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Abstract

This work is concerned with the stability of regime-switching processes under

the perturbation of the transition rate matrices. From the viewpoint of application,

two kinds of perturbations are studied: the size of the transition rate matrix is

fixed, and only the values of entries are perturbed; the values of entries and the

size of the transition matrix are all perturbed. Moreover, both regular and irregular

coefficients of the underlying system are investigated, which clarifies the impact of

the regularity of the coefficients on the stability of the underlying system.
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1 Introduction

Regime-switching models have emerged in many research fields such as biological, eco-

logical, mathematical finance, economics and storage modeling. We refer the readers

to [1, 3, 8, 10, 18, 19, 23, 29] and the monographs [15, 30] for the study on ergodic-

ity, stochastic stability, numerical approximation of regime-switching diffusion process-

es with Markovian switching or state-dependent switching in a finite state space or in

an infinite state space. These kinds of models contain two components (Xt,Λt). The

first component (Xt) is used to describe the dynamical system under investigation and

the second component (Λt) is used to describe the random change of the environment

where the dynamical system lives in. Since the impact of the change of environment has

been considered in these models, they can fit practice more precisely. Moreover, recent

works have found more and more special characteristics of these models compared with

those models without regime-switching. For instance, the invariant probability measures

of Ornstein-Uhlenback processes and Cox-Ingersoll-Ross processes with regime-switching

may be heavy tailed, whereas without regime-switching, their invariant probability mea-

sures must be light tailed; see, [2, 9] and [11].

The stability of regime-switching processes is of great interest and there is a great deal

of literatures in this topic; see, for example, [3, 4, 14, 15, 29, 30] and references therein.

All the aforementioned works focus on the stability of this system with respective to its

equilibrium point or initial values. However, the stability of this system with respective

to the perturbation of the transition rate matrix of (Λt) has not been studied before. This

kind of stability plays a crucial role in the application of the regime-switching diffusion

processes; for example, performing sensitivity analysis.

In application, the random switching of the environment is observed from empirical

data. Then, the transition rate matrix (qij)i,j∈S is estimated by statistical method based

on empirical data. Therefore, the error of estimation is crucial and cannot be removed. As

a consequence, the impact of this error of estimation should be evaluated. For instance, as

shown by Brown and Dybvig [5], based on the empirical data from US treasury yields, the

poor empirical performance of the Cox-Ingersoll-Ross model without the regime-switching

well suggests the existence of regime shifts. So, one may include the regime-switching of

the financial market into the Cox-Ingersoll-Ross model. It is quite possible to consider

that there are three different states in the financial market: bull market, bear market and

a middle market. In this case, one uses a Markov chain (Λt) in a state space S = {0, 1, 2}
to characterize the random change of the financial market. There is the error of estimation
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for (qij)i,j∈S of the transition rate matrix of (Λt). On the other hand, maybe other experts

would like to separate the financial market into two different states: bull market and bear

market. The effects of the option pricing by using models with two or three states could

be quite different. Therefore, it is quite important to measure this difference.

For the regime-switching diffusions (Xt,Λt), (Xt) satisfies the following stochastic

differential equation (SDE for short):

dXt = b(Xt,Λt)dt+ σ(Xt,Λt)dWt, X0 = x0 ∈ Rd, Λ0 = i0 ∈ S, (1.1)

where b : Rd × S → Rd, σ : Rd × S → Rd×d, S = {0, 1, . . . , N}, N < ∞, and (Wt) is a

d-dimensional Brownian motion. (Λt) is a continuous-time Markov chain on S with the

transition rate matrix Q = (qij)i,j∈S . Suppose that Q is conservative (i.e.
∑

j∈S qij = 0

for every i ∈ S) and totally stable (i.e. qi = −qii < +∞ for every i ∈ S). Throughout

this work, (Λt) and (Wt) are assumed to be mutually independent.

In this work we are concerned with the stability of the process (Xt) under perturbation

of the transition rate matrix of (Λt). From the application point of view, there are mainly

two types of perturbations of Q.

First type of perturbation: The size of Q is fixed, however, each entry qij of Q may

have small perturbation. Namely, there is another transition rate matrix Q̃ = (q̃ij)i,j∈S ,

and each entry q̃ij acts as an estimator of the element qij of Q. Without loss of generality,

assume that Q̃ is conservative and totally stable, then a unique transition function P̃t, t ≥
0 is determined (cf. e.g. [7, Corollary 3.12]). Let (Λ̃t) be a continuous-time Markov chain

starting from i0 corresponding to Q̃. Then the distribution of Λ̃t is fixed, so, a new

dynamical system (X̃t) is induced from the process (Λ̃t), i.e.

dX̃t = b(X̃t, Λ̃t)dt+ σ(X̃t, Λ̃t)dW (t), X̃0 = x0 ∈ Rd, Λ̃0 = i0 ∈ S. (1.2)

Under some suitable conditions of the coefficients b(·, ·) and σ(·, ·), SDEs (1.1) and (1.2)

admit a unique solution (cf. e.g. [15]). Therefore, the distributions L(Xt) of Xt and L(X̃t)

of X̃t are determined in some sense by the transition rate matrix Q and Q̃ respectively.

The following basic and important question therefore arises:

− Can the difference between the distributions of Xt and X̃t be estimated by the

difference between Q and Q̃?
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Second type of perturbation: Both the entries of Q and the size of Q can be changed.

In application, when facing the graphs drawn from experimental data, it is hard sometimes

to determine the number of the regimes for the regime-switching processes. For example,

if there are actually three regimes, the process stays for a very short period of time at one

of them. From this kind of experimental data, it is very likely that a regime-switching

model with only two regimes is detected. What is the impact caused by this incorrect

choice of the number of states for the regime-switching processes?

Precisely, let Q̂ be a conservative transition rate matrix on E := S\{0, 1, . . . ,m}
with m < N , which determines uniquely the semigroup P̂t = etQ̂, t ≥ 0 on E. Let (Λ̂t) be

a continuous-time Markov chain on E corresponding to (P̂t) or equivalently Q̂. Using the

same coefficients b(·, ·), σ(·, ·) as those of SDE (1.1), we consider a new dynamical system

(X̂t) corresponding to (Λ̂t) defined by:

dX̂t = b(X̂t, Λ̂t)dt+ σ(X̂t, Λ̂t)dWt, X̂0 = x0 ∈ Rd, Λ̂0 = i0 ∈ E. (1.3)

Under suitable conditions of b and σ, the solutions of (1.1) and (1.3) are uniquely deter-

mined (cf. [15]). This means that given Q̂ on E, the distribution of X̂t is then determined.

Denote L(Xt) and L(X̂t) the distributions of Xt and X̂t respectively. We aim to mea-

sure the Wasserstein distance W2(L(Xt),L(X̂t)) via the difference between the transition

rate matrices Q = (qij)i,j∈S and Q̂ = (q̂ij)i,j∈E. To achieve this, reformulate Q into the

following form:

Q =

(
Q0 A

B Q1

)
, (1.4)

where Q0 ∈ Rm×m, A ∈ Rm×(N−m), B ∈ R(N−m)×m, and Q1 ∈ R(N−m)×(N−m).

Our method in this paper establishes a connection between the stability of regime-

switching processes with the perturbation theory of the continuous time Markov chains

under the help of Skorokhod’s representation theory for Markov chains. This result de-

velops the classical perturbation theory (cf. e.g. [16, 17, 31]) focusing on the difference of

fixed time t to that of a time interval [0, t]. The perturbation theory of continuous time

Markov chain was applied to study the strong ergodicity of Markov chain (cf. [31] and

references therein), and to perform sensitivity analysis (cf. [16, 17]). In this paper, we

demonstrate its connection with the stability of regime-switching processes, allowing us to

performing sensitivity analysis for regime-switching processes arising from applications.

