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Abstract

For k ≥ 2, we determine the connected k-uniform hypergraphs with least

distance eigenvalues in
(
1−
√
33

2 , 0
)
, the k-uniform hypertrees with least distance

eigenvalues in [−2k, 0), and the k-uniform unicyclic hypergraphs with least dis-

tance eigenvalues in
(
−k + 1−

√
(k − 1)(k − 2), 0

)
, respectively, and determine

the k-uniform hypergraphs (hypertrees, respectively) with minimum distance spread.
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1 Introduction

Let V be a nonempty finite set, and E a family of nonempty subsets of V . The pair G =
(V,E) is called a hypergraph with vertex set V (G) = V , and with edge set E(G) = E,
see [2, 3]. The order of G is the cardinality of V (G). If all edges of G have cardinality
k, then G is k-uniform. A 2-uniform hypergraph is an ordinary graph. For u, v ∈ V (G),
if they are contained in some edge of G, then we say that they are adjacent, or v is a
neighbor of u. Let NG(u) be the set of neighbors of u in G.

For u, v ∈ V (G), a walk from u to v in G is defined to be an alternating sequence of
vertices and edges (v0, e1, v1, . . . , vp−1, ep, vp) with v0 = u and vp = v such that edge ei
contains vertices vi−1 and vi, and vi−1 6= vi for i = 1, . . . , p. The value p is the length
of this walk. A path is a walk with all vi distinct and all ei distinct. A cycle is a walk
containing at least two edges, all ei are distinct and all vi are distinct except v0 = vp. A
vertex u ∈ V (G) is viewed as a path (from u to u) of length 0. If there is a path from u
to v for any u, v ∈ V (G), then we say that G is connected.

A hypertree is a connected hypergraph with no cycles. Note that a k-uniform hyper-
tree with m edges always has order 1 + (k− 1)m, see [3, p. 392]. A unicyclic hypergraph

∗E-mail: lhongying0908@126.com
†Corresponding author. E-mail: zhoubo@scnu.edu.cn

1



is a connected hypergraph with exactly one cycle. Note that a k-uniform unicyclic
hypergraph with m edges always has order (k − 1)m, see [3, p. 393].

Let G be a connected hypergraph with V (G) = {v1, . . . , vn}. For u, v ∈ V (G), the
distance between u and v is the length of a shortest path from u to v in G, denoted
by dG(u, v). In particular, dG(u, u) = 0. The diameter of G is the maximum distance
between all vertex pairs of G. The distance matrix of G is the n × n matrix D(G) =
(dG(u, v))u,v∈V (G). The eigenvalues of D(G) are called the distance eigenvalues of G.
Since D(G) is real and symmetric, the distance eigenvalues of G are real. Let ρ(G) and
λ(G) be the largest and least distance eigenvalues of G, respectively.

Interest in distance eigenvalues of 2-uniform hypergraphs (ordinary graphs) began
during the 1970’s with the appearance of the paper by Graham and Pollak [6], in which
a relationship was established between the number of negative distance eigenvalues and
the addressing problem in data communication systems. Edelberg et al. [4] and Graham
and Lovász [5] studied the characteristic polynomial of the distance matrix of graphs.
Though the distance eigenvalues of ordinary graphs have been studied to some extent
(see the recent survey of Aouchiche and Hansen [1] and referees therein), it still of inter-
est to investigate the largest and the least distance eigenvalues of graphs with particular
structures. Sivasubramanian [15] gave a formula for the inverse of a few q-analogs of
the distance matrix of 3-uniform hypertrees. The largest distance eigenvalue of uniform
hypergraphs has also received attention [12]. Generally, apart from the largest eigen-
value, the least eigenvalue of a symmetric matrix is of most important, see, e.g. [14].
The spread of a real symmetric matrix is the difference between its largest and least
eigenvalues, which has applications in combinatorial optimization problems [7]. This
quantity has been studied extensively, see, e.g. [16]. For a connected hypergraph G, the
distance spread of G is defined as s(G) = ρ(G) − λ(G). For some classes of ordinary
graphs, it has been studied, see, e.g. [8, 18].

In this paper, we determine the k-uniform hypergraphs with least distance eigenvalues

in
(

1−
√
33

2
, 0
)

, the k-uniform hypertrees with least distance eigenvalues in [−2k, 0), and

the k-uniform unicyclic hypergraphs with least distance eigenvalues in
(
−k + 1−

√
(k − 1)(k − 2), 0

)
,

respectively. Moreover, we determine the k-uniform hypergraphs and hypertrees respec-
tively with minimum distance spread.

2 Preliminaries

For 2 ≤ k ≤ n, the complete k-uniform hypergraph, denoted by Kk
n, is a hypergraph G

of order n such that E(G) consists of all k-subsets of V (G).
A set S of vertices of a hypergraph G is a (strongly) independent set of G if any

two vertices in S are not adjacent. An independent set S of G is maximal if S ∪ {u}
for any u ∈ V (G) \ S is not an independent set. A hypergraph is s-partite if its vertex
set can be partitioned into s parts (called partite sets), each of which is an independent
set. A k-uniform hypergraph G is a complete s-partite hypergraph if each choice of k
vertices from distinct partite sets forms an edge. Let Kk

n1,...,ns
be the complete s-partite

k-uniform hypergraph with partite sets V1, . . . , Vs such that |Vi| = ni for i = 1, . . . , s.
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Obviously, Kk
n = Kk

1, . . . , 1︸ ︷︷ ︸
n

.

A k-uniform loose path of order n is a hypertree with vertex set {v1, . . . , vn} and
with the set of m edges ei = {vi(k−1)+1, . . . , vi(k−1)+k} for i = 0, . . . ,m − 1, denoted by
Pn,k, where m = n−1

k−1 .
For a k-uniform hypertree G of order n, if V (G) can be partitioned into m+1 subsets

{u}, V1, . . . , Vm such that |V1| = · · · = |Vm| = k−1, and E(G) = {{u}∪Vi : 1 ≤ i ≤ m},
then we call G is a hyperstar (with center u), denoted by Sn,k.

