\; U =20—2 or2t—2, or 2 — 1, or 2t — 1, by the definition of Géllnitz-
Gordon marklng, we see that the marks of parts 2¢ from A in u are the same as in A
Note that ])\ | <2t — 1, so the newly generated part 2¢ + 1 in u replacing )\ should

be marked with 1.
(1.2) When |A,_;| < 2t — 3 and there is only one part of size 2t in A, that is, A =77,

there are no parts of size 2t in j, so the newly generated part 2¢ + 1 in u replacing )\p =2t
is marked with 1.

(2) When r > 2, either ])\1(31_)1\ < 2t — 3 and there are r-marked parts 2t — 2 and 2¢
in A\, or r is the largest mark of the parts 2¢ in A. By the definition of Gollnitz-Gordon
marking, we see that there are 1-marked, ..., r-marked parts of size 2t in A. Note that
|Ap—1] < 2t — 3, it follows that the newly generated part 2¢ replacing /\1(,1) = 2t is marked
with 1 and the marks of parts 2t from A in p stay the same as in A\. Hence there are 1-
marked, ..., (r—1)-marked 2¢’s in p. Therefore the newly generated part 2¢ + 1 replacing
the r-marked 2t in A is marked with r in pu.

Next, we show that the newly generated part 2t 42 in u replacing the s-marked 2¢ + 1
in A is marked with s and the marks of parts 2t + 2 from A in p are the same as in .

Since there is an s-marked 2¢ + 1 in A, there are 1-marked, ..., (s — 1)-marked parts of
size 2t in A. From the preceding proof and the definition of pu, it follows that there are
l-marked, ..., (r — 1)-marked, (r + 1)-marked, ..., (s — 1)-marked 2¢’s in u, and there

is an r-marked 2t + 1 in pu. Hence the newly generated part 2t + 2 in u replacing the
s-marked 2t + 1 in A should be marked with s. Furthermore, the marks of parts 2¢ + 2
from A in y are the same as in \.

It remains to show that the marks of parts of size greater than 2¢ + 2 in p stay the
same as in A. By the definition of Go6llnitz-Gordon marking, it is easy to see that the
newly generated s-marked 2t 4+ 2 in p replacing the s-marked 2¢ + 1 in A only affects the
mark of the s-marked part of size 2t + 3 or 2t + 4 in p. Since s > 2, we see that there
is no s-marked 2t + 3 in A\, and so there is no s-marked 2t + 3 in p. Hence it suffices to
show that the s-marked 2t 44 in A is also marked with s in g even if the s-marked 2¢ + 1
in A is replaced by the s-marked 2t 4 2 in p.

Note that there is an s-marked 2¢ + 1 in )\, so there are a 1-marked 2¢ and 2-marked,
.., (s = 1)-marked 2t’s in A. It follows that the marks of the parts 2t + 2 in A are greater
than s. Hence we conclude that if there exists an s-marked 2¢ + 4 in A, then there are a
I-marked 2t + 3 (resp. 2t+4) and 2-marked, ..., (s—1)-marked (2¢44)’s in X\. Note that
)\ﬁl =2t + 3 (resp. 2t + 4) will become 2t + 3 (resp. 2t +4) in p, which is also marked
with 1 in p. Moreover, there is no 1-marked 2t +2 or 2t + 2 or 2t + 3 in u, and s is the
least mark of the parts 2¢ + 2 in u, so by the definition of Gollnitz-Gordon marking, we
see that the s-marked 2t + 4 in A will also be marked with s in pu.

Thus, we have shown that the marks of parts in 4 are the same as the marks of their
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original parts in A\. Hence p is an overpartition in Fn,  n, .-

Let p(M) = (,ug ), ugl), e ,uN ) be the first sub-overpartition of u. It can be seen from

the above proof that A;l) = ujl) for j # p,p+ 1 and ,ul(; is an overlined odd part or a
non-overlined even part. Furthermore, if ug) is an overlined odd part, then there is a non-
overlined even part of size |u$”| + 1 in y, and | /L;1+)1| > a4+ 2. 1f 48 is a non-overlined
even part, then there are an overlined odd part of size |,u1(gl)| + 1 and a non-overlined even
part of size || + 2 in p, and |up+1| > S| + 2. Moreover, it is easy to see that ,uz(,lll

is a non-overlined odd part (resp. an overlined even part), and u§1) is an overlined odd

part or a non-overlined even part for all j € {p +2,..., N;}. This proves that x is an
=4

overpartition in ]FNl,A..,Nk,ui,p'

