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Abstract. In this short paper we find that the Sobolev inequality

1

p− 2

[(∫
fpdµ

) 2
p

−
∫

f2dµ

]
≤ C

∫
|∇f |2dµ

(p ≥ 0) is equivalent to the exponential convergence of the Markov diffusion semigroup
(Pt) to the invariant measure µ, in some Φ-entropy. We provide the estimate of the
exponential convergence in total variation and a bounded perturbation result under the
Sobolev inequality. Finally in the one-dimensional case we get some two-sided estimates
of the Sobolev constant by means of the generalized Hardy inequality.
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1. Introduction

1.1. Centered Sobolev inequality. Let µ be a probability measure on some Polish
space E equipped with the Borel σ-field B. The main object of this paper is the following
centered version of Sobolev inequality

1

p− 2

[(∫
E

f pdµ

) 2
p

−
∫
E

f 2dµ

]
≤ CS(p)E [f ], 0 ≤ f ∈ D(E), (1.1)

where p ∈ [0,+∞), E is a conservative Dirichlet form on L2(E, µ) with domain D(E) and
CS(p) is the best constant. This inequality will be denoted by (Sp).

When p = 1, (1.1) becomes the usual Poincaré inequality

Varµ(f) := µ(f 2)− [µ(f)]2 ≤ CS(1)E [f ], f ∈ D(E), (1.2)

where µ(f) :=
∫
E
fdµ. Thus CS(1) is exactly the best Poincaré constant CP .

When p = 2, the left-hand side (LHS in short) of (1.1), understood as the limit when
p → 2, equals to 1

2
H(f 2), where

H(f) = µ(f log f)− µ(f) log µ(f)

is the entropy of f . So the Sobolev-type inequality (1.1) becomes

H(f 2) ≤ 2CS(2)E [f ], 0 ≤ f ∈ D(E) (1.3)

the usual log-Sobolev inequality (see [2]). Thus CS(2) coincides with the best log-Sobolev
constant CLS.

1



2 LINGYAN CHENG AND LIMING WU

When p > 2, (Sp) is a centered version of the classic defective Sobolev inequality:(∫
E

f pdµ

) 2
p

≤ AE [f ] +B

∫
E

f 2dµ, 0 ≤ f ∈ D(E). (1.4)

For example, when µ is the Lebesgue measure on E = Rn and E(f) =
∫
E
|∇f |2dµ, the

above Sobolev inequality holds with B = 0, for p = 2n
n−2

(n > 2, see Aubin [1]). Notice
that the defective Sobolev inequality with B = 0 fails for probability measure µ.

The centered Sobolev inequality (Sp) was studied by Aubin [1] and Beckner [6] for the
normalized volume measure on the unit sphere Sn in Rn+1. They obtained the exact
result: CS(p) = CP = 1

n
if 2 < p ≤ 2n

n−2
(for n ≥ 3). Bakry and Ledoux [4], using the

diffusion semigroup method, proved the following sharp and general result of (see also
Ledoux [9, Theorem 3.1]):

Theorem 1.1. ([4]) Let L be a Markov diffusion generator satisfying the Bakry-Emery’s
curvature-dimension condition CD(R, n) for some R > 0 and n > 2. Then for every
1 ≤ p ≤ 2n

n−2
, (1.1) holds with CS(p) ≤ n−1

nR
.

This deep theorem of Bakry-Ledoux generalizes the famous Lichrowicz bound about
CS(1) = CP .

When p = 0, the LHS of (1.1), understood as the limit when p → 0+, equals to
1
2
[µ(f 2)− eµ(log f

2)]. Setting f 2 = eg, we see that (S0) becomes

µ(eg)− eµ(g) ≤ 2CS(0)E [eg/2], g ∈ D(E) ∩ L∞(µ). (1.5)

Relationship between the Sobolev inequalities for different p is summarized in

Theorem 1.2. (a) For any p ∈ R+ = [0,+∞), CS(p) ≥ CS(1) = CP .
(b) pCS(p) is nondecreasing in p ∈ R+.
(c) For any p ∈ (0, 2), the Sobolev inequality (Sp) is equivalent to the Poincaré inequality,

more precisely

CS(1) ≤ CS(p) ≤
CS(1)

p
, p ∈ (0, 1);

CS(1) ≤ CS(p) ≤
CS(1)

2− p
, p ∈ (1, 2).