In addition, to clarify the impact of the regularity of the drifts of the underlying system

on this stability issue, we consider the system with regular coefficients (i.e. satisfying
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one-sided Lipschitz condition) and irregular coefficients (i.e. satisfying integrability con-

dition). To deal with the irregular case, we apply a technique based on the dimension-free

Harnack inequality. The coefficients in the irregular case can be very singular; see example

(1.15) below.

Let us first consider the situation that the coefficients of (1.1) are regular. Assume

the coefficients b : Rd × S → Rd and σ : Rd × S → Rd×d satisfy:

(H1) For each i ∈ S there exists a constant κi such that

2〈x− y, b(x, i)− b(y, i)〉+ 2‖σ(x, i)− σ(y, i)‖2
HS ≤ κi|x− y|2, x, y ∈ Rd.

(H2) There exists a constant K such that

|b(x, i)|2 ≤ K(1 + |x|2), ‖σ(x, i)‖2
HS ≤ K(1 + |x|2), x ∈ Rd, i ∈ S.

In this case, we shall use the Wasserstein distance W2(·, ·) to measure the difference

between the distributions of Xt and X̃t, which is defined by

W2(ν1, ν2)2 = inf
Π∈C(ν1,ν2)

{∫
Rd×Rd

|x− y|2Π(dx, dy)
}
, (1.5)

where C(ν1, ν2) denotes the set of all probability measures on Rd × Rd with marginals ν1

and ν2. To measure the difference between Q and Q̃, we use the `1-norm ‖Q− Q̃‖`1 (i.e.

the maximum absolute row sum norm) in this work, but other norm of matrix still works.

To state our results, we first introduce some notation. For an irreducible transition

rate matrix Q on S, its corresponding transition probability measure Pt(i, ·) must be

strongly ergodic (cf. e.g. [7, Theorems 4.43, 4.44]). Denote π = (πi) the invariant

probability measure of Q. Define τ to be the largest positive constant such that

sup
i∈S
‖Pt(i, ·)− π‖var = O(e−τt), t > 0, (1.6)

where ‖µ−ν‖var stands for the total variation distance between two probability measures

µ and ν, i.e. ‖µ− ν‖var = 2 sup{|µ(A)− ν(A)|;A ∈ B(S)}. Additionally, for p > 0, let

Qp = Q+ p diag(κ0, κ1, . . . , κN),

and

ηp = −max
{

Re(γ); γ ∈ spec(Qp)
}
, (1.7)
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where diag(κ0, κ1, . . . , κN) denotes the diagonal matrix generated by the vector (κ0, κ1,

. . . , κN), spec(Qp) denotes the spectrum of the operator Qp.

We are now in the position to state our main results of this work for SDEs with

regular coefficients. The first result is about the estimate of the difference of distributions

of the solutions of (1.1) and (1.2).

Theorem 1.1 Let (Xt,Λt) and (X̃t, Λ̃t) be the solution of (1.1) and (1.2) respectively.

Assume (H1) and (H2) hold. Then

W2(L(Xt),L(X̃t))
2 ≤

(
4ε−1+8

)
KC2(p)

1
p

(
N2t2‖Q− Q̃‖`1

) 1
q
Ψ(t, ε, ηp, K, p), (1.8)

where p > 1, q = p/(p− 1), ε and C2(p) are positive constants, ηp is defined by (1.7), and

Ψ(t, ε, ηp, K, p) =
(∫ t

0

[
1 + (|x0|2 + 2Ks)e(2K+1)s

]p
e−(ηp−εp)(t−s)ds

) 1
p
. (1.9)

If assume further that

|b(x, i)|2 ≤ K, ‖σ(x, i)‖2
HS ≤ K, x ∈ Rd, i ∈ S, (1.10)

then we have a simple estimate:

W2(L(Xt),L(X̃t))
2

≤ (4ε−1+8)KC2(p)
1
p
(
N2t2‖Q− Q̃‖`1

) 1
q

(1− e−(ηp−εp)t

ηp − εp

) 1
p
.

(1.11)

The second result is about the estimate of the difference of distributions of the solutions

of (1.1) and (1.3).

Theorem 1.2 Let (Xt,Λt) and (X̂t, Λ̂t) be the solutions of (1.1) and (1.3) respectively.

Suppose Λ̃0 = Λ0 ∈ E. Assume (H1) and (H2) hold. Then

W2(L(Xt),L(X̂t))
2

≤
(
4ε−1+8

)
KC2(p)

1
p
(
Nt)

2
q

(
‖B‖`1 + ‖Q1 − Q̂‖`1

) 1
q
Ψ(t, ε, ηp, K, p),

(1.12)

where p > 1, q = p/(p− 1), ε and C2(p) are positive constants, ηp is defined by (1.7), and

Ψ(t, ε, ηp, K, p) is given by (1.9). Assume further that b and σ satisfy (1.10), then

W2(L(Xt),L(X̂t))
2

≤ (4ε−1+8)KC2(p)
1
p
(
Nt
) 2
q

(
‖B‖`1 + ‖Q1 − Q̂‖`1

) 1
q
(1− e−(ηp−εp)t

ηp − εp

) 1
p
.

(1.13)
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Next, we consider the stability of the dynamical system (Xt) under the perturbation

of the transition rate matrix when the coefficients of the underlying SDE are irregular.

Precisely, let

dXt = b(Xt,Λt)dt+ σ(Xt)dWt, X0 = x0 ∈ Rd, Λ0 = i0 ∈ S, (1.14)

where σ : Rd → Rd×d is still Lipschitz continuous, but b only satisfies some integrability

condition. Here, (Λt) is also a continuous time Markov chain with a conservative and

irreducible transition rate matrix Q = (qij)i,j∈S . (Λt) is assumed to be independent of

(Wt). A typical example of the irregular drift b concerned in this work is

b(x, i) = βi

{ ∞∑
k=1

log
(

1 +
1

|x− k|2
)} 1

2 − x, (1.15)

where β : S → R+. This drift b is rather singular, whereas we can show that (Xt) is still

stable in a suitable sense w.r.t. the perturbation of Q even in this situation. There are

lots of researches on SDEs with irregular drifts in the form (1.15) or in Lp([0,∞);Lq(Rd)).

We refer the readers to the recent works [28, 32] and references therein for more details

on the motivations and applications.

Similar to (1.2) and (1.3), we consider the processes (X̃t) and (X̂t) corresponding to

the perturbations Q̃ = (q̃ij)i,j∈S and Q̂ = (q̂ij)i,j∈E. Namely,

dX̃t = b(X̃t, Λ̃t)dt+ σ(X̃t)dWt, X̃0 = x0, Λ̃0 = i0, (1.16)

where (Λ̃t) is associated with Q̃ and is independent of (Wt).

dX̂t = b(X̂t, Λ̂t)dt+ σ(X̂t)dWt, X̂0 = x0, Λ̂0 = i0 ∈ E, (1.17)

where (Λ̂t) is associated with Q̂ on the state space E and is independent of (Wt). We shall

measure the difference between the distribution L(Xt) and L(X̃t) by the Fortet-Mourier

distance (also called bounded Lipschitz distance):

WbL(µ, ν) = sup
{∫

Rd
φ dµ−

∫
Rd
φ dν; ‖φ‖Lip + ‖φ‖∞ ≤ 1

}
(1.18)

for two probability measures µ, ν on Rd, ‖φ‖Lip := supx,y,∈Rd,x 6=y
|φ(x)−φ(y)|
|x−y| . The Fortet-

Mourier distance can also characterize the weak convergence of the probability measure

space (cf. [26, Chapter 6]), and it is closely related to the L1-Wasserstein distance via the

Kantorovich-Rubinstein Theorem (cf. [25, Theorem 1.14]).
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To provide a suitable integrability condition on the drift b, we need to introduce an

auxiliary function V and its associated probability measure µ0. Let V ∈ C2(Rd), define

Z0(x) = −
d∑

i,j=1

(
aij(x)∂jV (x)

)
ei, (1.19)

where (aij(x)) = σ(x)σ∗(x), σ∗ denotes the transpose of σ given in (1.14), {ei}di=1 is the

canonical orthonormal basis of Rd and ∂j is the directional derivative along ej. Let

µ0(dx) = e−V (x)dx. (1.20)

Assume that V satisfies:

(A) there exists a K0 > 0 such that |Z0(x) − Z0(y)| ≤ K0|x − y| for all x, y ∈ Rd, and

µ0(Rd) = 1.