We proceed to construct the inverse map Wy, of ®y,, Where 1 <p<N;. Let ¥ =

(,ug ), ,ug ). ,,LLN ) be the first sub-overpartition of p in ]F‘N1

(1)

By definition, we

is an overlined odd part or a non-overlined even part and /L;, +)1 is a non-

Ng—158,p°
see that gy,
overlined odd part (resp. an overlined even part). If p,(,l) is an overlined odd part, set
uél) 2t + 1 and M;1421 = 2a+1 (resp. 2a + 2), then by definition, we see that 2¢t+2 occurs
inpanda>t+1. If ul(,l) is a non-overlined even part, set ,uz(ol) = 2t and M,(;1421 =2a+1
(resp. 2a + 2), then 2t + 1 and 2t + 2 occur in g and a > t + 1.

Let 7" be the mark of 2¢ + 1 in g and s’ be the smallest mark of the parts 2t + 2 in
p. It follows from the definition of Goéllnitz-Gordon marking that s’ > r’ > 1. Define
A = W, ,(u) which is obtained from p by doing the following two operations.

(1) When p = Nj, we shall do nothing; When p < Nj, replace ,uélll = 2a+ 1 (resp.

2a + 2) by 2a + 1 (resp. 2a + 2).

(2) When 7’ = 1, replace /L;gl) = 2t + 1 by 2t and replace the s-marked 2t + 2 in u by
2t + 1. When 7’/ > 2, replace u](gl) = 2t by 2t, replace the r’-marked 2¢ + 1 in p by 2t and
replace the s-marked 2t + 2 in pu by 2t + 1.

It can be verified that A = W, ,(u) € IF%E _____ N yiip a0d [p] = |A[ 42, and Wy, is the
inverse map of ®,,. So, we conclude that ®,, is a bijection between I, @ ) Np_yip and
Fﬁfp_,m_l;i,p. This completes the proof. |

For example, for p = 4, let

7 107 3
GG(\) = 2 6 10 | 2
1 456 10| 1

be the Gollnitz-Gordon marking representation of A in IF5 ;, 2.3.4- Applying the bijection
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®y4 to A, we see that r =1, s = 3, and

8 10 3
GG(p)= | 2 6 10 2,
1 4 5 7 10 1

which is in Fég,2;3,4‘ Applying W, 4 to p, we have 1’ =1, s = 3, and Uy4(p) = A

For example, for p = 3, let

GG(\) = 2

6
1 3 [§

9 12 1

be the Gollnitz-Gordon marking representation of A in Féﬂg;&g,. Applying the bijection
®43 to A, we see that r = 2, s = 3, and

GG(p)= | 2 7 10 13 2,
I 3 6 9 12 1

which is in Féﬂg;&g. Applying W, 3 to p, we have 1’ =2, s’ = 3, and Uy 3(p) = A
We conclude this section by giving a proof of Lemma 4.2.

Proof of Lemma 4.2. Supposed that £ > i > 1, Ny > Ny > --- > Np_; > 0 and

1 < p < N;. From the definitions of FE@ and FEQ (1 <1< 4), we have

~7Nk—1§i7P s Ng—1;8,p

4
_ 0]
Fle-quk—lﬂzp - U ]FNlp--,Nkflﬂ'vp
=1

and

! 0
— =(I
FNLWN}CA;ZEP = UFle-,Nkfl;ivp'
=1

Let A € Fn, . n,_,:ip, define

[ ®1,(\), ifAeFy)

®y,(N), if AeFY
(A)

N _15i,p?

1y Ng—158,p?

N = (I)p(/\) = . 3
®3,(N), if A€ ngf,...Jvk_m;p;

. 4
| @,,(0), if)e ngmekflmp.

Combining Lemma 4.4, Lemma 4.5, Lemma 4.6 and Lemma 4.7, we conclude that ®, is a

H= (I)p()‘) € FNL..,,N;C_l;i,p, we have
W= e, it 0= o e
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5 Proof of Lemma 3.6

Let Dy denote the set of partitions n = (91,7, ...,n,) with distinct negative odd parts
which lie in [1 — 2N, —1], that is, n; is negative and odd for 1 < j < /fand 1 —2N <1 <
Ny < --- <my < —1. It is clear to see that the generating function for partitions in Dy is:

S @ = (g )4 (L g = (Y )
neDy

Hence Lemma 3.6 is equivalent to the following combinatorial statement.