This result is essentially contained in Bakry and Ledoux [4].
In other words this family of Sobolev inequalities for different p has four interesting

cases: (1) p = 0 ; (2) p = 1 ; (3) p = 2 and (4) p > 2.

1.2. Semigroup. Let (Pt) be a Markov semigroup such that µPt = µ for all t ≥ 0 (i.e.
µ is an invariant measure), strongly continuous on L2(µ). Let L be the generator of (Pt),
whose domain in Lp(µ) := Lp(E,B, µ) is denoted by Dp(L) (1 ≤ p < ∞). We always
assume that

(A1) D2(L) is contained in D(E) and dense in D(E) w.r.t. the norm
√
µ(f 2) + E [f ]

(i.e. D2(L) is a form core of E), and∫
f(−Lf)dµ = E [f ], f ∈ D2(L).
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In other words E is the symmetrized Dirichlet form of L. This assumption holds auto-
matically if L is self-adjoint (i.e. (Pt) is symmetric on L2(µ)).

It is well known that the Poincaré inequality (S1) is equivalent to the exponential
convergence of Pt to µ in L2(µ):

Varµ[Ptf ] ≤ e−2t/CS(1)Varµ[f ], t > 0, f ∈ L2(µ).

And if (Pt) is a diffusion semigroup, the log-Sobolev inequality (S2) is equivalent to the
exponential convergence of Pt to µ in the relative entropy

H(Ptf) ≤ e−2t/CS(2)H(f), t > 0, 0 ≤ f ∈ L1(µ).

See Bakry [2]. Notice that the later equivalence is false in the jump case (see Wu [10]).
But unlike Poincaré and log-Sobolev, the role of the Sobolev inequality (1.1) for p

different from 1, 2 in the exponential convergence of Pt is unknown. Our first purpose of
this paper is to fill this gap.

This paper is organized as follows. In the next section we establish the equivalence
between the Sobolev inequality and the exponential convergence of Pt to µ, in some
Φ-entropy sense. Several corollaries and applications are derived for illustrating the use-
fulness of our result, especially for the rate of the exponential convergence of Pt to µ in
total variation.

In §3 we recall the relationship between the defective Sobolev inequality and centered
Sobolev inequality when p > 2 and present a bounded perturbation result.

In §4 we present some two-sided estimates of the optimal constant CS(p) of Sobolev
inequality when p > 2 on the real line, by the method in Barthe and Roberto [5].

2. Equivalence between Sobolev inequality and exponential convergence

2.1. Framework. Besides (A1), we assume
(A2) (Existence of the carré-du-champs operator) there is an algebra A con-

tained in D2(L) and dense in D(E) w.r.t. the norm ∥f∥2,1 :=
√

µ(f 2) + E [f ]. So the
carré-du-champs operator

Γ(f, g) :=
1

2
[L(fg)− fLg − gLf ], ∀f, g ∈ A

is well defined. Γ(f, g) can be extended as a continuous mapping from D(E) × D(E) →
L1(µ).

(A3) (Pt) is a diffusion semigroup, i.e. (Pt) is the transition probability semigroup of
a continuous Markov process (Xt) valued in E defined on (Ω,Ft,Pµ).

Under those assumptions, for every f ∈ D2(L),

Mt(f) := f(Xt)− f(X0)−
∫ t

0

Lf(Xs)ds

is a L2(Pµ)-martingale, and

⟨M(f),M(g)⟩t = 2

∫ t

0

Γ(f, g)(Xs)ds

(this holds at first for f, g ∈ A, then for f ∈ D2(L) by continuous extension). Consequent-
ly if f1, · · · , fn ∈ D∞(L) = {f ∈ D2(L); f, Lf ∈ L∞(µ)} and F : Rn → R is infinitely
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differentiable, then by Ito’s formula, we have F (f1, · · · , fn) ∈ D2(L) and

LF (f1, · · · , fn) =
n∑

i=1

∂iF (f1, · · · , fn)Lfi +
n∑

i,j=1

∂i∂jF (f1, · · · , fn)Γ(fi, fj). (2.1)

We write Γ[f ] = Γ(f, f). For any C∞-function Φ on R, integrating (2.1) we have∫
Φ′(f)(−Lf)dµ =

∫
Φ′′(f)Γ[f ]dµ, f ∈ D∞(L). (2.2)

Next (2.1) implies that Γ is a derivation,

Γ(Φ(f), g) = Φ′(f)Γ(f, g), f ∈ D∞(L), g ∈ D2(L). (2.3)

2.2. Exponential convergence in the Φ-entropy.

Definition 2.1. Given a lower bounded convex function Φ : R → (−∞,+∞], the Φ-
entropy of a function f ∈ L1(µ) is defined as

Hµ
Φ(f) = µ(Φ(f))− Φ(µ(f)).