Let

Z(x, i) = b(x, i)− Z0(x), x ∈ Rd, i ∈ S. (1.21)

For the example b in (1.15), we can take V (x) = x2/2+log
√

2π, then Z0(x) = −x and

µ0(dx) = e−x
2/2

√
2π

dx. Also, the integrability condition (1.22) below can be verified by direct

calculation for this example. In this part, for f ∈ B(Rd), µ0(f) denotes
∫
Rd f(x)µ0(dx).

Theorem 1.3 Let (Xt,Λt) be a solution of (1.14) and (X̃t, Λ̃t) a solution of (1.16).

Suppose V ∈ C2(Rd) satisfying condition (A). Let T > 0 be fixed. Assume that there

exists a constant η > 2Td such that

max
i∈S

µ0

(
eη|σ

−1(·)Z(·,i)|2
)
<∞. (1.22)

Then

WbL(L(Xt),L(X̃t)) ≤ C max
{
‖Q− Q̃‖

1
2q0
`1
, ‖Q− Q̃‖

1
2q0γ

`1

}
, t ∈ [0, T ], (1.23)

for some constant C depending on N, T, x0, τ1, K0, γ, p0 and maxi∈S µ0

(
eη|σ

−1(·)Z(·,i)|2
)

,

where p0 > 1 is a constant satisfying 2p2
0Td < η, q0 = p0/(p0−1) and γ > 1 is a constant.
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Theorem 1.4 Let (Xt,Λt) be a solution of (1.14) and (X̂t, Λ̂t) a solution of (1.17).

Suppose V ∈ C2(Rd) satisfying condition (A). Let T > 0 be fixed. Assume there exists a

constant η > 2Td such that (1.22) holds. Suppose (1.4) holds. Then

WbL(L(Xt),L(X̂t))

≤ C max
{(
‖B‖`1 + ‖Q1 − Q̂‖`1

) 1
2q0 ,
(
‖B‖`1 + ‖Q1 − Q̂‖`1

) 1
2q0γ

}
, t ∈ [0, T ],

(1.24)

for some constant C depending on N, T, x0, τ1, K0, γ, p0 and maxi∈S µ0

(
eη|σ

−1(·)Z(·,i)|2
)

,

where p0 > 1 is a constant satisfying 2p2
0Td < η, q0 = p0/(p0−1) and γ > 1 is a constant.

2 Proofs of main results

2.1 SDEs with regular coefficients

Let us first introduce the probability space (Ω,F ,P) used throughout this work. Let

Ω1 =
{
ω
∣∣ω : [0,∞)→ Rd continuous, ω0 = 0

}
,

which is endowed with the local uniform convergence topology and the Wiener measure

P1 so that its coordinate process W (t, ω) = ω(t), t ≥ 0, is a d-dimensional Brownian

motion. Put

Ω2 =
{
ω
∣∣ω : [0,∞)→ S right continuous with left limits

}
,

endowed with the Skorokhod topology and a probability measure P2. The Markov chains

(Λt) and (Λ̃t) are all constructed in the space (Ω2,B(Ω2),P2). Set

(Ω,F ,P) = (Ω1 × Ω2,B(Ω1)×B(Ω2),P1 × P2).

Thus under P = P1 × P2, (Λt) and (Λ̃t) are independent of the Brownian motion (Wt).

Denote by EP1 taking the expectation with respect to the probability measure P1, and

similarly EP2 .

Next, we construct a coupling process (Λt, Λ̃t) such that (Λt) and (Λ̃t) are continuous-

time Markov chains with transition rate matrix Q and Q̃ respectively. Denote H =

maxi∈S{qi, q̃i} and M = N(N − 1)H. Let ξk, k = 1, 2, . . ., be random variables supported
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on [0,M ] satisfying P2(ξk ∈ dx) = m(dx)/M where m(dx) stands for the Lebesgue

measure on [0,M ]. Let τk, k = 1, 2, . . . , be nonnegative random variables such that

P2(τk > t) = exp(−Mt), t ≥ 0. Suppose that {ξk} and {τk} are mutually independent.

Let

ζ1 = τ1, ζ2 = τ1 + τ2, . . . , ζk = τ1 + τ2 + . . .+ τk, k ≥ 1,

and

Dp1 = {ζ1, ζ2, . . . , ζk, . . .}.

After constructing such random variables, define

p1(ζk) = ξk, k ≥ 1,

and further define the Poisson random measure

N1((0, t]× U) = #
{
s ∈ Dp1 ; s ≤ t, p1(s) ∈ U

}
, t > 0, U ∈ B(R).

Construct two families of left-closed, right-open intervals {Γij}i,j∈S and {Γ̃ij}i,j∈S on

the half line in the following manner:

Γ12 = [0, q12), Γ̃12 = [0, q̃12),

Γ13 = [q12, q12 + q13), Γ̃13 = [q̃12, q̃12 + q̃13),

. . . . . .

Γ21 = [q1, q1 + q21), Γ̃21 = [q̃1, q̃1 + q̃21),

and so on. For convenience of notation, put Γii = Γ̃ii = ∅, and Γij = ∅ if qij = 0; Γ̃ij = ∅
if q̃ij = 0. Define functions h, h̃ : S × R→ R by

h(i, z) =
∑
`∈S

(`− i)1Γi`(z),

h̃(i, z) =
∑
`∈S

(`− i)1Γ̃i`
(z).

Then, according to [24, Chapter II] or [30], the solution of the SDE

dΛt =

∫
[0,M ]

h(Λt−, z)N1(dt, dz), Λ0 = i0, (2.1)
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is a continuous-time Markov chain with transition rate matrix Q = (qij). Similarly, the

solution of the SDE

dΛ̃t =

∫
[0,M ]

h̃(Λ̃t−, z)N1(dt, dz), Λ̃0 = i0, (2.2)

is a continuous-time Markov chain with transition rate matrix Q̃ = (q̃ij). Therefore,

through the SDEs (2.1) and (2.2), we construct the desired coupling process (Λt, Λ̃t).

Furthermore, consider the following SDEs:

dXt = b(Xt,Λt)dt+ σ(Xt,Λt)dWt, X0 = x0, Λ0 = i0, (2.3)

dX̃t = b(X̃t, Λ̃t)dt+ σ(X̃t, Λ̃t)dWt, X̃0 = x0, Λ̃0 = i0. (2.4)

Then, the system (Xt,Λt) given by (2.3) and (2.1) has the same distribution as the system

given in (1.1). Similarly, (X̃t, Λ̃t) given by (2.4) and (2.2) has the same distribution as the

system given in (1.2). Under the help of the constructed systems (Xt,Λt) and (X̃t, Λ̃t) in

this section, we can provide the proof of Theorem 1.1.

