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Abstract

Different convolutional neural networks (CNNs) may learn different levels of

discriminative features to represent the raw face data. To enhance the discrim-

ination of deeply learned face features, we propose a customized weighted dis-

criminative loss (CWD) to seek a customized constraint for mitigating the large

perturbations caused by imbalanced distribution of correctly-classified features

and mis-classified features. It focuses on mapping the raw data into a feature

space such that deeply learned face features can achieve a high discrimination for

representation, by retraining the intra-class variations and the inter-class varia-

tions, simultaneously. Extensive experiments carried out on several famous face

recognition benchmarks, including LFW, YTF, FGLFW and BLUFR, demon-

strate that the proposed approach can achieve superior performance over the

related approaches.

Keywords: Face recognition, Customized weighted discriminative loss,

Customized weighted constraint, Convolutional neural network

1. Introduction

Face recognition has been one of the most challenging and attractive studied

topics of computer vision. Accurate face recognition depends on high-quality
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face representation, which should be discriminative for inter-personal variations,

and be discriminative for the intra-personal variations, simultaneously. How-

ever, conventional face representations are built on local descriptors, which are

too shallow to differentiate the complicated nonlinear facial appearance varia-

tions, such as pose, illumination, expression and occlusion. The complicated

facial appearance variations call for more advanced techniques for robustness

face representation. Recently, deep learning [1] has achieved impressive results

in computer vision applications, including action recognition [2], object segmen-

tation [3], object tracking [4, 5], attention prediction [6, 7], photo cropping[8],

semantic segmentation [9], motion segmentation [10] and salient object detection

[11, 12, 13, 14]. Further, the face features based on deep learning has achieved

phenomenal performance for robustness face representation [15, 16, 17, 18].

Taigman et al. [19] proposed the DeepFace system, which used Softmax

loss as the supervisory signal to train CNN model and achieved 97.35% on

LFW database [20], approaching to the human-level 97.53%. The authors later

extended this work in [21], by increasing the size of the training database to 10

million subjects with 50 images each on average. They proposed a bootstrapping

strategy to select training identities that consist of both easy and hard samples

to avoid the saturation existed in CNN. Meanwhile, Sun et al. [22, 23, 24]

proposed the DeepID series of papers, each of which steadily increased the

performance of face recognition on LFW database. Particularly, a number of

new ideas were incorporated over the series of papers. DeepID [22] used multiple

CNNs to get fusion face features and applied Bayesian learning framework [25] to

get the suitable metric. DeepID2 [23] combined the Face Identification loss and

Face Verification loss for more effective training and empirically verified that the

combined supervisory signal is helpful to promote the power of CNN to extract

discriminative features. DeepID2+ [24] considered to increase the dimension

of hidden representations to achieve new state-of-the-art performance on both

LFW and YTF benchmarks [26].

Inspired by designing effective supervisory signal for CNN in DeepID2+

[24], Schroff et al. [27] introduced Triplet loss for FaceNet system, which used
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nearly 100M-200M training faces consisting of about 8M different identities for

training the powerful CNN models. Further, Parkhi et al. [28] focused on how to

collect very large scale face databases (such as 2.6 million) and how to construct

effective CNN architectures. As a supplement, Hu et al. [29] investigated the

influence of different CNN architectures and tested different implementation

choices for extracting face features. All these researchers contribute to give a

better understanding and innovate ideas to promote the development of face

recognition.

Recently, designing suitable loss functions for extracting CNN face features

has achieved great success. For example, Wen et al. [30] used the joint super-

vision of Softmax loss and Center loss for training CNN face features. Wang et

al. [31] inherited the idea of Center loss and studied the effect of normalization

during training and optimized cosine similarity instead of inner-product. Liu

et al. [32] proposed L-Softmax to employ a margin constraint for Softmax loss

to achieve a classification angle margin between classes. Liu et al. [33] later

extended L-Softmax loss by considering the cosine normalization. These works

all achieved excellent performance on face recognition by adopting well-designed

CNN architectures.

