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Abstract. The spt-crank of a vector partition, or an S-partition, was introduced by
Andrews, Garvan and Liang. Let NS(m,n) denote the net number of S-partitions of
n with spt-crank m, that is, the number of S-partitions (π1, π2, π3) of n with spt-crank
m such that the length of π1 is odd minus the number of S-partitions (π1, π2, π3) of
n with spt-crank m such that the length of π1 is even. Andrews, Dyson and Rhoades
conjectured that {NS(m,n)}m is unimodal for any n, and they showed that this conjecture
is equivalent to an inequality between the rank and crank of ordinary partitions. They
obtained an asymptotic formula for the difference between the rank and crank of ordinary
partitions, which implies NS(m,n) ≥ NS(m + 1, n) for sufficiently large n and fixed m.
In this paper, we introduce a representation of an ordinary partition, called the m-Durfee
rectangle symbol, which is a rectangular generalization of the Durfee symbol introduced
by Andrews. We give a proof of the conjecture of Andrews, Dyson and Rhoades. For
m ≥ 1, we construct an injection from the set of ordinary partitions of n such that m
appears in the rank-set to the set of ordinary partitions of n with rank not less than −m.
For m = 0, we need to construct three more injections. We also show that this conjecture
implies an inequality between the positive rank and crank moments obtained by Andrews,
Chan and Kim.

Keywords: Rank, crank, spt-crank, Andrews’ spt-function, rank moment, crank mo-
ment.
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1 Introduction

In this paper, we give a proof of a conjecture of Andrews, Dyson and Rhoades on the
spt-crank of a vector partition or an S-partition. The spt-function, called the smallest
part function, was introduced by Andrews [2]. More precisely, we use spt(n) to denote
the total number of smallest parts in all partitions of n. For example, we have spt(3) = 5,
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spt(4) = 10 and spt(5) = 14. The smallest part function possesses many arithmetic
properties analogous to the ordinary partition function, see, for example, [2, 13,15,18].

Andrews [2] showed that the spt-function satisfies the following Ramanujan type con-
gruences:

spt(5n+ 4) ≡ 0 (mod 5), (1.1)

spt(7n+ 5) ≡ 0 (mod 7), (1.2)

spt(13n+ 6) ≡ 0 (mod 13). (1.3)

To give combinatorial interpretations of the above congruences, Andrews, Garvan and
Liang [6] introduced the spt-crank of an S-partition. Let D denote the set of partitions
into distinct parts and P denote the set of partitions. For π ∈ P , we use s(π) to denote
the smallest part of π with the convention that s(∅) = +∞. Let `(π) denote the number
of parts of π and |π| denote the sum of parts of π. Define

S = {(π1, π2, π3) ∈ D × P × P : π1 6= ∅ and s(π1) ≤ min{s(π2), s(π3)}}.

A triple (π1, π2, π3) of partitions in S is called an S-partition, see Andrews, Garvan and
Liang [6]. Moreover, if |π1| + |π2| + |π3| = n, then (π1, π2, π3) is called an S-partition of
n. The spt-crank of an S-partition π = (π1, π2, π3), denoted r(π), is defined to be the
difference between the number of parts of π2 and π3, that is,

r(π) = `(π2)− `(π3).

For an S-partition π = (π1, π2, π3), we associate it with a sign ω(π) = (−1)`(π1)−1 and let
|π| denote the sum of parts of π1, π2 and π3, that is, |π| = |π1|+ |π2|+ |π3|. Let NS(m,n)
denote the net number of S-partitions of n with spt-crank m, that is,

NS(m,n) =
∑
|π|=n
r(π)=m

ω(π) (1.4)

and
NS(m, t, n) =

∑
k≡m (mod t)

NS(k, n).

Andrews, Garvan and Liang [6] established the following relations:

NS(k, 5, 5n+ 4) =
spt(5n+ 4)

5
, for 0 ≤ k ≤ 4,

NS(k, 7, 7n+ 5) =
spt(7n+ 5)

7
, for 0 ≤ k ≤ 6,

which imply the spt-congruences (1.1) and (1.2) respectively.

The following conjecture was posed by Andrews, Dyson and Rhoades [4].
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Conjecture 1.1. For m ≥ 0 and n ≥ 0, we have

NS(m,n) ≥ NS(m+ 1, n). (1.5)

Andrews, Dyson and Rhoades [4] showed that this conjecture is equivalent to an
inequality between the rank and crank of ordinary partitions. Recall that the rank of an
ordinary partition was introduced by Dyson [10] as the largest part of the partition minus
the number of parts. The crank of an ordinary partition was defined by Andrews and
Garvan [5] as the largest part if the partition contains no ones, otherwise as the number
of parts larger than the number of ones minus the number of ones.

Andrews, Dyson and Rhoades [4] found the following connection between inequality
(1.5) on NS(m,n) and an inequality on the rank and crank for ordinary partitions, as will
be stated in (1.9).

Theorem 1.2. Let N(m,n) denote the number of partitions of n with rank m and
M(m,n) denote the number of partitions of n with crank m. Set

M(0, 1) = −1, M(−1, 1) = M(1, 1) = 1, M(m, 1) = 0,

and define

N≤m(n) =
∑
|r|≤m

N(r, n), (1.6)

M≤m(n) =
∑
|r|≤m

M(r, n). (1.7)

Then for m ≥ 0 and n > 1, we have

NS(m,n)−NS(m+ 1, n) =
1

2
(N≤m(n)−M≤m(n)) . (1.8)

It is clear from (1.8) that Conjecture 1.1 is equivalent to the following conjecture.

Conjecture 1.3. For m ≥ 0 and n ≥ 0, we have

N≤m(n) ≥M≤m(n). (1.9)

When m = 0, inequality (1.9) was conjectured by Kaavya [17]. Andrews, Dyson
and Rhoades [4] obtained the following asymptotic formula for N≤m(n)−M≤m(n), which
implies that Conjecture 1.3 holds for fixed m and sufficiently large n.

Theorem 1.4. For each m ≥ 0, we have

(N≤m(n)−M≤m(n)) ∼ (2m+ 1)π2

192
√

3n2
exp

(
π

√
2n

3

)
, (1.10)

as n→∞.
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The main objective of this paper is to give a proof of Conjecture 1.3. It is easy to
check that Conjecture 1.3 holds for n = 0 and n = 1. To prove Conjecture 1.3 holds for
n > 1, we first give a reformulation of Conjecture 1.3 in terms of the rank-set. We then
give an injective proof of the equivalent inequality.

Let λ = (λ1, λ2, . . . , λ`) be an ordinary partition. Recall that the rank-set of λ intro-
duced by Dyson [12] is an infinite sequence

[−λ1, 1− λ2, . . . , j − λj+1, . . . , `− 1− λ`, `, `+ 1, . . .].

For example, the rank-set of λ = (5, 5, 4, 3, 1) is [−5,−4,−2, 0, 3, 5, 6, 7, 8, . . .].

Dyson [12] also introduced the number of partitions λ of n such that m appears in
the rank-set of λ, denoted by q(m,n) . For example, there are three partitions of 4 whose
rank-set contains the element 1:

(4), (2, 1, 1), (1, 1, 1, 1).

So we have q(1, 4) = 3.

Dyson [12] established a connection between the number q(m,n) and the number
of partitions of n with a bounded crank. To be more specific, let M(≤ m,n) denote
the number of partitions of n with crank not greater than m. Dyson [12] obtained the
following relation for n > 1,

M(≤ m,n) = q(m,n), (1.11)

see also Berkovich and Garvan [8]. Moreover, Dyson [11,12] proved the following symme-
tries of N(m,n) and M(m,n):

N(m,n) = N(−m,n), (1.12)

M(m,n) = M(−m,n). (1.13)

Using relations (1.11), (1.12) and (1.13), we are led to the following connection between
N≤m(n) − M≤m(n) and p(−m,n) − q(m,n), where p(−m,n) stands for the number of
partitions of n with rank not less than −m.

Theorem 1.5. For m ≥ 0 and n > 1, we have

N≤m(n)−M≤m(n) = 2(p(−m,n)− q(m,n)). (1.14)

It is clear from (1.14) that Conjecture 1.3 is equivalent to the following assertion.

Theorem 1.6. For m ≥ 0 and n ≥ 1, we have

q(m,n) ≤ p(−m,n). (1.15)
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To prove the above theorem, we first introduce a representation of an ordinary parti-
tion, called the m-Durfee rectangle symbol, which is a generalization of the Durfee symbol
introduced by Andrews [1]. Using this representation, we give characterizations of parti-
tions counted by q(m,n) and p(−m,n). We then construct an injection from the set of
partitions of n such that m appears in the rank-set to the set of partitions of n with rank
not less than −m.

We also note that Conjecture 1.3 implies the following inequality between the positive
rank moments Nk(n) and the positive crank moments Mk(n) obtained by Andrews, Chan
and Kim [3], where

Nk(n) =
+∞∑
m=1

mkN(m,n), (1.16)

Mk(n) =
+∞∑
m=1

mkM(m,n). (1.17)

Theorem 1.7. ([3]) For k ≥ 1 and n ≥ 1, we have

Mk(n) > Nk(n). (1.18)

Bringmann and Mahlburg [9] proved that the above inequality (1.18) holds for any
fixed positive integer k and sufficiently large n by deriving the following asymptotic for-
mula for Mk(n)−Nk(n).

Theorem 1.8. For k ≥ 1, we have

Mk(n)−Nk(n) ∼ k!ζ(k − 2)(1− 23−k)
6
k−1
2

4
√

3πk−1
n
k
2
− 3

2 exp

(
π

√
2n

3

)
, (1.19)

as n→∞, where ζ(s) denotes the Riemann ζ-function.