Theorem 5.1. For k >4 > 1 and Ny > Ny > --- > N1 > 0, there is a bijection ©
between Gy, n,_,i and Dy, X En,  n, a0 such that for p € Gy, N, and O(p) =
(777 V) S DNl X Ele-’Nkfl;i? we have |M| = ‘77| + |V|

Let pu(") = (MY), ug), e ,uN ) be the r-th sub-overpartition of pin Gy, . n,_,.i, Where

1 <r <k—1. From the definition of Gy, . n,_,, it is easy to see that /Lg " is an overlined

odd part or a non-overlined even part for 1 <r <k —1and 1 < j < N,. Observe that
_____ N, 1s the set of overpartitions in Gy, . n, ,.; for which there are no overlined odd
parts, so the key point in the construction of the bijection © is to remove all overlined
odd parts of an overpartition in Gy, n,_,. to get a new overpartition in En, _ n, .-

Similarly to the bijection ® in Section 4, we will define three subsets Gy, . n,_,:ip;

Gny,...Ny,_1:ip and Ne_1iip Of Gny N ;i Then we build a bijection ©, between

Gy, Ny sip a0 @le'n:Nk—l;i:p and a bijection O, between G, ,...,n,_ysip a0d G Ny, N ysigp-
Similarly, ©,) can be obtained by successively using the bijection ©, and plays a crucial
role in the construction of the bijection © in Theorem 5.1.

Let p) = (,ugl), ,ugl), e ,,ugv ) be the first sub-overpartition of p in Gy,

define the above three subsets of Gy, n,_,., We divide the parts in u( ) into two Classes.

(1)
J

of size | 14 ] + 1 in p, and a part [L ) is of type E if [L ) is a non-overlined even part and

there is no overlined odd part of size |uj )| + 1 in u. We say that two parts ,ug) and ug)

are of the same type if they are both of type O or they are both of type E. For example,
let

A part p;’ is of type O if ,u§1) is an overlined odd part or there is an overlined odd part

p® 4 10 14 3
GG(p)= | u® | = 2 6 9 12 2
1 4 8 12 16 1

31



O©CO~NOOOTA~AWNPE

be the Gollnitz-Gordon marking representation of p in Gs 4 3.3. By definition, we see that

(1) (1) 1 _

the parts py’ = 1 and ,uél) = 8 are of type O, and the parts uy;’ = 4, p,’ = 12 and

uél) = 16 are of type E.

Let Kk > ¢ > 1and Ny > Ny > -+ > Np_1 > 0 be given. For 1 < p < Ny,
the subsets Gy, . N yiips @Nl,---,Nk_m}p and Gy, n, ,.p are described by using the first

(1 1) (1)

sub-overpartition ™ = (u;”, us ;- My,) of an overpartition p in Gy, N, ., Where

1 1 1
u < pst <<y

O Let Gn,.. N,_,.ip be the set of overpartitions p in Gy, . n, . such that (1) u !

of type O; (2) ,ug.l) is of type E for all j € {p+1,..., Ni}.

O Let Gy,...N,_,.ip be the set of overpartitions p in Gy, n, .. such that (1) u !

of type E; (2) ,uélﬁl is of type O; (3) ugl) is of type E for all j € {p+2,..., N}

O Let @Nl,m’Nkfl;i,p be the set of overpartitions p in Gy, . n,_ . such that ,ug-l) is of

type E for all j € {p,..., N1}
By definition, it is easy to see that for 1 < p < N; — 2,

GNl,---ka—l;i,P C GNl,---aNk—l§i7P+1 - @N17~-~7Nk—1%i7p+2‘

Lemma 5.2. For1 < p < Ny, there is a bijection ©, between Gy, N, .ip and Gy, Ny :ip-

Furthermore, for 1t € Gy, ny,_ip and v = O,(1t) € Gn, .. N,_,:ip, Wwe have

(1) ,u(l) and Vj(»l) are of the same type for j # p,p + 1, and

J

(2) [v] = |p| +2 — 6], where

N1
517

1, if p= Ny;
o, ifp £ N,

Applying in succession the bijection in Lemma 5.2 leads to the following bijection

between G, .. n,_ip a0d G, Ny iip-

Lemma 5.3. For 1 < p < Ny, there is a bijection O, between Gy, . N, ,.ip and

@Nl,-n:Nk—l?i:p' Furthermore, for p € GNh--kafui,p and v = 9(17)(“) € Ni,...;Np_135,p>

we have

(1) ,u§-1) and Vj(»l) are of the same type for j < p, and

(2) lv| = |p| +2N1 —2p+ 1.

