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1 Introduction

In the study of mathematical finance, geometric Brownian motion (GBM for short) is used

to model stock prices in the Black-Scholes model and is the most widely used model of stock

price behavior. Let (Zt) be the solution of following stochastic differential equation (SDE for

short):

dZt = μZtdt+ σZtdBt (1.1)

with Z0 = a > 0, where μ, σ are constants, and (Bt) is a one-dimensional Brownian motion. But

GBM is not a completely realistic model, and there are several kinds of modifications of (1.1)

to make it more realistic. For instance, the local volatility model and the stochastic volatility

model are well-studied models in place of GBM (see [3]).

In this work, we shall study another type of modification. Consider the following regime-

switching diffusion process (Xt,Λt)t≥0, where Xt satisfies the SDE:

dXt = μΛt
Xtdt+ σΛt

XtdBt (1.2)

with X0 = x0 > 0, μ : S → R, σ : S → (0,+∞), S = {0, 1, · · · , N}. Here (Λt) is a continuous

time Markov chain on the finite state space S with Q-matrix (qij)i,j∈S . Throughout this work,
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we assume that (qij)i,j∈S is irreducible and the process (Λt) is independent of the Brownian

motion (Bt). We call (Xt)t≥0 a regime-switching geometric Brownian motion (SGBM for short)

in the state space S. The process (Xt) defined by (1.2) can be viewed as a geometric Brownian

motion living in a random environment which is characterized by a continuous time Markov

chain (Λt). When the process (Λt) takes different value in S, it means that the environment

is in different state. For example, if one uses the process (1.2) to model a stock price process

living in a market which is divided into two kinds of different periods: “bull” market and “bear”

market, one can take S = {0, 1} and use the state 0 to represent the “bull” market, and the

state 1 to represent the “bear” market. The stock market oscillates randomly between the bull

market and the bear market, and it is conceivable that the drift μ in (1.1) in a bull market

takes different value from that in a bear market. Therefore, it is more practical to use (1.2)

instead of (1.1) to model stock price. Refer to [5, 8] for more background on this model. Refer

to [6, 9] and references therein for its application in option pricing.

The existence, uniqueness and non-explosiveness of (Xt,Λt) are guaranteed by the general

theory of regime-switching diffusion processes (see [19, 28]). In particular, according to [28,

Lemma 7.1], similar to the geometric Brownian motion without switching, it still holds that

P(Xt �= 0, ∀ t ≥ 0) = 1, if X0 = x0 > 0. (1.3)

The process (Xt) can also be expressed explicitly in the following form:

Xt = x0 exp
[ ∫ t

0

(
μΛs

−

1

2
σ
2
Λs

)
ds+

∫ t

0

σΛs
dBs

]
, t > 0. (1.4)

In this work, we shall first study the ergodic property and the long time behavior of the S-

GBM. Although the SGBM has been widely used in mathematical finance, its ergodic properties

have not been well studied yet. The SGBM is a simple example of regime-switching diffusion

processes. It has been known that the ergodic properties of regime-switching diffusion process-

es are more complicated than that of diffusion processes (see, for instance, [15]). Our present

work presents quantitatively how the coefficients of diffusion process and the switching rate of

environment work together to impact the recurrent property of (Xt,Λt). Moreover, we refer

the readers to [2, 4, 13, 15, 17–22, 27] and references therein for the recent study on the recur-

rence, ergodicity, strong ergodicity, stability, and numerical approximation of regime-switching

diffusion processes in a more general framework.

Let (πi)i∈S be the invariant probability measure of (Λt). Set

Δi = μi −
1

2
σ
2
i , λi(p) = pμi +

1

2
p(p− 1)σ2

i , p > 0, i ∈ S,

Ap = Q+ diag(λ0(p), · · · , λN (p)),

ηp = − max
γ∈Spec(Ap)

Re γ,

(1.5)

where diag(ξ0, · · · , ξN ) denotes the diagonal matrix generated by the vector (ξ0, · · · , ξN ), and

Spec(Ap) stands for the spectrum of Ap. Our main results on the long time behavior and

recurrence of SGBM are as follows.

Theorem 1.1 (i) If
∑
i∈S

πiΔi > 0, then lim
t→∞

Xt = +∞ a.s. If
∑
i∈S

πiΔi < 0, then lim
t→∞

Xt =

0 a.s.
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(ii) For p > 0, it holds

lim
t→∞

lnE[Xp
t ]

t
= −ηp, (1.6)

where ηp is defined by (1.5).

Theorem 1.2 (i) If
∑
i∈S

πiΔi �= 0, then (Xt,Λt) is transient.

(ii) If
∑
i∈S

πiΔi = 0, then (Xt,Λt) is null recurrent.

The argument of Theorem 1.2 relies heavily on the Fredholm alternative. We recall some

basic facts on the Fredholm alternative. Recall that Q = (qij) denotes the Q-matrix of the

Markov chain (Λt). The equationQu = v is solvable if and only if
∑
i∈S

πivi = 0, in which case u =

Q
−1

v is unique up to the addition of a multiple of the vector 1. Moreover,
∑
i∈S

πivi(Q
−1

v)(i) ≤ 0

for all v satisfying
∑
i∈S

πivi = 0 and equality holds if and only if v· ≡ 0.