When k is even, inequality (1.18) is equivalent to an inequality of Garvan on the
ordinary rank moments Nk(n) and the ordinary crank moments Mk(n) introduced by
Atkin and Garvan [7]. For k ≥ 1 and n ≥ 1, Garvan [14] proved that

M2k(n) > N2k(n), (1.20)

where

Nk(n) =
+∞∑

m=−∞

mkN(m,n),

Mk(n) =
+∞∑

m=−∞

mkM(m,n).
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This paper is organized as follows. In Section 2, we give a proof of Theorem 1.5.
By Theorem 1.5, we see that Conjecture 1.3 is equivalent to Theorem 1.6. In Section
3, we define m-Durfee rectangle symbols and give characterizations of partitions counted
by q(m,n) and p(−m,n). In Section 4, we present an injective proof of Theorem 1.6 for
the case m ≥ 1. To this end, we build an injection from the set of partitions counted
by q(m,n) to the set of partitions counted by p(−m,n). We divide the set of partitions
counted by q(m,n) into six disjoint subsets Qi(m,n) (1 ≤ i ≤ 6) and divide the set
of partitions counted by p(−m,n) into eight disjoint subsets Pi(−m,n) (1 ≤ i ≤ 8).
The injection consists of six injections φi from the set Qi(m,n) to the set Pi(−m,n),
where 1 ≤ i ≤ 6. In Section 5, we provide a proof of Theorem 1.6 for the case m = 0.
It turns out that the case m = 0 is not simpler than the general case m ≥ 1. The
injections φ1, φ2, φ3, φ4 in Section 4 also apply to the sets Qi(0, n), where 1 ≤ i ≤ 4. We
further divide Q5(0, n)∪Q6(0, n) into five disjoint subsets Q̄i(0, n) (1 ≤ i ≤ 5) and divide
P5(0, n) ∪ P6(0, n) into three disjoint subsets P̄i(0, n) (1 ≤ i ≤ 3). In addition to the two
injections φ5 and φ6, we need three more injections. In Section 6, we demonstrate that
Theorem 1.7 of Andrews, Chan and Kim can be deduced from Conjecture 1.3.

2 Proof of Theorem 1.5

In this section, we give a proof of relation (1.14) betweenN≤m(n)−M≤m(n) and p(−m,n)−
q(m,n).

Proof of Theorem 1.5. Since

N≤m(n) =
m∑

r=−m

N(r, n)

and

p(−m,n) =
+∞∑
r=−m

N(r, n),

we get

N≤m(n) = p(−m,n)−
+∞∑
r=−∞

N(r, n) +
m∑

r=−∞

N(r, n).

But
+∞∑
r=−∞

N(r, n) = p(n), (2.1)

so we have

N≤m(n) = p(−m,n)− p(n) +
m∑

r=−∞

N(r, n). (2.2)
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Replacing r by −r in the summation on the right-hand side of (2.2), and using the
symmetry N(m,n) = N(−m,n) in (1.12), we arrive at

m∑
r=−∞

N(r, n) =
+∞∑
r=−m

N(−r, n) =
+∞∑
r=−m

N(r, n) = p(−m,n). (2.3)

Substituting (2.3) into (2.2), we obtain

N≤m(n) = 2p(−m,n)− p(n). (2.4)

Similarly, for n > 1 we get

M≤m(n) = 2q(m,n)− p(n). (2.5)

Subtracting (2.5) from (2.4) gives (1.14). This completes the proof.

3 The m-Durfee rectangle symbol

In this section, we define m-Durfee rectangle symbols and give characterizations of parti-
tions counted by q(m,n) and p(−m,n).

Let λ be a partition. The m-Durfee rectangle of λ is defined to be the largest (m+j)×j
rectangle contained in the Ferrers diagram of λ, see Gordon and Houten [16]. An m-Durfee
rectangle is referred to as a Durfee square when m = 0. The m-Durfee rectangle symbol
of λ is defined as

(α, β)(m+j)×j =

(
α1, α2, . . . , αs

β1, β2, . . . , βt

)
(m+j)×j

, (3.1)

where (m + j) × j is the m-Durfee rectangle of the Ferrers diagram of λ and α consists
of columns to the right of the m-Durfee rectangle and β consists of rows below the m-
Durfee rectangle, see Figure 3.1. Clearly, we have m + j ≥ α1 ≥ α2 ≥ · · · ≥ αs,
j ≥ β1 ≥ β2 ≥ · · · ≥ βt and

|λ| =
s∑
i=1

αi +
t∑
i=1

βi + j(m+ j).

For example, the 2-Durfee rectangle symbol of λ = (7, 7, 6, 4, 3, 3, 2, 2, 2) in Figure 3.1
is (

4, 3, 3, 2

3, 2, 2, 2

)
5×3

.
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α1 α2 α3 α4

β1

β2

β3

β4

Figure 3.1: The 2-Durfee rectangle symbol of λ = (7, 7, 6, 4, 3, 3, 2, 2, 2).

Notice that for a partition λ with `(λ) ≤ m, there is no m-Durfee rectangle. In this
case, we adopt a convention that the m-Durfee rectangle of λ is empty, that is, j = 0,
and so the m-Durfee rectangle symbol is (λ′, ∅)m×0, where λ′ is the conjugate of λ. For
example, the 3-Durfee rectangle symbol of λ = (5, 5, 1) is(

3, 2, 2, 2, 2
)

3×0

.

It should be noted that when m = 0, a m-Durfee rectangle symbol takes the following
form

(α, β)j×j =

(
α1, α2, . . . , αs

β1, β2, . . . , βt

)
j×j

, (3.2)

which is a Durfee symbol, see Andrews [1]. In the notation of Andrews, a D ×D Durfee
square is simply denoted by D, as shown below

(α, β)D =

(
α1, α2, . . . , αs

β1, β2, . . . , βt

)
D

. (3.3)

For example, the Durfee symbol of λ = (7, 7, 6, 4, 3, 3, 2, 2, 2) in Figure 3.2 is

(α, β)D =

(
3, 3, 2

3, 3, 2, 2, 2

)
4

.

The following two properties will be used in the next section to describe partitions
counted by q(m,n) and p(−m,n).

Proposition 3.1. Let λ be a partition and (α, β)(m+j)×j be the m-Durfee rectangle symbol
of λ. Then m appears in the rank-set of λ if and only if either j = 0 or j ≥ 1 and β1 = j.
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α1 α2 α3

β1

β2

β3

β4

β5

Figure 3.2: The Durfee symbol of λ = (7, 7, 6, 4, 3, 3, 2, 2, 2).

Proof. We first show that if m appears in the rank-set of λ, then either j = 0 or j ≥ 1
and β1 = j. Assume that m appears in the rank-set of λ. By definition, there exists an
integer k ≥ 0, such that k − λk+1 = m. Obviously, k ≥ m. Consider the following two
cases.

Case 1: k = m. Clearly, λm+1 is equal to zero, which implies that `(λ) ≤ m. So we have
j = 0.

Case 2: k > m. We have λk+1 = k − m ≥ 1. Let λ = (α, β)(m+j)×j. We claim that
j = k−m. Notice that λk ≥ λk+1 = k−m and λk+1 = k−m < k+ 1−m. By definition,
the m-Durfee rectangle of λ is equal to k × (k −m). This yields j = k −m ≥ 1, so that
the claim is verified. Hence we have β1 = λk+1 = k −m = j.

We next show that if j = 0 or j ≥ 1 and β1 = j, then m appears in the rank-set of λ.

Case 1: j = 0. In this case, we have `(λ) ≤ m, which implies that λm+1 = 0. Thus,
m− λm+1 = m. So m appears in the rank-set of λ.

Case 2: j ≥ 1 and β1 = j. By definition, we have λm+j+1 = β1 = j. Hence j + m −
λj+m+1 = j+m− j = m. In other words, m appears in the rank-set of λ. This completes
the proof.

Proposition 3.2. Let λ be a partition and (α, β)(m+j)×j be the m-Durfee rectangle symbol
of λ. Then the rank of λ is not less than −m if and only if either j = 0 or j ≥ 1 and
`(β) ≤ `(α).

Proof. First, we assume that the rank of λ is not less than −m, that is, λ1 − `(λ) ≥ −m.
We aim to show that either j = 0 or j ≥ 1 and `(β) ≤ `(α). There are two following
cases:

Case 1: `(λ) ≤ m. By definition, it is clear that j = 0.
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Case 2: `(λ) ≥ m+1. By definition, we have j ≥ 1, λ1 = j+`(α) and `(λ) = j+m+`(β).
Hence

λ1 − `(λ) = (j + `(α))− (j +m+ `(β)) = −m+ (`(α)− `(β)).

Since λ1 − `(λ) ≥ −m, we deduce that `(β) ≤ `(α).

Conversely, we assume that j = 0 or j ≥ 1 and `(β) ≤ `(α). We claim that the rank
of λ is not less than −m.

Case 1: j = 0. Clearly, we have `(λ) ≤ m, which implies that the rank of λ is not less
than −m.

Case 2: j ≥ 1 and `(β) ≤ `(α). By definition, we have λ1 = j + `(α) and `(λ) =
j +m+ `(β). Hence

λ1 − `(λ) = (j + `(α))− (j +m+ `(β)) = −m+ (`(α)− `(β)). (3.4)

Note that `(α)− `(β) ≥ 0. From (3.4), we deduce that λ1− `(λ) ≥ −m, and so the claim
is proved.

4 Proof of Theorem 1.6 for m ≥ 1

Let Q(m,n) denote the set of partitions λ of n such that m appears in the rank-set of λ
and P (−m,n) denote the set of partitions of n with rank not less than −m. Theorem 1.6
is equivalent to the following combinatorial statement.

Theorem 4.1. For m ≥ 0, there is an injection Φ from the set Q(m,n) to the set
P (−m,n).

In this section, we give a proof of Theorem 4.1 for m ≥ 1, and hence Theorem 1.6
holds for m ≥ 1. The proof of Theorem 4.1 for the case m = 0 will be given in the next
section since it relies on the injections for the case m ≥ 1.