Lemma 2.1 Let (Xt,Λt), (X̃t, Λ̃t) be the solution of (2.3) and (2.4) respectively with

X0 = X̃0 = x0 ∈ Rd. Assume (H2) holds. Then, for P2-almost surely ω2 ∈ Ω2,

EP1 [|Xt|2](ω2) ≤ (|x0|2 + 2Kt)e(2K+1)t,

EP1 [|X̃t|2](ω2) ≤ (|x0|2 + 2Kt)e(2K+1)t, t > 0.
(2.5)

Proof. By Itô’s formula and (H2),

d|Xt|2 =
[
2〈Xt, b(Xt,Λt)〉+ ‖σ(Xt,Λt)‖2

HS

]
dt+ 2〈Xt, σ(Xt,Λt)dWt〉

≤
[
|Xt|2 + 2K(1 + |Xt|2)

]
dt+ 2〈Xt, σ(Xt,Λt)dWt〉.

Taking the expectation w.r.t. P1 and using Gronwall’s inequality, we obtain

EP1 [|Xt|2](ω2) ≤ (|x0|2 + 2Kt)e(2K+1)t, P2-a.s. ω2.

Similarly, the estimate on EP1 [|X̃t|2](ω2) holds. �

Lemma 2.2 For the processes (Λt) and (Λ̃t) given in (2.1) and (2.2) respectively, it holds∫ t

0

P(Λs 6= Λ̃s)ds ≤ N2t2‖Q− Q̃‖`1 . (2.6)
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Proof. Let Γij∆Γ̃ij =
(
Γij\Γ̃ij

)⋃ (
Γ̃ij\Γij

)
. By virtue of the construction of Γij and Γ̃ij,

we have

m(Γij∆Γ̃ij) ≤
∣∣∣ i−1∑
k=1

qk +

j−1∑
k=1,k 6=i

qik −
i−1∑
k=1

q̃k −
j−1∑

k=1,k 6=i

q̃ik

∣∣∣
+
∣∣∣ i−1∑
k=1

qk +

j∑
k=1,k 6=i

qik −
i−1∑
k=1

q̃k −
j∑

k=1,k 6=i

q̃ik

∣∣∣
≤ 2(i− 1)‖Q− Q̃‖`1 + ‖Q− Q̃‖`1
≤ 2N‖Q− Q̃‖`1 .

See also [21] for more details on previous calculation.

For δ ∈ (0, 1) and s > 0, let sδ = [ s
δ
], the integer part of s/δ. Let N(t) = N1((0, t]×R).

For every t ∈ (0, δ], since Λ0 = Λ̃0 = i0, we have

P(Λt 6= Λ̃t) = P(Λt 6= Λ̃t, N(t) ≥ 1))

= P(Λt 6= Λ̃t, N(t) = 1) + P(Λt 6= Λ̃t, N(t) ≥ 2).

There is a constant C > 0 such that

P(N(t) ≥ 2) ≤ P(N(δ) ≥ 2) = 1− e−Mδ −Mδe−Mδ ≤ Cδ2. (2.7)

On the other hand,

P(Λt 6= Λ̃t, N(t) = 1) =

∫ t

0

P(Λt 6= Λ̃t, τ1 ∈ ds, τ2 > t− s)

=

∫ t

0

P
(
ξ1 6∈

⋃
j∈S

(
Γi0j

⋂
Γ̃i0j
)
, τ1 ∈ ds

)
e−M(t−s)

≤ 2N2te−Mt‖Q− Q̃‖`1 .

Hence,

P(Λt 6= Λ̃t) ≤ Cδ2 + 2N2δ‖Q− Q̃‖`1 , 0 < t ≤ δ. (2.8)

Note that the estimate is independent of the common initial value of (Λt) and (Λ̃t).

To proceed,

P(Λ2δ 6= Λ̃2δ) = P(Λ2δ 6= Λ̃2δ,Λδ = Λ̃δ) + P(Λ2δ 6= Λ̃2δ,Λδ 6= Λ̃δ)
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≤ P(Λ2δ 6= Λ̃2δ

∣∣Λδ = Λ̃δ) + P(Λδ 6= Λ̃δ).

By the time-homogeneity of (Λt, Λ̃t) and the estimate (2.8), it follows that

P(Λ2δ 6= Λ̃2δ) ≤ 2Cδ2 + 4N2δ‖Q− Q̃‖`1 .

Deduce inductively to yield that, for each k ≥ 2,

P(Λkδ 6= Λ̃kδ) ≤ kCδ2 + 2kN2δ‖Q− Q̃‖`1 . (2.9)

By virtue of (2.8) and (2.9), we have that for t > 0,∫ t

0

P(Λs 6= Λ̃s)ds =

∫ t

0

P(Λs 6= Λ̃s,Λsδ = Λ̃sδ)ds+

∫ t

0

P(Λs 6= Λ̃s,Λsδ 6= Λ̃sδ)ds

≤
∫ t

0

P(Λs 6= Λ̃s

∣∣Λsδ = Λ̃sδ)P(Λsδ = Λ̃sδ)ds+

∫ t

0

P(Λsδ 6= Λ̃sδ)ds

≤
∫ t

0

P(Λs 6= Λ̃s

∣∣Λsδ = Λ̃sδ)ds+
K∑
k=1

P(Λkδ 6= Λ̃kδ)δ

≤ Cδ2t+ 2N2δt‖Q− Q̃‖`1 +
Cδ3

2
K(K + 1)

+N2K(K + 1)δ2‖Q− Q̃‖`1 ,

where K =
[
t
δ

]
+ 1. Letting δ ↓ 0, we obtain that∫ t

0

P(Λs 6= Λ̃s)ds ≤ N2t2‖Q− Q̃‖`1 ,

which concludes the proof. �

Remark 2.3 The perturbation theory of continuous-time Markov chains has been devel-

oped in many works; see, e.g. [16, 17] and references therein. According to this theory,

one can get appropriate estimate of the distance between two transition semigroups by

the distance between their corresponding transition rate matrices. Whereas, to control

the term E
∫ t

0
1{Λs 6=Λ̃s}ds which concerns the behavior of Markov chains during a time

interval [0, t] rather than a fixed time t, one has to construct a suitable coupling process.

One possible method is to use the optimal coupling for continuous-time Markov chains (cf.

[7, Chapter 5]). But additional conditions on the generator of the coupling process are

needed. However, we do not find an explicit condition in terms of the difference between

Q and Q̃, for example, ‖Q−Q̃‖`1 used in this work at current stage. Our result shows once

again the significant effect of Skorkhod’s representation of continuous-time Markov chains

which has been applied in [22] to deal with state-dependent regime-switching processes.
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Proof of Theorem 1.1 For simplicity of notation, let Zt = Xt − X̃t. Then, due to (H1)

and (H2), Itô’s formula yields that

d|Zt|2 =
{

2〈Zt, b(Xt,Λt)− b(X̃t, Λ̃t)〉+ ‖σ(Xt,Λt)− σ(X̃t, Λ̃t)‖2
HS

}
dt+ dMt

≤
{
κΛt |Zt|2+2〈Zt, b(X̃t,Λt)−b(X̃t, Λ̃t)〉+2‖σ(X̃t,Λt)−σ(X̃t, Λ̃t)‖2

HS

}
dt+dMt

≤
{

(κΛt + ε)|Zt|2 +
1

ε

(
|b(X̃t,Λt)|+ |b(X̃t, Λ̃t)|

)2
1{Λt 6=Λ̃t}

+ 4
(
‖σ(X̃t,Λt)‖2

HS + ‖σ(X̃t, Λ̃t)‖2
HS

)
1{Λt 6=Λ̃t}

}
dt+ dMt

≤
{

(κΛt + ε)|Zt|2 +
4K

ε
(1 + |X̃t|2)1{Λt 6=Λ̃t} + 8K(1 + |X̃t|2)1{Λt 6=Λ̃t}

}
dt+ dMt

for any ε > 0, where Mt =
∫ t

0
2〈Zs, (σ(Xs,Λs)−σ(X̃s, Λ̃s))dWs〉 for t ≥ 0 is a martingale.