Proof. Define ©(,) = On,On, 1 %, by Lemma 5.2, it is easy to verify that O, is a

bijection between Gy, . n,_,ip a0d G, N, :ip as desired.
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Before giving a proof of Lemma 5.2, we give a proof of Theorem 5.1. Note that
En,.. N,y is the set of overpartitions in Gu, . n,_,.; for which there are no overlined
odd parts, so we could use the bijection ©,) in succession to remove all overlined odd
parts from an overpartition in Gy, . n,_,.. Let p be an overpartition in Gy, . n,_,.ip and
v = Oy (1), by Lemma 5.3, we see that the number of overlined odd parts in v is one
less than that in u. Applying Lemma 5.3 repeatedly in p, we can obtain an overpartition
belonging to En, . n, -

Proof of Theorem 5.1. Let ;1 be an overpartition in Gy, n, .- We aim to define
O(p) = (n,v) such that |n| + |v| = |p|, n is a partition in Dy, and v is an overpartition in
En,.. N, .- We consider the following two cases.

Case 1. If there are no overlined odd parts in p, then set v = p and n = (). It is easy
to see that v € En, . n,_, and |v| = |pl.

Case 2. If there are s > 1 overlined odd parts in u, then there are s parts of type O
in the first sub-overpartition of . Note that if there is an overlined odd part in u, say
2t + 1, then it follows from the definition of Gollnitz-Gordon marking that there exists a
1-marked 2t 4+ 1 or 2t in p. So, each overlined odd part in g uniquely determines a part
of type O in the first sub-overpartition of u.

Let ) gy, oo i) )
p) = (,ugl),/i(;), e ,,ug\l,z) of u, where 1 < j; < jo < -+ < js < Nj. It is easy to see that
IS GNl,---7Nk—1§i7j5' Set

n=00-=2(Ny —j1+1),1=2(N —ja+1),..., 1=2(N —js +1)).

) be the parts of type O in the first sub-overpartition

Obviously, n € Dy,. The overpartition v can be obtained from p by employing the bijec-
tion in Lemma 5.3 s times. We denote the intermediate overpartitions by 7%, +%, ..., v*
with 7% = pand v* = v. For 1 < b < s, the intermediate overpartition 4* can be obtained
from 7*~! by using ©(;, ,.,) in Lemma 5.3, that is, for 1 <b <'s,

b b1
Y= @(js—b+1)(7 )
Note that 7° € Gn,.... N, _y:ij., SO by Lemma 5.3, we see that

Ni_138,Js—1 and |71| - |:u| + 2Ny — 25, + 1,

and the first (j, — 1) parts in the first sub-overpartitions of 4! and 7° are of the same
type.
Successively employing Lemma 5.3, we derive that for 1 <b < s —1,

b
’yb € GN17---7Nk—1§i7j57p and |’7b| = |:u| + Z(2N1 - 2js—r+1 + 1)7

r=1

and

7€ By i and |y = [l + SN = 2 pin +1).

r=1
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Furthermore, for 1 < b < s, the first (j,_p41 — 1) parts in the first sub-overpartitions of ~°
and 7° are of the same type. From the definition of y, the first (j; — 1) parts in the first

sub-overpartition of u are of type E, and by the definition of Gy, . n, 4, We derive
that there are no overlined odd parts in «°. Hence

v=9"€Bn, . n_iand [v| = || + > (2N = 2js 1 +1).

r=1
It is easy to check that |n| + |v| = |u|. Therefore © is well-defined.

To prove that © is a bijection, we shall give a brief description of the inverse map A of
©. Let v be an overpartition in Ey,  n,_,.; and n be a partition into distinct negative odd
parts lying in [1 — 2Ny, —1]. We shall define A(n, ) = p such that p is an overpartition
in Gy, N,z and || + |v| = |p|. There are two cases.

Case 1. If n = 0, then set 4 = v. Note that En, .~ i € Gny. Np_yiis SO pt €
Gny....Ny._,:i and there are no overlined odd parts in .

