An Accelerated Primal-Dual Iterative Scheme for the L2-TV
Regularized Model of Linear Inverse Problems

Wenyi Tian™ Xiaoming Yuan'

Abstract

A model with the L? and total variational (TV) regularization terms for linear in-
verse problems is considered. The regularized model is reformulated as a saddle-point
problem, and the primal and dual variables are discretized in the piecewise affine and
piecewise constant finite element spaces, respectively. An accelerated primal-dual iter-
ative scheme with an O(ﬁ) convergence rate is proposed for the discretized problem,
where N is the iteration counter. Both the regularization and perturbation errors of the
regularized model, and the finite element discretization and iteration errors of the accel-
erated primal-dual scheme, are estimated. Preliminary numerical results are reported to
show the efficiency of the proposed iterative scheme.

Keywords: Linear inverse problem, Primal-dual method, Saddle-point problem, Finite

element method, Convergence rate, Error estimate.

1 Introduction
We consider a possibly ill-posed linear inverse problem
(1.1) Au =g,

where A : L?(2) — L?(£2) is a bounded linear operator, {2 C R? is a bounded domain with
a Lipschitz continuous boundary, d = 1,2, and g € L?(f2) is a given function. This prob-
lem is fundamental in a variety of scientific computing areas, such as astrophysics, signal
and image processing, statistical inference, and optics. We refer to, e.g., the monographs
[18, 21, 23, 40] and the references therein.

To solve the ill-conditioned problem (1.1), the regularization technique is a standard
approach. Among different choices of the regularization term, the total variational regu-
larization has been widely used to recover solutions with discontinuities to inverse prob-
lems, especially since the seminal works [22, 34]. As studied in various literature (e.g.,
[1, 10, 11, 16, 33, 41]), the solution of (1.1) can be approximated by the following mini-
mization model with TV regularization:

. 1
(1.2) in { =1 4u = glffq) + ol Dul },
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where o > 0 is a regularization parameter determining the relative weight of the involved
two terms in (1.2). The regularization term || Du|| in (1.2) is the TV norm of u defined by

(1.3) || Du|| := sup {/ udivp dz : ¢ € CHOLRY), [|¢]loo < 1},
Q

where [|¢]loo = sup,ca(2C, |pi(2)[2)!/2, Du represents the gradient of u in the dis-
tributional sense, div denotes the divergence operator, and C}(£2; R?) is the set of once
continuously differentiable R¢-valued functions with compact support in 2. The BV (£2)
space endowed with the norm ||v||py := ||v||11(q) + |[Dv]| is a Banach space; see, e.g.,
[2, 4, 5, 45] for more details. Discussions on the existence and uniqueness of the solution
of (1.2) can be found in, e.g., [1, 10, 14, 41].

In [14, 26], the following minimization model with both the L? and TV regularization
terms is studied:

: 1 B
(a4 inf { B(u) i= 314w — gl 2 + 5 ul32(0) +all Dul },

with uw € L?(Q) N BV(Q) and 3 > 0. As mentioned in [14], adding the L? quadratic
regularization term is meaningful. First, in (1.4), the objective function is strongly convex
and thus the solution of (1.4) is unique without additional assumptions of the corresponding
operator A. Second, the model (1.4) has the possibility of distinguishing the structure of
stability results for quadratic regularization terms from that of the non-quadratic BV -term.
Third, as stated in [14, Corollary 1.2], L?(Q) N BV (Q) and BV (£2) are equivalent Banach
spaces when d = 1 or 2; and thus the model (1.4) can keep favorable characters of the TV
regularization.

In the models (1.2) and (1.4), the TV term is beneficial for reconstructing discontinuous
or piecewise constant solutions of (1.1). Meanwhile, the TV term causes some difficulties,
one of which is that this nonsmooth term makes it more challenging to design efficient iter-
ative schemes. It is noted that some authors have suggested replacing the TV term with the
smoothing surrogate fQ \/|Vu|72+5 with small € > 0; see, e.g., [1, 41]. Here, we follow
the approach in [6, 7, 12] to consider the saddle-point reformulation of the minimization
model (1.4):

izlf E(u) = inf sup {S(U,p)

u P

(1.5) 1 I}
= §||Au - 9H2L2(52) + 5”““%2(9) + a/QVu-pdx N IB(p)}’

where B = {p € L*(;RY) : ||p|loc < 1} and I(-) denotes its indicator function.

We further choose the piecewise constant and piecewise affine globally continuous finite
element spaces to discretize the functions u and p in (1.5), respectively. That is, we have

(L.6) SY(Tn) = {vn € C(Q) : vy|7 is affine for each T € Ty},
. LO(Th)% = {qn € L' (% R?) : g4 |7 is constant for each T € Ty},

where 7}, denotes as a regular triangulation of €2 into triangles and h = maxpe7;, diam(7T)
as the maximal diameter. Such choices are preferred because of some particular reasons



as mentioned in [6]. First, both the spaces S(7;) and £°(T}) are dense in BV (£2) with

respect to weak* convergence in BV (£2), which is continuously embedded into L" () for

_d_
d—1°

[6] that the piecewise constant finite element approximation for u cannot be expected to

all r satisfying 1 < r < see [4, Theorem 10.1.4]. Second, it was demonstrated in

converge to an exact solution in general. Note that the space £°(7;,)? consists of piecewise
constant vector fields equipped with L? scalar product as

d
(17 omean) = Y [ (p)iCan)id,
= Jo
where (py,); stands for the i-th component of the vector-valued function p;, € £°(7;,)?, and

d is the dimension of the domain 2. The integral (1.7) of piecewise-constant functions on
each element 7' € 7T}, is computed by their values at the centroid of 7. Furthermore, the
identity
|Duy || = sup Vuy, - pp dz
PrELY(Th) L [Pl <1 /Q
is mentioned in [6]. Therefore, the minimization model (1.4) with finite element approxi-
mation can be reformulated as the following discretized saddle-point problem

inf E(up) =  inf su {E Up,
(1 8) Up ( h) “hesl(n)phéﬂo?ﬂ,)d ( h ph)

1 B
3140 = gl + 5 s gy + a | Fun-pndo — In(on) .
Q

This is the model our analysis will be focused on hereafter.

Recently, some concrete progresses have been made for saddle-point problems, espe-
cially in convex optimization and image processing literatures. In particular, a number of
primal-dual type iterative schemes have been studied by many authors; we refer to, e.g.,
[8, 12, 19, 24, 32, 36, 37, 44] to mention a few. It is worthy mentioning that these primal-
dual type iterative schemes have a deep origin in the so-called inexact Uzawa method
[3, 17]. As indicated in [36], primal-dual iterative schemes can be conceptually appli-
cable to discretized saddle-point problems arising from inverse problems; but the resulting
subproblems may be highly nontrivial and it deserves to look into the details for these ap-
plications. For the case where the regularization term for (1.1) is just the TV term, i.e., the
special case of (1.8) with 8 = 0, a linearized primal-dual method is proposed in [36]. Its
iterative scheme reads as

) 1
UZ—H = argmin {E(Uh,pﬁ) + ?Huh - UZH.%{,LQ(Q)}7
uhesl('Th) T
(1.9) = 2up T —
~ (o2
p;l”rl = argmax {S(UZ,ph) - Enph _p2||2L2(Q)}’

phE€LO(Tp)e

where n is the iteration number; (u},p}) are the output of the scheme (1.9) at the n-th

iteration; || - [|3 r2() = (X-,-); X := I — 7A*A in which [ is the identity operator and




7 > 0;and o > 0. Note that 7 and ~ can be understood as the step sizes for implementing
certain gradient-based iterative methods for computing u}z*l and pZH, respectively.