A k-uniform loose cycle of order n is a unicyclic hypergraph with vertex set {v1, . . . , vn}
and with the set of m edges ei = {vi(k−1)+1, . . . , vi(k−1)+k} for i = 0, . . . ,m− 1, denoted
by Cn,k, where m = n

k−1 , and v(m−1)(k−1)+k = v1.
Let G be a k-uniform hypergraph with V (G) = {v1, . . . , vn}. A column vector

x = (xv1 , . . . , xvn)> ∈ Rn can be considered as a function defined on V (G) which maps
vertex vi to xvi , i.e., x(vi) = xvi for i = 1, . . . , n. Then λ is a distance eigenvalue
with corresponding eigenvector x if and only if x 6= 0 and for each u ∈ V (G), λxu =∑

v∈V (G) dG(u, v)xv. Obviously, the distance eigenvalues of G are the roots of det(λIn −
D(G)) = 0, where In is the identity matrix of order n.

For a connected k-uniform hypergraph G, if H is a connected k-uniform subhy-
pergraph, and dH(u, v) = dG(u, v) for u, v ∈ V (H), then H is said to be a distance-
preserving k-uniform subhypergraph of G. If H is a distance-preserving k-uniform sub-
hypergraph of G with V (H) = V (G), then say that H is a spanning distance-preserving
subhypergraph of G.

For a connected k-uniform hypergraph G with V0 ⊆ V (G), let D(G)[V0] be the
principal submatrix of D(G) indexed by all the vertices of V0.

For an n×n real symmetric matrix M , let λ(M) be the least eigenvalue of M . From
the interlacing theorem [13, pp. 185–186], we have

Lemma 2.1. Let N be an n × n symmetric matrix and M a principal submatrix of N
of order m, where 2 ≤ m ≤ n. Then λ(N) ≤ λ(M).

Let Jn×m and 0n×m be the all-one and all-zero n × m matrices, respectively. Let
1n = Jn×1, Jn = Jn×n, and 0n = 0n×n.

3 Least distance eigenvalue

In this section, we study the least distance eigenvalue of a uniform hypergraph, and
especially for hypertrees and unicyclic hypergraphs.

Lemma 3.1. Let G be a connected k-uniform hypergraph with diameter d ≥ 1, where
k ≥ 2. Then λ(G) ≤ −d.

Proof. Let u, v ∈ V (G) such that dG(u, v) = d. Then D(G) [{u, v}] =

(
0 d
d 0

)
. By

Lemma 2.1, we have λ(G) ≤ λ(D(G)[{u, v}]) = −d.

This is actually known [9].
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Lemma 3.2. For 2 ≤ k ≤ s ≤ n− 1, let G be a spanning distance-preserving subhyper-
graph of a complete s-partite k-uniform hypergraph H of order n. Then λ(G) = −2.

Proof. Obviously, D(G) = D(H). Assume that H = Kk
n1,...,ns

. Then H has partite
sets V1, . . . , Vs such that |Vi| = ni for i = 1, . . . , s. Note that there is no edge of H
containing at least two vertices of Vi for i = 1, . . . , s, and E(H) contains all k-subsets
that have their vertices in some k different partite sets. With respect to the partition
V (H) = V1 ∪ · · · ∪ Vs, we have

D(H) =


2Jn1 − 2In1 Jn1×n2 · · · Jn1×ns

Jn2×n1 2Jn2 − 2In2 · · · Jn2×ns

...
...

. . .
...

Jns×n1 Jns×n2 · · · 2Jns − 2Ins

 .

Observe that the eigenvalues of D(H) + 2In are n1, . . . , ns, and 0 (with multiplicity
n− s), and thus λ(D(H)) = −2.

Since D(H) is just the distance matrix of the complete s-partite graph with partite
sizes n1, . . . , ns, the previous lemma follows also from [10, Lemma 2.5] or [17, Lemma 3.1].

Note that Kk
n is a complete n-partite k-uniform hypergraph.

For an ordinary complete multipartite graph G (k = 2), its spanning distance-
preserving subgraph must be itself. But this is not true for k-uniform hypergraph-
s with k ≥ 3. Consider a 5-uniform hypergraph G with V (G) = {1, . . . , 9} and
E(G) = {e1, . . . , e6}, where e1 = {1, 3, 6, 7, 8}, e2 = {1, 4, 7, 8, 9}, e3 = {1, 5, 6, 7, 8},
e4 = {2, 3, 7, 8, 9}, e5 = {2, 4, 6, 7, 8}, e6 = {2, 5, 6, 7, 9}. We partition V (G) into
{1, 2} ∪ {3, 4, 5} ∪ {6} ∪ {7} ∪ {8} ∪ {9}. Obviously, D(G) = D(K5

2,3,1,1,1,1). Thus G is
a spanning distance-preserving subhypergraph of K5

2,3,1,1,1,1. Obviously, G 6∼= K5
2,3,1,1,1,1.

Theorem 3.1. Let G be a connected k-uniform hypergraph of order n, where 2 ≤ k ≤ n.
Then

(i) λ(G) ≤ −1 with equality if and only if G is a spanning distance-preserving sub-
hypergraph of Kk

n;
(ii) if G is not a spanning distance-preserving subhypergraph of Kk

n, then λ(G) ≤ −2
with equality if and only if G is a spanning distance-preserving subhypergraph of some
complete s-partite k-uniform hypergraph of order n with k ≤ s ≤ n− 1;

(iii) if G is not a spanning distance-preserving subhypergraph of any complete s-

partite k-uniform hypergraph of order n with k ≤ s ≤ n, then λ(G) ≤ 1−
√
33

2
.

Proof. Let d be the diameter of G.
Obviously, if G is a spanning distance-preserving subhypergraph of Kk

n, then λ(G) =
λ(Jn − In) = −1. If G is not a spanning distance-preserving subhypergraph of Kk

n,
then d ≥ 2, and thus by Lemma 3.1, we have λ(G) ≤ −2. Therefore λ(G) = −1 or
λ(G) ≤ −2. Now (i) follows.

Suppose that G is not a spanning distance-preserving subhypergraph of Kk
n. Then

d ≥ 2.
If G is a spanning distance-preserving subhypergraph of a complete s-partite k-

uniform hypergraph with k ≤ s ≤ n− 1, then by Lemma 3.2, we have λ(G) = −2.
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Suppose that λ(G) = −2. By Lemma 3.1, d ≤ 2, and then d = 2. Thus any two
nonadjacent vertices in G have at least one neighbor in common. Let u, v ∈ V (G)
such that dG(u, v) = 2. Suppose that w ∈ NG(v) \ NG(u). Then dG(u,w) = 2 and
dG(v, w) = 1. We have

D(G)[{u, v, w}] =

 0 2 2
2 0 1
2 1 0

 .