Secondly, we provide some quantitative description on the SGBM. The aim of this part is

twofold: One is due to the requirement of the application of the SGBM; the other is that we

want to find the complexity of the regime-switching diffusion processes via this simple linear

model. In this part, we focus on the case that S = {0, 1}. Indeed, the formulas obtained in this

part show that although the model of SGBM is simple, its quantitative properties are rather

complicated. Here, we calculate the moments of lnXt and estimate the first passage probability

of Xt. We give out the first and second order moments of lnXt, and every n-th order moment

of lnXt can be calculated by our method. Then we provide an estimate of the first passage

probability of the process (Xt). The first passage probability plays an important role in many

research subjects such as in the option pricing and credit risk. Although the SGBM is rather

simple from the point of view of stochastic differential equation, the calculation of its moments

and its first passage probability is far from trivial. We need to overcome some new difficulties

which do not occur in the study of the first passage probability of diffusion processes. Moreover,

our results are analytic, and they are not expressed in terms of the Laplace transform. In [7, 10]

the distribution of the first passage time of SGBM in terms of its Laplace transform was studied;

in [11] numerical approximation of the first passage probability for regime-switching processes

was studied.

This work is organized as follows. In Section 2, we first study the long time behavior and

recurrent properties of (Xt,Λt) in a finite state space. The method depends on the criteria

established in [18] and [14]. The proofs of Theorems 1.1–1.2 are provided in this section. In

Section 3, we calculate the moments of lnXt when (Λt) is a Markov chain on a two-state

space S = {0, 1}. The reason to focus on two-state space is that more explicit formula could

be derived in this case. There we provide explicit formula for the first and second moment

of lnXt, and all its higher moments can be calculated using the same method. Then we

provide some upper and lower bounds on the probability P(τ
(x)
a > T ) when σ0 = σ1, where

τ
(x)
a = inf{t > 0; Xt = a,X0 = x} for 0 < a < x = X0. Via Slepian’s lemma, we can transform

the study of the first passage probability in the case σ0 �= σ1 into the case σ0 = σ1, and this

can provide us an upper estimate of P(τ
(x)
a > T ) when σ0 �= σ1.
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2 Long Time Behavior and Recurrence of SGBM

In this section, we shall study the long time behavior of (Xt,Λt) and provide a complete

characterization of the recurrent property of (Xt,Λt) by the method of Lyapunov functions.

Let us recall some basic definitions. For x ∈ (0,∞), i ∈ S, define

τx,i = inf{t ≥ 0; (Xt,Λt) = (x, i)}.

For every x, y ∈ (0,∞) and i, j ∈ S, if Px,i(τy,j < ∞) = 1, then the process (Xt,Λt) is called

recurrent; if Px,i(τy,j < ∞) < 1, then it is called transient; if Ex,i[τy,j ] < ∞, then it is called

positive recurrent. If (Xt,Λt) is recurrent, but not positive recurrent, it is called null recurrent.

The process (Xt,Λt) is called ergodic, if there exists a probability measure π̃ on (0,∞)×S such

that for every x ∈ (0,∞) and i ∈ S,

‖Pt((x, i), ·) − π̃‖var → 0, as t → ∞.

Here ‖ · ‖var denotes the total variation norm. Moreover, if there exist constants α, C(x, i) > 0

such that for every (x, i) ∈ (0,∞)× S, and t > 0,

‖Pt((x, i), ·) − π̃‖var ≤ C(x, i)e−αt
, as t → ∞,

then the process (Xt,Λt) is called exponentially ergodic. These are usual definitions of recur-

rence for regime-switching processes, and we refer the reader to [28, Chapter 3] for more related

discussion.

Let

L
(i)
f(x) =

1

2
σ
2
i x

2 d
2
f

dx2
+ μix

df

dx
, i ∈ S, f ∈ C

2(R).

For every function g on S, define the operator

Qg(i) =
∑
j �=i

qij(gj − gi), i ∈ S.

Define

A f(x, i) = L
(i)
f(·, i)(x) +Qf(x, ·)(i) (2.1)

for f ∈ C
2(R× S). Then A is the infinitesimal generator of (Xt,Λt) (see [24, Chapter II]).

Proof of Theorem 1.1 (i) As Xt > 0, t ≥ 0 almost surely, we set Yt = lnXt and apply

Itô’s formula to yield that

dYt = d lnXt = ΔΛt
dt+ σΛt

dBt, Y0 = lnx0, (2.2)

where Δi is given by (1.5). By the ergodic theorem of Markov chains, we obtain that

lim
t→∞

lnXt

t
= lim

t→∞
1

t

∫ t

0

ΔΛs
ds =

∑
i∈S

πiΔi a.s.,

which yields immediately the assertion (i) of Theorem 1.1.

(ii) To make the idea clear, we provide a concise construction of the probability space. Let

(Ω1,F
1
,P1) be a probability space such that (Bt) is a Brownian motion with respect to a
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given filtration (Ft)t≥0 on (Ω1,F
1
,P1). Let (Ω2,F

2
,P2) be a probability space, and (Λt) be

a Markov chain on it with the Q-matrix (qij)i,j∈S . Define

(Ω,F ,P) = (Ω1 × Ω2,F
1
× F

2
,P1 × P2).