The main result of this section is

Theorem 2.2. For the diffusion Markov semigroup (Pt) with invariant probability mea-
sure µ satisfying (A1), (A2) and (A3), the Sobolev inequality (1.1) is equivalent to the
exponential convergence in the Φ-entropy

Hµ
Φ(Ptf) ≤ e

− 2t
CS(p)Hµ

Φ(f), f ∈ L1(µ), (2.4)

where

Φ(x) =


−|x|

2
p , if p ∈ (2,+∞);

|x| log |x|, if p = 2;

|x|
2
p , if p ∈ (0, 2);

ex, if p = 0.

(2.5)

We begin with a known result (see Chafai [7]).

Lemma 2.3. Let Φ be a lower bounded C2-convex function and D be a class of functions
in D∞(L), stable for (Pt) (i.e. if f ∈ D, Ptf ∈ D). The exponential convergence in the
Φ-entropy

Hµ
Φ(Ptf) ≤ e−

2t
C(Φ)Hµ

Φ(f), f ∈ D
for some positive constant C(Φ) is equivalent to

Hµ
Φ(f) ≤

C(Φ)

2

∫
Φ′′(f)Γ[f ]dµ, f ∈ D. (2.6)

Proof. Since for f ∈ D,

d

dt
Hµ

Φ(Ptf) =

∫
Φ′(Ptf)LPtfdµ = −

∫
Φ′′(Ptf)Γ[Ptf ]dµ

by (2.2), the equivalence above follows from Gronwall’s lemma. �
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Proof of Theorem 2.2. For the exponential convergence in the Φ-entropy we may re-
strict to f ∈ D = {f ∈ D∞(L); ∃ε > 0, f ≥ ε}. In that case as Φ is C2 on (0,+∞), we
can apply Lemma 2.3.

At first this equivalence is well known for p = 1, 2 as recalled in the Introduction. We
begin with the case p > 2.

By Lemma 2.3, the exponential convergence (2.4) is equivalent to

[µ(f)]
2
p − µ(f

2
p ) ≤ CS(p)

p− 2

p2

∫
E

f
2−2p

p Γ[f ]dµ, f ∈ D. (2.7)

Setting h = f 1/p, (2.7) is equivalent to

[µ(hp)]
2
p − µ(h2) ≤ CS(p)(p− 2)

∫
E

Γ[h]dµ, ε1/p ≤ h ∈ D∞(L),

which is exactly the Sobolev inequality (1.1).
For p ∈ (0, 2), by Lemma 2.3, the exponential convergence (2.4) is equivalent to

µ(f
2
p )− [µ(f)]

2
p ≤ CS(p)

2− p

p2

∫
E

f
2−2p

p Γ[f ]dµ, f ∈ D. (2.8)

Setting h = f 1/p, (2.8) is equivalent to

µ(h2)− [µ(hp)]
2
p ≤ CS(p)(2− p)

∫
E

Γ[h]dµ, ε1/p ≤ h ∈ D∞(L),

which is exactly the Sobolev inequality (1.1).
Finally for p = 0, by Lemma 2.3, the exponential convergence (2.4) is equivalent to

µ(ef )− eµ(f) ≤ CS(0)

2

∫
E

efΓ[f ]dµ, f ∈ D,

which is exactly the Sobolev inequality (1.5) for p = 0. �

2.3. Exponential convergence in Hellinger metric. Now we present an application
to the exponential convergence in the Hellinger metric dH. Recall that for two probability
measures ν = gdα, µ = fdα where α is some reference measure,

d2H(ν, µ) :=

∫
(
√
g −

√
f)2dα.

In fact dH is independent of the choice of α.

Corollary 2.4. Assume that the adjoint operator L∗ of L satisfies also (A1), (A2) and
(A3). The Sobolev inequality (1.1) for p = 4 is equivalent to

dH(P
∗
t fµ, µ) ≤ e−t/CS(4)dH(fµ, µ), t > 0

for any µ-probability density function f .