Case 2. If n # 0, assume that
n=01-2N1—j1+1),1=2(Ny —jo+1),..., 1 =2(Ny — js + 1)),

where 1 < j; < js < --- < js < Nj. Then p can be recovered from v by using the bijection
in Lemma 5.3 s times. We denote the intermediate overpartitions by 8%, ..., 0% with §* = v
and 6° = p. For 1 < b < s, the intermediate overpartition §°~! can be obtained from §°
by using the bijection @(_ji—bJrl) in Lemma 5.3, that is 6°~! = 6(2,1,“)(51))' By Lemma 5.3,
we derive that p is an overpartition in Gy, n,_,. and |p| = || + |v|, and A(O(n)) = p
for any p in Gy, N, ... Hence we conclude that © is a bijection between Gy, . n,_,.
and Dy, X En, . n, ;.. This completes the proof of Theorem 5.1. |

We proceed to give a proof of Lemma 5.2.

Proof of Lemma 5.2. Let pu) = (,ugl), ugl), . 7u§\1,1)) be the first sub-overpartition of
in Gy, N,_,:ip- By definition, we see that u,(}) is of type O and ugl) is of type E for all
je{p+1,...,N}. If ,u;(,l) is an overlined odd part, then set ,uél) =2t +1; If ,uél) is a
non-overlined even part, then set pé,l) = 2t, by the definition of type O, we see that there
is an s-marked 2t 4+ 1 in p, where s > 2.

For 1 <p < Ny, define v = O,(u) as follows. There are three cases.

Case 1 1 <p < N; and ,u](gl) = 2t + 1. We see that ,u(l)l is of type E, set u(l) = 2b+ 2, and

P+ p+1
it follows from the definition of Gollnitz-Gordon marking that b > ¢ + 1. There are

two subcases.

Case 1.1 If b = t + 1, that is, uﬁl = 2t + 4, then replace ,uz(ol) = 2t+1 by 2t + 2 and

replace ,u;lll =2t +4 by 2t + 5.
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Case 1.2 If b > t 4 1, and set 7 to be the largest mark of the parts 20 + 2 in p, then
replace ,ué ) =2+ 1 by 2t + 2 and replace the r-marked 2b+ 2 in u by 2b + 3.

Case 2 1 < p < N; and ,uj(gl) = 2t. We see that ,uﬁl is of type E, set ,uélﬁl = 2b+ 2 and

b >t + 1. Note that there is an s-marked 2t 4+ 1 in . There are two subcases.

Case 2.1 If there is an s-marked 2t + 4 in u, then replace the s-marked 2t + 1 in u by
2t 4+ 2 and replace the s-marked 2t + 4 in u by 2t + 5.

Case 2.2 If there is no s-marked 2t + 4 in p, and set r to be the largest mark of the
parts 2b + 2 in pu, then replace the s-marked 2¢ + 1 in p by 2t 4+ 2 and replace
the r-marked 2b + 2 in p by 2b + 3.

Case 3 p = N;. We consider the following two subcases.

Case 3.1 If u(l) = 2t 4+ 1, then replace ,uél) =2t+1 by 2t + 2.

Case 3.2 If ,up = 2t, and there is an s-marked 2¢ + 1 in p, then replace the s-marked
2t +11in p by 2t + 2.

Obviously, when 1 < p < Ny, |v| = |p| + 2, and when p = Ny, |v] = |p| + 1. We next
show that the parts from g in v have the same marks as in 4 and the newly generated
parts in v replacing the parts in p have the same marks as their original parts in u. This
implies that v € Gy, . n,_,;i- By the definition of v, it is obvious that the marks of parts
of size not exceeding 2t — 1 in v stay the same as in u. We now consider the marks of the
newly generated parts in v. There are two cases:

o If uél) = 2t + 1, then |,M1(31_)1\ < 2t — 1, and so there is no 1-marked 2¢ in v. Hence

the newly generated part 2t 4 2 replacing ,uz(ol) =2t + 1 in p should be marked with
1 in v and the parts 2t + 2 from p in v have the same marks as in p. Thus, the
marks of parts 2t + 2 in v stay the same as in g when ,ui(,l) =2t+1for 1 <p< Ny

For Case 1.1, since V,Sl) = 2t + 2, it follows that the newly generated part 2t + 5
replacing ,U;(}le = 2t 4+ 4 is marked with 1 in v.