Then in the following we let (Xt) be a solution of (1.2) with respect to (Bt) and (Λt) defined

on the probability measure (Ω,F ,P). Let EP1 denote taking expectation with respect to P1

and similarly define E = EP = EP1×P2 .

According to Itô’s formula, for p > 0,

dXp
t =

(
pμΛt

+
1

2
p(p− 1)σ2

Λt

)
X

p
t dt+ pσΛt

X
p
t dBt.

For any 0 ≤ s < t,

X
p
t = X

p
s +

∫ t

s

(
pμΛr

+
1

2
p(p− 1)σ2

Λr

)
X

p
r dr +

∫ t

s

pσΛr
X

p
rdBr.

Hence

EP1X
p
t = EP1X

p
s +

∫ t

s

(
pμΛr

+
1

2
p(p− 1)σ2

Λr

)
EP1X

p
r dr. (2.3)

Fix time t > 0, and let τ1 < τ2 < · · · , τM be the jumping time of (Λt) during the period (0, t).

Set τM+1 = t, τ0 = 0. Then r �→ pμΛr
+ 1

2p(p − 1)σ2
Λr

is continuous during (τk, τk+1) for

k = 0, · · · ,M . Hence (2.3) implies that

dEP1X
p
r

dr
=

(
pμΛr

+
1

2
p(p− 1)σ2

Λr

)
EP1X

p
r , r ∈ (τk, τk+1),

and further

EP1X
p
τk+1− = EP1X

p
τk+

exp
(∫ τk+1

τk

pμΛr
+

1

2
p(p− 1)σ2

Λr
dr

)
(2.4)

for k = 0, · · · ,M . Due to the continuity of r �→ EP1X
p
r , we obtain that

EP1X
p
t = x

p
0 exp

(∫ t

0

(
pμΛr

+
1

2
p(p− 1)σ2

Λr

)
dr

)
,

and hence

EX
p
t = x

p
0 E exp

(∫ t

0

(
pμΛr

+
1

2
p(p− 1)σ2

Λr

)
dr

)
= x

p
0 E exp

(∫ t

0

λΛr
(p)dr

)
.

According to [1, Proposition 4.1], there exist constants 0 < C1(p) < C2(p) < ∞ such that

C1(p)e
−ηpt

≤ E exp
( ∫ t

0

λΛr
(p)dr

)
≤ C2(p)e

−ηpt.

Consequently,

lnxp
0 + lnC1(p)− ηpt ≤ lnEXp

t ≤ lnxp
0 + lnC2(p)− ηpt,

lim
t→∞

lnEXp
t

t
= −ηp,
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which is the desired conclusion.

Now we proceed to study the recurrent property of (Xt,Λt). Due to (1.3), Yt = lnXt is

well-defined for t ≥ 0 a.s. and satisfies the SDE (2.2). It is obvious that the recurrent property

of (Xt,Λt) is equivalent to that of (Yt,Λt). We shall use the Lyapunov method to justify the

recurrent property of (Yt,Λt).

Proof of Theorem 1.2 (i) We shall use the method of [18, Section 3]. Set h(x) = |x|
−2

and g(x) = |x|
−3 for |x| ≥ 1. Define

L̃
(i)
ρ(x) = Δiρ

′(x) +
1

2
σ
2
i ρ

′′(x), ρ ∈ C
∞(R), i ∈ S.

Then

L̃
(i)
h(x) =

(
− 2Δi

x

|x|
+

3σ2
i

|x|

)
g(x), |x| > 1.

Let us first consider the case
∑
i∈S

πiΔi > 0. As lim
x→+∞

−2Δi
x
|x| +

3σ2
i

|x| = −2Δi, there exist

ε > 0, r1 > 1 such that
∑
i∈S

πi(−2Δi + ε) < 0, and

−2Δi

x

|x|
+

3σ2
i

|x|
≤ −2Δi + ε, ∀x > r1.

According to the Fredholm alternative, there exists a constant κ > 0 and a vector (ξi)i∈S so

that

Qξ(i) = −κ+ 2Δi − ε, i ∈ S.

Setting f(x, i) = h(x) + ξig(x) for x > 0, we derive that

Ã f(x, i) = L̃
(i)
h(x) + ξiL̃

(i)
g(x) +Qξ(i)g(x)

≤

(
− 2Δi + ε+ ξi

L̃
(i)
g(x)

g(x)
+Qξ(i)

)
g(x)

=
(
− κ+ ξi

L̃
(i)
g(x)

g(x)

)
g(x), x > r1, i ∈ S.

Here the operator Ã denotes the generator of the process (Yt,Λt). As lim
x→+∞

L̃(i)g(x)
g(x) = 0, there

exists r2 > r1 > 1 so that

−κ+ ξi

L̃
(i)
g(x)

g(x)
< 0, x > r2, i ∈ S,

and x �→ h(x) + ξming(x) is a decreasing function on [r2,+∞), where ξmin = min
i∈S

ξi.

Take Y0 = y > r2 and Λ0 = i0 so that f(y, i0) < h(r2)+ξming(r2). Set τK = inf{t > 0; Yt =

K}, K > r2, τ = inf{t > 0; Yt = r2}. By Dynkin’s formula,

E[f(Yt∧τK∧τ ,Λt∧τK∧τ )] = f(y, i0) + E

∫ t∧τK∧τ

0

Ã f(Ys,Λs)ds ≤ f(y, i0).