Recall that the distribution of Xt is P
∗
t fµ if the initial distribution of X0 is fµ.

Proof. We have for any µ-probability density function f ,

d2H(fµ, µ) =

∫ (√
f − 1

)2
dµ = 2

(
1− µ(

√
f)
)
,
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and for the exponential convergence in (2.4) (with p = 4), one may restrict to the functions
f ≥ 0 such that µ(f) = 1 by homogeneity. So this corollary follows directly by Theorem
2.2. �
Remark 2.5. Let ∥ν − µ∥TV := sup|f |≤1 |ν(f)− µ(f)| (the total variation). It is known
that (see Gibbs and Su [8])

d2H(ν, µ) ≤ ∥ν − µ∥TV and ∥ν − µ∥TV ≤ 2dH(ν, µ).

So under the Sobolev inequality (1.1) with p = 4, we have

∥P ∗
t fµ− µ∥TV ≤ 2e−t/CS(4)dH(fµ, µ) ≤ 2

√
2e−t/CS(4),

which is an explicit estimate of the exponential convergence in total variation.

2.4. Exponential convergence in total variation. We now generalize the result above
to general p > 2 different from 4.

Corollary 2.6. Assume that L∗ satisfies (A1), (A2), (A3). If the Sobolev inequality
holds for some p > 2, then for any µ-probability density f ,

∥P ∗
t fµ− µ∥TV ≤ 2p

√
1

p− 2
e−t/CS(p)

(
1− µ

(
f

2
p

))1/2
≤ 2p

√
1

p− 2
e−t/CS(p).

Proof. It follows from Theorem 2.2 and the lemma below. �
Lemma 2.7. Let a ∈ (0, 1). Then for any f ≥ 0 such that µ(f) = 1, we have

1− µ(fa) ≤ 1

2

∫
E

|f − 1|dµ (2.9)

and

1− µ(fa) ≥ a(1− a)

8

(∫
E

|f − 1|dµ
)2

. (2.10)

Proof. We have

1− µ(fa) =

∫
E

(1− fa)dµ ≤
∫
{f<1}

(1− fa)dµ

≤
∫
{f<1}

(1− f)dµ =
1

2

∫
E

|f − 1|dµ,

that is (2.9).
For (2.10) we may assume that µ(f = 1) < 1. Letting A = {f < 1},

f̄ =
µ(f1A)

µ(A)
1A +

µ(f1Ac)

µ(Ac)
1Ac

(which is the conditional expectation of f knowing σ(A)), by Jensen’s inequality we have

1− µ(fa) ≥ 1− µ(f̄a),

∫
E

|f − 1|dµ = 2

∫
{f<1}

(1− f)dµ =

∫
E

|f̄ − 1|dµ.

So it is enough to prove (2.10) for f = f̄ , a two-valued function. Let x < y be the two
values of f (so 0 ≤ x < 1 < y), and

α := µ(f = x) = 1− µ(f = y) =: 1− β.
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Since µ(f) = αx+ βy = 1, y = 1−αx
β

, consider

h(x) = 1− µ(fa) = 1− [αxa + βya],

we have h(1) = h′(1) = 0 and
∫
|f − 1|dµ = 2α(1 − x). Hence for (2.10), by Taylor’s

formula we have only to show that

min
x∈(0,1)

h′′(x) ≥ a(1− a)α2. (2.11)

Notice that

h′′(x) = −a(a− 1)α[xa−2 +
α

β
ya−2],

h′′′(x) = −a(a− 1)(a− 2)α[xa−3 − (
α

β
)2ya−3]

and h(4)(x) > 0 for all x ∈ (0, 1). We now divide our discussion into two cases.
Case 1. α ≤ 1/2. In this case, h′′′(1) ≤ 0, then h′′′(x) < 0 for all x ∈ (0, 1),

consequently

h′′(x) ≥ h′′(1) = a(1− a)α2 1

αβ
≥ 4a(1− a)α2,

which implies (2.11).
Case 2. α > 1/2. Since limx→0+h

′′′(x) = −∞ and h′′′(1) > 0, there is a unique x0 ∈ (0, 1)

such that h′′′(x0) = 0, i.e. xa−3
0 = (α/β)2ya−3

0 (y0 = 1−αx0

β
) or x0 = 1

α
(α/β)(a−1)/(a−3)

1+(α/β)(a−1)/(a−3) .