Taking the expectation w.r.t. P1 on both sides of the previous inequality, we get

dEP1 [|Zt|2](ω2) ≤
(
4ε−1 + 8

)
KEP1

[
1 + |X̃t|2

]
(ω2)1{Λt 6=Λ̃t}(ω2)dt

+ (κΛt + ε)(ω2)EP1 [|Zt|2](ω2)dt.
(2.10)

To proceed, let us recall an elementary inequality. Let u(t) be a real-valued differentiable

function, α(t) and β(t) real-valued integrable functions (not necessary nonnegative). If

u′(t) ≤ α(t) + β(t)u(t),

then

u(t) ≤ u(0)e
∫ t
0 β(s)ds +

∫ t

0

α(s)e
∫ t
s β(r)drds.

Using this inequality to (2.10), and invoking the estimate in Lemma 2.1, we obtain that

EP1 [|Zt|2](ω2) ≤
(
4ε−1+8

)
K

∫ t

0

(
1+(|x0|2+2Ks)e(2K+1)s

)
1{Λs 6=Λ̃s} e

∫ t
s (κΛr+ε)(ω2)drds.

Taking the expectation w.r.t. P2 and using Hölder’s inequality, we get

E|Zt|2 ≤
∫ t

0

{
(4ε−1 + 8)K

[
1 + (|x0|2 + 2Ks)e(2K+1)s

]
·
(
E1{Λs 6=Λ̃s}(ω2)

) 1
q
(
Eep

∫ t
s (κΛr+ε)(ω2)dr

) 1
p

}
ds

(2.11)

for p, q > 1 with 1/p+ 1/q = 1.

In order to estimate the term E ep
∫ t
0 (κΛs+1)ds, we need the following notation. Let

Qp = Q+ p diag(κ0, κ1, . . . , κN),
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and

ηp = −max
{

Re(γ); γ ∈ spec(Qp)
}
.

According to [2, Proposition 4.1], for any p > 0, there exist two positive constants C1(p)

and C2(p) such that

C1(p)e−ηpt ≤ E ep
∫ t
0 κΛsds ≤ C2(p)e−ηpt, t > 0. (2.12)

The term
∫ t

0
E1{Λs 6=Λ̃s}ds is estimated in Lemma 2.2. Consequently, substituting the

estimates (2.12) and (2.6) into (2.11), we get

E[|Zt|2] ≤
(
4ε−1+8

)
KC2(p)

1
p

(
N2t2‖Q− Q̃‖`1

) 1
q

·
(∫ t

0

[
1 + (|x0|2 + 2Ks)e(2K+1)s

]p
e−(ηp−εp)(t−s)ds

) 1
p
.

(2.13)

Note that the solutions of (2.3) and (2.4) exist uniquely. Then the distribution of

(Xt, X̃t) on Rd×Rd is a coupling of L(Xt) and L(X̃t). By the definition of the Wasserstein

distance, it follows

W2(L(Xt),L(X̃t))
2 ≤ E[|Xt − X̃t|2]

≤
(
4ε−1+8

)
KC2(p)

1
pN

2
q t

2
q ‖Q− Q̃‖

1
q

`1

·
(∫ t

0

[
1 + (|x0|2 + 2Ks)e(2K+1)s

]p
e−(ηp−εp)(t−s)ds

) 1
p
,

which is the desired estimate (1.8).

When b and σ are bounded satisfying (1.10), we have a simple estimate

d|Zt|2 ≤
{

(κΛt + ε)|Zt|2 + 4K(2 + ε−1)1{Λt 6=Λ̃t}
}

dt+ dMt,

where Mt =
∫ t

0
2〈Zs, (σ(Xs,Λs)− σ(X̃s, Λ̃s))dWs〉, t ≥ 0. This yields

E|Zt|2 ≤ (4ε−1 + 8)K
(∫ t

0

P(Λs 6= Λ̃s)ds
) 1
q
(∫ t

0

Eep
∫ t
s (κΛr+ε)drds

) 1
p
.

Then, (1.11) can be established by following the same procedure to deduce (1.8). �
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Proof of Theorem 1.2 To emphasize the idea, we give out the proof in the situation

E = S\{0}. For the given transition rate matrices Q = (qij)i,j∈S on S and Q̂ = (q̂ij)i,j∈E
on E, write Q in the form

Q =

(
−q0 α

β Q1

)
, (2.14)

where α = {q0i; 1 ≤ i ≤ N} and β = {qj0; 1 ≤ j ≤ N} are the row and column vectors on

E. Let (Λt) and (Λ̂t) be the Markov chains on S and E with the transition rate matrices

Q and Q̂ respectively. Consider

dX̂t = b(X̂t, Λ̂t)dt+ σ(X̂t, Λ̂t)dWt, X̂0 = x0, Λ̂0 = i0 ∈ E. (2.15)

In order to employ the method used in Theorem 1.1, we propose the following extension

Q̃ =

(
−q0 α

0 Q̂

)
. (2.16)

It is easy to see that Q̃ is conservative. Hence, there is a unique semigroup (P̃t)t≥0 on S
corresponding to the generator Q̃. This (Λ̃t) helps us to define another dynamical system

(X̃t) by the following SDE:

dX̃t = b(X̃t, Λ̃t)dt+ σ(X̃t, Λ̃t)dWt, X̃0 = x0, Λ̃0 = i0 ∈ E. (2.17)

Under the conditions (H1) and (H2), the solutions of SDEs (2.15) and (2.17) are uniquely

determined. Due to the definition of Q̃ in (2.16), the process (Λ̃t) starting from i0 ∈ E
will never reach the point 0, thus Λ̃t = Λ̂t, t > 0, a.s. when Λ̃0 = Λ̂0 = i0 ∈ E. As a

consequence,

X̃t = X̂t, t > 0, a.s. (2.18)

Moreover, by virtue of (2.14) and (2.16), it holds

‖Q− Q̃‖`1 ≤ ‖β‖`1 + ‖Q1 − Q̂‖`1 . (2.19)

Following the procedure of the argument of Theorem 1.1, inserting (2.19) into (2.13), we

obtain that

E[|Xt − X̃t|2] ≤
(
4ε−1+8

)
KC2(p)

1
p
(
Nt
) 2
q

(
‖β‖`1 + ‖Q1 − Q̂‖`1

) 1
q

·
(∫ t

0

[
1 + (|x0|2 + 2Ks)e(2K+1)s

]p
e−(ηp−εp)(t−s)ds

) 1
p
.

(2.20)
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Due to (2.18), it follows that E[|Xt−X̂t|2] = E[|Xt−X̃t|2]. According to the definition

of the Wasserstein distance, and using the estimate (2.20), we obtain

W2(L(Xt),L(X̂t))
2 ≤

(
4ε−1+8

)
KC2(p)

1
p
(
Nt
) 2
q

(
‖β‖`1 + ‖Q1 − Q̂‖`1

) 1
q

·
(∫ t

0

[
1 + (|x0|2 + 2Ks)e(2K+1)s

]p
e−(ηp−εp)(t−s)ds

) 1
p
.