In this paper, we study a primal-dual type iterative scheme for the model (1.4). Note
that in [36] we proposed a linearized primal-dual iterative scheme for the model (1.2).
Compared with (1.2), there is an additional term §||uh ||%2(Q) in (1.4) which requires more
sophisticated skills in algorithmic design. Meanwhile, the objective functional in (1.4)
is strongly convex and thus it is possible to extend some recent works [12, 13] to the
saddle-point problem (1.8). This motivates us to consider the following primal-dual it-

erative scheme:

~ n—1
ap = up + On(up — Up, )s

41 ~n On n (|2
prTt = argmax {E(uay,pr) — —|Ipn —ph||L2 Q) S
(1.10) h phELO(Th)d{ 27 @)
) 1
uptt = argmin {E(up,pp ) + —|lun — UZH%(,L?(Q)]’?
un €S (Th) 27
with X := I — 7A*A and the parameters 7,0, and 6, > 0 satisfy certain conditions

which will be specified later (see (3.2)). The main reason of considering the scheme (1.10)
with dynamically adjusted parameters is that the convergence rate of this scheme measured
by iteration complexity is O(ﬁ) while that of the linearized primal-dual scheme (1.9)
for the model (1.2) is only O(%) Here, N is the iteration counter. This acceleration
makes sense, particularly because the implementation of these two schemes is of the same
level of difficulty (in sense of the difficulty of the resulting subproblems) and they are
mainly different in choosing the involved parameters which is nearly computational free.
Moreover, as we shall show, the strong convexity of the objective function in (1.4) leads
to the error estimate of the finite element solution in Theorem 5.2; and together with the
particular choices of the parameters in the iterative scheme (1.10), the strong convexity
property enables us to derive the error estimate and convergence elucidated in Theorem 5.3.
These properties are not achievable in [36] for the model (1.2) without strong convexity.
The rest of this paper is organized as follows. In Section 2, some known preliminary
results are summarized. In Section 3, the accelerated primal-dual iterative scheme (1.10)
is specified for the problem (1.8), along with some elaborations. In Section 4, we prove
the convergence of the accelerated primal-dual iterative scheme (1.10) and establish its
worst-case O(#) convergence rate measured by the iteration complexity. In Section 5,
we estimate the regularization and perturbation errors for the model (1.4), and the finite
element discretization and iteration errors for the accelerated primal-dual scheme (1.10).
Some preliminary numerical results are reported in Section 6 to verify the effectiveness of

the proposed method. Finally, some conclusions are made in Section 7.

2 Preliminary

In this section, we recall some known results in the literature for the convenience of further

analysis. Throughout, the notation (-, -) stands for the L? scalar product.



First, we present the existence and uniqueness results about the solution of the linear
inverse problem (1.1) approximated by the L?-TV regularization model (1.4), which is
proved in [14].

Theorem 2.1 ([14]). Let o > 0. If one of the following conditions holds:

(1) >0,

(2) d =1 ord = 2, and nonzero constants do not belong to the null space ker A of A,
then there exists a solution of (1.4). Moreover, if B > 0 or A is injective, then the solution

is unique.

The first-order optimality condition for the minimization of the energy functional E(-)
in S1(73) is stated in the following lemma. The proof is followed by the similar argument
for that of Lemma 10.3 in [7].

Lemma 2.1. The function v}, € S*(Ty,) minimizes E(-) in S*(Ty,) if and only if there exists
pi € B1(L%Tn)?) := {an € L°(Tn)? : |lgnlloo < 1} such that

@1 { (A" (Auj, —g),un) + B (uf, un) + a(pi, Vun) =0, Vun € SH(Th),
| (V’LL;;,ph - p;;) <0, Vph S Bl(ﬁo(n)d)

We can rewrite the optimality condition (2.1) as the following variational inequality in
a compact form: finding p} € S'(75,) x B1(L%(T7)%) such that

(2.2) (F(ph) pn — p) >0, Y pp, € SH(Th) x Bi(L(Th)?),
where

up . uy . Buy, — adivpy + A*(Auj — g))
2.3 = 5 = 5 F = * )
(23)  pn (m) Ky, (P;Q) 9] ( oV

and —div is the conjugate operator of V and —(divpy,up) = (pn, Vuy). For any gy, =
(up; pr) and vy, = (vp; qn), obviously the mapping F'(+) in (2.3) satisfies

24 (F(pn) = F(wn), pn — vn) = Bllun — vnllF20) + [ A(un — vn) 1720 -

It follows from (2.2), (2.4) and Lemma 2.1 that the first component u, of a solution pair
of (1.8) is unique. But the second one py, is not unique in general.

Remark 2.1. An inverse estimate in [9] shows that there exists a constant ¢ > 0 such that
-1
min

[Vun | r2) < chpnllunll L2y for all up, € S*(Th), where hyin = mingey, diam(T).

We denote -
U
iwi= s Volee g0
unes (TN} llunllzz@)
which will emerge in the theoretical analysis in the sequel. For a regular mesh Ty, it yields

from the above estimate that | V|| < ch™!.



3 An Accelerated Linearized Primal-Dual Scheme

In this section, an accelerated variant of the linearized primal-dual scheme (1.9) is consid-
ered. We know that the energy functional in (1.8) is strongly convex with respect to up
due to the term of its L? square norm. Then the linearized primal-dual scheme (1.9) can
be accelerated by using the technique in [12, 13]. The accelerated linearized primal-dual
scheme (1.10) for the discretized saddle-point problem (1.8) is specified in Algorithm 1.

Algorithm 1: An accelerated linearized primal-dual scheme for (1.8).

Input: Choose an initial iterationz(u?l;p?l) € SY(Th) x LO(Tn)?, uy = u,
1-3]A
70,00,0p > 0 and 1224 g 202 20
forn=0,1,2,---, do
Generate the new iteration (u}™'; p' ") satisfying
Gla) @y = upl + On(uf —up ),
i ~Nn O—n ua
Gy g = argmax fa [ 9a e~ To(n) = 2oy~ il |
Pr€LO(Th)? Q Tn
3 " (A" (Auj; — g),un) + g”uhHQL?(Q)
(3.1¢c) wu,"" = argmin 1
h wn€S1(Th) +a/ Vup - pitt de + ?Huh - umiz(m
Q n

where 7,,, 0, and 6,, are updated by

1 On On+1
3.2 9n =, Tn :977, Tn, e —
(3.2) + V1+ 287, + + Tn On+1Tnt1
end

Remark 3.1. The solution pZH of the subproblem (3.1b) is explicitly given by
Pt = (ph + (@ /0n) V) max {1, [pf, + (a7, /o) Vg
which can be computed element-wise, see [6, 36].

. 2
Remark 3.2. If 79 and oq satisfy the condition %

> ||V]|?a? 22, and the parame-

ters Ty, op, Oy, are chosen by (3.2), then % > [|V|?a® Zx holds for all n > 0.