Consequently

min
x∈(0,1]

h′′(x) = h′′(x0) = a(1− a)α2

(
1

α
+

1

β

(
β

α

) 2(a−2)
a−3

)
xa−2
0 ≥ a(1− a)α2

for xa−2
0 > 1. The last bound is optimal because it becomes equality if α → 1. That

completes the proof of (2.11). �

3. Defective Sobolev inequality implies centered Sobolev inequality and
a bounded perturbation result

3.1. Defective Sobolev inequality implies Sobolev inequality.

Theorem 3.1. ([3]) If the defective Sobolev inequality (1.4) holds with some positive
constants A,B for some p > 2, and the Poincaré inequality (1.2) holds with the best
constant CP > 0, then we have(∫

E

|f |pdµ
) 2

p

−
∫
E

f 2dµ ≤
(
(p− 1)A+ CP [(p− 1)B − 1]+

)
E [f ]. (3.1)

The above theorem 3.1 is a direct consequence of the following lemma.

Lemma 3.2. Let p > 2 and f : E → R be a square integrable function on a probability
space (E, µ). Then for all a ∈ R, we have(∫

E

|f |pdµ
) 2

p

−
∫
E

f 2dµ ≤ (p− 1)

(∫
E

|f − a|pdµ
) 2

p

−
∫
E

(f − a)2dµ. (3.2)
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This lemma is also contained in [3] and will be used in the next section.
Notice that if the defective Sobolev inequality holds for some p > 2, then Pt(x, dy) =

pt(x, y)µ(dy) with the density pt(x, y) bounded ([4]). That implies Pt is a Hilbert-Schmidt
operator, then compact on L2(µ): in particular the Poincaré inequality holds true.

3.2. Bounded perturbation. It is well known that Φ-entropy Hµ
Φ(f) defined in defini-

tion 2.1 has the following variational form:

Hµ
Φ(f) = µ(Φ(f))− Φ(µ(f)) = inf

c∈R

∫
E

Φ(f)− Φ(c)− Φ′(c)(f − c)dµ (3.3)

for all f ∈ L1(µ). The following proposition shows that the Sobolev inequality (1.1) is
stable by bounded transformation of the probability measure µ.

Proposition 3.3. Assume that the Dirichlet form E [f ] =
∫
Γ[f ]dµ for some carré-

du-champs operator Γ which is a derivation, i.e. Γ(Φ(f), g) = Φ′(f)Γ(f, g) for all
f, g ∈ D(E) ∩ L∞(µ) and Φ ∈ C1(R). Assume that the probability measure µ satisfies
Sobolev inequality (1.1) with the best constant CS(p) for p ≥ 0. Let µ̃ be the probability
measure defined by dµ̃ = 1

Z
e−V (x)dµ such that Osc(V ) := supx,y∈E |V (x)− V (y)| < +∞,

where Z > 0 is the normalization constant. Then µ̃ satisfies Sobolev inequality

1

p− 2

[(∫
E

fpdµ̃

) 2
p

−
∫
E

f 2dµ̃

]
≤ eOsc(V )CS(p)

∫
Γ[f ]dµ̃, 0 ≤ f ∈ D(E) ∩ L∞(µ).

Proof. By the proof of Theorem 2.2, the Sobolev inequality (1.1) is equivalent to

Hµ
Φ(f) ≤

CS(p)

2

∫
E

Φ′′(f)Γ(f)dµ, f ∈ D := {g ∈ D(E); ∃ε > 0, ε ≤ g ≤ 1/ε},

where Φ(x) is the same in (2.5). We have by (3.3),

H µ̃
Φ(f) = inf

c∈R

∫
E

[Φ(f)− Φ(c)− Φ′(c)(f − c)]
1

Z
e−V dµ

≤ 1

Z
exp

(
− inf

x∈E
V (x)

)
Hµ

Φ(f)

=
1

2Z
exp

(
− inf

x∈E
V (x)

)
CS(p)

∫
E

Φ′′(f)Γ(f)ZeV dµ̃

≤ 1

2
exp

(
sup
x∈E

V (x)− inf
x∈E

V (x)

)
CS(p)

∫
E

Φ′′(f)Γ(f)dµ̃

=
1

2
eOsc(V )CS(p)