(2.21)

Analogously, if b and σ are bounded satisfying (1.10), we have

W2(L(Xt),L(X̂t))
2 ≤ E[|Xt − X̃t|2]

≤ (4ε−1+8)KC2(p)
1
p
(
Nt
) 2
q

(
‖β‖`1 + ‖Q1 − Q̂‖`1

) 1
q
(1− e−(ηp−εp)t

ηp − εp

) 1
p
.

(2.22)

This completes the proof in the situation E = S\{0}. The general case can be proved in

the same way, and the details are omitted.

2.2 SDEs with irregular coefficients

In this part, we consider the regime-switching processes with irregular drifts. Precisely,

consider

dXt = b(Xt,Λt)dt+ σ(Xt)dWt, X0 = x0, Λ0 = i0, (2.23)

where b : Rd×S → Rd and σ : Rd → Rd×d. Here, we assume that the diffusion coefficient

σ satisfies the Lipschitz condition: there exists K > 0 such that

‖σ(x)− σ(y)‖2
HS ≤ K|x− y|2, ∀x, y ∈ Rd. (2.24)

However, the drift b is assumed to satisfy certain integrability condition. Hence, it may

be discontinuous. (Λt) is a continuous time Markov chain on S with the transition rate

matrix Q = (qij)i,j∈S . Consider the perturbation Q̃ = (q̃ij)i,j∈S of Q and its associated

Markov chain (Λ̃t). Let

dX̃t = b(X̃t, Λ̃t)dt+ σ(X̃t)dWt, X̃0 = x0, Λ̃0 = i0. (2.25)

The integrability condition of type (1.22) is raised by Wang [28] to study the nonexplosion

of the solutions of SDEs by using the dimension-free Harnack inequality. We will use the

technique of [28] to analyze the stability of the regime-switching processes. Moreover,
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according to [28, Theorem 2.1] and using the technique to construct the regime-switching

processes with Markovian switching (cf. e.g. [15]), it is standard to show the existence

and uniqueness of the solutions of SDEs (2.23) and (2.25).

To proceed, we make some necessary preparations. Let (Yt) be a process associated

with the reference function V ∈ C2(Rd):

dYt = Z0(Yt)dt+ σdW (t), Y0 = x0, (2.26)

where the vector field Z0 is defined by (1.19). Since Z0 is globally Lipschitz continuous

by condition (A), there is a unique nonexplosive solution to SDE (2.26). Via the process

(Yt), a new representation for (Xt) and (X̃t) can be constructed with the help of the

Girsanov theorem, which is verified by the dimension-free Harnack inequality for (Yt)

under appropriate integrability conditions.

Precisely, rewrite (2.26) as

dYt = b(Yt,Λt)dt+ σ(Yt)dW
(1)
t ,

where

W
(1)
t = Wt −

∫ t

0

σ(Ys)
−1Z(Ys,Λs)ds, Z(y, i) = b(y, i)−Z0(y), t > 0, y ∈Rd, i ∈S. (2.27)

If Novikov’s condition

Ee
1
2

∫ T
0 |σ

−1(Ys)Z(Ys,Λs)|2ds <∞ (2.28)

holds, then

Q := exp
(∫ T

0

〈σ−1(Ys)Z(Ys,Λs), dWs〉 −
1

2

∫ T

0

|σ−1(Ys)Z(Ys,Λs)|2ds
)
P (2.29)

is a new probability measure. Thus, the Girsanov theorem yields that (W
(1)
t )t∈[0,T ] is a new

Brownian motion under the probability measure Q. Note that the mutual independence

between (Wt) and (Λt) has been used herein. Consequently, the uniqueness of the solution

for the SDE (2.23) tells us that (Yt,Λt)t∈[0,T ] under Q has the same distribution as that of

(Xt,Λt)t∈[0,T ] under P. To be more precise, let us show that (Λt) and (W
(1)
t ) are mutually

independent under Q. For any bounded measurable functions f on S and g on Rd, it
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holds

EQ
[
f(Λt)g(W

(1)
t )
]

= EP

[dQ
dP

f(Λt)g(W
(1)
t )
]

= EP2

[
f(Λt)EP2

[
EP1

(dQ
dP

g(W
(1)
t )
)∣∣∣F Λ

T

]]
= EP2

[
f(Λt)EP1

[
g(Wt)

]]
= EP2

[
f(Λt)

]
EP
[
g(Wt)

]
= EP

[
f(Λt)

]
EQ
[
g(W

(1)
t )
]
,

(2.30)

where F Λ
t denotes the σ-field generated by the process (Λs) up to time t, and dQ

dP de-

notes the Radon-Nikodym derivative. Applying again the Grisanov theorem, we have

EP1

(dQ
dP

)
= 1 and

EQ
[
f(Λt)

]
= EP

[
f(Λt)

dQ
dP

]
= EP2

[
f(Λt)EP2

[
EP1

(dQ
dP

)∣∣∣F Λ
T

]]
= EP2

[
f(Λt)

]
= EP

[
f(Λt)

]
.

Combining this with the previous equality (2.30), we have

EQ
[
f(Λt)g(W

(1)
t )
]

= EQ
[
f(Λt)

]
EQ
[
g(W

(1)
t )
]
,

and hence (Λt) and (W
(1)
t ) are mutually independent.

Analogously, rewrite (Yt) as

dYt = b(Yt, Λ̃t)dt+ σ(Yt)dW̃t,

where

W̃t = Wt −
∫ t

0

σ(Ys)
−1Z(Ys, Λ̃s)ds. (2.31)

If Novikov’s condition

Ee
1
2

∫ T
0 |σ

−1(Ys)Z(Ys,Λ̃s)|2ds <∞ (2.32)

holds, then

Q̃ := exp
(∫ T

0

〈σ−1(Ys)Z(Ys, Λ̃s), dWs〉 −
1

2

∫ T

0

|σ−1(Ys)Z(Ys, Λ̃s)|2ds
)
P (2.33)

is a new probability measure. Moreover, (Yt, Λ̃t)t∈[0,T ] under Q̃ has the same distribution

as that of (X̃t, Λ̃t) under P.
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Lemma 2.4 Let G : Rd × S → R+ be a measurable function and β > 0 be a constant.

Let T > 0 be fixed.

(i) If there exists a constant ξ > d such that maxi∈S µ0

(
Gξ(·, i)

)
<∞, then

E
[ ∫ T

0

G(Ys,Λs)ds
]
≤ C max

i∈S
µ0

(
Gξ(·, i)

) 1
ξ <∞ (2.34)

for some constant C = C(T, ξ,K0) > 0.

(ii) If there exists a constant η such that η > βTd and maxi∈S µ0

(
eηG(·,i)) <∞, then

E
[
eβ

∫ T
0 G(Ys,Λs)ds

]
<∞. (2.35)

Proof. We first prove (ii), then (i) follows easily from the derivation of (ii). Let P 0
t

denote the semigroup corresponding to the process (Y (t)) defined by (2.26) with initial

value Y (0) = x. Hence, the semigroup P 0
t is symmetric w.r.t. µ0. Since V satisfies

condition (A), according to [27, Theorem 1.1], for p > 1, the following Harnack inequality

holds: (
P 0
t f(x)

)p
≤ P 0

t f
p(y) exp

[ K0
√
p

√
p− 1

· |x− y|
2

1− e−K0t

]
, ∀ f ∈ B+

b (Rd). (2.36)

Applying the Harnack inequality (2.36) and the mutual independence between (Λt) and

(Wt), we get for any γ > 0 and K > 0{
E
[
eγG(Yt,Λt)∧K

∣∣∣F Λ
t

]}p
=
{
P 0
t eγG(·,Λt)∧K

}p
(x)

≤
{
P 0
t eγpG(·,Λt)∧K

}
(y) exp

[ K0
√
p

√
p− 1

· |x− y|
2

1− e−K0t

]
.