Remark 3.3. In [38], we applied the techniques in [12] to accelerate the alternating di-
rection method of multipliers (ADMM) with an O(ﬁ) convergence rate. As well known in
the literature, see, e.g., [12, 19, 35, 38], the linearized version of ADMM can be reduced
to the primal-dual hybrid gradient method (PDHG) in [12] if the two parameters of the
proximal terms of the PDHG are reciprocal constants. Here, mainly motivated by [13],
we consider the linearized version of the PDHG, rather than the ADMM, whose proximal
parameters are dynamically chosen in according with the particular rule (3.2), instead of

being reciprocal.



4 Convergence Analysis

In this section, we prove the convergence of Algorithm 1 and estimate its worst-case O(ﬁ)
convergence rate in the ergodic sense measured by the iteration complexity. It is worthy
mentioning that, although we apply the techniques proposed in [12, 13] for choosing the pa-
rameters to derive Algorithm 1, the convergence is not proved in [12, 13] for the accelerated

algorithms studied therein. Here, we prove the convergence of Algorithm 1.

4.1 Convergence

We first prove that the sequence {(u}; p}') } generated by Algorithm 1 converges to a saddle-
point of model (1.8) with n — 0, where n is the iteration counter. It is noticed that the
sequence {(u}T;pi ')} generated by Algorithm 1 satisfies the following first-order opti-
mality conditions:

On n n ~n n
@n (- 7(ph+1 —pi) + aVig,p, — pptt) <0, Vo, € Bi(L%(Th)%),

and

1
4.2) (T—(uZ“—uﬁ)—i—A*(AuZ—g)—i—ﬁuZH,uh)-i-oz(pzﬂ, Vup) = 0,Yup, € SH(Th).
Note that (4.1) and (4.2) can be viewed as a numerical discretization of the simultaneous
L? gradient flow of the model (1.5):

4.3) — o% + aVu € 0Ig(p)
and
ou . X
4.4) i adivp + A*(Au — g) + fu =0,

respectively, with finite element discretization in space, where I (p) denotes the subdif-

ferential of Iz (p).
Theorem 4.1 (Convergence). Let {u T = (u}™;pi 1)} be the sequence generated by
1
7'72L+1

{p} ™'} converges to a saddle-point of the problem (1.8) in S*(T3) x B1(L°(Tx)%).

[ uZHQLQ(Q)} is bounded, and the sequence

Algorithm 1. Then, the sequence {

Proof. Tt follows from (4.1) and (4.2) that the scheme (3.1) can be written as

(F (g™ — ™) (Ha(pap ™ = ), pon = iy ™)
@5 > 0,a(V(up —ur o - gt = a( V(=) pn - pp )
+ (A A = ) un = up ), Y € ST x Bi(£2(T)?),

where F'(-) is given in (2.3) and

17 0
4.6 H,=|[™ .
(4.6) ( b



We denote by 1} = (u};p;) € ST (Tn)xB1(L£°(T,)?) a saddle-point of (1.8). Then, taking
wp, = pi in (4.5), using the relationships 7, = 60,,7,—1 from (3.2) and —(divpy,, up) =
(ph, Vuy,), we have

4.7

(Hn (™ = ) i, — ™) = o (div(p ™ = i), div(py, — 2 ™))

n+1 n—1 ntl _ . mn

7, (adiv(pZ"H ) - u, " —uy I up — U,  adiv(ph — pith) + Up “h)
Tn Tn—1 Tn
1 * 1 *
> (F(pp™) = F(up) ™ = i) + (F(ui), ™ — i)
1 1 1
n+1 n) UZJF — uh + uh — U’Z “Z+ — U;LL)
h Tn Tn—1 ’ Tn

+ T (adlv
( ( n+1

It is easy to check that the following four identities hold:
(Ha(pp ™ = 1), ph, = i)

(st — wR B, — o — i I, — ok — i, )

= up), Aluj, — up ).

4.8)

4.9)
(dw< w = i), div(ph — pp )

= 5 (v (pi, — )0 — iV}~ B o) — v (eh — ™) oo ).

(4.10)
(adiv(p;”rl —pp) — uZJrj—_ h + UZT uh ,adiv(p, —ppth) + uzj_i_u}l)
n n—1 n
7||ad1v( —pp) + uz;fl|%2(g) 5 ladiv(py —prthy Wll%z(m
- %lloadiv(pZ+1 —p) - uZHTn_ 4 Y T_nui’:l IZ2(0):
)

(Alup™ — i), Aluy, — UZ“))
1 * n 1 n
= 5“14(% - uh)||2L?(Q) - 5”14(“ - UZ—H)H%Z(Q) - 5“14(1% - UZ+1)||:£2(Q)-

Since the first-order optimality condition (4.2) holds for the n-th iterate uj,, we have
(4.12)
1

(

Then, taking uy, = uZ'H —up in (4.2) and (4.12) yields

(up —up ") + A" (Au) ™" — g) + Bup,wp) + a(pf, Vuy) = 0,V up, € S*(Th).

Tn—1

n-+1 n n n—1 TL+1 n
1 u —Uu Uy, — U — U
( adiv(plt — py) — h h h h up, h
4.13) Tn Tn—1 Tn

= Blup™ —uplZz) + (A(uf —up ™), Adup ™ = up)).



i 1 B _ 1 On _ Ontl
From (3.2), it holds that 377 + ™ and H=E Thus, we have

1 B 1
414 - n+1 ~ _ o+l * n+1
( ) 2, s, — phy HH p llup — ujy HL2(Q Mot s lmh — ||H

n41’

It also follows from (2.2) that (F (1), ;LZH — uZ) > 0. Therefore, substituting (4.8)-
(4.11), (4.13), (4.14) and the property (2.4) into (4.7), we obtain the following inequality

1 * n 1 * n
(57 i = B, = 5 v, = P 3y — 31463 = wi) oo
up —
+ 3 ladiv(p, — ) + %”%w)
(2T Rl R I A [
(4.15) A —up )72 ) — HA( Bt = unlZz @
1 uttt —up o — !
Dlladivip™t — pn h h h R 2 )
+ ||04 iv(py ™ —ph) — Tn + — 720
> (27 ot = 15 B — lladivirh — o) oy
+1 +1 U;H_l —Up 2
— A — ) gy + G lladiv(e; - ) + ).
Tn+1 Tn

As it is assumed in Algorithm 1 that 1 — 3||A||?7 > 0 and 7,1 < 7,,. Therefore, it holds
that 1 — 3||A||*7,, > 0 for any n > 0 and we have

(4.16)
Yoo 1
n n n—1 n

> (gl = i = - JAGR = ey = g AGR = e
n=0 n+1 n

1
ZWHUZV— N+1||L2 (U —Uh )||L2(Q)

N+1
+Z(22 k) — g AR — Dl ae)) 2 0

n=0

where u,;l = “2 (as set in Algorithm 1). Taking the summation of (4.15) over n from 0 to
N, we conclude that the following sequence

Lo 1 .
(g i =, = Glladiv(vi =27 ey = 5 — A =) o

is bounded. With the definition of H,, by (4.6), and the condition

13| Al*m, n
” ” T > HVHZOZQL
T g

n n

as indicated in Remark 3.2, we know that both the sequences { 7 ||uh —upth 2, @7

and {||lp; — pp ™2 2(q} are bounded. From Remark 4.1, it holds that 7, ~ O(n™1).