By Lemma 2.1, λ(G) ≤ λ(D(G)[{u, v, w}]) = 1−
√
33

2
≈ −2.3723 < −2, a contradiction.

Thus NG(v) ⊆ NG(u). Similarly, we have NG(u) ⊆ NG(v). Then NG(u) = NG(v).
Thus any two nonadjacent vertices in G have the same neighbors. Since d = 2, there
are nonadjacent vertices in G. Thus we may choose a maximal independent set V1
with |V1| ≥ 2 such that NG(u) = V (G) \ V1 for any u ∈ V1. If there are nonadjacent
vertices in V (G) \ V1 and V (G) \ V1 is not an independent set, then we may choose a
maximal independent V2 in V (G) \ V1 such that NG(u) = V (G) \ V2 for any u ∈ V2. It
is easily seen that this process can be continued until we reach a maximal independent
set Vr such that V (G) \ (V1 ∪ · · · ∪ Vr) is an independent set or any two vertices in
V (G) \ (V1 ∪ · · · ∪Vr) are adjacent. In the former case, G is an (r+ 1)-partite k-uniform
hypergraph with k ≤ r + 1 ≤ n− 1. In the latter case, let p = |V (G) \ (V1 ∪ · · · ∪ Vr)|.
Then V (G) \ (V1 ∪ · · · ∪ Vr) may be partitioned in to p parts each containing a single
vertex, and thus G is a (r+ p)-partite k-uniform hypergraph with k ≤ r+ p ≤ n− 1. In
either case, there is an integer s with k ≤ s ≤ n− 1 such that V (G) may be partitioned
into s partite sets V1, . . . , Vs, each partite set is a maximal independent set, and any
two vertices in different parts are adjacent. Let ni = |Vi| for i = 1, . . . , s. Then G is
a subhypergraph of Kk

n1,...,ns
and D(G) = D(Kk

n1,...,ns
). Thus G is a spanning distance-

preserving subhypergraph of Kk
n1,...,ns

. This proves (ii).
Now suppose that G is not a spanning distance-preserving subhypergraph of any

complete s-partite k-uniform hypergraph with k ≤ s ≤ n. Then either d ≥ 3 or d = 2
and there is a pair of nonadjacent vertices such that they do not have the same neighbors.
By above argument, λ(G) ≤ 1−

√
33

2
. This proves (iii).

Note that the above result may be stated using the language of ordinary graphs,
see [17].

By Theorem 3.1, we have

Corollary 3.1. If G is a k-uniform hypergraph of order n, where 2 ≤ k ≤ n, then

λ(G) ∈
(

1−
√
33

2
, 0
)
if and only if G is a spanning distance-preserving subhypergraph of

some complete s-partite k-uniform hypergraph of order n with k ≤ s ≤ n.

Lemma 3.3. For integers n, k with 2 ≤ k ≤ n, we have
(i) λ(P3k−2,k) = −k −

√
k2 − k;

(ii) λ(Sn,k) = −k if n−1
k−1 ≥ 2.

Proof. For k = 2, the result in (i) follows from direct calculation, and the result in (ii)
follows from Lemma 3.2.

Suppose that k ≥ 3.
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First we prove (i). Let E(P3k−2,k) = {e1, e2, e3} with e1∩ e2 = {u} and e2∩ e3 = {v}.
Let λ = λ(P3k−2,k). Let x be an eigenvector of D(P3k−2,k) corresponding to λ. For
w ∈ e1 \ {u}, we have

λxw =
∑

z∈e1\{w}

xz + 2
∑

z∈e2\{u}

xz + 3
∑

z∈e3\{v}

xz.

Thus for w,w′ ∈ e1 \ {u} with w 6= w′, we have (λ + 1)(xw − xw′) = 0. By Lemma 3.1,
we have λ ≤ −3, and thus xw = xw′ . Therefore, the entry of x at each vertex of e1 \ {u}
is the same, which is denoted by a. Similarly, the entry of x at each vertex of e2 \ {u, v}
is the same, which is denoted by b, and the entry of x at each vertex of e3 \ {v} is the
same, which is denoted by c. Then

λa = (k − 2)a+ xu + 2(k − 2)b+ 2xv + 3(k − 1)c,

λxu = (k − 1)a+ (k − 2)b+ xv + 2(k − 1)c,

λb = 2(k − 1)a+ xu + (k − 3)b+ xv + 2(k − 1)c,

λxv = 2(k − 1)a+ xu + (k − 2)b+ (k − 1)c,

λc = 3(k − 1)a+ 2xu + 2(k − 2)b+ xv + (k − 2)c.

We view these equations as a homogeneous linear system in the five variables a, xu, b, xv,
and c. Thus λ is the least root of g1(t) = 0, where g1(t) = (t2 + 2kt + k)f1(t) and
f1(t) = t3 − t2(5k − 7)− t(4k2 − k − 4)− 3k2 + 3k.

Let t1 and t2 be the roots of

f ′1(t) = 3t2 − 2(5k − 7)t− 4k2 + k + 4 = 0,

where t1 ≤ t2. Then −k −
√
k2 − k < t1,2 = 5k−7±

√
37k2−73k+37
3

. Noting that f1(−k −√
k2 − k) = −2(k − 1)(5k2 − 4k + (5k − 2)

√
k2 − k) < 0, f1(t1) > 0 and f1(t2) < 0, the

least root of f1(t) = 0 is more than −k −
√
k2 − k. Thus λ = −k −

√
k2 − k.

Now we prove (ii). Let m = n−1
k−1 . We partition V (Sn,k) into {u} ∪ V1 ∪ · · · ∪ Vm such

that |V1| = · · · = |Vm| = k − 1, and E(Sn,k) = {{u} ∪ Vi : 1 ≤ i ≤ m}. Then with
respect to this partition, we have

D(Sn,k) =


0 1>k−1 1>k−1 · · · 1>k−1

1k−1 Jk−1 − Ik−1 2Jk−1 · · · 2Jk−1
1k−1 2Jk−1 Jk−1 − Ik−1 · · · 2Jk−1

...
...

...
. . .

...
1k−1 2Jk−1 2Jk−1 · · · Jk−1 − Ik−1

 .