Among these effective loss based approaches, CenterApproach [30] that fo-

cusing on minimizing the intra-class variations between each feature and its

corresponding class center, has achieved great success for addressing face recog-

nition problems with only 0.7M training data. However, mentioned by [30],

there exist large perturbations caused by few mislabeled samples. Specially,

when the number of the mis-classified features is much more than the number

of the correctly-classified features, it causes poor separability. On the contrary,

if most of the correctly-classified features are not so close to the center fea-

ture, even the number of correctly-classified features surpasses the number of

the mis-classified features, poor compactness will emerge. Further, if these per-

turbations are not given enough treatment, it may result in less discrimination

for face representation. How to better mitigate the large perturbation (such as

poor separable distribution and poor compact distribution) and better enhance
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the performance of CNN for extracting more discriminative face features, is still

a challenging problem.

In this paper, we propose the customized weighted discriminative (CWD)

loss to address the large perturbation problem. The major contributions of this

paper are summarized as follows:

• We analyze the large perturbations from the aspect of mis-classified fea-

tures and correctly-classified features during the training, and propose a

CWD loss to supervise the learning of CNN for getting more discrimina-

tive face features, by seeking a customized weighted constraint for the two

kinds of features.

• We use a toy example for showing the phenomenon of alleviating the

perturbations of the features. Detailed analysis are also reported on issues

such as the limitations and future directions of the proposed approach.

• We evaluate the performance of the proposed approach on LFW, YTF,

FGLFW and BLUFR benchmarks, the experimental results show that

the proposed approach can achieve promising performance for face recog-

nition.

2. The proposed approach

2.1. Center loss and motivation

As mentioned before, CenterApproach [30] is a simple and trainable approach

for addressing face recognition problems. It takes advantage of the Center loss

LC to characterize the intra-class variations by summing the distance between

each feature and its corresponding class center, where

LC =
1

2M

M∑
i=1

‖xi − cli‖2, (1)

M is the mini-batch size, li is the corresponding label for feature xi, cli is the

class center for li-th class. By minimizing LC , the intra-class variations of the

4



deeply learned face features can be decreased during the training, and the CNN

models can be restrained to obtain more discriminative face features.

However, according to [30], there exist large perturbations caused by few

mislabeled samples. If these mislabeled samples are not given enough treatment,

poor separability or poor separability may occur when there are much more

mis-classified features or much more correctly-classified features, respectively.

In such cases, the learned face features may not be so discrimination for face

recognition. To address the issue, we propose a new method in the following to

give more treatment for mentioned perturbations.

2.2. Customized weighted discriminative loss

The customized weighted discriminative (CWD) loss is to supervise CNNs

for getting more discriminative learned features, which is formalized as

LCWD =
1

2M

M∑
i=1

d̃(xi, cli , cpi), (2)

where M is the mini-batch size, d̃(xi, cli , cpi) is a triplet distance defined as

d̃(xi, cli , cpi) =

τ · d(xi, cli) li = pi,

(1− τ) · d(xi, cli) li 6= pi,

(3)

xi is the feature for i-th sample, li is the label of xi, cn is the class center

for n-th class, pi is the predicted label of xi, which is obtained from the soft-

max prediction in the last layer of a given CNN. And d(·, ·) is the pre-defined

distance, we simply adopt the commonly used L2-distance, τ ∈ (0, 1) is a trade-

off hyper-parameter. The triplet distance is designed for measuring the large

perturbations caused by mis-classified features and correctly-classified features.

Actually, different proportions of the correctly-classified features (li = pi)

and the mis-classified features (li 6= pi) may cause different levels of perturba-

tions, which will influence on both the intra-class variations and the inter-class

variations during the training. CWD loss introduces the hyper-parameter τ to

constrain the perturbations for the feature distribution caused by the two kinds
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of features. With a customized τ , CWD loss is expected to give suitable treat-

ment for the perturbations. Namely, it aims to make the learned face features

get away from the situation of poor separability or poor compactness, to bet-

ter retrain the intra-class variations and the inter-class variations for learning

highly discriminative face features.