For Case 1.2, since Y = 2t + 2 and /”Lp+1 = 2b+ 2, where b > t + 1, it follows from

the definition of Gollnitz-Gordon marking that the newly generated part 2b+ 3
replacing the r-marked 2b + 2 in p is marked with 7 in v.

o If uél) = 2t, then there is an s-marked 2¢ 4+ 1 in p. It follows from the definition
of Gollnitz-Gordon marking that there are 1-marked, ..., (s — 1)-marked 2t’s in p,
and hence the newly generated part 2t + 2 replacing the s-marked 2¢ + 1 in p is also
marked with s in v and the marks of the parts 2¢ + 2 from p in v are the same as
in © when ,uél) =2t for 1 <p < N;.

For Case 2.1, note that there is an s-marked 2¢ + 4 in pu, so there are 1-marked, ...,
s-marked (2t +4)’s in u, and the parts 2¢ + 4 from g in v have the same marks as
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in p. Furthermore the newly generated part 2¢ + 5 replacing the s-marked 2¢ + 4 in
w1 is marked with s in v.

For Case 2.2, note that there are l-marked, ..., r-marked (2b + 2)’s in p, so we
derive that the parts 20+ 2 from p in v have the same marks as in ¢ and the newly
generated part 2b 4+ 3 in v replacing the r-marked 2b+ 2 in p should be marked with
rin v.

In all cases, we see that the marks of newly generated parts in v are the same as the
marks of their original parts in p. Furthermore, the marks of the other parts from p in v
are the same as in p. Hence v € Gy, N,y i-

From the definition of v, it is easy to check that 1/1(,1) is of type E, 1/1(,21 is of type O,

and I/J(-l) is of type E for all j € {p+2,..., N;}. Hence, we deduce that v € @N17,,,7Nk_1;,-7p.

(1) (1)

Therefore, ©, is well-defined. Furthermore, y;” and v; are of the same type for j #

p,p+ 1.

To prove that ©, is a bijection, we give a brief description of the inverse map A, of
O, for 1 <p < N;. Let v = () (1) ( ) I/Nl) be the first sub- overpartltlon of v in
@vanyNk—l;iyp' By definition, 1/1()1 is of type E, 1()+1 is of type O, and V is of type E
forall j € {p+2,...,N1}. For 1 <p < Ny, if v +)1 is an overlined odd part, then set
1/1()21 = 2b + 3; if I/p +1 is a non-overlined even part, then set 1(7 {1 = 2b+2, by the definition
of type O, we see that there is an r’-marked 2b + 3 in v, where r’ > 2.

For 1 < p < Ny, define pp = A,(v) as follows. Here we set V;” = 2t + 2. There are
three cases.

Case 1 If 1 <p < Ny and v, 1 = 2b + 3, then by the definition of Géllnitz-Gordon marking,

we see that ¢t < b — 1 There are three subcases.

Case 1.1 If t = b—1, that is, Vp = 20, then replace v, 1 = 2b + 3 by 2b+ 2 and replace
=2b by 2b— 1.
Case 1.2 If t <b—1 and 2t 4+ 4 does not occur in v, then replace V,(,l) =2t4+2by 2t +1
and replace (+1 =20+ 3 by 2b + 2.

Case 1.3 Ift <b—1and 2t +4 occurs in v, set s to be the smallest mark of the parts
2t + 4 in v, then replace v )1 = 2b+ 3 by 2b + 2 and replace the s-marked
2t + 4 in v by 2t + 3.

Case 2 If 1 < p < Ny and 1/1(,21 = 2b+ 2, then it follows from the definition of Gollnitz-

Gordon marking that ¢ < b — 1 and there is an r’-marked 2b + 3 in v. There are
two subcases.

Case 2.1 If 2t + 4 does not occur in v, then replace the r’-marked 2b + 3 in v by 2b + 2
and replace y,E” =2t+2 by 2t + 1.
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Case 2.2 If 2t + 4 occurs in v and set s’ to be the smallest mark of the parts 2t + 4 in
v, then replace the r’-marked 2b + 3 in v by 2b + 2 and replace the s’-marked
2t 4+ 4 in v by 2t + 3.

Case 3 If p = Ny, then there are two subcases.

Case 3.1 If 2t + 4 does not occur in v, then replace y;()l) =2t + 2 by 2t + 1.

Case 3.2 If 2t + 4 occurs in v, and set s’ to be the smallest mark of the parts 2t + 4 in
v, then replace the s’-marked 2t + 4 in v by 2t + 3.

It can be verified that A,(v) € Gy, N,_,:ip and A, is the inverse map of ©,. So, we
conclude that ©, is a bijection. 1

We conclude this section by the following three examples for the bijection ©, in Lemma
5.2.