To establish an injection Φ from the set Q(m,n) to the set P (−m,n), we divide
Q(m,n) into six disjoint subsets Qi(m,n) (1 ≤ i ≤ 6) and divide P (−m,n) into eight
disjoint subsets Pi(−m,n) (1 ≤ i ≤ 8). We proceed to construct six injections φi from
Qi(m,n) to Pi(−m,n), where 1 ≤ i ≤ 6. Notice that the injections φ1, φ2, φ3 and φ4 hold
for m ≥ 0, and the injections φ5 and φ6 hold only for m ≥ 1. In fact, the injections
φ1, φ2, φ3 and φ4 are needed in the construction of the injection Φ for the case m = 0.

To divide Q(m,n) into six classes, let λ be a partition in Q(m,n) and let (α, β)(m+j)×j
be the m-Durfee rectangle symbol of λ. Write

λ =

(
α

β

)
(m+j)×j

,
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that is, we also consider the m-Durfee rectangle symbol as a partition in Q(m,n). By
Proposition 3.1, we see that either j = 0 or β1 = j with j ≥ 1. The subsets Qi(m,n) can
be described by using the m-Durfee rectangle symbol (α, β)(m+j)×j.

(1) Q1(m,n) is the set of m-Durfee rectangle symbols in Q(m,n) for which one of the
following conditions holds:
(i) j = 0;
(ii) j ≥ 1 and `(β)− `(α) ≤ −1;
(iii) j ≥ 1, `(β)− `(α) = 0 and α1 = m+ j;

(2) Q2(m,n) is the set of m-Durfee rectangle symbols in Q(m,n) such that j ≥ 1,
`(β)− `(α) ≥ 0 and α1 < m+ j;

(3) Q3(m,n) is the set of m-Durfee rectangle symbols in Q(m,n) such that j ≥ 1,
`(β)− `(α) ≥ 1, α1 = m+ j and s(β) = 1;

(4) Q4(m,n) is the set of m-Durfee rectangle symbols in Q(m,n) such that j ≥ 1,
`(β)− `(α) ≥ 1, α1 = m+ j > α2 and s(β) ≥ 2;

(5) Q5(m,n) is the set of m-Durfee rectangle symbols in Q(m,n) such that j ≥ 1,
`(β)− `(α) ≥ 1, α1 = α2 = m+ j > α3 and s(β) ≥ 2;

(6) Q6(m,n) is the set of m-Durfee rectangle symbols in Q(m,n) such that j ≥ 1,
`(β)− `(α) ≥ 1, α1 = α2 = α3 = m+ j and s(β) ≥ 2.

To divide the set P (−m,n) into eight classes, we also view P (−m,n) as the set of
m-Durfee rectangle symbols of partitions counted by p(−m,n). Let (γ, δ)(m+j′)×j′ be the
m-Durfee rectangle symbol of a partition µ in P (−m,n). By Proposition 3.2, we have
either j′ = 0 or j′ ≥ 1 and `(δ) − `(γ) ≤ 0. The subsets Pi(−m,n) can be described as
follows.

(1) P1(−m,n) is the set of m-Durfee rectangle symbols in P (−m,n) for which one of
the following conditions holds:
(i) j′ = 0;
(ii) j′ ≥ 1, `(δ)− `(γ) ≤ −1 and δ1 = j′;
(iii) j′ ≥ 1, `(γ) = `(δ), γ1 = m+ j′ and δ1 = j′;

(2) P2(−m,n) is the set of m-Durfee rectangle symbols in P (−m,n) with j′ ≥ 1 and
δ1 = j′ − 1;

(3) P3(−m,n) is the set of m-Durfee rectangle symbols in P (−m,n) with j′ ≥ 2 and
δ1 ≤ j′ − 2;

(4) P4(−m,n) is the set of m-Durfee rectangle symbols in P (−m,n) such that j′ ≥ 1,
`(γ) = `(δ), γ1 = m+ j′ − 1, δ1 = j′ and δ has a part equal to 2;
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(5) P5(−m,n) is the set of m-Durfee rectangle symbols in P (−m,n) such that j′ ≥ 1,
`(γ) = `(δ), γ1 ≤ m+ j′ − 3 and δ1 = j′;

(6) P6(−m,n) is the set of m-Durfee rectangle symbols in P (−m,n) such that j′ ≥ 1,
`(γ) = `(δ), γ1 = m+ j′ − 2 and δ1 = j′;

(7) P7(−m,n) is the set of m-Durfee rectangle symbols in P (−m,n) such that j′ ≥ 1,
`(γ) = `(δ), γ1 = m+ j′ − 1 > γ2, δ1 = j′ and δ has no parts equal to 2;

(8) P8(−m,n) is the set of m-Durfee rectangle symbols in P (−m,n) such that j′ ≥ 1,
`(γ) = `(δ), γ1 = γ2 = m+ j′ − 1, δ1 = j′ and δ has no parts equal to 2.

We are now ready to present the six injections φi from Qi(m,n) to Pi(−m,n), where
1 ≤ i ≤ 6. It is clear that Q1(m,n) coincides with P1(−m,n), so that φ1 can be set to
the identity map. The following lemma gives an injection from Q2(m,n) to P2(−m,n).

Lemma 4.2. For m ≥ 0, there is an injection φ2 from Q2(m,n) to P2(−m,n).

Proof. Let

λ =

(
α

β

)
(m+j)×j

=

(
α1, α2, . . . , αs

β1, β2, . . . , βt

)
(m+j)×j

be an m-Durfee rectangle symbol in Q2(m,n). By definition, we have β1 = j ≥ 1,
α1 < m+ j and t− s ≥ 0.

Define

φ2(λ) =

(
γ

δ

)
(m+j′)×j′

=

(
α1 + 1, α2 + 1, . . . , αs + 1, 1t−s

β1 − 1, β2 − 1, . . . , βt − 1

)
(m+j)×j

.

It is evident that `(δ) ≤ t and `(γ) = t, so that `(δ) − `(γ) ≤ 0. Moreover it is easy to
see that δ1 = j − 1 and |φ2(λ)| = |λ|. Hence φ2(λ) is in P2(−m,n).

To prove that the map φ2 is an injection, let

H(m,n) = {φ2(λ) : λ ∈ Q2(m,n)}.

It is easy to check that for n 6= m+ 1, H(m,n) = P2(−m,n), and for n = m+ 1, we have

H(m,n) = P2(−m,n) \ {(∅, ∅)(m+1)×1}.

Let

µ =

(
γ

δ

)
(m+j′)×j′

=

(
γ1, γ2, . . . , γs′

δ1, δ2, . . . , δt′

)
(m+j′)×j′

12



be an m-Durfee rectangle symbol in H(m,n). Since µ ∈ P2(−m,n), we have s′ ≥ t′.
Define σ(µ) to be

σ(µ) =

(
γ1 − 1, γ2 − 1, . . . , γs′ − 1

δ1 + 1, δ2 + 1, . . . , δt′ + 1, 1s
′−t′

)
(m+j′)×j′

.

It can be verified σ(µ) is in Q2(m,n) and σ(φ2(λ)) = λ for any λ in Q2(m,n). Hence the
map φ2 is a bijection between Q2(m,n) and H(m,n).

For example, for m = 2 and n = 31, let

λ =

(
4, 2, 2

3, 2, 2, 1

)
5×3

be a 2-Durfee rectangle symbol in Q2(2, 31). Applying the map φ2 to λ, we obtain

φ2(λ) =

(
5, 3, 3, 1

2, 1, 1

)
5×3

,

which is a 2-Durfee rectangle symbol in P2(−2, 31). Applying σ to φ2(λ), we recover λ,
that is, σ(φ2(λ)) = λ.

Lemma 4.3. For m ≥ 0, there is a bijection φ3 between Q3(m,n) and P3(−m,n).

Proof. Let

λ =

(
α

β

)
(m+j)×j

=

(
α1, α2, . . . , αs

β1, β2, . . . , βt

)
(m+j)×j

be an m-Durfee rectangle symbol in Q3(m,n). By definition, we have j = β1 ≥ βt = 1,
α1 = m+ j and t− s ≥ 1.

Define

φ3(λ) =

(
γ

δ

)
(m+j′)×j′

=

(
α2 + 1, . . . , αs + 1, 1t−s−1

β2 − 1, . . . , βt − 1

)
(m+j+1)×(j+1)

.

To prove that φ3(λ) ∈ P3(−m,n), we proceed to verify that γ1 ≤ m + j′, δ1 ≤ j′ − 2,
`(δ)− `(γ) ≤ 0 and |λ| = |φ3(λ)|. First, it is easy to see that

γ1 = α2 + 1 ≤ m+ j + 1 = m+ j′

and
δ1 = β2 − 1 ≤ j − 1 ≤ j′ − 2.

By definition, `(γ) = t− 2 and `(δ) ≤ t− 2 for βt = 1. Hence `(δ)− `(γ) ≤ 0.

13



Note that

|φ3(λ)| = |γ|+ |δ|+ (j + 1)(m+ j + 1).

But

|γ|+ |δ| = (|α| − α1 + t− 2) + (|β| − β1 − (t− 1))

= |α|+ |β| − (m+ j)− j − 1,

we find that

|φ3(λ)| = |α|+ |β| − (m+ j)− 1− j + (j + 1)(m+ j + 1)

= |α|+ |β|+ j(m+ j),

which equals |λ|. Hence φ3(λ) ∈ P3(−m,n). To show that φ3 is a bijection, we construct
the inverse map ζ of φ3. Let

µ =

(
γ

δ

)
(m+j′)×j′

=

(
γ1, γ2, . . . , γs′

δ1, δ2, . . . , δt′

)
(m+j′)×j′

be an m-Durfee rectangle symbol in P3(−m,n). Since µ ∈ P3(−m,n), we have s′ ≥ t′,
j′ ≥ 2 and δ1 ≤ j′ − 2. Define ζ(µ) to be

ζ(µ) =

(
m+ j′ − 1, γ1 − 1, γ2 − 1, . . . , γs′ − 1

j′ − 1, δ1 + 1, δ2 + 1, . . . , δt′ + 1, 1s
′−t′+1

)
(m+j′−1)×(j′−1)

.