We use the joint supervision of Softmax loss LS and CWD loss LCWD to

train CNNs, by solving the following optimization objective

θ∗ = min
θ
LS(X,Y,θ) + λLCWD(X,Y,θ), (4)

where

LS(X,Y,θ) = − 1

M

M∑
i=1

log
ew

>
li
xi+bli∑N

j=1 e
w>

j xi+bj
, (5)

X is the training data set, Y is the label data set, θ is the parameter set, wli ,

bli are parameters in last fully connected layer, λ is a trade-off hyper-parameter,

N is the class number. The corresponding learning framework is shown in Fig.

1.

Fig. 1: Framework of face recognition based on the proposed approach.

The optimization objective (4) can be easily optimized by the standard

stochastic gradient descent, according to (6) and (7), and the learning process

is summarized in Algorithm 1.

∂LCWD

∂x̂i
=


τ
M (x̂i − cpi) li = pi,

1−τ
M · (x̂i − cpi) li 6= pi,

(6)
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∂LCWD

∂cn
=

τ

M

∑
lm=n

(cn − x̂lm) +
1− τ
M

∑
lm 6=n

(cn − x̂lm). (7)

Algorithm 1 Deep discriminative face features learning by customized con-

straint

Input: Training data set X, training label set Y . Initialized parameters θt,

the n-th class center ctn and learning rate µt; hyper-parameter λ, τ and

center learning rate γ, t← 0.

Output: Parameters θtmax .

while not convergence and t < tmax do:

1. t = t+ 1;

2. Compute joint loss LS(X,Y,θt) + λLCWD(X,Y,θt);

3. Update θ by θt+1 = θt − µt
∑
i[
∂Lt

S

∂xt
i

+ λ
∂Lt

CWD

∂xt
i

]
∂xt

i

∂θt according to (6);

4. Update cn by ct+1
n = ctn − λγ

∂Lt
CWD

∂ctn
according to (7);

end while

3. Experiments and results

In this section, we evaluate the effectiveness of the proposed approach for

face recognition. For fair comparison, the softmax loss approach and the center

loss approach are used as the baselines throughout the article. All experiments

are implemented in the Caffe library [34] on Linux OS with the NVIDIA Tesla

K80.

3.1. Implementation details

3.1.1. Databases

• Data for visualization: We use the database MNIST [35], a classical

handwritten digit database with 60, 000 training examples and 10, 000

testing examples, for MNIST visualization.

• Training data: We use CASIA-WebFace database [36], it is a typical

public face training database that containing 10, 575 subjects and 494, 414
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images collected from the Internet. We choose it as the training database

for obtaining CNN model because that it is almost independent of the

LFW and YTF benchmark databases, and thus can dispel the chaos of

evaluations.

• Testing data: We use several famous and challenging face recognition

benchmarks to evaluate the effectiveness of the proposed approach for face

feature extraction. The testing benchmarks are the Labeled Faces in the

Wild (LFW) database [20], the Fine-grained LFW (FGLFW) database

[37], YouTube Faces (YTF) database [26] and the Benchmark of Large-

scale Unconstrained Face Recognition (BLUFR) [38]. The details will

be described in the corresponding Subsection 3.3.1, Subsection 3.3.2, and

Subsection 3.3.3, respectively.

For data preprocessing of the face recognition tasks, we keep the detection

and alignment of the training database and the testing database the same for

each task as [39, 40, 41] by using SeetaFace1.

3.1.2. CNN architectures

We use two CNN architectures2: LeNet++ and ResNet-27 released by [30],

shown in Table 1 and Table 2. LeNet++ is for MNIST visualization and to illus-

trate the effectiveness of the proposed approach for alleviating the perturbations

of the learned features, which will be described in Subsection 3.2. The features

are taken from fc4. ResNet-27 is for face feature extraction and to verify the

effectiveness of the proposed approach on related face recognition tasks, which

will be described in Subsection 3.3. The deep face features are taken from fc5

and the testing settings are same as [30].

Note: The B(3, 3) in Table 2 denotes a residual block composed of two 3 × 3

convolutional layers. For example, B(3, 3) × 3 and B(3, 3) × 5 denote 2 blocks

in groups of convolutions and 5 blocks in groups of convolutions, respectively.