Letting t → +∞, we get

E[f(K,ΛτK )1τ≥τK ] + E[f(r2,Λτ )1τ,τK ] ≤ f(y, i0),
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which yields further that

P(τ > τK) ≥
f(y, i0)− h(r2)− ξming(r2)

h(K) + ξming(K)− h(r2)− ξming(r2)
> 0, (2.5)

in the last step of which we have used the decreasing property of the function h(x) + ξming(x)

on [r2,+∞). Invoking the fact τK → +∞ as K ↑ +∞ a.s., (2.5) yields that

P(τ = +∞) > 0,

which implies that (Yt,Λt) is transient.

Analogously, we can prove that (Yt,Λt) is also transient when
∑
i∈S

πiΔi < 0 by using the

same Lyapunov function f(x, i) but studying its behavior on x < 0.

(ii) Now we consider the case
∑
i∈S

πiΔi = 0. We shall apply the technique used in [14]. Set

Θ = −

∑
i∈S

πi

(
Δi(Q

−1Δ)(i)− 1
2σ

2
i

)
and

f0(x) = ln |x|.

Then, Θ > 0 due to the Fredholm alternative, and Θf
′′
0 (x) < 0 for x �= 0 by direct calculation.

Define f1(x, i), f2(x, i) by

f1(x, i) = −(Q−1Δ)(i)f ′
0(x),

f2(x, i) = Q
−1

(
Δ·(Q

−1Δ)(·)−
1

2
σ
2
· +Θ

)
(i)f ′′

0 (x),

which are well-defined due to the fact
∑
i∈S

πiΔi = 0 and

∑
i∈S

πi

(
Δi(Q

−1Δ)(i)−
1

2
σ
2
i +Θ

)
= 0.

Take f(x, i) = f0(x) + f1(x, i) + f2(x, i) for |x| �= 0, i ∈ S. Then

Ã f(x, i) = Δif
′
0(x) + Δif

′
1(x, i) + Δif

′
2(x, i) +

1

2
σ
2
i f

′′
0 (x)

+
1

2
σ
2
i f

′′
1 (x, i) +

1

2
σ
2
i f

′′
2 (x, i) +Qf1(x, i) +Qf2(x, i)

= −Δi(Q
−1Δ)(i)f ′′

0 (x) +
1

2
σ
2
i f

′′
0 (x) + Δif

′
2(x, i)

+
1

2
σ
2
i f

′′
2 (x, i) +Qf2(x, i)

= Θf
′′
0 (x) −

1

2
σ
2
i (Q

−1Δ)(i)f ′′′
0 (x) + Δif

′
2(x, i) +

1

2
σ
2
i f

′′
2 (x, i).

Since f
′′
0 (x) → 0 as |x| → +∞, it is easy to see that there exists r3 > 0 such that

Ã f(x, i) ≤ 0, ∀ |x| > r3, i ∈ S.

Moreover, lim
|x|→∞

f(x, i) = lim
|x|→∞

f0(x)+f1(x, i)+f2(x, i) = +∞, which yields that (Yt,Λt), and

hence (Xt,Λt), is recurrent.
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Next, we shall show further that when
∑
i∈S

πiΔi = 0, (Xt,Λt), or equivalently (Yt,Λt), is

null recurrent. To this aim, we take 1 < q < p < 2 and set

h(x, i) = x
p + pξix

p−1
, g(x, i) = x

q + qξix
q−1

, x > 0, i ∈ S,

where ξi is determined by Qξ(i) = −Δi for each i ∈ S satisfying further ξi > 0, i ∈ S. Direct

calculation yields that

Ã h(x, i) =
(1
2
σ
2
i + ξi

)
p(p− 1)xp−2 +

1

2
p(p− 1)(p− 2)ξix

p−3
,

Ã g(x, i) =
(1
2
σ
2
i + ξi

)
q(q − 1)xq−2 +

1

2
q(q − 1)(q − 2)ξix

q−3

for x > 0, i ∈ S. As p, q ∈ (1, 2), it is easy to obtain that there exist constants r1,K > 0 such

that

Ã g(x, i) ≥ 0, 0 ≤ Ã h(x, i) ≤ K for x > r1, i ∈ S.

Let

u(x, i) = g(x, i)− C for x > 0,

where C > 0 satisfying u(r1, i) = g(r1, i)− C < 0 for all i ∈ S. Set

Rn =
min
i∈S

h(n, i)

max
i∈S

u(n, i)
.

Then it is obvious that lim
n→+∞

Rn = +∞. Denote D = (0, r1) and τD = inf{t > 0;Yt ∈ D}. Set

τm = inf{t > 0;Yt ≥ m}, then lim
m→+∞

τm = +∞ a.s. Taking Y0 = y > r1, Λ0 = i0 ∈ S so that

u(y, i0) > 0, Dynkin’s formula yields that

E[(h−Rmu)(YτD∧τm ,ΛτD∧τm)]−(h−Rmu)(y, i0) = E

∫ τD∧τm

0

Ã (h−Rmu)(Yr,Λr)dr

≤ KE[τD ∧ τm].

Since h(m, i)−Rmu(m, i) ≥ 0, and h(r1, i)−Rmu(r1, i) ≥ 0 for every i ∈ S and m large enough,

we obtain

E[τD ∧ τm] ≥
1

K
(Rmu(y, i0)− h(y, i0)). (2.6)

Letting m → +∞, (2.6) yields that

E[τD] = +∞.