Let bi = 2 + (i− 1)(k − 1) for 1 ≤ i ≤ m.
To calculate det(tIn −D(Sn,k)), first we subtract the bi-th row with 1 ≤ i ≤ m from

the (bi + 1)-th, . . . , (bi + k − 2)-th rows, respectively, to obtain

det(tIn −D(Sn,k)) = det


t −1>k−1 −1>k−1 · · · −1>k−1
B A C · · · C
B C A · · · C
...

...
...

. . .
...

B C C · · · A

 ,
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where

A =

(
t −1>k−2

−(1 + t) · 1k−2 (1 + t)Ik−2

)
, B =

(
−1

0(k−2)×1

)
and

C =

(
−2 −2 · 1>k−2

0(k−2)×1 0k−2

)
.

Next for 1 ≤ i ≤ m, we add the (bi + 1)-th, . . . , (bi + k − 2)-th columns to the bi-th
column, to obtain

det(tIn −D(Sn,k)) = det


t P P · · · P
B A∗ C∗ · · · C∗

B C∗ A∗ · · · C∗

...
...

...
. . .

...
B C∗ C∗ · · · A∗

 = (t+ 1)(k−2)m · det(M),

where P =
(
−k + 1 −1>k−2

)
,

A∗ =

(
t− k + 2 −1>k−2
0(k−2)×1 (1 + t)Ik−2

)
, C∗ =

(
−2(k − 1) −2 · 1>k−2
0(k−2)×1 0k−2

)
,

and

M =

 t −k + 1 −(k − 1) · 1>m−1
−1 t− k + 2 −2(k − 1) · 1>m−1
−1m−1 −2(k − 1) · 1m−1 −2(k − 1)Jm−1 + (k + t)Im−1

 .

To calculate det(M), by subtracting the 2nd row from the 3th, . . . , (m+ 1)-th rows
of M , respectively, we have

det(M) = det

 t −k + 1 −(k − 1) · 1>m−1
−1 t− k + 2 −2(k − 1) · 1>m−1

0(m−1)×1 (−k − t) · 1m−1 (k + t)Im−1

 ,

and then by adding each of last m−1 columns to the 2nd column for above determinant,
we have

det(M) = det

 t −m(k − 1) −(k − 1) · 1>m−1
−1 t− k + 2− 2(m− 1)(k − 1) −2(k − 1) · 1>m−1

0(m−1)×1 0(m−1)×1 (k + t)Im−1

 .

Therefore

det(tIn −D(Sn,k)) = (t+ 1)(k−2)m det(M)

= (t+ 1)(k−2)m · (t+ k)m−1

· det

(
t −m(k − 1)
−1 t− k + 2− 2(m− 1)(k − 1)

)
= (t+ 1)(k−2)m · (t+ k)m−1 · det

(
t −(n− 1)
−1 t− 2n+ k + 2

)
= (t+ 1)(k−2)m · (t+ k)m−1 · (t2 − (2n− k − 2)t− n+ 1).
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Then the distance eigenvalues of Sn,k are −1 (with multiplicity (k − 2)m), −k (with

multiplicity m − 1), and 2n+k−2±
√
4n2−4nk+k2+4k−4n

2
(> −1). Thus λ(Sn,k) = −k if m ≥

2.

For integers k, n, a with 2 ≤ k ≤ n and 1 ≤ a ≤
⌊

n−k
2k−2

⌋
, let Dn,k,a be the k-

uniform hypergraph obtained from vertex-disjoint hyperstars Sa(k−1)+1,k with center u
and Sn−k−a(k−1)+1,k with center v by adding k − 2 new vertices w1, . . . , wk−2 and a new
edge {u, v, w1, . . . , wk−2}.

For integers k, n, a1, . . . , ak with 2 ≤ k ≤ n, a1 ≥ · · · ≥ ak ≥ 0 and
∑k

i=1 ai+1 = n−1
k−1 ,

let Dk(n; a1, . . . , ak) be the k-uniform hypergraph obtained from Sk,k by attaching ai
pendant edges at vi with V (Sk,k) = {v1, . . . , vk}. Obviously, D4,2,1 = D2(4; 1, 1).

Lemma 3.4. For k ≥ 2, we have
(i) λ(P4k−3,k) < −2k;
(ii) λ(D4k−3,k,1) < −2k if k ≥ 3;

(iii) λ

Dk(k2; 1, . . . , 1︸ ︷︷ ︸
k

)

 = −k −
√
k2 − k.

Proof. For k = 2, the results in (i) and (iii) follow from direct calculation.
Suppose that k ≥ 3.
First we prove (i). Let G1 = P4k−3,k, and E(G1) = {e1, e2, e3, e4} with e1 ∩ e2 = {u},

e2 ∩ e3 = {v} and e3 ∩ e4 = {w}. Let λ = λ(G1). Let x be an eigenvector of D(G1)
corresponding to λ. As in the proof of Lemma 3.3 (i), the entry of x at each vertex of
e1 \ {u} is the same, which is denoted by x1, the entry of x at each vertex of e2 \ {u, v}
is the same, which is denoted by x2, the entry of x at each vertex of e3 \ {v, w} is the
same, which is denoted by x3, and the entry of x at each vertex of e4 \ {w} is the same,
which is denoted by x4. Then

λx1 = (k − 2)x1 + xu + 2(k − 2)x2 + 2xv + 3(k − 2)x3 + 3xw + 4(k − 1)x4,

λxu = (k − 1)x1 + (k − 2)x2 + xv + 2(k − 2)x3 + 2xw + 3(k − 1)x4,

λx2 = 2(k − 1)x1 + xu + (k − 3)x2 + xv + 2(k − 2)x3 + 2xw + 3(k − 1)x4,

λxv = 2(k − 1)x1 + xu + (k − 2)x2 + (k − 2)x3 + xw + 2(k − 1)x4,

λx3 = 3(k − 1)x1 + 2xu + 2(k − 2)x2 + xv + (k − 3)x3 + xw + 2(k − 1)x4,

λxw = 3(k − 1)x1 + 2xu + 2(k − 2)x2 + xv + (k − 2)x3 + (k − 1)x4,

λx4 = 4(k − 1)x1 + 3xu + 3(k − 2)x2 + 2xv + 2(k − 2)x3 + xw + (k − 2)x4.