1[Online]. Available: https://github.com/seetaface/SeetaFaceEngine
2[Online]. Available: https://github.com/ydwen/caffe-face
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Table 1: Architecture of LeNet++.

Name Filter Output Size

input - 28× 28× 3

conv1a 5× 5 conv, stride 1, pad 2 28× 28× 32

conv1b 5× 5 conv, stride 1, pad 2 28× 28× 32

pool1 2× 2 max-pool, stride 2 14× 14× 32

conv2a 5× 5 conv, stride 1, pad 2 14× 14× 64

conv2b 5× 5 conv, stride 1, pad 2 14× 14× 64

pool2 2× 2 max-pool, stride 2 7× 7× 64

conv3a 5× 5 conv, stride 1, pad 2 7× 7× 128

conv3b 5× 5 conv, stride 1, pad 2 7× 7× 128

pool3 3× 3 max-pool, stride 2 3× 3× 128

fc4 - 2

fc5 - 10

Table 2: Architecture of ResNet-27.

Name Filter Output Size

input - 112× 96× 3

conv1a 3× 3 conv, stride 1, pad 0 110× 94× 32

conv1b 3× 3 conv, stride 1, pad 0 108× 92× 64

pool1 2× 2 max-pool, stride 2 54× 46× 3

res1 B(3, 3)× 2 54× 46× 3

conv2 3× 3 conv, stride 1, pad 0 52× 44× 128

pool2 2× 2 max-pool, stride 2 26× 22× 128

res2 B(3, 3)× 2 26× 22× 128

conv3 3× 3 conv, stride 1, pad 0 24× 20× 256

pool3 2× 2 conv, stride 2 12× 10× 256

res3 B(3, 3)× 5 12× 10× 256

conv4 3× 3 conv, stride 1, pad 0 10× 8× 512

pool4 2× 2 max-pool, stride 2 5× 4× 512

res4 B(3, 3)× 3 5× 4× 512

fc5 - 512

fc6 - 10575
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3.2. MNIST visualization

We use a toy example similar to [30] on MNIST database to show the objec-

tive of our proposed algorithm. Specially, we define a metric Dis3, the average

cosine distance of each sample and its relevant class center, to measure the

perturbations of the features, where

Dis =

N∑
i=1

Ni∑
j=1

1

NiN

cTi xij
‖ci‖ ‖xij‖

,

ci is the center feature for class i, xij is the feature for class i, Ni is the feature

number for class i, N is the class number.

1 2 3 4 5 6 7 8 9 10
Iteration/10000

0.988

0.99

0.992

0.994

0.996

0.998

D
is

Softmax
Softmax+Center
Softmax+CWD

Fig. 2: We use Dis to measure the perturbations of the learned features for related approaches.

For each case, as the training iteration increases, the Dis increases, which indicates that the

perturbations of the features are alleviated gradually.

We record the Dis changes during the training on MNIST testing dataset in

Fig. 2 and illustrate the best distributions for related approaches in Fig. 3(a) -

Fig. 3(b), respectively.

3The larger the Dis, the less the perturbations of the features.
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Fig. 3: Evaluation of the Dis performance for different supervision signals.

Fig. 2 shows that the Dis corresponding to our approach surpasses the

other two curves by a clear margin in the end. Fig. 3 shows that the best Dis

corresponding to CWD loss is larger than that of Center loss. Besides, we also

observe that the diagram of a class for Softmax + CWD is slightly smaller than

that in Softmax + Center. All these demonstrate the proposed approach can

better alleviate the large perturbations of features during the training.

3.3. Face recognition

In this subsection, we evaluate the effectiveness of the proposed approach

on ResNet-27 for face recognition, including several challenging face verifica-

tion tasks and face identification tasks. The nearest neighbor and threshold

comparison are used according to [30].