Hence, (Yt,Λt) is not positive recurrent. However, we have shown (Yt,Λt) is recurrent. In all,

(Yt,Λt) is null recurrent. The proof of Theorem 1.2 is complete.

3 Some Quantitative Properties of SGBM

In this section, we shall exploit the quantitative properties of the process (Xt,Λt). Through-

out this section, we only consider the case that (Λt) is a Markov chain on S = {0, 1}. To

emphasize this fact, in this section we denote the Q-matrix of (Λt) by(
−λ0 λ0

λ1 −λ1

)
,

where λ0, λ1 are two positive constants. We calculate the moments of lnXt in Subsection 3.1,

and provide the estimate of the first passage probability of (Xt) in Subsection 3.2.
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3.1 Moments of lnXt

Let us introduce some notations used in the sequel. Assume that Λ0 = i for i = 0 or 1. Set

ζ1 = inf{t > 0; Λt = 1− i}, ζ2 = inf{t > ζ1; Λt = i}, · · · ,

ζ2k−1 = inf{t > ζ2k−2; Λt = 1− i}, ζ2k = inf{t > ζ2k−1; Λt = i}, k ≥ 2.

Let τk = ζk − ζk−1 for k ≥ 1 with ζ0 := 0, then (τk)k≥1 are mutually independent random

variables, and τ2k and τ2k−1 are both exponentially distributed with parameters λ1−i and λi,

respectively. Let α(t) and β(t) denote respectively the time spent by the process (Λt) at the

states Λ0 and 1−Λ0 up to the time t. Let N(t) be the total number of transition between state

0 and 1 happened during (0, t).

According to [16], the distribution of the sojourn time α(t) when Λ0 = 0 is

P(α(t) ∈ ds) = δt(s)e
−λ0t +

∞∑
k=1

[
λ
k
0λ

k−1
1

Γ(k)2
s
k−1(t− s)k−1e−λ0se−λ1(t−s)

+
λ
k
0λ

k
1

Γ(k)Γ(k + 1)
s
k(t− s)k−1e−λ0se−λ1(t−s)

]
ds, s ∈ [0, t]. (3.1)

Now we consider the geometric mean of the process (Xt). Let

Yt = ln
(
Xt

X0

)
=

∫ t

0

ΔΛs
ds+

∫ t

0

σΛs
dBs. (3.2)

Recall that Δ0 and Δ1 are defined by (1.5). Due to the independent increasing property of

Brownian motion, we can rewrite Yt in the form

Yt = Δ0α(t) + Δ1β(t) + σ0ξ(α(t)) + σ1η(β(t)), (3.3)

where ξ(u) and η(u) (for u > 0) are mutually independent normally distributed random vari-

ables with mean 0 and variance u, and ξ(u), η(u) are independent of the process (Λt).

Proposition 3.1 Assume Λ0 = 0. For t > 0, it holds

E[Yt] = (Δ0 −Δ1)E[α(t)] + tΔ1

= tΔ1 + (Δ0−Δ1)e
−λ1t

∞∑
k=1

{
λ
k
0λ

k−1
1 t

2k

Γ(k)2

∫ 1

0

u
k(1−u)k−1e(λ1−λ0)tudu

+
λ
k
0λ

k
1t

2k+1

Γ(k)Γ(k + 1)

∫ 1

0

u
k+1(1−u)k−1e(λ1−λ0)tudu

}
+(Δ0−Δ1)te

−λ0t (3.4)

and

E[Y 2
t ] = (Δ2

0t
2 + σ

2
0t)e

−λ0t

+

∞∑
k=1

λ
k
0λ

k−1
1 t

2k−1

Γ(k)2
e−λ1t

∫ 1

0

(t2(Δ0u+Δ1(1−u))2+σ
2
0tu+σ

2
1t(1−u))

· u
k−1(1−u)k−1e(λ1−λ0)tudu

+

∞∑
k=1

λ
k
0λ

k
1t

2k

Γ(k)Γ(k + 1)
e−λ1t

∫ 1

0

(t2(Δ0u+Δ1(1−u))2+σ
2
0tu+σ

2
1t(1−u))

· u
k(1−u)k−1e(λ1−λ0)tudu. (3.5)
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In particular, when λ0 = λ1,

E[Yt] = tΔ1 + (Δ0 −Δ1)
te−λ0t

2

[
cosh(λ0t) +

(
1 +

1

λ0t

)
sinh(λ0t)

]
,

E[Y 2
t ] = (Δ2

0t
2 + σ

2
0t)e

−λ0t

+ e−λ0t
{1

4
(Δ2

0 +Δ2
1)t

2
(cosh(λ0t)

λ0t
+ sinh(λ0t)−

sinh(λ0t)

(λ0t)2

)
+

1

2
(σ2

0 + σ
2
1)t

(
−

2

λ0t
+

cosh(λ0t)

(λ0t)2
+

sinh(λ0t)

(λ0t)2

)
+

1

2
Δ0Δ1t

2
(
cosh(λ0t) + sinh(λ0t)−

sinh(λ0t)

λ0t
−

cosh(λ0t)

λ0t
+

sinh(λ0t)

(λ0t)2

)
+

1

2
σ
2
1t

(
cosh(λ0t)−

sinh(λ0t)

λ0t

)
+

1

4
Δ2

1t
2
(
cosh(λ0t)−

sinh(λ0t)

λ0t

)
+

1

2
σ
2
0t

(
− 2 + cosh(λ0t) +

sinh(λ0t)

λ0t

)
+

1

4
Δ2

0t
2
(
− 4 + cosh(λ0t) +

3 sinh(λ0t)

λ0t

)}
.