We view these equations as a homogeneous linear system in the seven variables x1, xu,
x2, xv, x3, xw and x4. Thus λ is the least root of g2(t) = 0, where

g2(t) = (t3 + t2(4k − 1) + t(2k2 + k) + k2)

·(t4 − t3(8k − 11)− t2(10k2 − 3k − 10)− t(13k2 − 12k − 2)− 4k2 + 4k).

Note that g2(−2k) = 2k4(4k − 5)(20k2 − 25k + 6) > 0. Therefore the least root of
g2(t) = 0 is less than −2k, i.e., λ < −2k.

Now we prove (ii). Let G2 = D4k−3,k,1, and E(G2) = {e1, e2, e3, e4} with e1∩e2∩e4 =
{u} and e2∩ e3 = {v}. Let λ′ = λ(G2). Let x be an eigenvector of D(G2) corresponding
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to λ′. As in the proof of Lemma 3.3 (i), the entry of x at each vertex of e1 \ {u} is the
same, which is denoted by x1, the entry of x at each vertex of e2 \ {u, v} is the same,
which is denoted by x2, the entry of x at each vertex of e3 \ {v} is the same, which is
denoted by x3, and the entry of x at each vertex of e4 \{u} is the same, which is denoted
by x4. Then

λ′x1 = (k − 2)x1 + xu + 2(k − 2)x2 + 2xv + 3(k − 1)x3 + 2(k − 1)x4,

λ′x4 = 2(k − 1)x1 + xu + 2(k − 2)x2 + 2xv + 3(k − 1)x3 + (k − 2)x4,

and thus (λ′ + k)(x1 − x4) = 0. Since P3k−2,k is a distance-preserving k-uniform sub-
hypergraph of G2, we have by Lemma 2.1 and Lemma 3.3 (i) that λ′ ≤ λ(P3k−2,k) =
−k −

√
k2 − k. Thus x1 = x4.

For G2, we have

λ′x1 = (3k − 4)x1 + xu + 2(k − 2)x2 + 2xv + 3(k − 1)x3,

λ′xu = (2k − 2)x1 + (k − 2)x2 + xv + 2(k − 1)x3,

λ′x2 = (4k − 4)x1 + xu + (k − 3)x2 + xv + 2(k − 1)x3,

λ′xv = (4k − 4)x1 + xu + (k − 2)x2 + (k − 1)x3,

λ′x3 = (6k − 6)x1 + 2xu + 2(k − 2)x2 + xv + (k − 2)x3.

We view these equations as a homogeneous linear system in the five variables x1, xu, x2,
xv and x3. Thus λ′ is the least root of g3(t) = 0, where

g3(t) = t5 − t4(5k − 9)− t3(23k2 − 27k − 2)− t2(13k3 + 7k2 − 26k + 2)

−t(15k3 − 12k2 − 4k)− 4k3 + 4k2.

Note that g3(−2k) = 2k2(10k3−35k2+30k−6) > 0. Therefore the least root of g3(t) = 0
is less than −2k, i.e., λ′ < −2k.

Finally we prove (iii). Let G3 = Dk(k2; 1, . . . , 1︸ ︷︷ ︸
k

), and E(G3) = {e1, . . . , ek, e} with

e = {v1, . . . , vk} and ei ∩ e = {vi} for 1 ≤ i ≤ k. We partition V (G3) into (e1 \ {v1}) ∪
· · · ∪ (ek \ {vk}) ∪ e. Then with respect to this partition, we have

D(G3) =


Jk−1 − Ik−1 3Jk−1 · · · 3Jk−1 A1

3Jk−1 Jk−1 − Ik−1 · · · 3Jk−1 A2
...

...
. . .

...
...

3Jk−1 3Jk−1 · · · Jk−1 − Ik−1 Ak

A>1 A>2 · · · A>k Jk − Ik

 ,

where, for 1 ≤ i ≤ k, Ai is the matrix obtained from 2J(k−1)×k by subtracting 1 from
each entry of i-th column.

Let si = 1 + (i− 1)(k − 1) for 1 ≤ i ≤ k.
To calculate det(tIn −D(G3)), first we subtract the si-th row with 1 ≤ i ≤ k from

the (si + 1)-th, . . . , (si + k − 2)-th rows, respectively, to obtain

det(tIn −D(G3)) = det


B C · · · C A∗1
C B · · · C A∗2
...

...
. . .

...
...

C C · · · B A∗k
−A>1 −A>2 · · · −A>k (t+ 1)Ik − Jk

 ,
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where

B =

(
t −1>k−2

−(t+ 1) · 1k−2 (t+ 1)Ik−2

)
, C =

(
−3 · 1>k−1

0(k−2)×(k−1)

)
, A∗j =

(
Bj

0(k−2)×k

)
,

and Bj is the matrix obtained from−2×1>k by adding 1 from the j-th entry for 1 ≤ j ≤ k.
Next for 1 ≤ i ≤ k, we add the (si + 1)-th, . . . , (si + k − 2)-th columns to the si-th

column, to obtain

det(tIn −D(G3)) = det


B∗ C∗ · · · C∗ A∗1
C∗ B∗ · · · C∗ A∗2
...

...
. . .

...
...

C∗ C∗ · · · B∗ A∗k
P1 P2 · · · Pk (t+ 1)Ik − Jk

 = (t+ 1)k(k−2) · det(M),

where

B∗ =

(
t− k + 2 −1>k−2
0(k−2)×1 (t+ 1)Ik−2

)
, C∗ =

(
−3(k − 1) −3 · 1>k−2
0(k−2)×1 0k−2

)
,

M =

(
(t+ 2k − 1)Ik − (3k − 3)Jk Ik − 2Jk

(k − 1)Ik − (2k − 2)Jk (t+ 1)Ik − Jk

)
,

and Pj is the matrix obtained from −A>j by adding 2nd, . . . , (k − 1)-th columns to the
first column for 1 ≤ j ≤ k.

To calculate det(M), by subtracting the first row from the 2nd, . . . , k-th rows, re-
spectively, and subtracting the (k + 1)-th row from the (k + 2)-th, . . . , 2k-th rows,
respectively, to obtain

det(M) = det


t− k + 2 −(3k − 3) · 1>k−1 −1 −2 · 1>k−1

(−t− 2k + 1) · 1k−1 (t+ 2k − 1)Ik−1 −1k−1 Ik−1
−k + 1 −(2k − 2) · 1>k−1 t −1>k−1

−(k − 1) · 1k−1 (k − 1)Ik−1 −(t+ 1) · 1k−1 (t+ 1)Ik−1

 ,

and then by adding the 2nd, . . . , k-th rows from the first row, and adding the (k+2)-th,
. . . , (2k)-th rows to the (k + 1)-th row, we have

det(M) = det


t− 3k2 + 5k − 1 −(3k − 3) · 1>k−1 −2k + 1 −2 · 1>k−1

0(k−1)×1 (t+ 2k − 1)Ik−1 0(k−1)×1 Ik−1
−(k − 1)(2k − 1) −(2k − 2) · 1>k−1 t− k + 1 −1>k−1

0(k−1)×1 (k − 1)Ik−1 0(k−1)×1 (t+ 1)Ik−1

 .