∫
E

Φ′′(f)Γ(f)dµ̃,

which implies the result. �
3.3. Reflected Brownian motion. Given a domain Ω of Rd, let W 1,p(Ω) be the Sobolev

space of the functions on Ω with the norm ∥f∥W 1,p(Ω) =
(∫

Ω
(|∇f |p + |f |p)dx

) 1
p . Recall

the extension theorem on Sobolev space:

Theorem 3.4. Suppose that Ω ⊂ Rd is a bounded domain with Lipschitz boundary. Then
there exist a bounded linear operator L : W 1,p(Ω) ∋ u → v ∈ W 1,p(Rd) and a constant
C > 0 such that
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(1) v(x) = u(x) for a.e. x ∈ Ω;
(2) ∥v∥W 1,p(Rd) ≤ C∥u∥W 1,p(Ω).

According to the well known Sobolev inequality on Rd, we have the following corollary.

Corollary 3.5. For any bounded domain Ω ∈ Rd (d ≥ 2) with Lipschitz boundary, the
Sobolev inequality (1.1) holds for u ∈ W 1,2(Ω) with the normalized Lebesgue measure
µ(dx) = dx

V ol(Ω)
on Ω for any p ∈ (2, 2d

d−2
] (this last quantity is interpreted as +∞ if

d = 2).

Proof. By Theorem 3.4, we have for all u ∈ W 1,2(Ω),(∫
Ω

|u|pdx
) 2

p

≤
(∫

Rd

|v|pdx
) 2

p

≤ C(d, p)

∫
Rd

|∇v|2dx ≤ C(d, p)C

∫
Ω

(|∇u|2 + |u|2)dx,

where v = Lu, C(d, p) is the best Sobolev constant. Then the defective Sobolev inequality
(1.4) holds with A = B = C(d, p)C. The result follows by Theorem 3.1. �

4. Sobolev inequality in dimension one

In [5], F. Barthe and C. Roberto provide the estimate of the optimal constant of Sobolev
inequality when 1 < p ≤ 2 on the real line. In this section we generalize the estimate of
the optimal constant to the case p > 2 on the real line (i.e. E = R) by the method in [5].

Theorem 4.1. Let p > 2 and µ, ν (non-negative) be Borel measures on R with µ(R) = 1
and dν(x) = n(x)dx, where n(x)dx is the absolutely continuous component of ν. Let m
be a median of µ. Let C > 0 be the optimal constant satisfying:(∫

R
|f |pdµ

) 2
p

−
∫
R
f 2dµ ≤ C

∫
R
f ′2dν (4.1)

for every smooth function f : R → R.
Then we have max(b−(p), b+(p)) ≤ C ≤ 4max(B−(p), B+(p)), where

b+(p) = sup
x>m

{µ([x,+∞))

[(
1 +

1

2µ[x,+∞)

) p−2
p

− 1

] ∫ x

m

1

n(t)
dt};

b−(p) = sup
x<m

{µ((−∞, x])

[(
1 +

1

2µ(−∞, x]

) p−2
p

− 1

] ∫ m

x

1

n(t)
dt};

B+(p) = sup
x>m

{µ([x,+∞))

[(
1 +

(p− 1)
p

p−2

µ[x,+∞)

) p−2
p

− 1

] ∫ x

m

1

n(t)
dt};

B−(p) = sup
x<m

{µ((−∞, x])

[(
1 +

(p− 1)
p

p−2

µ(−∞, x]

) p−2
p

− 1

] ∫ m

x

1

n(t)
dt}.

We will use the following Proposition and Lemmas to prove Theorem 4.1.

Proposition 4.2. (See [5]) Let µ, ν (non-negative) be Borel measures on [m,∞), where
m is a median of µ and dν(x) = n(x)dx, where n(x)dx is the absolutely continuous
component of ν. Let G be a family of non-negative Borel measurable functions on [m,∞).
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We set ϕ(f) = supg∈G
∫∞
m

fgdµ for any measurable function f . Let A be the smallest
constant such that for every smooth function f with f(m) = 0, we have

ϕ(f 2) ≤ A

∫ ∞

m

f ′2dν.

Then B ≤ A ≤ 4B, where

B = sup
x>m

ϕ(1[x,∞))

∫ x

m

dt

n(t)
.