+1

Then, it is clear that lim )" = u} and the sequence {p}' ™"} is also bounded. Thus, the
n—oo



sequence {pZH} has a cluster point; let us denote it by ¢;. In addition, summing (4.15)

over n = 0,---, N, we obtain that lim ||p} —pZHH = 0 and thus lim p;l”l = q.
n—roo n—oo

We conclude from (4.5) that (uj; ¢;) satisfies (2.2), and thus (u}; ¢;) is a saddle-point of

(1.8). O

4.2 Convergence Rate

In this subsection, we estimate a worst-case O(#) convergence rate in the ergodic sense
for Algorithm 1, where N denotes the iteration counter. Note that we follow [29, 30] and
many others, to call a worst-case O(ﬁ) convergence rate by meaning that the accuracy
to a solution under certain criteria is of the order O(%) after IV iterations of an iterative
scheme; or equivalently, it requires at most O(ﬁ) iterations to achieve an approximate
solution with an accuracy of e.

A criterion to measure the accuracy of an approximation of the variational inequality
(2.2) is introduced in the following theorem.

Theorem 4.2. The solution set of variational inequality (2.2) is convex and can be charac-

terized as

©= ﬂ {fn € S"(Tn) x Bu(LY(Tn)?) « (F(pn), n — fin) > 0}
Hh
Proof. A similar proof is referred to that of Theorem 2.3.5 in [20] or Theorem 2.1 in [25].
O

Then, it follows from the criterion in [31] and Theorem 4.2 that f1;, € S'(7) x
B1(L°(T)?) is an approximate solution of the variational inequality (2.2) with an accu-
racy of e if the following inequality holds:

4.17) (F(pn), pn — pn) <€, YV, € D(fn),

where D(fin) == {pn € S'(Th) x Bi(LO(Th)?) « lpen — fonllm, < 1}
To estimate the convergence rate of Algorithm 1, we first give a lemma.

Lemma 4.1. Let {uZ“ = (uzﬂ;pzﬂ)} be the sequence generated by Algorithm 1, we
have
(4.18)

(F(uh),uZH — ,uh) + ——Snr1(pn) < Su(pn), ¥ pn € SH(Th) x Bl(ﬁo(n)d)7

0n+1

where H,, is given by (4.6) and

1 n n n— 7
Sn(pn) = §||Nh - U‘h”%[n - Gna(V(uh — Uy, l)aph *ph)

lup =i~ 170

+ 02||V||*a®T,
20,

10



Proof. First, it is easy to check that the following identity holds:

(H (it = ), pon — )

(4.19)

= 5 (e — s, — lan — leags = 1, ).

‘We also have that

Ona(V(upy —up ™), pn = pp ) = Opa(V(upy —up ™), pr — p)
— n n+1
(420) - ena(v(uh - uh ) ph ph ) )
n n+12
—uh —
20'n 2Tn

Adding (F(pn), pptt — ) to (4.5), together with (4.19), (4.20), the property of F'(-) in
(2.4) and the definition of H,, in (4.6), then we have

4.21)
L bt = R, — (VR =)o = ) + 829 P, L ;Uth”i”‘”
> (F(pn), it = pn) + %Huh upt 320 + T: lpn = 2R 172 (6
e N R T )

Together with Remark 3.2 and (4.21), we obtain (4.18). ]

Because the parameters 7,0, and 6, satisfy (3.2) for n > 0, it holds that % =
9n+17'n+1

From the result in Lemma 4.1, we obtain the following theorem which essentially im-
plies the estimate of the convergence rate of Algorithm 1.

Theorem 4.3. Let {u”"'l = (uz+1,pz+l)} be the sequence generated by Algorithm 1.

For any integer N > 0, let Ty = Zﬁ;o Q—O', On = ; and

On n+1
4.22)
Z Qo

Then, we have

1 1
000N+1 2TN

for any py, = (up; pn) € S'(Th) x By(LO(Th)?).

- 1
4.23) (F(pn), v — pn) + s llun — up [y < ﬁ”l"h — upll %,

Proof. Multiplying (4.18) by Q” , summing it from n = 0 to IV, and using the convexity of
F(-) and (3.2), we obtain

- 17
(4.24) Tn (F(pn), v — pn) + — Nl

S < S .
00 ON 11 N+1(Hh) > O(Nh)
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Thus it holds that

1
(4.25) Sn1(pn) > 5
TN+1

[[un — UhNHHZm(Q)-

Recall that u;l = uY is assumed in Algorithm 1. The result (4.23) is followed from (4.24)
and (4.25). O

Remark 4.1. Since the parameters 1,,, 0., 0,, in Algorithm I are chosen by (3.2), as proved
in [12], it holds that T, ~ 0(5%) We also have Z3+L = Tz — 28 because of (3.2) and thus
0

pi 2
Th+1 Tn

Op ~ O(ﬁ) In addition, with (3.2) and the definitions of 0,, and T in Theorem 4.3, it
holds that T, 41 0n+1 = Tn0n = To00- Then, we have o, ~ O(8n) and Ty ~ O(BN?).

In the following theorem, we show that an iterate 1y can be found such that (4.17)
is satisfied with € = O(ﬁ) after NV iterations of Algorithm 1. Therefore, a worst-case
O(ﬁ) convergence rate is established for Algorithm 1.

Theorem 4.4 (Convergence rate in the ergodic sense). Let {p} T = (u} ™ pit1)} be the
sequence generated by Algorithm 1. For any integer N > 0, let Ty = ZN g =In

n=0 go* I9n = 5,

and [1 be given by (4.22). Then, we have

1 c
4.26 F N — < ——|lpn — pd)% < —=, V D(fan)-
(4.26) (F(pn), v — pn) < 2TN||Nh B, < GNe V€ ()
Proof. The proof follows directly from (4.23) and the fact Ty ~ O(BN?) in Remark
4.1. O

5 Error Analysis

In this section, we conduct error analysis for the model (1.4) and Algorithm 1. More specif-
ically, we estimate the regularization and perturbation errors for the model (1.4) by mainly
using the methodology in [14]; and then analyze the finite element discretization error
[l — u* ||2L2(Q) and the iteration error [uy "' — u”,;H%Q(Q) for the sequence generated by
Algorithm 1.

5.1 Regularization and Perturbation Errors of (1.4)

We first analyze the regularization and perturbation errors of the model (1.4). Our main
purpose is generalizing the result in [14, Theorem 4.5] for the special case @ = (3 to the
general case of (1.4) where o # (. We first recall some notations used in [14].

Let ug be the “minimal” solution of the un-regularized least-squares problem:
1
(5.1) min 5||Au —goll72), w€X:=L*Q)NBV(Q),

in which go represents the unperturbed data of g, and ||g — gol[z2() < d with 6 > 0
the perturbation parameter. For the case o # [, the “minimal” solution to (5.1) is of the
following sense:

.1 «a .
(5.2) min {§|\u||’§2(m + E||Du||}, weS:={ucX: Au= g},

12



where S is the solution set of (5.1), and g is the projection of gy on the range A(X). Let
M?(€2) denote the vectorial space of real Borel measures endowed with the norm

lull =sup { [ oans ¢ € CR?. gl < 1},
Then, by [14, Theorem 2.2], there exists A* in the dual space of Md(Q) such that

5.3) { Bug, uw —ug) —a(div A", u —ug)gy+y >0, Yues,
' (A%, 1t = Vug) pa paa + | Dul < ], ¥ e MUQ),
where “—div” stands for the conjugate of V : BV (Q) — M%(Q). That is
(*le A*vu)BV*,BV = (A*, VU)Md,*7Md, Yuc€ BV(Q)

Moreover, as in [14], for a convex set C'in X, the tangent cone to C at u € C'is defined
as
T(C,u) ={ve X :3v, € Cand A, >0 with lim A,(v, —u) =v},
n—oo

in which the limit is taken in X, and the negative polar cone T'(C,u)~ C X* (the dual
space of X') at u € C'is given by

T(Cou)” ={veX*: (v,u)xx <Oforallu € T(C,u)}.