Passing to the limit as K → +∞, it follows from Fatou’s lemma that{
P 0
t eγG(·,Λt)

}p
(x) ≤

{
P 0
t eγpG(·,Λt)

}
(y) exp

[ K0
√
p

√
p− 1

· |x− y|
2

1− e−K0t

]
. (2.37)

Denote B(x, r) = {y ∈ Rd; |y−x| ≤ r} for r > 0, x ∈ Rd. Integrating both sides of (2.37)
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w.r.t. µ0 over the set B(x,
√

1− e−K0t), we obtain{
P 0
t eγG(·,Λt)(x)

}p
µ0

(
B
(
x,
√

1− e−K0t
))

≤
∫
B
(
x,
√

1−e−K0t
) {P 0

t eγpG(·,Λt)
}

(y)e
K0
√
p√

p−1
· |x−y|

2

1−e−K0t µ0(dy)

≤
∫
B
(
x,
√

1−e−K0t
) {P 0

t eγpG(·,Λt)
}

(y)e
K0
√
p√

p−1 µ0(dy)

≤ e
K0
√
p√

p−1 µ0(eγpG(·,Λt)).

(2.38)

Since µ0 has strictly positive and continuous density e−V w.r.t. the Lebesgue measure,

there exists Γ ∈ C(Rd; (0,∞)) such that µ0(B(x, t)) ≥ Γ(x)td for t ∈ (0, 1] and x ∈ Rd.

Invoking (2.38), we obtain

EeγG(Yt,Λt) ≤ Γ(x)−
1
p e

K0
p−√p max

i∈S
µ0

(
eγpG(·,i)

) 1
p 1(

1− e−K0t
)d/p , t ∈ (0, T ]. (2.39)

Combining this with Jensen’s inequality, one has

E
[
eβ

∫ T
0 G(Yt,Λt)dt

]
≤ 1

T

∫ T

0

E
[
eβTG(Yt,Λt)

]
dt

≤ C

Γ(x)1/p
max
i∈S

µ0

(
eβTpG(·,i)

)1/p
∫ T

0

1

(1− e−K0t)d/p
dt,

(2.40)

where C = C(p, T,K0) is a constant and x is the initial value of (Yt). Taking d < p < η
βT

in (2.40), it follows from the assumed condition in (ii) that

E
[
eβ

∫ T
0 G(Yt,Λt)dt

]
<∞.

In order to establish (2.34), noticing ξ > d, we obtain from (2.39) that

E[G(Yt,Λt)] ≤
e

K0
ξ−
√
ξ maxi∈S µ0(Gξ(·, i))

1
ξ

Γ(x)
1
ξ (1− e−K0t)

d
ξ

, t ∈ (0, T ], (2.41)

and hence

E
[ ∫ T

0

G(Yt,Λt)dt
]
≤ e

K0
ξ−
√
ξ

Γ(x)
1
ξ

(∫ T

0

1

(1− e−K0t)d/ξ
dt
)

max
i∈S

µ0(Gξ(·, i))
1
ξ <∞.
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The proof is complete. �

Proof of Theorem 1.3 For every Markov chain (Λt) with transition rate matrix Q, there

is a unique strong solution to SDE (1.14) under the conditions imposed in this theorem,

which of course implies the weak uniqueness of the solution to SDE (1.14). Similarly,

weak uniqueness holds for SDE (1.16). In this proof, let (Λt) be the Markov chain given

by (2.1), and (Λ̃t) be given by (2.2). All the results established in beginning of this section

still hold for this special construction of Markov chains. We shall this coupling process

(Λt, Λ̃t) to estimate E
∫ T

0
1{Λs 6=Λ̃s}ds using Lemma 2.2 in the following argument.

By Lemma 2.4, Novikov’s conditions (2.28) and (2.32) are verified under the assump-

tion of this theorem. Therefore, (Xt,Λt)t∈[0,T ] and (X̃t, Λ̃t)t∈[0,T ] can be represented in

terms of (Yt,Λt)t∈[0,T ] and (Yt, Λ̃t)t∈[0,T ]. Denote the initial value of (Yt) by x0. It follows

that for any measurable f with ‖f‖Lip + ‖f‖∞ ≤ 1, and any t ∈ [0, T ],

|Ef(Xt)− Ef(X̃t)| =
∣∣EQf(Yt)− EQ̃f(Yt)

∣∣
=
∣∣∣E[(dQ

dP
− dQ̃

dP

)
f(Yt)

]∣∣∣ ≤ E
∣∣∣dQ
dP
− dQ̃

dP

∣∣∣. (2.42)

Setting

Mt =

∫ t

0

〈σ−1(Ys)Z(Ys,Λs), dWs〉, M̃t =

∫ t

0

〈σ−1(Ys)Z(Ys, Λ̃s), dWs〉,

and

〈M〉t =

∫ t

0

|σ−1(Ys)Z(Ys,Λs)|2ds, 〈M̃〉t =

∫ t

0

|σ−1(Ys)Z(Ys, Λ̃s)|2ds

for t ∈ [0, T ], by the inequality |ex− ey| ≤ (ex + ey)|x− y| for all x, y ∈ R, we obtain that

|Ef(Xt)− Ef(X̃t)|

≤ E
[(dQ

dP
+

dQ̃
dP

)p] 1
pE
[
|MT − M̃T −

1

2
〈M〉T +

1

2
〈M̃〉T |q

] 1
q

(2.43)

for p, q > 1 with 1/p+ 1/q = 1.

For the first term in (2.43), since η > 2Td, we can choose p = p0 > 1 such that

q0 = p0/(p0 − 1) > 2 and 2p2
0Td < η.

E
[(dQ

dP

)p0
]

= E
[

exp
(
p0MT −

p0

2
〈M〉T

)]
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≤ E
[

exp(2p0MT − 2p2
0〈M〉T )

] 1
2E
[

exp(p0(2p0 − 1)〈M〉T )
] 1

2 .

According to Lemma 2.1,

E
[
e2p2

0〈M〉T
]
<∞, E

[
ep0(2p0−1)〈M〉T

]
<∞.

Hence, t 7→ exp
(
2p0Mt − 2p2

0〈M〉t
)

is an exponential martingale for t ∈ [0, T ] and

E
[(dQ

dP

)p0
]
≤ C

Γ(x0)
1
p1

max
i∈S

µ0

(
eη|σ

−1(·)Z(·,i)|2
) 1
p1

∫ T

0

1

(1−e−K0t)
d
p1

dt <∞, (2.44)

where p1 > d satisfies 2p2
0p1T < η, and C = C(p1, T,K0).

We proceed to estimate the second term in (2.43). We shall estimate E[|MT − M̃T |q0 ]

and E[|〈M〉T − 〈M̃〉T |q0 ] separately. Since q0 > 2, it follows from Burkholder-Davis-

Gundy’s inequality and Jensen’s inequality that

E[|MT − M̃T |q0 ]

≤ Cq0E
[( ∫ T

0

|σ−1(Ys)(Z(Ys,Λs)− Z(Ys, Λ̃s))|2ds
) q0

2
]

≤ Cq0T
q0
2
−1E

[ ∫ T

0

|σ−1(Ys)(Z(Ys,Λs)− Z(Ys, Λ̃s))|q0ds
]

= Cq0T
q0
2
−1E

[ ∫ T

0

|σ−1(Ys)(Z(Ys,Λs)− Z(Ys, Λ̃s))|q01{Λs 6=Λ̃s}ds
]

≤ Cq0T
q0
2
−1

∫ T

0

E
[
|σ−1(Ys)(Z(Ys,Λs)− Z(Ys, Λ̃s))|2q0

] 1
2P
(
Λs 6= Λ̃s

) 1
2 ds

≤ Cq0T
q0
2
−1
(∫ T

0

E
[
|σ−1(Ys)(Z(Ys,Λs)−Z(Ys, Λ̃s))|2q0

]
ds
) 1

2
(∫ T

0

P(Λs 6=Λ̃s)ds
) 1

2
.