Now we add −k+1
t+1

times of the (k + i)-th column with 2 ≤ i ≤ k to the i-th column, to
obtain

det(M) = (t+ 1)k−1
(
t+ 2k − 1 +

−k + 1

t+ 1

)k−1(
t− 3k2 + 5k − 1 −2k + 1
−(k − 1)(2k − 1) t− k + 1

)
= (t2 + 2kt+ k)k−1 · (t2 − (3k2 − 4k)t− k3 + k).
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Thus

det(tIn −D(G3)) = (t+ 1)k(k−2) · (t2 + 2kt+ k)k−1 · (t2 − (3k2 − 4k)t− k3 + k).

Then distance eigenvalues of G3 are −1 (with multiplicity k(k−2)), −k±
√
k2 − k (with

multiplicity k − 1), and 3k2−4k±
√
9k4−20k3+16k2−4k

2

(
> −k −

√
k2 − k

)
. Thus λ(G3) =

−k −
√
k2 − k.

Theorem 3.2. Let G be a k-uniform hypertree of order n with 2 ≤ k ≤ n. Then
λ(G) ∈ [−2k, 0) if and only if G ∼= Sn,2, D4,2,1, or D5,2,1 when k = 2, and G ∼= Sn,k or
Dk(n; 1, . . . , 1︸ ︷︷ ︸

n−1
k−1
−1

, 0, . . . , 0) when k ≥ 3.

Proof. By Lemma 3.3 (ii), λ(Sn,k) = −k > −2k. By direct calculation, λ(D4,2,1) =
−2−

√
2 > −4 and λ(D5,2,1) ≈ −3.867 > −4. For k ≥ 3, note that P3k−2,k is a distance-

preserving k-uniform subhypergraph ofDk(n; 1, . . . , 1︸ ︷︷ ︸
n−1
k−1
−1

, 0, . . . , 0), andDk(n; 1, . . . , 1︸ ︷︷ ︸
n−1
k−1
−1

, 0, . . . , 0)

is a distance-preserving k-uniform subhypergraph of Dk(n; 1, . . . , 1︸ ︷︷ ︸
k

). By Lemma 3.3 (i),

Lemma 3.4 (iii) and Lemma 2.1, we have

−k −
√
k2 − 2 = λ(P3k−2,k)

≥ λ

Dk(n; 1, . . . , 1︸ ︷︷ ︸
n−1
k−1
−1

, 0, . . . , 0)


≥ λ

Dk(n; 1, . . . , 1︸ ︷︷ ︸
k

)


= −k −

√
k2 − 2.

Thus λ

Dk(n; 1, . . . , 1︸ ︷︷ ︸
n−1
k−1
−1

, 0, . . . , 0)

 = −k −
√
k2 − 2 > −2k.

Suppose that λ(G) ≥ −2k. If the diameter of G is at least four, then since P4k−3,k
is a distance-preserving k-uniform subhypergraph of G, we have by Lemma 2.1 and
Lemma 3.4 (i) that λ(G) ≤ λ(P3k−2,k) < −2k, a contradiction. Thus the diameter of G
is at most three.

If the diameter is at most two, then it is obvious that G ∼= Sn,k.
Suppose that the diameter of G is three. Suppose that k = 2. Then G ∼= Dn,2,a for

some 1 ≤ a ≤
⌊
n−2
2

⌋
. By direct calculation, λ(D6,2,1) ≈ −4.1409 < −4 and λ(D6,2,2) ≈

−4.5616 < −4. By Lemma 2.1, G can contain neither D6,2,1 nor D6,2,2 as a subgraph.
Thus G ∼= D4,2,1, or D5,2,1. Now suppose that k ≥ 3. Then G ∼= Dk(n; a1, . . . , ak) ,

where a1 ≥ · · · ≥ ak ≥ 0, a2 ≥ 1 and
∑k

i=1 ai + 1 = n−1
k−1 . Suppose that a1 ≥ 2. Then

D4k−3,k,1 is a distance-preserving k-uniform subhypergraph of G. By Lemma 2.1 and
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Lemma 3.4 (ii), we have λ(G) ≤ λ(D4k−3,k,1) < −2k, a contradiction. Thus a1 = 1,
implying that G ∼= Dk(n; 1, . . . , 1︸ ︷︷ ︸

n−1
k−1
−1

, 0, . . . , 0).

By the proof of Theorem 3.2, and Lemmas 2.1, 3.3 and 3.4, we have

Corollary 3.2. (i) For k ≥ 2, there dose not exist a k-uniform hypertree G with λ(G) ∈[
−2k,−k −

√
k2 − k

)
∪
(
−k −

√
k2 − k,−k

)
∪ (−k,−1)∪ (−1, 0) except D5,2,1 when k =

2;
(ii) If G is a k-uniform hypertree of order n with 2 ≤ k ≤ n− 1, then λ(G) = −k if

and only if G ∼= Sn,k;
(iii) If G is a k-uniform hypertree of order n with 2 ≤ k ≤ n − 1, then λ(G) =

−k −
√
k2 − k if and only if G ∼= Dk(n; 1, . . . , 1︸ ︷︷ ︸

n−1
k−1

, 0, . . . , 0) with n−1
k−1 ≥ 2.

Lemma 3.5. For k ≥ 2, λ(C3k−3,k) = −k−
√
k2−4

2
.