Now, we analyze the regularization and perturbation errors for the generic case of the
model (1.4) without the restriction « = (. The proof is motivated by [14]. Recall that
0 > 0 is the perturbation parameter of the perturbed data g.

Theorem 5.1. Let u* be the solution point of (1.4), ug be the “minimal” solution point of
(.1 with ., B > 0, and Rg(A*) be the range of A*. If —ug € —Fdiv A" + T'(X,ug)~ +
Rg(A*) holds, then we have

(5.4) [u* = ugl|72q) < (6 +B)2/8,
in which ¢ = max{1, |w||.2(q)} for some w € L*(Q).

Proof. As u* is the solution point of the model (1.4), we have

1 * ﬁ * *
S1Au" = g + 5 1072y + allDw|
(5.5) . 8
< 146 — gy + 5 b By + all Dl

13



Adding 3| Au* — Gol|72q) + Bl — 5|72 (o to both sides of (5.5) gives us
1 * ~ /8 * *
§||AU — ol 720 + §||U — 5720
1 * ~ 112 1 * 2 1 * 2
< EHAU = 9ollz2(0) + §||AU0 = 9ll720) — §||AU =972
n p

(5.6) 2
= (Au" = go, 9 — §o) + Blug, ug — u*) + a(||Dug|| — [[Du"|))

Il = ugl1Ze0) + SluGlZ0) = Sl l1Z2 @) + ll Dugll = | Durl)

= (Au” = go, g — go) + (Au” = Jo, 90 — Jo)
+ Blug, ug — u*) + a([|[ Dug|| — [[Du])

= (Au™ = go, 9 — go) + B(ug, up — u*) + (|| Dug || — || Du™|)),
where (Au* — go, go — Go) = 0 as Jo is the projection of gy on range A(X) and gy = Aug.
By the condition —ug € —gdiv A* + T'(X,u5)” + Rg(A"), there exists w € L?(Q) and
n € T(X,ug)~ such that
«
B
Then, it yields from (5.6) and (5.7) that

5.7 uy = —div A* —n+ A*w.

1 * ~ /B * *
§HAU —90||2L2(Q) +§||U —uo||2L2(Q)

(5.8) < (Au” = o, 9 — go) + BA™w, ug — u") a2 + B0, v — ug)a x
+ (A, Vu' = Vug) pae ama + ([ Dug| — [[Du™]])
< (0 + Bllwll L2 @)1 Av” = Goll 2 (),
where (n,u* — ug) < 0as (u* —uj) € T(X,ug), and (A*, Vu* — Vug) pa pa +
[|Dugll — ||Du*|| < 0 by (5.3). Thus, the result (5.4) is followed by (5.8). O

5.2 Discretization and Iteration Errors of Algorithm 1

Next, we estimate the finite element discretization and iteration errors for Algorithm 1.
Recall the definition of the Lipschitz space Lip(y, L2(2)) with 0 < v < 1in [15]. Tt
consists of all functions v € L?(£2) such that

|v|Lip('y,L2(Q)) = igg{ti’yw(v,t)} < 09,

1/2 is called the first order modulus

where w(v,t) = sup),|< (Jolv(z +y) — v(z)|*dx)
of smoothness of v € L?(2). In the following theorem, the error of the finite element
solution of the model (1.4) in the two-dimensional case is estimated. Similar techniques

can be found in the proof of Theorem 3.2 in [36].

Theorem 5.2. Assume ) C R? and o, 3 > 0. Let u* € L*(Q) N BV () N Lip(y, L?(2))
for some 0 < v < 1 and u}, € S'(Ty) be the minimizers of (1.4) in L*(2) N BV () and
SY(Th), respectively. Then we have

B

(59 Sl = lia o) < B(up) — B?) < cla+ B+ (| AR/
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Proof. First, it follows from [42] that

uz —ullL2(0) < clu”|Lipy,L2 @))€
[ Znug — ugllr2(0) < clu’|Lipey,L22)h 7,

where u? represents the mollification of u* and Z,u: € S'(7y) is the nodal interpolation

of u?. Then it yields the following estimate

|Znuf — u*||lL2 ) < 1 Znul — ulllLz@) + ui — u*|lL2(@)

(5.10)
<c(h” +¢€7).

Further, because of [7, Lemma 10.1], we have
(5.11) ||VIhu:||L1(Q) < (14 ch/e + ce)||Du*|.

By the bounded property of the operator A in (1.1) and the fact that || Dul| and || Zpuc || 12 ()
are bounded provided that h < ce, together with (5.10) and (5.11), we have
(5.12)

E(TyuZ) = B(w") = ol VIuuZ |1y ) + 510zl o) + S 14T = gll72(0)

B

* * 1 *
—af[Du’[| - gHU %20 — §||AU — 9720

= af|VIul || p1q) — of [ Du*|| + g(l'hu: +u*, Thul — u*)

1
+ 3 (A(Tpul + u*) — 29, A(Tpul — u*))

— * 5 * * * *
< ca(he™ + o)|Dw || + SlITwuZ + w”llz2 o) | Tnul = w2

A * * * *
+ @HA(IM% ') =29/l 2@ Znuz — u"lr2(0)

< c(a(he™ +&) + (8 + [|A (A + ).

Because v}, is the minimizer of E(-) in S'(7},) and the energy functional E(-) in (1.4)
is B-strongly convex, it follows from (5.12) that

ﬂ * * (12 * % » .
S lUp — U < E(u}) — BE(u*) < E(Zput) — E(u
(5.13) 5 Il 172(0) < Eluy,) — E(u") < E(ZpuZ) — E(u”)
<clathe™ +e) + (B+ [ AN(AT +&7)).
Therefore, the result (5.9) is derived by setting ¢ = A/(0+1) in (5.13). L)

Remark 5.1. Together with Theorems 5.1 and 5.2, we have

(0 Jrﬁﬁ)2 CEs 5ﬁ+ 1] hv/(“/ﬂ))’

where ug is the minimal solution point of (5.1) in L*>(2) N BV (Q) and uj, is the solution

G149 lh — w3 < o

point of (1.4) in the finite element space S*(Ty,). Hence, in (5.14), the regularization, per-
turbation and discretization errors are estimated all together in terms of the regularization

parameters o and (3, perturbation parameter § and mesh size h.
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Based on Remark 4.1, Theorem 4.1 or Theorem 4.3, we obtain that the sequence
{u}*'} generated by Algorithm 1 converges to the minimizer of the problem (1.4) in
SY(7p) with a rate of O(5). The following theorem summarizes the convergence and

the error estimate simultaneously.