Proof By the distribution of α(t), ξ(u), η(u), we get (3.4) by direct calculation. By the

formula (3.3), due to the independence of ξ(u) and η(u), we get

E[Y 2
t ] = E[Δ2

0α(t)
2 +Δ2

1β(t)
2 + 2Δ0Δ1α(t)β(t) + σ

2
0α(t) + σ

2
1β(t)].

Then we obtain (3.5) according to the distribution of α(t). Using the Taylor expansion of

functions cosh(x) and sinh(x) the formulas of E[Yt] and E[Y 2
t ] in the case λ0 = λ1 can be

obtained.

Using the same method, every n-th order moments of Yt can be calculated.

Proposition 3.2 Assume Λ0 = 0. Then

lim
t→∞

E[Yt]

t
=

λ1Δ0 + λ0Δ1

λ0 + λ1
(3.6)

and

lim
t→∞

E[Y 2
t ]

t2
=

(λ1Δ0 + λ0Δ1)
2

(λ0 + λ1)2
. (3.7)

Proof According to the results [25, Theorems 6–7], it holds that

lim
t→∞

E[β(t)]

t
=

λ0

λ0 + λ1
, lim

t→∞
Var[β(t)]

t
=

2λ0λ1

(λ0 + λ1)3
.

Hence we have

lim
t→∞

E[α(t)]

t
=

λ1

λ0 + λ1
, lim

t→∞
E[α(t)2]

t2
=

(
λ1

λ0 + λ1

)2

.

Then by the formula (3.3), we can get the desired results by direct calculation.

3.2 First passage probability of (Xt)

For fixed x > a > 0, let

τ
(x)
a = inf{t > 0; Xt = a,X0 = x}.
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What we are interested in is the probability

P(τ (x)a ≤ t) or P(τ (x)a > t).

Although the first passage probability is very useful, the calculating of it is very difficult.

Only for several simple cases, explicit formulas exist. For example, explicit formula exists for

one-dimensional Brownian motion and piecewise monotone functionals of Brownian motion (see

[26]). To deal with general diffusion processes, one has to rely on some numerical approximation

schemes. The regime-switching geometric Brownian motion provides us a simple example to

see the difference between the study of first passage probability for diffusion processes and

the study of the first passage probability for regime-switching diffusion processes. Below, one

can easily find that the switching of (Λt) causes new difficulty in calculating the first passage

probability.

In this subsection, we consider first the case σ0 = σ1 = σ > 0, then the case σ0 �= σ1. When

σ0 = σ1 = σ, one gets by (1.4) that

P(τ (x)a > t) = P

(
min
0≤r≤t

{σBr +Δ0α(r) + Δ1β(r) + ã} > 0
)
, (3.8)

where ã = − ln
(
a
x

)
> 0. In order to provide upper and lower bounds of P(τ

(x)
a > t), we

introduce two auxiliary processes depending on (Λt). To simplify the notation, we assume that

Δ0 ≤ Δ1. (3.9)

For fixed T > 0, let

g(t) = ã+Δ0α(t) + Δ1β(t),

gu(t) = ã+Δ1 min{t, β(T )}+Δ0(t− β(T ))1β(T )<t≤T ,

gl(t) = ã+Δ0 min{t, α(T )}+Δ1(t− α(T ))1α(T )<t≤T .

Then

gl(t) ≤ g(t) ≤ gu(t), 0 ≤ t ≤ T. (3.10)

Indeed, by (3.9), we get, when t ≤ β(T ),

gu(t)− g(t) = Δ1t−Δ0α(t) −Δ1β(t) = (Δ1 −Δ0)α(t) ≥ 0;

and when β(T ) < t ≤ T ,

gu(t)− g(t) = (Δ1 −Δ0)(β(T )− β(t)) ≥ 0.

Similarly, we can prove the first inequality of (3.10).

Set Φ(z) =
∫ z

−∞
1√
2π

e−
y2

2 dy,

Fu(t) =
1√

2π(T − t)

∫ 0

−∞
(1− e

2ãy

σ(T−t) )
[
Φ
( Δ0t

σ
− y

√

t

)

− e2
Δ0y

σ Φ
( Δ0t

σ
+ y

√

t

)]
e−

(
y+

Δ1(T−t)
σ

+ ã
σ

)2

2(T−t) dy, 0 < t < T



750 J. H. Shao

and

Fl(t) =
1

√

2πt

∫ 0

−∞
(1 − e

2ãy
σt )

[
Φ
( Δ1(T−t)

σ
− y

√

T − t

)

− e2
Δ1y

ã Φ
( Δ1(T−t)

σ
+ y

√

T − t

)]
e−

(y+
Δ0t

σ
+ ã

σ
)2

2t dy, 0 < t < T.