It is easy to check that ζ(µ) is in Q3(m,n) and ζ is the inverse map of φ3. So we conclude
that φ3 is a bijection.

For example, for m = 2 and n = 34, let

λ =

(
5, 4, 1

3, 3, 2, 1

)
5×3

be a 2-Durfee rectangle symbol in Q3(2, 34). Applying the bijection φ3 to λ, we get

φ3(λ) =

(
5, 2

2, 1

)
6×4

,

which is in P3(−2, 34). Applying ζ to φ3(λ) we recover λ.

The following proposition will be used in the construction of the injection φ4.
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Proposition 4.4. For m ≥ 0, let

λ =

(
α

β

)
(m+j)×j

=

(
α1, α2, . . . , αs

β1, β2, . . . , βt

)
(m+j)×j

be an m-Durfee rectangle symbol in Q4(m,n). Then there exists an integer 1 ≤ k ≤ s
such that

αk+1 ≤ βk − 1 (4.1)

and
αk ≥ βk+1 − 1. (4.2)

Proof. By the definition of Q4(m,n), we have j = β1 ≥ βt ≥ 2, m + j = α1 > α2 and
t− s ≥ 1. When m = 0, we may choose k = 1, since

α2 ≤ j − 1 = β1 − 1

and
α1 = j > β2 − 1.

When m ≥ 1, let
h = min{i : 1 ≤ i ≤ t, αi ≤ βi − 1}.

Setting k = h − 1, we proceed to show that 1 ≤ k ≤ s and relations (4.1) and (4.2)
hold. Since βt ≥ 2, αs+1 = 0 and t ≥ s+ 1, we have αs+1 ≤ βs+1 − 1, which implies that
h ≤ s + 1, that is, k ≤ s. Observing that α1 = j + m > j − 1 = β1 − 1, we get h ≥ 2,
that is, k ≥ 1. Thus, we have 1 ≤ k ≤ s. By the definition of h, we find that

αh ≤ βh − 1

and
αh−1 > βh−1 − 1.

It follows that
αh ≤ βh − 1 ≤ βh−1 − 1

and
αh−1 > βh−1 − 1 ≥ βh − 1,

which implies that k = h− 1. This completes the proof.

Lemma 4.5. For m ≥ 0, there is an injection φ4 from Q4(m,n) to P4(−m,n).

Proof. We first construct a map φ4 from Q4(m,n) to P4(−m,n), then we show that it is
an injection. Let

λ =

(
α

β

)
(m+j)×j

=

(
α1, α2, . . . , αs

β1, β2, . . . , βt

)
(m+j)×j
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be an m-Durfee rectangle symbol in Q4(m,n). By Proposition 4.4, we may choose k to
be the minimum integer such that 1 ≤ k ≤ s, αk+1 ≤ βk − 1 and αk ≥ βk+1 − 1. By the
definition of Q4(m,n), we have j = β1 ≥ βt ≥ 2, m + j = α1 > α2 and t− s ≥ 1. So we
may define

φ4(λ) =

(
γ

δ

)
(m+j′)×j′

=

(
α1 − 1, α2, . . . , αk, βk+1 − 1, . . . , βt − 1

β1, β2, . . . , βk, αk+1 + 1, . . . , αs + 1, 2, 1t−s−1

)
(m+j)×j

.(4.3)

Apparently, γ1 = α1 − 1 = j′ + m − 1, δ1 = β1 = j′ = j, `(γ) = `(δ) = t and δs+1 =
2. Furthermore, it can be easily checked that |φ4(λ)| = |λ|. This yields that φ4(λ) ∈
P4(−m,n).

To prove that φ4 is an injection, let

I(m,n) = {φ4(λ) : λ ∈ Q4(m,n)}

be the set of images of φ4, which has been shown to be a subset of P4(−m,n). We wish
to show that the construction of φ4 is reversible, which implies that φ4 is an injection.
More precisely, we shall show that there exists a map ϕ from I(m,n) to Q4(m,n) such
that for any λ in Q4(m,n) we have

ϕ(φ4(λ)) = λ.

We now describe the map ϕ. Let

µ =

(
γ

δ

)
(m+j′)×j′

=

(
γ1, γ2, . . . , γt′

δ1, δ2, . . . , δt′

)
(m+j′)×j′

(4.4)

be an m-Durfee rectangle symbol in I(m,n). The following procedure generates an m-
Durfee rectangle symbol ϕ(µ) in Q4(m,n).

We claim that for µ ∈ I(m,n) given by (4.4), there exists an integer k′ such that
1 ≤ k′ ≤ `(γ)− 1 and

δk′ − 1 ≥ γk′+1, γk′ ≥ δk′+1 − 1 ≥ 1. (4.5)

Since µ ∈ I(m,n), there exists λ ∈ Q4(m,n) such that φ4(λ) = µ. By the choice of k in
the construction φ4(λ), we see that

1 ≤ k ≤ s ≤ t− 1 = `(γ)− 1.

Again, from the construction (4.3) of φ4(λ), we find that

δk ≥ γk+1 + 1
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and
γk ≥ δk+1 − 1 ≥ 1.

So k satisfies the conditions in (4.5). Thus the claim is verified.

Now, we may choose k′ to be the minimum integer such that 1 ≤ k′ ≤ `(γ)−1, δk′−1 ≥
γk′+1 and γk′ ≥ δk′+1 − 1 ≥ 1. Since µ is in P4(−m,n), the partition δ in the m-Durfee
rectangle symbol of µ has a part equal to 2. Assume that δs′ = 2 > δs′+1. Then we may
define

ϕ(µ) =

(
α

β

)
(m+j)×j

=

(
γ1 + 1, γ2, . . . , γk′ , δk′+1 − 1, . . . , δs′−1 − 1

δ1, δ2, . . . , δk′ , γk′+1 + 1, . . . , γt′ + 1

)
(m+j′)×j′

. (4.6)

Evidently, β1 = δ1 = j, α1 = γ1 + 1 = m + j > α2, βt′ = γt′ + 1 ≥ 2 and t′ > s′ − 1.
Moreover, it is easy to check that |ϕ(µ)| = |µ|. So we deduce that ϕ(µ) ∈ Q4(m,n).

It remains to verify that ϕ(φ4(λ)) = λ. By the constructions (4.3) and (4.6) of φ4(λ)
and ϕ(µ), it suffices to show that the integer k appearing in the representation of φ4(λ)
coincides with the integer k′ appearing in the representation of ϕ(φ4(λ)).

Recall that k is the minimum integer determined by λ subject to the conditions

1 ≤ k ≤ s, αk ≥ βk+1 − 1, and αk+1 ≤ βk − 1. (4.7)

On the other hand, it can be shown that k is also the minimum integer k′ depending on
φ4(λ) such that

1 ≤ k′ ≤ `(γ)− 1, δk′ − 1 ≥ γk′+1 and γk′ ≥ δk′+1 − 1 ≥ 1. (4.8)

From the definitions of k and s, we find that s ≤ t − 1 = `(γ) − 1, which implies
k ≤ `(γ) − 1. By the construction (4.3) in φ4(λ), we have γk+1 = βk+1 − 1 and δk = βk.
Furthermore, we have γ1 = α1 − 1, and γk = αk for k ≥ 2. It can also be seen that
δs+1 = 2 and δk+1 = αk+1 + 1 for 1 ≤ k ≤ s− 1. Hence we deduce that δk − 1 ≥ γk+1 and
γk ≥ δk+1 − 1 ≥ 1 for 1 ≤ k ≤ s, that is, k satisfies the conditions in (4.8).

Finally, we need to show that k is the minimum integer satisfying conditions in (4.8).
Assume to the contrary that there is an integer 1 ≤ p ≤ k− 1 for which the conditions in
(4.8) are satisfied, that is,

δp − 1 ≥ γp+1 and γp ≥ δp+1 − 1 ≥ 1.

From the construction (4.3) of φ4(λ) and the assumption 1 ≤ p ≤ k − 1, we find that

αp+1 = γp+1, βp = δp, βp+1 = δp+1.
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Moreover, by (4.3) we see that αp = γp + 1 if p = 1 and αp = γp if p ≥ 2. In either case,
we have

αp ≥ βp+1 − 1 and αp+1 ≤ βp − 1.

This means that p also satisfies the conditions in (4.7), contradicting the choice of k. So
we conclude that k is the minimum integer satisfying conditions in (4.8), which implies
that ϕ(φ4(λ)) = λ. This completes the proof.

For example, for m = 2 and n = 41, consider the following 2-Durfee rectangle symbol
in Q4(2, 41):

λ =

(
5, 4, 2, 1

3, 3, 2, 2, 2, 2

)
5×3

.

It can be checked that k = 2. Applying the injection φ4 to λ, we get

µ = φ4(λ) =

(
4, 4, 1, 1, 1, 1

3, 3, 3, 2, 2, 1

)
5×3

,

which is in P4(−2, 41). Applying ϕ to µ, we obtain that k′ = 2 and ϕ(µ) = λ.

We next describe the injection φ5 from Q5(m,n) to P5(−m,n).

Lemma 4.6. For m ≥ 1, there is an injection φ5 from Q5(m,n) to P5(−m,n).

Proof. Let

λ =

(
α

β

)
(m+j)×j

=

(
α1, α2, . . . , αs

β1, β2, . . . , βt

)
(m+j)×j

be an m-Durfee rectangle symbol in Q5(m,n). By definition, we have j = β1 ≥ βt ≥ 2,
α1 = α2 = m+ j > α3 and t− s ≥ 1.