Theorem 5.3 (Convergence and Error Analysis). Let pj = (uj;p;) be a saddle-point of
(1.8) with 3 > 0 and the sequence {p; ™' = (uh *1; pN 1)} be generated by Algorithm
1. Then the sequence {uj **} converges to the minimizer of the problem (1.4) in S*(T),

and we have

X TR 41 ¢
(5.15) e e AN

Proof. According to Theorem 4.1, the sequence {— > ||uh —uptt2, (@)} s bounded.
Then, together with the relationship 7, ~ O( Bn) from Remark 4.1, the result (5.15) is
proved. Alternatively, the estimate (5.15) can be obtained from Theorem 4.3. Indeed,
choosing pj, = pj in (4.24), together with (2.2) and (4.25), we immediately obtain

N+1 _ 2 042
Jup T = ujll720) < Qoontalleh — el
which implies (5.15) because of 73+ = %% = 2§ and 7, ~ O([%n) as delineated in
n+1 n 0
Remark 4.1. O

Now, with Theorems 5.2 and 5.3, we are ready to estimate the discretization and iter-
ation errors for the sequence generated by Algorithm 1. The result is summarized in the

following theorem.

Theorem 5.4. Assume Q C R o,3 > 0and 0 < v < 1. Letu* € L2(Q) N BV (Q) N
Lip(v, L?(2)) be the minimizer of the energy functional E(-) in (1.4), and uN+1 € SYThn)
be generated by Algorithm 1. Then we have

1 (a+B+Al)
N+1 %2 (v+1
(5.16) ([, u|z2 ) < c(ﬁgN2 + 5 B/ )),
Proof. The assertion (5.16) is an immediate conclusion of Theorems 5.2 and 5.3, and the
following inequality:

g 2(]|up ™~

—u||fa ) < upllZa () + llup = w72 ().

O

Remark 5.2. As mentioned, the schemes (4.1)-(4.2) are the finite difference in time and
finite element discretization in space of the L? gradient flow (4.3)-(4.4) of (1.5). Therefore,
the estimate in Theorem 5.4 can also be viewed as an error estimate on u in both the time
and space for the evolution systems (4.3)-(4.4). Hence, for Algorithm I, we estimate both
the finite element discretization error and the iteration error of the accelerated primal-dual
method in Theorem 5.4. This is something new and it seems not achievable for the methods
in[12, 36].
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5.3 Further Analysis

Our analysis above can be further consolidated to analyze the dependence of h for the
coefficients of the estimates (5.15) and (5.16). The results are summarized in the following

theorem. Recall the condition on the initial parameters 7y and o in Algorithm 1.

Theorem 5.5. Assume Q C R?, o, > 0and 0 < v < 1. Letu* € L*(2) N BV (Q) N
Lip(v, L*(Q)) and u} € S'(Ty) be the minimizers of (1.4) in L*(Q)NBV (Q) and S*(Ty),

respectively; and uN+1 € SY(Th) be generated by Algorithm 1. For Algorithm 1, if the con-
18IAPT _ 1y7)2q2 1
70 go

dition of the initial parameters Ty and oy is slightly changed to r -
for some r € (0,1), then it holds that

N+1

%112 1 * 02 a2 !
up, ™ —uplliz () < (;Huh—uhHLzm 72 7 o7, ph”LZ(Q))TNH <1+ )BQN2
0

Further, with the estimate in Theorem 5.2, we have

a® 1 (a+ B+ Al
N+1 +1
||uh — U HL2(Q) < C((l + h2)B2N2 + ﬁ ]'LPY/(’Y ))

Proof. The first assertion follows from Remark 2.1 and (5.15) immediately. Moreover,
with the estimate (5.9) in Theorem 5.2, we have

lup ™ = w* N 720y < 200y ™ = whllEa ) + luh = ull7aq)
2
((1_‘_7) 1 + (a+ B+ ||A||)h7/(w+1))
h2’ B2N2 B ’
which implies the second assertion. O

Finally, with Theorems 5.1 and 5.5, we easily have the following all-in-one estimate
in terms of both the regularization and perturbation errors of the model (1.4), and the dis-
cretization and iteration errors of Algorithm 1.

Theorem 5.6. Assume Q) C R%, o, 3> 0and0 < v < 1. Let ug be the minimal solution

point of (5.1), and uN+1 € SY(Ty) be generated by Algorithm 1. For Algorithm 1, if

_ 2
the condition of the initial parameters 1o and o is slightly changed to r - % =

|\V||2a2;—2f0r some 1 € (0, 1), then we have

a2, 1 + 6+ A 5+ )3
S17) [up ™ =5 320y < o (1435 >52N2+(a 5 ” ”)W”*%%).

Proof. 1t follows from Theorems 5.1 and 5.5 that

lun ™ = ugl 2y < 2(up T = w||Fagq) + 0 = ugll7agq)
o? 1 A 1) 2
<(1+ “ 4 (et BHIAD o/ O+ B )
B2N2 B B
which is the assertion (5.17). ]
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Remark 5.3. For the special case where o = f3, it is easy to see that (5.17) reduces to

2001 (2a + || 4])) (64 )?
N+L _ %12 < o v/ (v+1)
it *t = wgllEeqy < e((1+ 55) —ps + oA OF 4 ),

«
which can be regarded as a generalized estimate of Theorem 4.5 in [14] with addition-

al considerations of the discretization error of the model (1.4) and the iteration error of
Algorithm 1.

6 Numerical Results

In this section, we test some examples and numerically show the efficiency of Algorithm
1, by comparison with some existing methods of the same primal-dual kind. We test the
Fredholm integral equations of the first kind in one and two dimensions. Such an integral
equation arises from a variety of practical applications in, e.g., remote sensing, indirect
measurement, identification of distributed parameters. We refer to [21, 28, 39, 41, 43] for
more discussions.

All our codes were written in C++ based on the finite element library AFEPack' and
the numerical experiments were run on a Linux desktop with 15-4570s Intel 2.9GHz pro-
cessor and 8GB memory. The stopping criterion for implementing all the algorithms is

™ — e

6.1) @) <104,

gyl 22

and the numerical accuracy is measured by the L? error defined as

(6.2) L2err := |lup — uj|22(q)-

6.1 Algorithms to be Compared

To compare with Algorithm 1, we select several methods of the same primal-dual kind that
have been well studied in the literature. The following three primal-dual type methods are
tested.

e Linearized Primal-Dual Method (LPDM). The scheme (1.9) with X =1 —7A*A
was proposed in [36] for (1.2). Its application to (1.8) is equivalent to finding the
iterate ptt = (u T pp ) in SY(Tn) x Bi(L0(Tr)?) such that

(F(pp ™)+ M(py™ = p) o — ™) 20,V pp € SH(Ta) x Bi(L2(Tw)),

where F'(-) and p, are defined in (2.3), and

1 * .
I —A*A ad
(6.3) M= asvy
—aV 1
Note that the positive definiteness of M in (6.3) is ensured by the following condition
_ VP A[* +40a?| V] — o|| A
a 22| V|]? '

(6.4) T T

Ihttp://dsec.pku.edu.cn/~rli/source_code/AFEPack.tar.gz
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e Primal-Dual Method Without Linearization (PDCG and PDGMRES). Instead of

linearizing the term %HAuh -9 H%2(Q in the uy,-subproblem, one can directly apply

the primal-dual method in [12] to solving (1.8): finding p}' ™' = (ut!;p}™!) in

SY(Tw) x B1(L%(Tr)?) such that
(F) + G — ) — 1) 2 0, ¥ pun € SU(Ta) x By (£2(Tr)),
where F'(-) and py, are defined in (2.3); and