Theorem 3.1 Assume σ0 = σ1 = σ > 0, Δ1 ≥ Δ0. Suppose that the process (Λt) starts

from 0, i.e., Λ0 = 0 a.s. For every T > 0, it holds

P(τ (x)a > T ) ≤
(
Φ
(Δ0T + ã

σ

√

T

)
− e−

2Δ0ã

σ2 Φ
(Δ0T − ã

σ

√

T

))
e−λ0T

+
∞∑
k=1

λ
k−1
0 λ

k−1
1

Γ(k)2

∫ T

0

Fu(t)t
k−1(T − t)k−1e−λ0te−λ1(T−t)dt

+

∞∑
k=1

λ
k
0λ

k
1

Γ(k)Γ(k + 1)

∫ T

0

Fu(t)t
k(T − t)k−1e−λ0te−λ1(T−t)dt (3.11)

and

P(τ (x)a > T ) ≥
(
Φ
(Δ0T + ã

σ

√

T

)
− e−

2Δ0ã

σ2 Φ
(Δ0T − ã

σ

√

T

))
e−λ0T

+
∞∑
k=1

λ
k−1
0 λ

k−1
1

Γ(k)2

∫ T

0

Fl(t)t
k−1(T − t)k−1e−λ0te−λ1(T−t)dt

+

∞∑
k=1

λ
k
0λ

k
1

Γ(k)Γ(k + 1)

∫ T

0

Fl(t)t
k(T − t)k−1e−λ0te−λ1(T−t)dt. (3.12)

Proof By (3.8) and (3.10), we get

P(τ (x)a > T ) ≤ P

(
min

0≤t≤T
{σBt + gu(t)} > 0

)
= P

(
max
0≤t≤T

{σBt − gu(t)} < 0
)
.

Due to the independence of (Λt) and (Bt),

P( max
0≤t≤T

{σBt − gu(t)} < 0) = E[E[1 max
0≤t≤T

{σBt−gu(t)}<0|FΛ]]

= E[E[1 max
0≤t≤β(T )

{σBt−ã−Δ1t}<0, max
β(T )<t≤T

{σBt−ã−Δ1β(T )−Δ0(t−β(T ))}<0|FΛ]]

= E[E[1 max
0≤t≤β(T )

{σBt−ã−Δ1t}<0, max
0<t≤α(T )

{σBt−ã−Δ1β(T )+σB(β(T ))−Δ0t}<0|FΛ]],

where FΛ = σ(Λt; t ≤ T ). According to the well-known results on the first passage probability

of Brownian motion (see for example, [23, p. 375]),

P

(
max

0≤t≤β(T )
{σBt − ã−Δ1t} < 0 | Bβ(T ) = y

)
= 1− exp

(
− 2

ã(Δ1β(T ) + ã− σy)

σ2β(T )

)
and

P

(
max

0≤t≤α(T )
{σBt + σy − ã−Δ1β(T )−Δ0t} < 0

)

= Φ
(Δ0α(T ) + Δ1β(T ) + ã− σy

σ

√
α(T )

)
− e−2

Δ0(ã+Δ1β(T )−σy)

σ2 Φ
(Δ0α(T )−Δ1β(T )− ã+ σy

σ

√
α(T )

)
.
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Consequently, if α(T ) = T , then

P

(
max
0≤t≤T

{σBt − gu(t)} < 0 | α(T ) = T

)
= P

(
max
0≤t≤T

{σBt −Δ0t− ã} < 0
)

= Φ
(Δ0T + ã

σ

√

T

)
− e−2

Δ0ã

σ2 Φ
(Δ0T − ã

σ

√

T

)
.

If 0<α(T )<T , we have

P

(
max
0≤t≤T

{σBt − gu(t)} < 0 | 0<α(T )<T

)

≤ E

[ ∫ Δ1β(T )+ã

σ

−∞

(
1− exp

(
− 2

ã(Δ1β(T ) + ã− σy)

σ2β(T )

))

·

(
Φ
(Δ0α(T )+Δ1β(T )+ã−σy

σ

√
α(T )

)
− e−2

Δ0(ã+Δ1β(T )−σy)

σ2 Φ
(Δ0α(T )−Δ1β(T )−ã+σy

σ

√
α(T )

))

·

1√
2πβ(T )

e−
y2

2β(T ) dy
∣∣∣0<α(T )<T

]]

= E

[
E

[ ∫ 0

−∞

(
1− e

2ãz
σβ(T )

)(
Φ(

Δ0α(T )− σz

σ

√
α(T )

)
− e2

Δ0z

σ Φ
(Δ0α(T ) + σz

σ

√
α(T )

))

·

1√
2πβ(T )

e
− (σz+Δ1β(T )+ã)2

2σ2β(T ) dz
∣∣∣0<α(T )<T

]]
.

Under the assumption Λ0 = 0, one has P(α(T ) > 0) = 1. Then, invoking the distribution of

α(T ) and the definition of Fu(t), we can get (3.11). By a similar argument, we can get (3.12),

and the proof is completed.

Now we consider the first passage probability of (Xt) when σ0 �= σ1. Note that σ0, σ1 stand

for the volatility, so it is not restrictable to assume that σ0, σ1 > 0.