Lemma 4.3. Let φ be a non-negative integrable function on a probability space (E, µ).
Let A > 0 and a > 1 be some constants, then we have

A [µ(φa)]
1
a − µ(φ) = sup

{∫
φgdµ; g ≥ −1 and

∫
(g + 1)

a
a−1dµ ≤ A

a
a−1

}
≤ sup

{∫
φgdµ; g ≥ 0 and

∫
(g + 1)

a
a−1dµ ≤ A

a
a−1 + 1

}
.

Proof. For any Borel measurable function h ≥ 0, by Hölder’s inequality, we have

[µ(φa)]
1
a = sup

{∫
φhdµ; h ≥ 0 and

∫
h

a
a−1dµ ≤ 1

}
.

Hence

A [µ(φa)]
1
a = sup

{∫
φhdµ; h ≥ 0 and

∫
h

a
a−1dµ ≤ A

a
a−1

}
. (4.2)

Using (4.2), we have

A [µ(φa)]
1
a − µ(φ) = sup

{∫
φhdµ−

∫
φdµ; h ≥ 0 and

∫
h

a
a−1dµ ≤ A

a
a−1

}
= sup

{∫
φ(h− 1)dµ; h ≥ 0 and

∫
h

a
a−1dµ ≤ A

a
a−1

}
= sup

{∫
φgdµ; g ≥ −1 and

∫
(g + 1)

a
a−1dµ ≤ A

a
a−1

}
≤ sup

{∫
φg1g≥0dµ; g ≥ −1 and

∫
(g + 1)

a
a−1dµ ≤ A

a
a−1

}
≤ sup

{∫
φgdµ; g ≥ 0 and

∫
(g + 1)

a
a−1dµ ≤ A

a
a−1 + 1

}
.

The last inequality is derived by∫
(g1g≥1 + 1)

a
a−1dµ =

∫
(g + 1)

a
a−11g≥0dµ+ µ(g < 0) ≤ A

a
a−1 + 1.

�
Lemma 4.4. Let a > 1, µ be a finite measure on X. Let A ⊂ X be a measurable subset
with µ(A) > 0 and K be a constant with K > µ(X). Then we have

sup

{∫
X

1Agdµ; g ≥ 0 and

∫
X

(g + 1)
a

a−1dµ ≤ K

}
= µ(A)

[(
1 +

K − µ(X)

µ(A)

)a−1
a

− 1

]
.
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Proof. Simply, we denote by S the left hand side of the above equality. Without loss of
generality, we can assume g = 0 on Ac, hence

S = sup

{∫
A

gdµ; g ≥ 0 and

∫
A

(g + 1)
a

a−1dµ+ µ(Ac) ≤ K

}
.

For any g ≥ 0 and
∫
A
(g + 1)

a
a−1dµ+ µ(Ac) ≤ K, by Jensen’s inequality, we have(

1 +

∫
A

g
dµ

µ(A)

) a
a−1

=

(∫
A

(1 + g)
dµ

µ(A)

) a
a−1

≤
∫
A

(1 + g)
a

a−1
dµ

µ(A)

≤ K − µ(Ac)

µ(A)
= 1 +

K − µ(X)

µ(A)
.

Hence ∫
A

gdµ ≤ µ(A)

[(
1 +

K − µ(X)

µ(A)

)a−1
a

− 1

]
. (4.3)

We take g =
(
1 + K−µ(X)

µ(A)

)a−1
a − 1, then equality in (4.3) holds. Hence

S = µ(A)

[(
1 +

K − µ(X)

µ(A)

)a−1
a

− 1

]
,

which is the desired result. �

Now we prove Theorem 4.1.

Proof of Theorem 4.1. Step 1. We estimate the upper bound of C. For any smooth
function f : R → R, let F = f − f(m), F+ = F1(m,∞) and F− = F1(−∞,m). It is easy to
see they are all continuous and F 2 = F 2

+ + F 2
−, |F |p = |F+|p + |F−|p when p > 2. We set

A = p− 1 > 0 and a = p
2
> 1, then a

a−1
= p

p−2
. By Lemma 3.2 and Lemma 4.3, we have(∫

|f |pdµ
) 2

p

−
∫

f 2dµ

≤ (p− 1)

(∫
|f − f(m)|pdµ

) 2
p

−
∫
(f − f(m))2dµ

= (p− 1)

(∫
|F |pdµ

) 2
p

−
∫

F 2dµ

= (p− 1)

(∫
|F+|pdµ

) 2
p

−
∫

F 2
+dµ+ (p− 1)