Since α2 −m+ 2 = j + 2 > β3 − 1, we may choose the maximum number k such that
1 ≤ k ≤ t− 1 and αk −m+ 2 ≥ βk+1 − 1. To define φ5(λ), we construct two partitions γ
and δ. It is clear that k ≥ 2. So we may define

γ = (β2 +m− 2, . . . , βk +m− 2, αk+1 + 1, . . . , αt + 1) (4.9)

and

δ = (α2 + 1−m, α3 + 2−m, . . . , αk + 2−m, βk+1 − 1, . . . , βt − 1). (4.10)

Notice that when k = 2 the above definition (4.10) may be ambiguous. In this case, (4.10)
is interpreted as

δ = (α2 + 1−m, β3 − 1, . . . , βt − 1).

We now define

φ5(λ) =

(
γ

δ

)
(m+j+1)×(j+1)

. (4.11)
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We first prove that (γ, δ)(m+j+1)×(j+1) is an m-Durfee rectangle symbol. To this end,
we need to show that γ and δ are partitions with γ1 ≤ m+ j+ 1 and δ1 ≤ j+ 1. We then
verify that (γ, δ)(m+j+1)×(j+1) satisfies the conditions for P5(−m,n).

To prove that δ is a partition, it suffices to show that when k = 2, we have

α2 + 1−m ≥ β3 − 1, (4.12)

and when k ≥ 3, we have
α2 + 1−m ≥ α3 + 2−m (4.13)

and
αk + 2−m ≥ βk+1 − 1. (4.14)

When k = 2, since α2 −m+ 1 = j + 1 and β3 ≤ β1 = j, we see that (4.12) holds, and
so δ is a partition. When k ≥ 3, since α2 > α3, we get (4.13). On the other hand, (4.14)
follows from the choice of k. Hence δ forms a partition when k ≥ 3. Furthermore, it is
clear from (4.10) that δ1 = α2 + 1−m = j + 1.

We now verify that γ is a partition. From the definition (4.9) of γ, it suffices to show
that

βk +m− 2 ≥ αk+1 + 1. (4.15)

Keep in mind that k is in the range from 2 to t − 1. When k = t − 1, (4.15) becomes
βt−1 + m − 2 ≥ αt + 1, which is valid since βt−1 ≥ 2 and αt = 0. When 2 ≤ k ≤ t − 2,
since k is the maximum integer such that αk−m+ 2 ≥ βk+1− 1, we have αk+1−m+ 2 <
βk+2 − 1, which implies (4.15). This proves that γ is a partition. It is clear from (4.9)
that γ1 = β2 +m− 2 ≤ j +m− 2.

Next we demonstrate that (γ, δ)(m+j+1)×(j+1) is an m-Durfee rectangle symbol in
P5(−m,n). It is clear from (4.9) and (4.10) that δ1 = α2+1−m = j+1, γ1 = β2+m−2 ≤
j + m − 2, and `(γ) = `(δ) = t − 1. It remains to check that |(γ, δ)(m+j+1)×(j+1)| = |λ|.
Note that

|γ|+ |δ| = |α| − α1 + (2−m)(k − 2) + 1−m+ (t− k)

+|β| − β1 + (m− 2)(k − 1)− (t− k)

= |α| − α1 + |β| − β1 − 1.

Since β1 = j and α1 = m+ j, we get

|γ|+ |δ| = |α|+ |β| − (2j +m+ 1).

Hence

|(γ, δ)(m+j+1)×(j+1)| = |γ|+ |δ|+ (m+ j + 1)(j + 1)

= |α|+ |β|+ j(j +m),
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which equals |λ|. So we arrive at the conclusion (γ, δ)(m+j+1)×(j+1) ∈ P5(−m,n).

We are now in a position to prove that φ5 is an injection. Let

J(m,n) = {φ5(λ) : λ ∈ Q5(m,n)}

be the set of images of φ5. It has been shown that J(m,n) is a subset of P5(−m,n). We
wish to construct a map τ from J(m,n) to Q5(m,n) such that for any λ in Q5(m,n), we
have

τ(φ5(λ)) = λ.

To describe the map τ , let

µ =

(
γ

δ

)
(m+j′)×j′

=

(
γ1, γ2, . . . , γt′

δ1, δ2, . . . , δt′

)
(m+j′)×j′

be an m-Durfee rectangle symbol in J(m,n), that is, there is an m-Durfee rectangle
symbol λ = (α, β)(m+j)×j in Q5(m,n) such that φ5(λ) = µ. We claim that γt′ = 1 and
there exists an integer k′ such that

1 ≤ k′ ≤ t′ − 1 and γk′ −m+ 1 ≥ δk′+1. (4.16)

From the constructions (4.9) and (4.10) of φ5, we see that γt′ = αt+1 = 1, γk−1 = βk+m−2
and δk = βk+1− 1. It follows that γk−1−m+ 1 ≥ δk. Since 1 ≤ k− 1 ≤ t− 2 = t′− 1, we
reach the conclusion that k − 1 satisfies the conditions in (4.16). This proves the claim.

By the above claim, we may choose k′ to be the maximum integer such that 1 ≤ k′ ≤
t′ − 1 and

γk′ −m+ 1 ≥ δk′+1. (4.17)

The choice of k′ yields that γk′+1 − m + 1 < δk′+2 when 1 ≤ k′ ≤ t′ − 2, which implies
γk′+1 − 1 < δk′ − 2 + m. When k′ = t′ − 1, we also have γk′+1 − 1 ≤ δk′ − 2 + m since
γt′ = 1. Combining the above two cases for k′, we obtain that

γk′+1 − 1 ≤ δk′ − 2 +m. (4.18)

In view of (4.17) and (4.18), we may define

τ(µ) =

(
α

β

)
(m+j′−1)×(j′−1)

,

where

α = (j′ +m− 1, δ1 − 1 +m, δ2 − 2 +m, . . . , δk′ − 2 +m, γk′+1 − 1, . . . , γt′ − 1) (4.19)

and
β = (j′ − 1, γ1 + 2−m, . . . , γk′ + 2−m, δk′+1 + 1, . . . , δt′ + 1). (4.20)
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It is easily checked that τ(µ) ∈ Q5(m,n).

Finally, we verify that τ(φ5(λ)) = λ. By the constructions of φ5(λ) and τ(µ), it suffices
to show that the integer k appearing in the representation of φ5(λ) is equal to the integer
k′ appearing in the representation of τ(φ5(λ)) plus 1, namely, k′ = k − 1.

Recall that k is the maximum integer determined by λ subject to the conditions

1 ≤ k ≤ t− 1 and αk −m+ 2 ≥ βk+1 − 1. (4.21)

On the other hand, it can be shown that k − 1 is the maximum integer k′ determined by
φ5(λ) subject to the conditions

1 ≤ k′ ≤ t′ − 1 and γk′ −m+ 1 ≥ δk′+1. (4.22)

Using (4.9) and (4.10), we find that 1 ≤ k−1 ≤ t−2 = t′−1 and γk−1−m+1 = βk−1 ≥
βk+1 − 1 = δk, that is, the conditions in (4.22) hold with k′ replaced by k− 1. It remains
to show that k− 1 is the maximum integer satisfying the conditions in (4.22). Assume to
the contrary that there is an integer p ≥ k for which the conditions in (4.22) are satisfied,
that is, k ≤ p ≤ t′ − 1 and

γp −m+ 1 ≥ δp+1. (4.23)

Since t′ = t− 1, we have
k ≤ p ≤ t− 2. (4.24)

From the constructions (4.9) and (4.10) of φ5(λ), we find that γp = αp+1 + 1 and δp+1 =
βp+2 − 1. By (4.23), we deduce that αp+1 −m + 2 ≥ βp+2 − 1. Moreover, it follows from
(4.24) that k + 1 ≤ p + 1 ≤ t − 1. Thus, (4.21) is valid with k replaced by p + 1, which
contradicts the choice of k. So we conclude that k − 1 is the maximum integer satisfying
conditions in (4.22). This implies that τ(φ5(λ)) = λ, and hence the proof is complete.

For example, for m = 1 and n = 34, consider the following 1-Durfee rectangle symbol
in Q5(1, 34):

λ =

(
4, 4, 2

3, 3, 2, 2, 2

)
4×3

.

It can be checked that k = 4. Applying the injection φ5 to λ, we get

µ = φ5(λ) =

(
2, 1, 1, 1

4, 3, 1, 1

)
5×4

,

which is in P5(−1, 34). Applying τ to µ, we obtain that k′ = 3 and τ(µ) = λ.

It should be remarked that the injection φ5 is not valid for m = 0. More precisely, φ5

does not apply to Durfee symbols λ = (α, β)j in Q5(0, n) with βt−1 = 2, where `(β) = t
and `(α) = s < t. Assume that βt−1 = 2. Then we have αt−1 + 2 ≥ 2 > βt − 1, so that
k = t− 1. Applying φ5 to (α, β)j, we get

γ = (β2 − 2, . . . , βt−1 − 2, αt + 1),
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which is not a partition, since γt−2 = βt−1 − 2 = 0 and γt−1 = αt + 1 = 1.

In the following lemma, we give an injection φ6 from Q6(m,n) to P6(−m,n).

Lemma 4.7. For m ≥ 1, there is an injection φ6 from Q6(m,n) to P6(−m,n).

Proof. To define the map φ6, let

λ =

(
α

β

)
(m+j)×j

=

(
α1, α2, . . . , αs

β1, β2, . . . , βt

)
(m+j)×j

be an m-Durfee rectangle symbol in Q6(m,n). By definition, we have j = β1 ≥ βt ≥ 2,
α1 = α2 = α3 = m+ j and t− s ≥ 1.