(1) For p =1, let

8 3
GGy = | 2 8 12 2
1 6 10 14| 1

be the Gollnitz-Gordon marking representation of 1 in G431,31. Note that ,ugl) =1 and

|,u§1)| = 6 > 4, which satisfy the conditions in Case 1.2 in the definition of ©,, so r = 1.
Applying the bijection ©, to u, we get

8 3
GG(v) = 2 8 12 2,
2 7 10 14| 1

which is in @4,371;371. Note that l/fl) = 2 and yél) = 7 and 4 does not occur in v, which
satisfy the conditions in Case 1.2 in the definition of A,. Applying A; to v, we recover p.

(2) For p = 3, let

6 12 3
GG(p)= | 2 5 9 12 2
1 4 8 12 1

be the Gollnitz-Gordon marking representation of p in Gga4933. Note that uél) = 8,

/Lg?) =9 and ,uf) = 12, which satisfy the conditions in Case 2.1 in the definition of ©,, so
s = 2. Employing the bijection O3 to p, we get

6 12 3
GG(v) = 2 5 10 3| 2,
1 4 8 12 1
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which is in G, 42.33. Note that u§1> = 8, V§2) = 10, z/il) =12 and Vf) = 13, which satisfy
the conditions in Case 2.2 in the definition of A, so v’ = 2. Applying A3 to v, we recover
L.

(3) For p =4, let

6 12 3
GG(p)= | 2 6 11 2
1 4 7 10 1

be the Gollnitz-Gordon marking representation of p1 in Gg39:34. Note that ufll) =10

and u:(f) = 11, which satisfy the conditions in Case 3.2 in the definition of ©,, so s = 2.
Applying the bijection ©4 to u, we get

6 12 3
GG(v) = 2 6 12 2
1 4 7 10 1
which is in @473,2;3,4. Note that yf) = 10 and y§2) = 12, which satisfy the conditions in

Case 3.2 in the definition A,, so s’ = 2. Applying A4 to v, we recover pu.

6 Proof of Theorem 1.9

In this section, we complete the proof of Theorem 1.9. Using Lemma 3.5 and Lemma 3.6,
we first give a proof of the formula for the generating function of Fj ;(m,n) in Theorem
3.4.

Proof of Theorem 3.4. First, we derive the following formula for the generating function
of the number of overpartitions A in En,  n,_,.; with the aid of the identity (3.1) due to
Kursungoz.

2(NZ+++NZ_ +Ni++Ni_1)

3 Al — 4
q = .
(@ @) n-ns (0% 07N o-ne 1 (07567

(6.1)

Recall that By, . n,_,. is the set of ordinary partitions 7 for which

filn) <i—1 and  fi(n) + fisr(n) <k =1 (6.2)

such that there are N, r-marked parts in the Gordon marking of n for 1 <r <k — 1.

From the definitions in Section 3, we see that Ey, ., ,. is also the set of ordinary
partitions A without odd parts for which

fo(A) <i—1 and  fu(A) + fa2(N) <k -1 (6.3)
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such that there are N, r-marked parts in the Gollnitz-Gordon marking of A for 1 < r <
k—1.

To show (6.1), we aim to build a bijection ¢ between Ey,  n,_,; and By, . n,_,. such
that for A € En, N, i and n = ¢(N\) € By, n,_,4, we have |A| = 2|n|. In terms of

generating functions, we have
Z g = Z g, (6.4)

Let A = (A1, A2, ..., \¢) be a partition in En, . n,_,., where A\; < Ay < -+ < )y, we see
that \; is a non-overlined even part for 1 < j < £ and A satisfies (6.3). Define

A1 A A
=00 = (355 )

Clearly, |A| = 2|n|. Furthermore, fi(n) = for(A\) for ¢ > 1, which implies that 7 satisfies
(6.2). Hence it remains to show that there are N, r-marked parts in the Gordon marking
ofnfor1 <r<k-—1.