(∫
|F−|pdµ

) 2
p

−
∫

F 2
−dµ

≤ sup

{∫
F 2
+gdµ; g ≥ 0 and

∫
(g + 1)

p
p−2dµ ≤ (p− 1)

p
p−2 + 1

}
+ sup

{∫
F 2
−gdµ; g ≥ 0 and

∫
(g + 1)

p
p−2dµ ≤ (p− 1)

p
p−2 + 1

}
.
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Now we deal with F+. Since F+ = 0 on (−∞,m], by Proposition 4.2 we have

(p− 1)

(∫
|F+|pdµ

) 2
p

−
∫

F 2
+dµ

≤ sup

{∫
F 2
+gdµ; g ≥ 0 and

∫
(g + 1)

p
p−2dµ ≤ (p− 1)

p
p−2 + 1

}
≤ 4B̃+(p)

∫
F ′2
+ dν,

where

B̃+(p) = sup
x>m

[
sup

{∫
1[x,∞)gdµ; g ≥ 0 and

∫
(g + 1)

p
p−2dµ ≤ (p− 1)

p
p−2 + 1

}∫ x

m

1

n(t)
dt

]
.

By Lemma 4.4, we have

B̃+(p) = sup
x>m

{µ([x,+∞))

[(
1 +

(p− 1)
p

p−2

µ[x,+∞)

) p−2
p

− 1

] ∫ x

m

1

n(t)
dt} = B+(p).

Similarly, we have

B−(p) = sup
x<m

{µ((−∞, x])

[(
1 +

(p− 1)
p

p−2

µ(−∞, x]

) p−2
p

− 1

] ∫ m

x

1

n(t)
dt}.

Since F ′2
+ + F ′2

− = f ′2 on R\{m}, we obtain(∫
|f |pdµ

) 2
p

−
∫

f 2dµ ≤ 4B+(p)

∫
F ′2
+ dν + 4B−(p)

∫
F ′2
− dν

≤ 4max{B+(p), B−(p)}
(∫

F ′2
+ dν +

∫
F ′2
− dν

)
= 4max{B+(p), B−(p)}

∫
f ′2dν.

Hence C ≤ 4max{B+(p), B−(p)}.

Step 2. We estimate the lower bound of C. At first, we suppose that f is a continuous
function which vanishes on (−∞,m] and is smooth on [m,∞). By approximation, f
satisfies (4.1). Noting that in order to approach the supremum, the test function g = −1
on (−∞,m]. By Lemma 4.3, we have(∫

R
|f |pdµ

) 2
p

−
∫
R
f 2dµ = sup

{∫ ∞

m

f 2gdµ; g ≥ −1 and

∫ ∞

m

(g + 1)
p

p−2dµ ≤ 1

}
≥ sup

{∫ ∞

m

f 2gdµ; g ≥ 0 and

∫ ∞

m

(g + 1)
p

p−2dµ ≤ 1

}
Since µ([m,∞)) ≤ 1

2
, we have

∫∞
m
(g + 1)

p
p−2dµ ≤ 1 for many non-negative functions g.

By (4.1), for such functions f with f(m) = 0, we have

sup

{∫ ∞

m

f 2gdµ; g ≥ 0 and

∫ ∞

m

(g + 1)
p

p−2dµ ≤ 1

}
≤ C

∫ ∞

m

f ′2dν.
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By Proposition 4.2, we have

C ≥ sup
x>m

[
sup

{∫ ∞

m

1[x,∞)gdµ; g ≥ 0 and

∫ ∞

m

(g + 1)
p

p−2dµ ≤ 1

}∫ x

m

1

n(t)
dt

]
.

Since µ([m,∞)) ≤ 1
2
, using Lemma 4.4, we get

C ≥ sup
x>m

{µ([x,+∞))

[(
1 +

1

2µ[x,+∞)

) p−2
p

− 1

] ∫ x

m

1

n(t)
dt} = b+(p).

Then we suppose that f is a continuous function which vanishes on [m,∞) and is smooth
on (−∞,m]. Similarly, we have

b−(p) = sup
x<m

{µ((−∞, x])

[(
1 +

1

2µ(−∞, x]

) p−2
p

− 1

] ∫ m

x

1

n(t)
dt}.

Hence C ≥ max{b+(p), b−(p)}. The proof is completed. �
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