Proposition 3.3 Assume that σ0 > σ1 > 0. For each 0 < a < x = X0 and T > 0, it holds

P(τ (x)a > T | FΛ)

= P

(
min

0≤t≤T

{∫ t

0

σΛs
dBs +

∫ t

0

ΔΛs
ds− ln

(
a

x

)}
> 0

∣∣∣FΛ

)
≤ P

(
min

0≤t≤T

{√
σ
2
0 − σ

2
1Bα(t) +

√

tσ1η0 +Δ0α(t) + Δ1β(t)− ln
(
a

x

)}
> 0

∣∣∣FΛ

)
, (3.13)

where η0 is a standard normally distributed random variable, and is independent of (Bt,Λt).

Proof For clarity of the idea, let us introduce a probability space (Ω,P). Let Ω = Ω1×Ω2 =

C([0,∞); R × S). Then there exists a probability measure P = P1 × P2 on Ω such that

ω = (ω1(·), ω2(·)) satisfying that (ω1(t)) is a Brownian motion under P1 on Ω1 and (ω2(t)) is

a Q-process with Q-matrix
(−λ0 λ0

λ1 −λ1

)
under P2 on Ω2. Set Bt(ω) = ω1(t) and Λt(ω) = ω2(t).

Then under P, (Bt) and (Λt) satisfy the condition used in the definition of the process (Xt,Λt).

Moreover,

P

(
min
t≤T

{∫ t

0

σΛs
dBs +Δ0α(t) + Δ1β(t) − ln

(
a

x

)}
> 0

∣∣∣σ(Λt; t ≤ T )
)

= P1

(
max
t≤T

{∫ t

0

σΛs
dBs −Δ0α(t) + Δ1β(t) + ln

(
a

x

)}
< 0

)
.
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Recall the definition of ζk in the beginning of Subsection 3.1. For t ∈ (ζ2k, ζ2k+1], we have∫ t

0

σΛs
dBs = σ0Bζ1 + σ1(Bζ2 −Bζ1) + · · ·+ σ0(Bt −Bζ2k)

= σ0B
(1)(α(t)) + σ1B

(2)(β(t)),

where B(1)(t) and B
(2)(t) are independent normally distributed random variables for each t > 0,

which satisfies

EP1 [B
(i)(t)] = 0, EP1 [B

(i)(t)2] = t, i = 1, 2.

For N ∈ N and k ∈ N such that k
N

≤ T , set

Yk =

∫ k
N

0

σΛs
dBs = σ0B

(1)
(
α

(
k

N

))
+ σ1B

(2)
(
k

N

)
. (3.14)

Then (Yk)k are Gaussian random variables satisfying

EP1 [Yk] = 0, EP1 [Y
2
k ] = σ

2
0α

(
k

N

)
+ σ

2
1β

(
k

N

)
.

Moreover, for every k < j with j
N

≤ T ,

Yj =

∫ j
N

0

σΛs
dBs = Yk +

∫ j
N

k
N

σΛs
dBs.

Hence

EP1 [YkYj ] = EP1 [Y
2
k ] = σ

2
0α

(
k

N

)
+ σ

2
1β

(
k

N

)
.

Let (B̃t) be a Brownian motion, and η0 be a standard normally distributed random variable

under P1 on Ω1, which is independent of (B̃t). Set

Zk =
√
σ
2
0 − σ

2
1B̃α( k

N
) +

√
k

N
σ1η0,

k

N
≤ T. (3.15)

Then (Zk)k are Gaussian random variables with

EP1 [Zk] = 0, EP1 [Z
2
k ] = σ

2
0α

(
k

N

)
+ σ

2
1β

(
k

N

)
= EP1 [Y

2
k ]

and for k < j with j
N

≤ T ,

EP1 [ZkZj] = (σ2
0 − σ

2
1)α

(
k

N

)
+ σ

2
1

√
kj

N2
> (σ2

0 − σ
2
1)α

(
k

N

)
+

σ
2
1k

N
= EP1 [YkYj ].

Therefore, according to Slepian’s lemma (see [12, p. 74]), we have

P1

(
max

k; k
N

≤T

{
Yk −Δ0α

(
k

N

)
−Δ1β

(
k

N

)
+ ln

(
a

x

)}
< 0

)

≤ P1

(
max

k; k
N

≤T

{
Zk −Δ0α

(
k

N

)
−Δ1β

(
k

N

)
+ ln

(
a

x

)}
< 0

)

= P1

(
max

k; k
N

≤T

{√
σ
2
0 − σ

2
1B̃α( k

N
) +

√
k

N
σ1η0 −Δ0α

(
k

N

)
−Δ1β

(
k

N

)
+ ln

(
a

x

)}
< 0

)
.
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Letting N → ∞, we get

P1

(
max
t≤T

{∫ t

0

σΛs
dBs −Δ0α(t) −Δ1β(t) + ln

(
a

x

)}
< 0

)
≤ P1

(
max
t≤T

{√
σ
2
0−σ

2
1B̃α(t) +

√

tσ1η0 −Δ0α(t) −Δ1β(t) + ln
(
a

x

)}
< 0

)
.

Then applying the symmetry of the Brownian motion, we get the desired conclusion.

Remark 3.1 According to this proposition, we can transform the situation σ0 �= σ1 to the

situation σ0 = σ1 via Slepian’s lemma. Combining with Theorem 3.1, we can obtain an upper

bound of P(τ
(x)
a > T ) when σ0 �= σ1.
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