3.3.1. Face recognition on LFW and YTF

We choose the challenging LFW database [26] and YTF database [26] as the

standard face verification benchmarks for demonstrating the effectiveness of the

proposed approach. Both LFW and YTF contain the well investigated and rel-

atively unconstrained imaging conditions, such as occlusions, poses, expressions

and illuminations. The former contains 5, 749 identities of totally 13, 233 images

and the latter is consists of 3,425 videos of 1,595 different identities. Besides,
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we choose the public CASIA-WebFace database [36] for training CNNs, which

contains 494, 414 face images amount to 10, 575 subjects.

As mentioned, CWD loss distinguishes the role of the correctly-classified fea-

tures and the mis-classified features for learning. Particularly, when τ = 0.5, it

reduces to Center loss [30]. However, Center loss, as a special case of CWD loss,

it equates the intra-class variations for the two kinds of features, which seems

not enough to handle the complex perturbations during the training. To show

the significance of τ , we fix the learning rate as 0.1 for total 30, 000 iterations,

fix λ = 0.006 experientially according to [30], and range τ in [0.1, 0.2, · · · , 0.9]

to investigate the sensitiveness. The results on LFW are shown in Fig. 4.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
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97.5

98

98.5

A
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%
)

Fig. 4: Evaluation on LFW by ranging τ for ResNet-27.

From Fig. 4, the performance fluctuates as τ changes, and the best perfor-

mance has achieved at τ = 0.2 but not τ = 0.5. That is to say, the correctly-

classified features and the mis-classified features are not suitable for treating

equally.

By setting the best parameter of τ = 0.2 for ResNet-27, we set the initial

learning rate as 0.1, then decrease it by 0.1 at 30, 000 iterations and 50, 000

iterations until reaching the maximum iteration 60, 000 to further evaluate the

performance. For convenience, we denote model A, model B and model C as

the final CNN models4 supervised by Softmax loss, Softmax loss + Center loss

and Softmax loss + CWD loss, respectively. Several state-of-the-art methods are

also listed to compared with the proposed approach. We present the verification

4All CNN models used in our experiments are without fine-tuning operations. And other

values of τ , that may lead to better CNN models, is beyond the scope of consideration.
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results in Table 3.

Table 3: Performance (%) on LFW and YTF.

Method #Train LFW YTF

FaceNet [27] 200M 99.63 95.1

DeepFace [19] 4M 97.35 91.4

VGG [42] 2.6M 98.95 97.3

NormFace [31] 1.5M 99.19 94.72

CenterApproach [30] 0.7M 99.28 94.9

WebFaceCNN [36] 0.49M 97.73 92.24

L-Softmax [32] 0.49M 98.71 -

SphereFace [33] 0.49M 99.42 95.0

DeepID2 [24] 0.2M 99.15 -

Model A 0.44M 97.82 92.66

Model B 0.44M 99.03 93.30

Model C 0.44M 99.12 93.76

The table shows that the proposed model C not only performs better than

model A and model B by clear margins, but also achieves comparable per-

formance with several state-of-the-art methods, such as DeepFace, VGG, L-

Softmax and WebFaceCNN, with more less training data. These show the effec-

tiveness of the proposed approach for learning more discriminative face features,

which coincides with our analysis in Subsection 2.2 that it is necessary to give

suitable treatment for different levels of perturbations, seeking a customized

restraint for correctly-classified features and mis-classified features is more im-

portant than treating equally.

3.3.2. Face recognition on FGLFW

FGLFW [37] is a database shares the same 3, 000 genius matches in LFW,

however, replaces the random impostor matches by seeking another 3, 000 similarly-

looking face pairs to reduce the inter-class variance. It emphasizes both the large
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intra-class variance and the tiny inter-class variance simultaneously compared

to LFW. Thus we choose it as a more challenging image-to-image face verifica-

tion benchmark. Since FGLFW only modifies the negative face pairs defined

in the standard LFW protocol, the testing paradigms of LFW can be directly

used. Similarly, we list the state-of-the-art results and also report our final

performance in Table 4.

Table 4: Performance (%) on FGLFW.