Since α3 −m+ 1 = j + 1 > β3 − 1, there exists a maximum integer k such that k ≤ s
and αk −m+ 1 ≥ βk − 1. We aim to construct two partitions γ and δ from λ. It is clear
that k ≥ 3. So we may define

γ = (β1 +m− 1, . . . , βk−1 +m− 1, αk+1 + 1, . . . , αs + 1, 2, 1t−s−1) (4.25)

and
δ = (α3 + 1−m, . . . , αk + 1−m, βk − 1, . . . , βt − 1). (4.26)

To avoid ambiguity, when k = s, we set

γ = (β1 +m− 1, . . . , βs−1 +m− 1, 2, 1t−s−1).

Using the argument in the proof of Lemma 4.6, it can be shown that (γ, δ)(m+j+1)×(j+1)

is an m-Durfee rectangle symbol. Define

φ6(λ) =

(
γ

δ

)
(m+j+1)×(j+1)

.

We claim that φ6(λ) is an m-Durfee rectangle symbol in P6(−m,n). It is clear from (4.25)
and (4.26) that γ1 = j + m− 1, δ1 = j + 1 and `(γ) = `(δ) = t− 1. It remains to check
that |φ6(λ)| = |λ|. Observe that

|γ|+ |δ| = |α| − α1 − α2 + (1−m)(k − 2) + (s− k) + 2 + (t− s− 1)

+|β|+ (m− 1)(k − 1)− (t− k + 1)

= |α|+ |β| − α1 − α2 +m− 1. (4.27)

By the definition of Q6(m,n), we have α1 = α2 = j+m. Thus, it follows from (4.27) that

|γ|+ |δ| = |α|+ |β| − (2j +m+ 1).
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Hence,

|φ6(λ)| = |γ|+ |δ|+ (j + 1)(j +m+ 1)

= |α|+ |β|+ j(j +m),

which equals to |λ|. This proves that φ6(λ) ∈ P6(−m,n).

Next we show that φ6 is an injection. Let

K(m,n) = {φ6(λ) : λ ∈ Q6(m,n)}

be the set of images of φ6, which has been shown to be a subset of P6(−m,n). It suffices
to construct a map χ from K(m,n) to Q6(m,n) such that for any λ in Q6(m,n),

χ(φ6(λ)) = λ.

To describe the map χ, let

µ =

(
γ

δ

)
(m+j′)×j′

=

(
γ1, γ2, . . . , γt′

δ1, δ2, . . . , δt′

)
(m+j′)×j′

(4.28)

be an m-Durfee rectangle symbol in K(m,n), that is, there is an m-Durfee rectangle
symbol λ = (α, β)(m+j)×j in Q6(m,n) such that φ6(λ) = µ. From the defining relation
(4.25) of φ6, we see that γ has a part equal to 2. Moreover, s is the maximum number
such that γs = 2. This property enables us to determine s from γ. We claim that there
exists an integer k′ such that

1 ≤ k′ ≤ s− 1 and γk′ −m ≥ δk′ . (4.29)

By (4.25) and (4.26), we have

2 ≤ k − 1 ≤ s− 1, γk−1 = βk−1 +m− 1, δk−1 = βk − 1

which implies that

1 ≤ k − 1 ≤ s− 1 and γk−1 −m ≥ δk−1.

Hence the conditions in (4.29) are satisfied with k′ replaced by k − 1. So the claim is
proved.

Now we may choose k′ to be the maximum integer for which (4.29) holds. This choice
of k′ implies that γk′+1−m < δk′+1 when 1 ≤ k′ ≤ s− 2. It follows that δk′−1 +m > γk′+1

when 1 ≤ k′ ≤ s− 2. When k′ = s− 1, since γs = 2, we have δs−2 +m ≥ γs. Combining
the above two cases for k′, we deduce that

δk′−1 +m ≥ γk′+1. (4.30)
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By (4.29) and (4.30), we may define

χ(µ) =

(
α

β

)
(m+j′−1)×(j′−1)

.

where

α = (j′+m−1, j′+m−1, δ1−1+m, . . . , δk′−1−1+m, γk′+1−1, . . . , γs−1−1) (4.31)

and
β = (γ1 + 1−m, . . . , γk′ + 1−m, δk′ + 1, . . . , δt′ + 1). (4.32)

It can be easily checked that χ(µ) ∈ Q6(m,n).

Finally, we verify that χ(φ6(λ)) = λ. By the constructions of φ6(λ) and χ(µ), it
suffices to show that the integer k appearing in the representation of φ6(λ) is equal to
the integer k′ appearing in the representation of χ(φ6(λ)) plus 1, that is, k′ = k− 1. This
assertion can be justified by using the same argument as in the proof of Lemma 4.6. For
completeness, we include a proof.

Recall that k is the maximum integer determined by λ subject to the conditions

3 ≤ k ≤ s, αk −m+ 1 ≥ βk − 1. (4.33)

We proceed to show that k− 1 is the maximum integer k′ determined by φ6(λ) such that

1 ≤ k′ ≤ s− 1, γk′ −m ≥ δk′ . (4.34)

From the constructions (4.25) and (4.26) of φ6, it can be checked that (4.34) is valid with
k′ replaced by k − 1. So it suffices to show that k − 1 is the maximum integer satisfying
conditions in (4.34). Assume to the contrary that there is an integer k ≤ p ≤ s − 1 for
which the conditions in (4.34) are satisfied, that is,

γp −m ≥ δp. (4.35)

In view of the constructions (4.25) and (4.26) of φ6, and noting that k ≤ p ≤ s − 1, we
find that

γp = αp+1 + 1 and δp = βp+1 − 1. (4.36)

Substituting (4.36) into (4.35), we arrive at

αp+1 −m+ 1 ≥ βp+1 − 1.

This means that (4.33) holds with k being replaced by p + 1. But this contradicts the
maximality of k. So we conclude that k− 1 is the maximum integer satisfying conditions
in (4.34), which implies that χ(φ6(λ)) = λ. This completes the proof.
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For example, for m = 2 and n = 60, let

λ =

(
5, 5, 5, 5, 3, 2

3, 3, 3, 3, 2, 2, 2, 2

)
5×3

be a 2-Durfee rectangle symbol in Q6(2, 60). It can be checked that k = 6. Applying φ6

to λ, we get

µ = φ6(λ) =

(
4, 4, 4, 4, 3, 2, 1

4, 4, 2, 1, 1, 1, 1

)
6×4

,

which in P6(−2, 60). Applying χ to µ, we obtain that s = 6, k′ = 5 and χ(µ) = λ.

It should be noted that the injection φ6 is not valid for m = 0. To be more specific, φ6

does not apply to Durfee symbols λ = (α, β)j in Q6(0, n) with βs−1 = 2, where `(α) = s
and `(β) = t. Assume that (γ, δ)j′ = φ6(λ). Since βs−1 = 2, we have αs + 1 ≥ 2 > βs− 1,
which implies that k = s. Thus

γ = (β1 − 1, . . . , βs−1 − 1, 2, 1t−s−1),

which is not a partition, since γs−1 = βs−1 − 1 = 1 and γs = 2.

Combining the above injections φi (1 ≤ i ≤ 6), we are led to an injection from Q(m,n)
to P (−m,n) for the case m ≥ 1.

Proof of Theorem 4.1 for m ≥ 1. Assume that m ≥ 1. Let λ be a partition in Q(m,n),
define

Φ(λ) =



φ1(λ), if λ ∈ Q1(m,n);

φ2(λ), if λ ∈ Q2(m,n);

φ3(λ), if λ ∈ Q3(m,n);

φ4(λ), if λ ∈ Q4(m,n);

φ5(λ), if λ ∈ Q5(m,n);

φ6(λ), if λ ∈ Q6(m,n).

Using the divisions of Q(m,n) and P (−m,n) and combining Lemmas 4.2–4.7, we conclude
that Φ is an injection from Q(m,n) to P (−m,n).

5 Proof of Theorem 1.6 for m = 0

In this section, we give a proof of Theorem 4.1 for m = 0, and so Theorem 1.6 holds for
m = 0. In addition to the injections φ1, φ2, φ3 and φ4 for m ≥ 0 and restrictions of φ5

and φ6, this seemingly special case requires three more injections.
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Recall that Q(0, n) denotes the set of Durfee symbols (α, β)j of n such that β1 = j
and P (0, n) denotes the set of Durfee symbols (γ, δ)j of n such that `(δ)− `(γ) ≤ 0. From
the definitions of Qi(m,n) and Pi(−m,n) given in Section 4, it can be seen that

Q(0, n) =
6⋃
i=1

Qi(0, n)

and

P (0, n) =
8⋃
i=1

Pi(0, n).

It is known that Q1(0, n) = P1(0, n). By Lemmas 4.2, 4.3 and 4.5, we see that the
injections φ2, φ3, φ4 can be applied to Q2(0, n), Q3(0, n) and Q4(0, n), so that we get three
injections from Qi(0, n) to Pi(0, n), where 2 ≤ i ≤ 4.

As mentioned in the previous section, the injections φ5 and φ6 do not apply to Q5(0, n)
and Q6(0, n). We need to construct an injection from Q5(0, n) ∪ Q6(0, n) to P5(0, n) ∪
P6(0, n) ∪ P7(0, n) ∪ P8(0, n). To this end, we shall divide the set Q5(0, n) ∪Q6(0, n) into
five disjoint subsets Q̄1(0, n), Q̄2(0, n), Q̄3(0, n), Q̄4(0, n) and Q̄5(0, n):

(1) Q̄1(0, n) is the set of Durfee symbols (α, β)j ∈ Q5(0, n) with s(β) ≥ 3;

(2) Q̄2(0, n) is the set of Durfee symbols (α, β)j ∈ Q6(0, n) with s(β) ≥ 3;

(3) Q̄3(0, n) is the set of Durfee symbols (α, β)j ∈ Q5(0, n)∪Q6(0, n) with s(α) = 1 and
s(β) = 2;

(4) Q̄4(0, n) is the set of Durfee symbols (α, β)j ∈ Q5(0, n) ∪ Q6(0, n) with s(α) ≥ 2,
β1 = β2 and s(β) = 2;

(5) Q̄5(0, n) is the set of Durfee symbols (α, β)j ∈ Q5(0, n) ∪ Q6(0, n) with s(α) ≥ 2,
β1 > β2 and s(β) = 2.