Proof. The case k = 2 is trivial. Suppose that k ≥ 3. Let E(C3k−3,k) = {e1, e2, e3} with
e1 ∩ e2 = {u}, e2 ∩ e3 = {v}, and e1 ∩ e3 = {w}. Let x be an eigenvector of D(C3k−3,k)
corresponding to λ(C3k−3,k). As in the proof of Lemma 3.3 (i), the entry of x at each
vertex of e1 \{u,w} is the same, which is denoted by x1, the entry of x at each vertex of
e2 \{u, v} is the same, which is denoted by x2, the entry of x at each vertex of e3 \{v, w}
is the same, which is denoted by x3. Then

λxu = xv + xw + (k − 2)x1 + (k − 2)x2 + 2(k − 2)x3,

λxv = xu + xw + 2(k − 2)x1 + (k − 2)x2 + (k − 2)x3,

λxw = xu + xv + (k − 2)x1 + 2(k − 2)x2 + (k − 2)x3,

λx1 = xu + 2xv + xw + (k − 3)x1 + 2(k − 2)x2 + 2(k − 2)x3,

λx2 = xu + xv + 2xw + 2(k − 2)x1 + (k − 3)x2 + 2(k − 2)x3,

λx3 = 2xu + xv + xw + 2(k − 2)x1 + 2(k − 2)x2 + (k − 3)x3.

We view these equations as a homogeneous linear system in the six variables xu, xv, xw,
x1, x2 and x3. Thus λ(C3k−3,k) is the least root of g(t) = 0, where

g(t) = (t2 − (5k − 9)t− 6k + 10)(t2 + kt+ 1)2.

Note that the roots of g(t) = 0 are 5k−9±
√
25k2−66k+41
2

and −k±
√
k2−4

2
(with multiplicity

2). It follows that λ(C3k−3,k) = −k−
√
k2−4

2
.

For k ≥ 3 and a = n
k−1−2, let E(C2k−2,k) = {e1, e2} with e1∩e2 = {u, v}, and let Fn,k,a

be the hypergraph obtained from C2k−2,k by adding ak−a new vertices u1, . . . , uak−a and
a new edges {u, ui(k−1)+1, . . . , ui(k−1)+k−1}, where i = 0, . . . , a − 1. Obviously, if a = 0,
then Fn,k,a

∼= C2k−2,k.

Lemma 3.6. For integers n, k, a with 3 ≤ k ≤ n and a = n
k−1 − 2 ≥ 0, we have

(i) λ(Fn,k,0) = −k + 1;

(ii) λ(Fn,k,a) ∈
(
−k + 1−

√
(k − 1)(k − 2),−k

)
if a ≥ 1.
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Proof. Let E(Fn,k,a) = {e1, . . . , ea+2} with e1 ∩ e2 = {u, v}. We partition V (Fn,k,a) into
{u} ∪ {v} ∪ (e1 \ {u, v}) ∪ (e2 \ {u, v}) ∪ (e3 \ {u}) ∪ · · · ∪ (ea+2 \ {u}). With respect to
this partition, we have

D(Fn,k,a) =



0 1 1>k−2 1>k−2 1>k−1 · · · 1>k−1
1 0 1>k−2 1>k−2 2 · 1>(k−1) · · · 2 · 1>k−1

1k−2 1k−2 Jk−2 − Ik−2 2Jk−2 2J(k−2)×(k−1) · · · 2J(k−2)×(k−1)
1k−2 1k−2 2Jk−2 Jk−2 − Ik−2 2J(k−2)×(k−1) · · · 2J(k−2)×(k−1)
1k−1 2 · 1k−1 2J(k−1)×(k−2) 2J(k−1)×(k−2) Jk−1 − Ik−1 · · · 2Jk−1

...
...

...
...

...
. . .

...
1k−1 2 · 1k−1 2J(k−1)×(k−2) 2J(k−1)×(k−2) 2Jk−1 · · · Jk−1 − Ik−1


.

If a = 0, then as in the proof of Lemma 3.3 (ii), we have

det(tIn −D(Fn,k,a)) = (t+ 1)2(k−3)+1 · det

 t− 1 −(k − 2) −(k − 2)
−2 t− k + 3 −2(k − 2)
−2 −2(k − 2) t− k + 3


= (t+ 1)2(k−3)+1 · (t+ k − 1) · (t2 − (3k − 6)t− k + 1),

and thus the distance eigenvalues of Fn,k,a are −1 (with multiplicity 2(k−3)+1), −k+1

and 3k−6±
√
9k2−32k+32
2

(> −k + 1). Thus λ(Fn,k,a) = −k + 1. This is (i).
Suppose that a ≥ 1. As in the proof of Lemma 3.3, we have

det(tIn −D(Fn,k,a)) = (t+ 1)2(k−3)+a(k−2) · (t+ k − 1) · (t+ k)a−1

· det


t −1 −2(k − 2) −(k − 1)a
−1 t −2(k − 2) −2(k − 1)a
−1 −1 t− 3k + 7 −2(k − 1)a
−1 −2 −4(k − 2) t− 2(k − 1)(a− 1)− k + 2


= (t+ 1)2(k−3)+a(k−2) · (t+ k − 1) · (t+ k)a−1h(t),

where

h(t) = t4 + t3(−2ak − 2k + 2a+ 7) + t2(−3k2 − 2ak2 − ak + 3k + 7 + 3a)

+t(−4k2 − ak2 − 4ak + 6k + 5a+ 1)− k2 + k − 2ak + 2a.

Thus the distance eigenvalues of Fn,k,a are −1 (with multiplicity 2(k − 3) + a(k − 2)),
−k+1, −k (with multiplicity a−1 for a ≥ 2), and the roots of h(t) = 0. Let λ = λ(Fn,k,a).
Since h(−k) = −a(k − 1)(k − 2)(2k − 1) < 0, we have λ < −k, and thus λ is the least
root of h(t) = 0. Note also that ρ(D(Fn,k,a) is the largest root of h(t) = 0. Let
t1 ≤ t2 ≤ t3 ≤ t4 be the roots of h(t) = 0, where t1 = λ and t4 = ρ(Fn,k,a). Then
t1 + t2 + t3 + t4 = 2ak + 2k − 2a− 7.

Note that t4 ≤ 2ak + 3k − 2a− 5 (which is the maximum row sum of D(Fn,k,a)).