By the definition of Gollnitz-Gordon marking, we see that the Gollnitz-Gordon mark-
ing of A = (A1, Aa, ..., \p), where ), is a non-overlined even part for 1 < j < ¢ can be
described as follows: First, \; is marked with 1, and for p > 1, assume that the part A;
for j < p has been assigned a mark. Then ), is marked with the least positive integer
that is not used to mark the parts A; with A\, — A; < 2 for j < p. For example, the
Gollnitz-Gordon marking of A\ = (2,2,4,4,4,6,8,10,10,12,12,12) is

GG()\) - (217 227 437 447 457 617 827 1017 1037 1227 1247 125)

We now consider the Gordon marking of n = (11,72, ...,7,) where g < my < -+ < 1.
By definition, we see that 7; is marked with 1, and for p > 1, assume that the part n; has
been assigned a mark for j < p. Then 7, is marked with the least positive integer that is
not used to mark the parts n; with n, —n; <1 for j < p. Since n; = A;j/2for 1 < j </, it
can be checked that the mark of n; in the Gordon marking of 7 is the same as the mark of
Aj in the Gollnitz-Gordon marking of A for 1 < j < /. For example, the Gordon marking
of n=0(N)=(1,1,2,2,2,3,4,5,5,6,6,6) is

G(n) = (11,12, 23,24,25,31, 42, 51, 53, 62, 64, 65).

Hence there are NNV, r-marked parts in the Gordon marking of n for 1 <r < k —1, and so
n € By,,..~,_,:. Furthermore, it is easy to see that this process is reversible. Therefore,
we conclude that ¢ is a bijection between En, v, ,; and By, v, .4, and (6.4) holds.
Substituting (3.1) into (6.4), we obtain (6.1).

Substituting (6.1) into the relation (3.13) in Lemma 3.6, we obtain the following
generating function of the number of overpartitions in Gy, . n,_,:i-

1-2N7.

lul _ (—¢ ;4% N4
2 0=y

q2; q2)N1—N2 T (q2; qz)Nk—Z_Nk—l(q2; q2)Nk—1 .

2(NZ4++NZ_ | +Ni++Ni_1)

(6.5)
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Plugging (6.5) into the relation (3.12) in Lemma 3.5, we obtain (3.11), which yields the
generating function of Fj ;(m,n) in Theorem 3.4. Thus we complete the proof. |

By Theorem 3.4 and Lemma 3.3, we obtain the following generating function of
Hpi(m,n).

Theorem 6.1. For k> > 1,

Z Hyi(m,n)x™q¢"
m,n>0

2—2N71. 2 1-2N;. 2

- ¥ (—q ;07 )N -1(—q 147 )N g

B Ni>-->Nj,_ 120 (QQ; QQ)N1—N2 T (q2; q2)Nk—2_Nk—1 (QQ; QQ)Nk—l

2(NT++Ni_ +Nipa+e+Neo1) NNy

(6.6)

Proof. From the relation (3.7) in Lemma 3.3, we deduce that for 1 <i <k —1,

Z Hyi(m,n)x™q¢"

m,n>0
= Z Fyiv1(m,n)z™q"
m,n>0
Z (_q2—2N1; q2)N1_1(_q1—2Nl; q2)N1qz(N12+---+N,§_1+Ni+1+---+Nk,1)xN1+-~-+Nk,1
- Ni>-->Nj,_ 120 (QQ; q2)N1—N2 T (QQ; qg)Nk—Q_Nk—l (QQ; QQ)Nk—l
(6.7)
For i = k, from (3.8) in Lemma 3.3, it follows that
Z Hy p(m,n)x™q" = Z Fy1(m,n)(xq ) "q"
m,n>0 m,n>0
Using the generating function of Fy 1(m,n), we obtain
Z Hy . (m,n)z™q"
m,n>0
(—q® V15 ) o1 (=120 2) py PV NE D Nt N (6:8)

>

N1>>Njp_1>0 (QQ; qg)N1—N2 T <q2; q2)Nk—2_Nk—1<q2; QQ)Nk—1

Observe that the above formula (6.7) for 1 <i <k —1 and (6.8) for i = k take the same
form as in Theorem 6.1. Thus, we complete the proof of Theorem 6.1. 1

We conclude this paper with the proof of Theorem 1.9.
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Proof of Theorem 1.9. Substituting (3.9) and (6.6) into the relation (3.6), we obtain

Z Oki(m,n)z™q"

m,n>0
- Z Fii(m,n)z™q" + Z Hy;(m,n)z™q"
m,n>0 m,n>0
Z (_q272N1;q2)N1_1(_q172N1;q2)N1q2(N12+-~+N,§_1+Ni+1+~~+Nk71)(1 + qui)$N1+---+Nk,1
- Ni>-->Nj,_ 120 (q2; q2)N1—N2 T (q2; q2)Nk—2_Nk—1(q2; q2>Nk—1
which is (1.6). This completes the proof. |
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