On the other hand, we divide the set P5(0, n) ∪ P6(0, n) into three disjoint subsets
P̄1(0, n), P̄2(0, n) and P̄3(0, n):

(1) P̄1(0, n) is the set of Durfee symbols (γ, δ)j′ ∈ P5(0, n) with s(δ) ≥ 2;

(2) P̄2(0, n) is the set of Durfee symbols (γ, δ)j′ ∈ P6(0, n) with s(δ) ≥ 2;

(3) P̄3(0, n) is the set of Durfee symbols (γ, δ)j′ ∈ P5(0, n) ∪ P6(0, n) with s(δ) = 1.

In the following lemmas, we shall show that there exist an injection ψ1 from Q̄1(0, n)
to P̄1(0, n), an injection ψ2 from Q̄2(0, n) to P̄2(0, n), an injection ψ3 from Q̄3(0, n) to
P̄3(0, n), an injection ψ4 from Q̄4(0, n) to P7(0, n) and an injection ψ5 from Q̄5(0, n) to
P8(0, n). It should be noted that ψ1 is a restriction of φ5 to Q̄1(0, n) and ψ2 is a restriction
of φ6 to Q̄2(0, n). Then the injection Φ for m = 0 consists of injections φi (1 ≤ i ≤ 4)
and injections ψi (1 ≤ i ≤ 5).
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Lemma 5.1. There exists an injection ψ1 from Q̄1(0, n) to P̄1(0, n).

Proof. Let

λ =

(
α

β

)
j

=

(
α1, α2, . . . , αs

β1, β2, . . . , βt

)
j

be a Durfee symbol in Q̄1(0, n). By definition, we have j = β1 ≥ βt ≥ 3, j = α1 = α2 > α3

and t − s ≥ 1. Consequently, we have α2 + 2 = j + 2 > β3 − 1. Hence there exists a
maximum number k such that 1 ≤ k ≤ t− 1 and αk + 2 ≥ βk+1 − 1. So we may define

ψ1(λ) =

(
γ

δ

)
j+1

, (5.1)

where
γ = (β2 − 2, . . . , βk − 2, αk+1 + 1, . . . , αt + 1)

and
δ = (α2 + 1, α3 + 2, . . . , αk + 2, βk+1 − 1, . . . , βt − 1).

Using the same argument as in the proof of Lemma 4.6, we deduce that ψ1(λ) is a Durfee
symbol in P̄1(0, n) and the construction of ψ1 is reversible. Thus ψ1 is an injection from
Q̄1(0, n) to P̄1(0, n). This completes the proof.

Lemma 5.2. There exists an injection ψ2 from Q̄2(0, n) to P̄2(0, n).

Proof. Let

λ =

(
α

β

)
j

=

(
α1, α2, . . . , αs

β1, β2, . . . , βt

)
j

be a Durfee symbol in Q̄2(0, n). In this case, we have j = β1 ≥ βt ≥ 3, j = α1 = α2 = α3

and t− s ≥ 1. Thus, α3 + 1 = j + 1 > β3 − 1. So we may assume that k is the maximum
integer such that k ≤ s and αk + 1 ≥ βk − 1. Define

ψ2(λ) =

(
γ

δ

)
j+1

, (5.2)

where
γ = (β1 − 1, . . . , βk−1 − 1, αk+1 + 1, . . . , αs + 1, 2, 1t−s−1)

and
δ = (α3 + 1, . . . , αk + 1, βk − 1, . . . , βt − 1).

It can be checked that ψ2(λ) is a Durfee symbol in P̄2(0, n). Moreover, it can be shown
that ψ2 is reversible by using the same reasoning as in the proof of Lemma 4.7. Hence ψ2

is an injection, and the proof is complete.
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Lemma 5.3. There is an injection ψ3 from Q̄3(0, n) to P̄3(0, n).

Proof. Let

λ =

(
α

β

)
j

=

(
α1, α2, . . . , αs

β1, β2, . . . , βt

)
j

be a Durfee symbol in Q̄3(0, n). So we have α1 = α2 = j, αs = 1, β1 = j, βt = 2 and
t− s ≥ 1. It follows that β2 ≤ j and α2 = j. This enables us to define

ψ3(λ) =

(
γ

δ

)
j′

=

(
β2 − 1, . . . , βt − 1

α2 + 1, . . . , αs−1 + 1, 1t−s+1

)
j+1

. (5.3)

Note that γ1 = β2 − 1 ≤ j − 1 = j′ − 2, δ1 = α2 + 1 = j + 1 = j′ and `(γ) = `(δ). Since
t− s ≥ 1, we see that s(δ) = 1. Since αs = 1, it is easily checked that |ψ3(λ)| = |λ|. This
proves that ψ3(λ) is in P̄3(0, n).

To show that ψ3 is an injection, let

L(m,n) = {ψ3(λ) : λ ∈ Q̄3(0, n)}

be the set of images of ψ3, which has been shown to be a subset of P̄3(0, n). It suffices to
construct a map ϑ from L(m,n) to Q̄3(0, n) such that for any λ in Q̄3(0, n),

ϑ(ψ3(λ)) = λ. (5.4)

Let

µ =

(
γ

δ

)
j′

=

(
γ1, γ2, . . . , γt′

δ1, δ2, . . . , δt′

)
j′

be a Durfee symbol in L(m,n). We claim that γt′ = 1 and δt′−1 = 1. By the definition of
L(m,n), there exists a Durfee symbol λ = (α, β)j in Q̄3(0, n) such that ψ3(λ) = µ. Since
t− s+ 1 ≥ 2 and βt = 2, from the definition (5.3) of ψ3(λ), we get

γt′ = βt − 1 = 1 and δt′−1 = 1. (5.5)

So the claim holds.

We next define the map ϑ. Let h′ be the largest index such that δh′ > 1. By the above
claim, we have δt′−1 = 1, and so h′ ≤ t′ − 2. Define

ϑ(µ) =

(
j′ − 1, δ1 − 1, . . . , δh′ − 1, 1

j′ − 1, γ1 + 1, . . . , γt′ + 1

)
j′−1

.

It is not difficult to check that ϑ(µ) ∈ Q̄3(0, n) and ϑ(ψ3(λ)) = λ for λ ∈ Q̄3(0, n).
Therefore, ψ3 is an injection from Q̄3(0, n) to P̄3(0, n). This completes the proof.
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For example, for n = 35, let

λ =

(
3, 3, 2, 2, 1

3, 3, 3, 2, 2, 2

)
3

be a Durfee symbol in Q̄3(0, 35). Applying the injection ψ3 to λ, we get

ψ3(λ) =

(
2, 2, 1, 1, 1

4, 3, 3, 1, 1

)
4

,

which is in P̄3(0, 35). Applying ϑ to µ, we find that h′ = 3 and ϑ(µ) = λ.

Lemma 5.4. There is a bijection ψ4 between Q̄4(0, n) and P7(0, n).

Proof. Let

λ =

(
α

β

)
j

=

(
α1, α2, . . . , αs

β1, β2, . . . , βt

)
j

be a Durfee symbol in Q̄4(0, n). By definition, α1 = α2 = j, αs ≥ 2, β1 = β2 = j, βt = 2
and t− s ≥ 1. Thus, α2 = j > β3 − 1 and β2 = j ≥ α3. So we may define

ψ4(λ) =

(
γ

δ

)
j′

=

(
α2, β3 − 1, . . . , βt−1 − 1

β2 + 1, α3 + 1, . . . , αs + 1, 1t−s−1

)
j+1

.

Note that δs−1 = αs + 1 ≥ 3 and δi = 1 for s ≤ i ≤ t− 2. It is clear that δ has no parts
equal to 2. Since βt = 2, we find that |ψ4(λ)| = |λ|. Moreover, we have `(γ) = `(δ) = t−2,
δ1 = β2 + 1 = j + 1 = j′ and γ1 = α2 = j = j′ − 1 > β3 − 1 = γ2. So ψ4(λ) is in P7(0, n).

To show that ψ4 is a bijection, we construct the inverse map ξ of ψ4. Let

µ =

(
γ

δ

)
(m+j′)×j′

=

(
γ1, γ2, . . . , γt′

δ1, δ2, . . . , δt′

)
j′

be a Durfee symbol in P7(0, n). By the definition of P7(0, n), we have δ1 = j′, γ1 = j′−1 >
γ2 and δ has no part equal to 2. We define ξ(µ) as follows:

ξ(µ) =

(
j′ − 1, γ1, δ2 − 1, . . . , δt′ − 1

j′ − 1, δ1 − 1, γ2 + 1, . . . , γt′ + 1, 2

)
j′−1

.

It can be checked that ξ(µ) ∈ Q̄4(0, n) and ξ is the inverse map of ψ4. Thus ψ4 is a
bijection.
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For example, for n = 40, consider the following Durfee symbol in Q̄4(0, 40):

λ =

(
3, 3, 3, 2, 2

3, 3, 3, 3, 2, 2, 2

)
3

.

Applying the bijection ψ4, we get

ψ4(λ) =

(
3, 2, 2, 1, 1

4, 4, 3, 3, 1

)
4

,

which is in P7(0, 40). Applying ξ to ψ4(λ), we recover λ.

Lemma 5.5. There is an injection ψ5 from Q̄5(0, n) to P8(0, n).

Proof. Let

λ =

(
α

β

)
j

=

(
α1, α2, . . . , αs

β1, β2, . . . , βt

)
j

be a Durfee symbol in Q̄5(0, n). In this case, we have α1 = α2 = j, αs ≥ 2, j = β1 > β2,
βt = 2 and t− s ≥ 1. Observe that j ≥ 3, since j = β1 > β2 ≥ βt = 2.