Method #Train Accuracy

Noisy Softmax [43] 0.5M 94.50

CenterApproach [30] 0.7M 93.28

Human [37] n/a 92.00

DCMN [37] 0.5M 91.00

VGG [42, 31] 2.6M 85.78

DeepFace [19, 31] 0.5M 78.78

DeepID2 [23, 31] 0.2M 78.25

Model A 0.44M 90.87

Model B 0.44M 94.28

Model C 0.44M 95.07

From the table, the proposed model C surpasses the baseline model B and

model A by 0.79% and 4.2%, respectively. Comparing with the state-of-the-art

methods in the first part of the table, model C even surpasses the second best

Noisy Softmax by 0.57%. These all show that the proposed approach is effective

for learning discriminative face features when it comes to more challenging face

verification tasks.

3.3.3. Face recognition on BLUFR

BLUFR is a more challenging protocol that containing both verification and

open-set identification scenarios, it is designed to fully exploit all the 13, 233

LFW face images for large-scale unconstrained face recognition evaluation, with
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a focus at low FARs. It introduces 10 trials of of face verification tasks, with

each trial containing about 156, 915 genuine matching scores and 46, 960, 863

impostor matching scores on average for performance evaluation. Further, it

also designs 10 random trials of face identification tasks, each trial consists

about 1, 000 subjects to constitute the gallery set, about 4, 350 face images of

1, 000 subjects to constitute the genuine probe set, and about 4, 357 images of

3, 249 subjects to constitute the impostor probe set.

Table 5: Performance (%) for BLUFR protocol.

Method TPR@FAR=0.1% DIR@FAR=1%

NormFace [31] 95.83 77.18

CenterApproach [30, 31] 93.35 67.86

LightenedCNN [44, 31] 89.12 61.79

WebFaceCNN [36] 80.26 28.9

Model A 82.22 56.81

Model B 93.64 70.73

Model C 94.79 73.69

According to [38], we report the average TPR@FAR= 0.1% and DIR@FAR=

1% for face verification and face identification5 in Table 5. From the table,

the proposed model C surpass the baseline model B by 1.15% and 2.96% on

face verification and face identification performance, respectively. Besides, it

also performs better than several state-of-the-art methods on both the two face

recognition tasks, such as CenterApproach, LightenedCNN and WebFaceCNN.

These show that the proposed approach is also effective for learning discrimina-

tive face features for more challenging face recognition tasks.

All these experimental results demonstrate that the proposed approach,

which distinguishes the role of the correctly-classified features and the mis-

5TAR is the true acceptance rate, FAR is the false acceptance rate, and DIR is the detection

and identification rate.
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classified features for restraining the intra-class variations, is an effective and

easy way to learn more discriminative face representation.

3.4. Discussion

3.4.1. Limitations

The proposed approach is verified to be effective in Subsection 3.2 and Sub-

section 3.3. However, it still suffers from several limitations.

Firstly, the proposed approach still gives not enough treatment for the com-

plex intra-class variations and the inter-class variations in the CNN training,

which causes some poor performance. For example, the performance of the pro-

posed approach (model C) not always better than the baseline model B, shown

in Table 6, Table 7, and Table 8. And there are also many failure examples in

the testing period, shown in Fig. 5.

Table 6: Number of failure examples for LFW evaluation.

Fold 1 2 3 4 5 6 7 8 9 10

Model B 9 5 5 7 11 5 5 8 0 3

Model C 8 4 2 7 7 7 7 5 2 4

Table 7: Number of failure examples for YTF evaluation.

Fold 1 2 3 4 5 6 7 8 9 10

Model B 35 40 33 37 25 28 24 31 45 37

Model C 34 36 33 30 20 29 22 34 45 29

Table 8: Number of failure examples for FGLFW evaluation.

Fold 1 2 3 4 5 6 7 8 9 10

Model B 39 34 33 41 29 31 40 40 26 30

Model C 30 29 35 34 28 20 31 45 21 23

From the three tables, there are still some cases that model C performs worse

than model B, which is illustrated in the number of the failure examples marked

by the double underlines.
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(a) All false positive matches in LFW

(b) All false negative matches in LFW

(c) All false positive matches in FGLFW of fold 8

(d) All false negative matches in FGLFW of fold 8

Fig. 5: Display of failure examples. (a) and (b) display the false positive matches and the

false negative matches in the 10 folds testing of LFW, respectively. (c) and (d) display the

false positive matches and the false negative matches in the 8-th fold of FGLFW, which is the

most challenging of the 10 folds.