Let λ∗ = −k + 1−
√

(k − 1)(k − 2). Then

h(λ∗) = λ∗p(k)− 5k3 + 11ak2 − 2ak3 + 28k2 − 49k − 18ak + 26 + 9a,
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where p(k) = −10k3 + 23ak2− 4ak3 + 58k2− 107k− 40ak+ 62 + 21a. Note that p(k) is
decreasing for k ≥ 3. We have p(k) ≤ p(3) = −7 < 0. If k = 3, then h(λ∗) = 10+7

√
2 >

0. If k ≥ 4, then λ∗p(k) > (−k)p(k), and thus

h(λ∗) > (−k) · p(k)− 5k3 + 11ak2 − 2ak3 + 28k2 − 49k − 18ak + 26 + 9a

= (10k2 + 4ak2 − 25ak − 63k + 38a+ 98)k2

+(37k + 13ak − 111− 39a)k + 26 + 9a

> 0.

It follows that h(λ∗) > 0 for k ≥ 3. Thus either λ∗ < t1 or t2 < λ∗ < t3. Suppose that
t2 < λ∗ < t3. Since λ∗ < −k and h(−k) < 0, we have t1 ≤ t2 < λ∗ < t3 < −k < t4.
Thus

t4 = 2ak + 2k − 2a− 7− t1 − t2 − t3
> 2ak + 2k − 2a− 7− 2λ∗ − (−k)

= 2ak + 5k − 2a+ 2
√

(k − 1)(k − 2)− 9

> 2ak + 3k − 2a− 5,

a contradiction. Thus λ∗ < t1 = λ. Therefore λ ∈
(
−k + 1−

√
(k − 1)(k − 2),−k

)
.

This proves (ii).

If G is an ordinary unicyclic graph of order n ≥ 3, then by Theorem 3.1, λ(G) ≤ −1
with equality if and only if G ∼= C3,2, see [11]. By Corollary 3.1, there is no k-uniform
hypergraph G with λ(G) ∈ (−1, 0) for k ≥ 2.

Theorem 3.3. Let G be a k-uniform unicyclic hypergraph of order n, where 3 ≤ k ≤ n.

Then λ(G) ∈
(
−k + 1−

√
(k − 1)(k − 2) , 0

)
if and only if G ∼= C3k−3,k, or Fn,k,a with

a = n
k−1 − 2 ≥ 0.

Proof. Suppose that λ(G) > −k+1−
√

(k − 1)(k − 2). By Lemma 3.3 (i), λ(P3k−5,k−1) =

−k + 1 −
√

(k − 1)(k − 2). Suppose that the diameter of G is at least three. Then
D(P3k−5,k−1) is a principal matrix of D(G). By Lemma 2.1, λ(G) ≤ λ(D(P3k−5,k−1)), a
contradiction. Thus the diameter of G is two, which implies that the cycle length of G
is at most three.

If the length of the cycle in G is three, then since the diameter of G is two, there is
no vertex lying outside the unique cycle, and thus G ∼= C3k−3,k. Suppose that the cycle
length of G is two. If there is no vertex lying outside the unique cycle, then G ∼= Fn,k,a

with a = n
k−1 − 2 = 0. Otherwise, since the diameter of G is two, all those vertices lying

outside the unique cycle are adjacent to a common vertex of degree two of the unique
cycle, and thus G ∼= Fn,k,a with a = n

k−1 − 2 ≥ 1.
If G ∼= C3k−3,k or Fn,k,a with a = n

k−1 − 2 ≥ 0, then by Lemmas 3.5 and 3.6, we have

λ(G) > −k + 1−
√

(k − 1)(k − 2).

By the proof of Theorem 3.3 and Lemmas 3.5 and 3.6, we have

Corollary 3.3. For k ≥ 3, there does not exist a k-uniform unicyclic hypergraph G with

λ(G) ∈
(
−k + 1−

√
(k − 1)(k − 2),−k

)
∪
(
−k, −k−

√
k2−4

2

)
∪
(
−k−

√
k2−4

2
, 0
)
.
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4 Distance spread

The following lemma is an immediate consequence of Perron-Frobenius Theorem.

Lemma 4.1. Let G be a connected k-uniform hypergraph with u, v ∈ V (G), and u is
not adjacent with v. Let e ⊆ V (G) with u, v ∈ e and |e| = k. Then ρ(G) > ρ(G+ e).

Lemma 4.2. Let G be a connected k-uniform hypergraph of order n, where 2 ≤ k ≤ n.
Then ρ(G) ≥ n − 1 with equality if and only if G is a spanning distance-preserving
subhypergraph of Kk

n.

Proof. Let G be a k-uniform hypergraph with minimum distance spectral radius among
connected hypergraphs of order n. Suppose that the diameter of G is at least 2. Then
there are u, v ∈ V (G) such that u is not adjacent to v. Let e be a k-subset of V (G)
containing u and v. Obviously, e 6∈ E(G). By Lemma 4.1, we have ρ(G) > ρ(G + e), a
contradiction. Thus the diameter of G is one. Therefore, D(G) = Jn− In, implying that
G is a spanning distance-preserving subhypergraph of Kk

n with distance spectral radius
n− 1 (the greatest eigenvalue of Jn − In).

Theorem 4.1. Let G be a connected k-uniform hypergraph on n vertices, where 2 ≤
k ≤ n. Then s(G) ≥ n with equality if and only if G is a spanning distance-preserving
subhypergraph of Kk

n.

Proof. By Lemma 4.2 and Theorem 3.1 (i), it is easily seen that s(G) ≥ n− 1.
Suppose that G is not a spanning distance-preserving subhypergraph of Kk

n. By
Lemma 4.2, ρ(G) > n−1. By Theorem 3.1 (i), λ(G) < −1. Thus s(G) = ρ(G)−λ(G) >
n = ρ(H)−λ(H) = s(H) for a spanning distance-preserving subhypergraphH ofKk

n.

Recall that we prove the following result in [12].

Lemma 4.3. Let T be a k-uniform hypertree on n vertices, where 2 ≤ k ≤ n. Then
ρ(T ) ≥ ρ(Sn,k) with equality if and only if T ∼= Sn,k.

Theorem 4.2. Let T be a k-uniform hypertree on n vertices, where 2 ≤ k ≤ n. Then
s(T ) ≥ s(Sn,k) with equality if and only if T ∼= Sn,k.

Proof. Suppose that T 6∼= Sn,k. Then n−1
k−1 ≥ 2. By Lemma 4.2, ρ(T ) > ρ(Sn,k). By

Lemma 2.1 and Lemma 3.3, λ(T ) ≤ λ(P3k−2,k) = −k −
√
k2 − k < −k = λ(Sn,k). Thus

s(T ) = ρ(T )− λ(T ) > ρ(Sn,k)− λ(Sn,k).
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