By (2.41) of Lemma 2.1,

E
[∣∣σ−1(Ys)(Z(Ys,Λs)− Z(Ys, Λ̃s))

∣∣2q0]
≤ 22q0−1

(
E
[∣∣σ−1(Ys)Z(Ys,Λs)

∣∣2q0]+ E
[∣∣σ−1(Ys)Z(Ys,Λs)

∣∣2q0])
≤ 22q0e

K0
ξ−
√
ξ

maxi∈S µ0

(
|σ−1(·)Z(·, i)|2q0ξ

) 1
ξ

Γ(x)(1− e−K0s)
d
ξ

, ξ > d.

(2.45)
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Note that the finiteness of max
i∈S

µ0

(
|σ−1(·)Z(·, i)|2q0ξ

)
follows easily from the assumption

max
i∈S

µ0

(
eη|σ

−1(·)Z(·,i)|2
)
<∞.

Therefore,

E[|MT−M̃T |q0 ]

≤ Ce
K0

2ξ−2
√
ξ

(∫ T

0

maxi∈S µ0

(
|σ−1(·)Z(·, i)|2q0ξ

) 1
ξ

(1− e−K0s)
d
ξ

ds
) 1

2
(∫ T

0

P(Λs 6= Λ̃s)ds
) 1

2

(2.46)

for some constant C = C(q0, T ) > 0 and ξ > d. By Lemma 2.2, we obtain that

E[|MT−M̃T |q0 ]

≤ Ce
K0

2ξ−2
√
ξ

(∫ T

0

maxi∈S µ0

(
|σ−1(·)Z(·, i)|2q0ξ

) 1
ξ

(1− e−K0s)
d
ξ

ds
) 1

2 ·NT‖Q− Q̃‖
1
2
`1
.

(2.47)

In the following, we shall estimate E[|〈M〉T − 〈M̃〉T |q0 ].

E
[∣∣〈M〉T − 〈M̃〉T ∣∣q0]
≤ E

[(∫ T

0

|σ−1(Ys)(Z(Ys,Λs)−Z(Ys, Λ̃s)|
(
|σ−1(Ys)Z(Ys,Λs)|+|σ−1(Ys)Z(Ys, Λ̃s|)

)
ds
)q0]

≤ E
[(∫ T

0

|σ−1(Ys)(Z(Ys,Λs)−Z(Ys, Λ̃s)|γds
) q0

γ

·
(∫ T

0

(
|σ−1(Ys)Z(Ys,Λs)|+|σ−1(Ys)Z(Ys, Λ̃s)|

)γ′
ds
) q0
γ′
]

≤ E
[(∫ T

0

|σ−1(Ys)(Z(Ys,Λs)−Z(Ys, Λ̃s)|γds
)q0] 1

γ

· E
[(∫ T

0

(
|σ−1(Ys)Z(Ys,Λs)|+|σ−1(Ys)Z(Ys, Ỹs)|

)γ′
ds
)q0] 1

γ′
,

where γ, γ′ > 1 satisfy 1/γ + 1/γ′ = 1. By Lemma 2.1, it is easy to see

E
[(∫ T

0

(
|σ−1(Ys)Z(Ys,Λs)|+|σ−1(Ys)Z(Ys, Ỹs)|

)γ′
ds
)q0] 1

γ′
<∞.
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On the other hand,

E
[(∫ T

0

|σ−1(Ys)(Z(Ys,Λs)− Z(Ys, Λ̃s))ds
)q0]

≤ T q0−1
(∫ T

0

E
[
|σ−1(Ys)(Z(Ys,Λs)− Z(Ys, Λ̃s))|2γq0

]
ds
) 1

2
(∫ T

0

P(Λs 6= Λ̃s)ds
) 1

2
.

By virtue of (2.45) and Lemma 2.2, we get

E
[(∫ T

0

|σ−1(Ys)(Z(Ys,Λs)− Z(Ys, Λ̃s))ds
)q0] 1

γ

≤ Ce
K0

2γ(ξ−
√
ξ)

(∫ T

0

max
i∈S

µ0

(
|σ−1(·)Z(·, i)|2q0γξ

) 1
ξ

(1− e−K0s)
d
ξ

ds
) 1

2γ
N

1
γ ‖Q− Q̃‖

1
2γ

`1
,

(2.48)

where C = C(T, x0, q0) is a positive constant.

In all, inserting the estimates (2.44), (2.47) and (2.48) into (2.43), we arrive at∣∣Ef(Xt)− Ef(X̃t)
∣∣ ≤ C

(
‖Q− Q̃‖

1
2q0
`1
∨ ‖Q− Q̃‖

1
2q0γ

`1

)
for some constant C depending on N, T, x0, τ1, K0, ξ, γ, p0,maxi∈S µ0

(
eη|σ

−1(·)Z(·,i)|2), and

γ > 1. By virtue of the definition of WbL(·, ·),

WbL(L(Xt),L(X̃t)) ≤ C
(
‖Q− Q̃‖

1
2q0
`1
∨ ‖Q− Q̃‖

1
2q0γ

`1

)
.

This completes the proof.

Proof of Theorem 1.4 This theorem can be proved along the same line as Thereom 1.3

by noting ‖Q− Q̃‖`1 ≤ ‖B‖`1 + ‖Q1 + Q̂‖`1 . The details are omitted.

3 Further discussion

Recall the expression (2.16) of Q. The probabilistic meaning of q0 is that the Markov chain

(Λt) stays at the state “0” for a random period distributed as an exponential distribution

with parameter q0. So the larger the value of q0 is, the shorter time period the process

25



(Λt) will stay at “0” in average. One may consider a limitation case that q0 equals to

+∞, that is,

Q∞ =

(
−∞ α

β Q1

)
,

which means that the jump will occur immediately once the process (Λt) reaches the state

“0”. The state “0” in Q∞ is called an instantaneous state. It seems also interesting to

study the asymptotic behavior of Q to Q∞ as q0 tends to +∞. Note that the continuous

time Markov chain with instantaneous state produces new phenomenon compared with

the Markov chains which are totally stable. For example, consider the well-known example

provided by Kolmogorov [13]:

Q =


−∞ 1 1 1 . . .

q1 −q1 0 0 . . .

q2 0 −q2 0 . . .

q3 0 0 −q3 . . .

. . . . . . . . . . . . . . .


It was shown by Kendall and Reuter [12] that if

∞∑
j=1

q−1
j < +∞,

then there exists a Markov process with the generator Q. Notice that the state space of

this Markov process is denumerable. Moreover, Chen and Reushaw [6] presented some

sufficient conditions for the existence and uniqueness of continuous-time Markov chains

with instantaneous states. According to [6, Corollary 3.2], Markov chains with a finite

states have no instantaneous states. In the present work the state space S of Markov

chain is finite, we have not consider that the Markov chain has the generator Q∞, and

hence the corresponding processes (Λt) and (Xt) have not been discussed. Therefore, to

study the current problems for regime-switching processes with infinite state space S and

instantaneous state is meaningful, and we leave it for further investigation.
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