From Fig. 5, we find that the number of false negative matches are more than

the number of the true positive matches in both LFW case and FGLFW case,

which means that the treatment for the inter-class variations is still not enough

in the proposed approach. In addition, we can also found that the false positive
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matches are misclassified due to the similar facial appearances, such as the sim-

ilar expression, similar pose, similar skin color, and so on. For the false negative

matches, they are not only influenced by the facial appearances, but also suffer

from the conditions, such as occlusion, illumination, decoration, and even the

false positive detected faces, such as #128,#3694,#4242 in LFW. For small

scale database, the issue can be partly alleviated by considering more suitable

preprocessing techniques, such as cropping and manual assistance. However,

for more challenging video face recognition, it is intractable to deal with so

many false positive faces and some undetected faces, which calls for more ad-

vanced video detection techniques, such as developing more effective video face

detectors by taking advantage of [10, 14].

Secondly, the proposed approach does not always work for all mainstream

CNN architectures. For example, we evaluate the adaptability of the proposed

approach on the other two CNN architectures, AlexNet [45] and VGG-16 [42].

For AlexNet, we set the initial learning rate as 0.01, then decrease it by 0.2

every 20,000 iterations until reaching the maximum iteration 16,000, and the

best hyper-parameter is τ = 0.8. For VGG-16, we set the initial learning rate

as 0.0001 by finetuning the model released in [42] similar to [7, 12].

Table 9: Performance (%) for AleNet.

Method #Train LFW YTF

Softmax 0.44M 95.32 89.84

Softmax + Center 0.44M 96.6 90.76

Softmax + CWD 0.44M 97.42 91.64

For AlexNet, Softmax + CWD gives the respectable performance, shown

in Table 9. However, Softmax + CWD and Softmax + Center do not work

when it comes to the VGG-16 architecture. The two strategies even causes

serious divergence problems compared to simply using Softmax, which is due

to the inconsistency of the initialization of the feature distribution and the
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initialization of the center features6, shown in Fig. 6.
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(a) ResNet-27 case

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Subject ID

6.8

6.82

6.84

6.86

6.88

6.9

6.92

6.94

C
en

te
r 

di
ff

er
en

ce
 v

al
ue

(b) AlexNet case
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Fig. 6: Center difference values on WebFace databse for related CNNs.

6We use the same center feature initialization as is used in [30].
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From the figure, the center difference value, the distance of the initial center

feature and the mean of the initial features of the corresponding subject, is illus-

trated to measure the degree of the inconsistency for related CNN architectures.

It is clear that the order of magnitude of the center difference value in VGG-16

(Fig. 6(c)) is much larger than that of the other two CNN architectures (Fig.

6(a) and Fig. 6(b)), which means that we should pay more attention to the

center feature initialization to avoid such inconsistency phenomenon to further

improve the proposed approach.

3.4.2. Future work

Based on the preceding discussion of the limitations of the proposed ap-

proach, the work in this paper is still insufficient and needs more in-depth study

in the future. The meaningful directions are summarized in the following.

• Giving more suitable treatment for both the intra-class variations and

the inter-class variations by dynamicly and effectively setting the hyper-

parameter τ , and also trying cosine distance instead of L2-distance, such

as [33, 31].

• Making the initialization and updating of the center feature more general

for the mainstream CNN architectures, such as [46].

• Pay attention to more challenging video face recognition to dig out the po-

tential problems existed in the proposed approach and then try to improve

the performance, such as taking advantage of the merits of [10, 14].

4. Conclusion

In this paper, we propose the customized weighted discriminative (CWD)

loss to learn deep discriminative face features. The aim of CWD loss is to alle-

viate the perturbation phenomenon by distinguishing the role of the correctly-

classified features and the mis-classified features. Extensive experiments on

MNIST visualization and several famous and important face recognition tasks
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show the superior of the proposed approach. Detailed analysis are also reported

on issues such as the limitations and future directions of the proposed appraoch.
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