G %I adiv '
—aV %I

The parameters 7 and o are restricted as
(6.5) T <7#:=5/(a|V])

to ensure the positive definiteness of G and thus the convergence of the scheme. Also,
for this method, the uj-subproblem requires solving

1
(6.6) (T( uptt — ) + AT (Aupt = g) + Bup T ) + a(ph T, V) =0,

for any u;, € S'(7;,). We apply the standard conjugate gradient (CG) and the gener-
alized minimum residual (GMRES) in [27] to this subproblem; and denote them by
“PDCG” and “PDGMRES?”, respectively.

e Primal-Dual-Dual Method (PDDM). To avoid solving the linear algebra equation
generated by the uy,-subproblem in (6.6), an alternative approach proposed in [12,
Section 6.3.1] is to additionally dualize the data fidelity term in (1.8). The resulting
saddle-point reformulation of (1.4) is

(Auh - quh) - %thH%Z(Q) + g“uh”%g(ﬂ)

inf sup )
O wesim,, eco(7i)" +a/ Vuy, - p dz — I(pn)
an €S (Th) &

where uy, is the primal variable and both p, and ¢;, are dual variables (hence, the
name “primal-dual-dual” is used). Then solving (6.7) amounts to finding ,u”Jrl =
(up s pi gt in SY(Tr) x Bi(L0(Th)4) x S'(Th) such that

(PG + Qs =) =) 2 0. ¥ an € 81 (To)x By (£0(To)") <8 (Ta)

where
Uup, Bup, — adivpy, + A*qp %I adiv. —A*
pr=|pn|, Flpn) = —aVuy , Q= |-aV 2ZI 0
an qn — Aup +g -A 0 =2

Thus, the primal-dual scheme in [12] can be applied. Note that if the matrix form
operator () defined above is guaranteed to be symmetric and positive definite, the
convergence of the scheme is ensured. This requires the condition

o
(6.8) r<rhi= \/ .
22| VII* + 1 Al1?)
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6.2 Numerical Comparisons

Below we list the values of parameters for the algorithms to be tested.

e Algorithm 1: parameters 7,,, 0y, 8,, are updated by (3.2);
e LPDM: 7 = 0.957*, where 7* is given by (6.4);

e PDCG and PDGMRES: 7 = 0.957#, where 77 is given by (6.5), with an accuracy
of 1.0 x 1076 for the CG and GMRES procedures in the 1;,-subproblem of (6.6);

e PDDM: 7 = 0.957%, where 77 is given by (6.8).

The accuracy for the internal iterations of PDCG and PDGMRES is chosen as 1075;
because it is observed in our experiments that lower accuracy may lead to divergence or
very slow convergence, while higher accuracy can hardly improve the performance. In the
numerical implementations of the above mentioned algorithms, we take the initial iterate as
u?L = gp, where gy, is the finite element discretization of function g(z) with noise; pg and
q? are zero functions.

For the first example, the linear operator A and functional g in (1.4) are given as below.

Example 6.1. Consider the numerical solution to the following Fredholm integral equation

of the first kind in one dimension:

1 1 a2
69) Aule) = / e T u(e)de = g(a),

where 1 = 0.05 and g is chosen as g :== Au™* with

() 1, z€1[0.2,0.4]U]0.6,0.8],
uw*(x) =
0, otherwise.

The problem (6.9) is ill-posed, and we utilize the minimization model (1.4) with L?2-
TV regularization terms to approximate its solution. The function g(x«) on the right-hand-
side of (6.9) is added by some random noise 0||g||2(o)randn(z), where the values of
randn(x) is sampled from the standard normal distribution, and 6 > 0 is the noise level
parameter. The finite element mesh size over [0, 1] is taken to be 0.01, over which the
condition number of the corresponding discretized matrix of A*A is 1.1883 x 10°. With
our choice of the kernel function in (6.9) and the finite element discretization mesh, we have
|| A]|? = 0.0098 and 1/||V|| = 3.0 x 10~3. For Algorithm 1, the initial parameters 79 = 2.0
and oy = 0.1 are taken, 7,,, 0,, and 6,, are updated by (3.2); for LPDM, PDCG/PDGMRES
and PDDM, we fix o = 0.03, and thus the values of 7 are 0.9822544, 0.987269, 0.6002106,
respectively.

We first fix the regularization parameters in (1.4) as & = 3 = 5.0 x 10~*, and imple-
ment Algorithm 1 with the aforementioned settings. The experimental results are reported
in Table 1, in which the iteration numbers (“/N”’), CPU times in seconds (“CPU(s)”) and
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Table 1: Comparison of Algorithm 1, LPDM, PDCG, PDGMRES and PDDM for Example
6.1.

5 = 20% 5= 10% 5 =5% §=1%
N [CPUGs)| L2err [ N [CPU(s)[ L2err | N [CPU(s)[ L2err | N [CPUs) | L2err
Algorithm 1 || 383 | 044 [0.0577[354] 041 [0.0329]362] 042 [0.0199[350[ 041 [0.0127
LPDM 610 | 0.72 |0.0571|555] 0.65 |0.0335|587| 068 |0.0216|618] 072 [0.0143
PDCG 613 | 074 |0.0571|556| 0.67 |0.0335|588] 072 [0.0216]|617| 074 |0.0144
PDGMRES || 612 | 0.75 |0.0571]556| 0.68 |0.0335[588] 0.72 [0.0216]617] 0.75 |0.0143
PDDM 631 | 0.83 |0.0603|670] 0.88 [0.0340[710] 093 [0.0247|804| 1.07 |0.0209

Table 2: Iteration numbers N, computing time in seconds and L? errors by Algorithm 1 for
Example 6.1 with different parameters.

5 = 20% 5 =10% 5 =5% §=1%

(a, B) N [CPU(s)| L2err | N [CPU(s)[ L2err | N [CPU(s)| L2err | N [CPU(s) [ L2err
(5,5) x 10-4 [[ 383 [ 045 [0.0577]354] 0.41 [0.0329]362] 0.42 [0.0199]350[ 0.40 [0.0127
(5,4) x 10=4 [[ 360 | 0.43 [0.0580]328] 0.39 [0.0324]356| 0.43 [0.0196330| 0.39 [0.0120
(5,2) x 10=4 [[ 322 | 0.37 [0.0582]324] 0.37 [0.0323[336| 0.39 [0.0187[308| 0.36 [0.0114
(5,1) x 10-% [[ 312 | 0.36 [0.0581]330] 0.39 [0.0325[363| 0.42 [0.0201]301[ 035 [0.0112
(5,0.5) x 10-4|[ 312 [ 036 [0.0581]328] 0.38 [0.0325]362 0.42 [0.0201]300[ 0.35 [0.0112
(5,0.2) x 10-4|[ 311 | 036 [0.0581]327] 0.38 [0.0325]361] 0.42 [0.0202[301[ 035 [0.0112
(5,0.1) x 10-4|[ 311 | 036 [0.0581]327] 0.38 [0.0325]361] 0.43 [0.0202[301[ 035 [0.0112

the L? errors (“L2err”) defined in (6.2) are compared for Example 6.1 with noise level-
sas d = 20%,10%,5% and 1%, respectively. According to this table, we observe that
Algorithm 1 outperforms other algorithms of the same kind significantly in terms of both
iteration number and CUP time, for achieving almost the same accuracy. For all results,
the L? errors of the numerical solutions decrease with respect to noise levels. In Figure 1,
we plot the graphs of v}, Auj, g5 and the numerical solution uhN generated by Algorithm
1, where u; and gy, are the finite element approximation of functions ©* and g in Example
6.1, respectively. We see that the exact solution of Example 6.1 is accurately recovered;
and thus the effectiveness of the model (1.4) and the efficiency of Algorithm 1 are well
verified. We further demonstrate the convergence rate of Algorithm 1 and LPDM in terms
of [|up —uj |72 (g with respect to N in Figure 2.

Finally, we also test the sensitivity of Algorithm 1’s numerical performance with respect
to the parameters o and 3 by Example 6.1. For succinctness, we fix o as 5.0 x 10~* and
choose varying values from 0.1 x 10~ to 5.0 x 10~ for /3, and list the numerical results in
Table 2. It is observed from Table 2 that Algorithm 1 is generally robust for various choices
of o and 3, and values of the same scale are especially preferred.

For the second example, the linear operator A and functional g in (1.4) are given as

below.

Example 6.2. Let 2 = (0,1)? and B(zo) = {z € Q: |z — xo| < 0.2, 2o = (0.5,0.5)},
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Figure 1: Graphs of u}, Auj}, g and the numerical solution u}Y of Example 6.1 for dif-

ferent noise levels by Algorithm 1. (u}: exact solution; g;: data with noise)
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Figure 2: Convergence rate measured by ||uhN

Example 6.1.
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u* = ip(y,) be the characteristic function of B(xo) and g be chosen as g := Au* with

(6.10) Au(z) = 273772 /Q e

where n = 0.05.
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Figure 3: Triangular mesh over (2 and the graphs of u} and Av; for Example 6.2.

The domain © = (0, 1)? is partitioned by EasyMesh? as the regular triangular mesh
with 1046 nodes and 1990 elements shown in Figure 3(a). The graphs of u; and Auj are
plotted in Figures 3(b) and 3(c), respectively, where u; is the finite element approximation
of the function v* in Example 6.2. Accordingly, the condition number of the discretized
matrix of A*A in (6.10) is 5.4031 x 10'°. The function g(z) in (6.10) is disturbed by
some random noise 0||g| ;2 (o)randn(z), where randn(x) is the standard normal distri-
bution over the finite element mesh and ¢ is the noise level parameter. Note that for the
kernel function and finite element mesh for Example 6.2, we have ||A[? = 0.002 and
1/||V|| = 3.5 x 10~3. For Algorithm 1, the initial parameters 7o = 1.7 and og = 0.05 are
taken, 7,,, 0, and 0,, are updated by (3.2); for LPDM, PDCG/PDGMRES and PDDM, we
fix o = 0.025 and thus the values of 7 are 1.05029, 1.05146, 0.709538, respectively.

Table 3: Comparison of Algorithm 1, LPDM, PDCG, PDGMRES and PDDM for Example
6.2.

5 = 20% 5 =10% 5 =5% §=1%
N [CPUGs)[ L2err | N [CPUGs)[ L2err | N [CPUGs) [ L2err | N [CPUGs) | L2err
Algorithm 1 ][ 290 | 5.90 [0.0291]266] 549 [0.0153[254] 5.17 [0.0080 [221| 4.60 [0.0065
LPDM 360 | 7.66 |0.0304 383 7.93 [0.0172[385| 8.02 [0.0093[375] 7.69 |0.0057
PDCG 370 | 20.77 [0.0307 [394] 21.69 |0.0175[396 | 21.83 [0.0095[382 ] 21.15 |0.0057
PDGMRES || 374 | 21.93 [0.0297[394 | 22.83 [0.0163|385] 22.25 [0.0088 |355| 20.34 |0.0058
PDDM 474 | 1164 [0.0313[489| 12.02 [0.0191]525] 12.83 [0.0106 557 | 14.20 |0.0058

Again, we first fix the regularization parameters in (1.4) as o = 8 = 5.0 x 10~%, and
implement Algorithm 1 with the aforementioned settings. The experimental results are re-
ported in Table 3. These results show again that Algorithm 1 outperforms other algorithms

2http://web.mit.edu/easymesh_vl.4/www/easymesh.html
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Table 4: Iteration numbers N, computing time in seconds and L? errors by Algorithm 1 for
Example 6.2 with different parameters.
§=20% §=10% 5=5% 5=1%

(a, B) N [CPU(s)| L2err | N [CPUGs)[ L2err | N [CPU(s)| L2err | N [CPU(s) [ L2err
(5,5) x 107% || 290 | 6.10 |0.0291|266| 5.64 |0.0153[254| 5.24 [0.0080|221| 4.56 |0.0065
(5,4) x 107% || 291 | 5.93 |0.0286|263| 547 |0.0146|244| 5.00 |0.0078|215| 4.43 |0.0066
(5,2
(5,1

,2) x 1074 || 297 | 6.08 |0.0277(248| 5.06 |0.0138|224| 4.67 |0.0077|208| 4.31 [0.0067
,1) x 1074 || 287 | 5.87 |0.0274(242| 4.95 [0.0134|231| 4.78 |0.0077|210| 4.46 |0.0066
(5,0.5) x 10~%|| 287 | 5.85 |0.0272|240| 4.89 |0.0132(227| 4.79 |0.0077|209| 4.35 |0.0067
5,0.2) x 104|| 286 | 5.88 |0.0271(239| 4.88 |0.0131|225| 4.66 |0.0077|207| 4.27 |0.0067
(5,0.2)
5,0.1) x 107%|| 285 | 5.93 |0.0271(238| 4.86 |0.0131|224| 4.69 |0.0077[207| 4.40 |0.0067
(5,0.1)

for Example 6.2 as well. In Figure 4, the graphs of g;, (the finite element approximation
of g) and the corresponding numerical solutions u} generated by Algorithm 1 are plotted
for Example 6.2 with different noise levels. We see that the exact solution of Example 6.2
can be approximated accurately. Hence, the effectiveness of the model (1.4) and the effi-
ciency of Algorithm 1 are verified again. In Figure 5, the convergence rate measured by
lul — s ||2L2(Q) with respect to NV is plotted for Algorithm 1 and LPDM. Last, we test the
sensitivity of Algorithm 1’s numerical performance with respect to the parameters « and 3
by Example 6.2, and report the numerical results in Table 4. Similar conclusions to Table 2
are observed.

7 Conclusions

We considered a model with the L? and total variational regularization terms for linear in-
verse problems; and further reformulated the regularized model as a saddle-point problem.
Applying the finite element discretization to the primal and dual variables of the reformu-
lated saddle-point problem, we proposed a primal-dual iterative scheme to solve the result-
ing discretized saddle-point problem. The strong convexity of the discretized saddle-point
problem enabled us to employ some rules proposed by Chambolle and Pock for dynamical-
ly adjusting the involved parameters so as to derive a worst-case O(ﬁ) convergence rate
measured by iteration complexity for the proposed iterative scheme. Preliminary numerical
results show that the proposed primal-dual iterative scheme is very efficient. We also es-
timated the regularization and perturbation errors for the regularized model, and the finite
element discretization and iteration errors for the proposed primal-dual scheme.
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