We next define the map ψ5. Given α1 = α2 = j, we may choose k to be the maximum
integer such that αk = j. Clearly, k ≥ 2. Using βt = 2, we may choose h to be the
minimum integer such that βh = 2. Since β1 = j > 2, we get 2 ≤ h ≤ t.

By the choice of k, we see that αk = j and αk+1 < j. Combining β1 = j and β2 < j,
we see that αk > β2 and β1 > αk+1. On the other hand, by the choice of h, we see that
βh−1 > βh. So we may define

ψ5(λ) =

(
γ

δ

)
j′

=

(
α1 − 1, . . . , αk − 1, β2 − 1, . . . , βh−1 − 1, βh, 1t−h

β1, αk+1 + 1, . . . , αs + 1, 12k−2+t−s

)
j

.

(5.6)

Since δs−k+1 = αs + 1 ≥ 3 and δi = 1 for s − k + 2 ≤ i ≤ t − 1 + k, we deduce that δ
has no parts equal to 2. Furthermore, it is easily checked that `(γ) = `(δ) = t + k − 1,
δ1 = j′, γ1 = γ2 = j′ − 1 and |ψ5(λ)| = |λ|. So ψ5(λ) is in P8(0, n).

To prove that ψ5 is an injection, let

R(0, n) = {ψ5(λ) : λ ∈ Q̄5(0, n)}

be the set of images of ψ5, which has been shown to be a subset of P8(0, n). We shall
construct a map θ from R(0, n) to Q̄5(0, n) such that for any λ in Q̄5(0, n),

θ(ψ5(λ)) = λ.

30



Let

µ =

(
γ

δ

)
j′

=

(
γ1, γ2, . . . , γt′

δ1, δ2, . . . , δt′

)
j′

be a Durfee symbol in R(0, n). Let k′ denote the number of occurrences of j′− 1 in γ and
let n1(δ) denote the number of occurrences of 1 in δ. We claim that for j′ ≥ 4, we have
k′ ≥ 2 and n1(δ) ≥ 2k′ − 1, and for j′ = 3, we have k′ ≥ 3 and n1(δ) ≥ 2k′ − 3.

By the definition of R(0, n), there exists a Durfee symbol λ = (α, β)j in Q̄5(0, n) such
that ψ5(λ) = µ. From the construction (5.6) of ψ5, we find that j′ = j and n1(δ) =
2k − 2 + t− s. Since t− s ≥ 1, we get n1(δ) ≥ 2k − 1. Moreover, since k ≥ 2, it suffices
to show that k′ = k if j ≥ 4 and k′ = k + 1 if j = 3. From the construction (5.6) of ψ5,
we get γi = αi − 1 for 1 ≤ i ≤ k. Since αi = j for 1 ≤ i ≤ k, we deduce that γi = j − 1
for 1 ≤ i ≤ k, which implies k′ ≥ k.

It remains to show that γk+1 < j − 1 for j ≥ 4 and γk+1 = j − 1 > γk+2 for j = 3.
By (5.6), we have either γk+1 = β2 − 1 or γk+1 = βh. For j ≥ 4, in either case, we
have γk+1 < j − 1 since β2 < j and βh = 2. For j = 3, we have β1 = 3 and β2 = 2,
so that h = 2, where h is the minimum integer such that βh = 2. This implies that
γk+1 = β2 = 2 = j − 1. Since γk+2 ≤ 1, we find that γk+2 < j − 1. Thus, we arrive at the
conclusion that k′ = k + 1 for j = 3. This proves the claim.

From the construction (5.6) of ψ5, it can be seen that γk+h−1 = βh = 2. So we may
choose h′ to be the maximum integer such that γh′ = 2. Recall that k′ denotes the number
of occurrences of j′ − 1 in γ. We consider the following two cases:

Case 1: j′ ≥ 4. Define

θ(µ) =

(
γ1 + 1, . . . , γk′ + 1, δ2 − 1, . . . , δt′ − 1

δ1, γk′+1 + 1, . . . , γh′−1 + 1, γh′ , γh′+1 + 1, . . . , γt′ + 1

)
j′

.

By the above claim, we have k′ ≥ 2 and n1(δ) ≥ 2k′ − 1. Now it is easy to check that
θ(µ) ∈ Q̄5(0, n).

Case 2: j′ = 3. By the definitions of k′ and h′, we have k′ = h′. Let r′ = n1(δ) and define

θ(µ) =

(
3k
′−1, 2t

′−r′−1

3, 2t
′−k′+1

)
3

.

From the above claim, we deduce that r′ ≥ 2k′ − 3 and k′ ≥ 3. Then it is easily checked
that θ(µ) ∈ Q̄5(0, n).

Finally, from the constructions of ψ5 and θ together with the above claim, it is s-
traightforward to verify that θ(ψ5(λ)) = λ for any λ ∈ Q̄5(0, n). This completes the
proof.
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For example, for n = 51, consider the following Durfee symbol in Q̄5(0, 51):

λ =

(
4, 4, 4, 2, 2

4, 3, 3, 3, 2, 2, 2

)
4

.

Applying the injection ψ5, we obtain that k = 3, h = 5, and

µ = ψ5(λ) =

(
3, 3, 3, 2, 2, 2, 2, 1, 1

4, 3, 3, 1, 1, 1, 1, 1, 1

)
4

,

which is in P8(0, 51). Applying θ to µ, we find that k′ = 3, h′ = 7 and θ(µ) = λ.

We are now ready to complete the proof of Theorem 4.1 for the case m = 0.

Proof of Theorem 4.1 for m = 0. From the definitions of Qi(0, n) (1 ≤ i ≤ 6) and Q̄i(0, n)
(1 ≤ i ≤ 5), we have

Q(0, n) = Q1(0, n) ∪Q2(0, n) ∪Q3(0, n) ∪Q4(0, n) ∪ Q̄1(0, n) ∪ Q̄2(0, n)

∪ Q̄3(0, n) ∪ Q̄4(0, n) ∪ Q̄5(0, n).

By the definitions of Pi(0, n) (1 ≤ i ≤ 8) and P̄i(0, n) (1 ≤ i ≤ 3), we have

P (0, n) = P1(0, n) ∪ P2(0, n) ∪ P3(0, n) ∪ P4(0, n) ∪ P̄1(0, n) ∪ P̄2(0, n)

∪ P̄3(0, n) ∪ P7(0, n) ∪ P8(0, n).

Let λ ∈ Q(0, n), define

Φ(λ) =



φ1(λ), if λ ∈ Q1(0, n);

φ2(λ), if λ ∈ Q2(0, n);

φ3(λ), if λ ∈ Q3(0, n);

φ4(λ), if λ ∈ Q4(0, n);

ψ1(λ), if λ ∈ Q̄1(0, n);

ψ2(λ), if λ ∈ Q̄2(0, n);

ψ3(λ), if λ ∈ Q̄3(0, n);

ψ4(λ), if λ ∈ Q̄4(0, n);

ψ5(λ), if λ ∈ Q̄5(0, n).

From Lemmas 4.2 to 4.5 and Lemmas 5.1 to 5.5, it immediately follows that Φ is an
injection from Q(0, n) to P (0, n). This completes the proof.

By a closer examination of the injections in the proof of Theorem 4.1, we can charac-
terize the numbers n and m for which N≤m(n) = M≤m(n). The details are omitted.
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6 Connection to Theorem 1.7

In this section, we establish a connection between Conjecture 1.3 and Theorem 1.7 of An-
drews, Chan and Kim. More precisely, we relate the positive rank (crank) moments Nk(n)
(Mk(n)) to the functions N≤m(n) (M≤m(n)) defined by Andrews, Dyson and Rhoades.
Based on this connection, it can be seen that Theorem 1.7 of Andrews, Chan and Kim
on the positive rank and crank moments can be deduced from Conjecture 1.3. This leads
to an alternative proof of the theorem of Andrews, Chan and Kim.

Theorem 6.1. For k ≥ 1 and n ≥ 1, we have

Nk(n) =
1

2

+∞∑
m=1

(mk − (m− 1)k) (p(n)−N≤m−1(n)) , (6.1)

Mk(n) =
1

2

+∞∑
m=1

(mk − (m− 1)k) (p(n)−M≤m−1(n)) . (6.2)

Proof. We only give a proof of (6.1) since (6.2) can be justified in the same vain. Recall
that

Nk(n) =
+∞∑
j=1

jkN(j, n). (6.3)

Express (6.3) in the following form:

Nk(n) =
+∞∑
j=1

N(j, n)

(
j∑

m=1

mk −
j∑

m=1

(m− 1)k

)

=
+∞∑
j=1

j∑
m=1

(mk − (m− 1)k)N(j, n).

Changing the order of summations, we find that

Nk(n) =
+∞∑
m=1

(mk − (m− 1)k)
+∞∑
j=m

N(j, n). (6.4)

Writing the second sum in (6.4) as

+∞∑
j=m

N(j, n) =
+∞∑
j=−∞

N(j, n)−
m−1∑
j=−∞

N(j, n), (6.5)

and substituting the relations
∞∑

r=−∞

N(r, n) = p(n)

33



and
m−1∑
j=−∞

N(j, n) = p(−m+ 1, n)

as given by (2.1) and (2.3) into (6.5), we deduce that

+∞∑
j=m

N(j, n) = p(n)− p(−m+ 1, n). (6.6)

Replacing m by m− 1 in (2.4) yields

p(−m+ 1, n) =
p(n) +N≤m−1(n)

2
. (6.7)

Substituting (6.7) into (6.6), we obtain

+∞∑
j=m

N(j, n) =
p(n)−N≤m−1(n)

2
. (6.8)

Combining (6.4) and (6.8), we arrive at relation (6.1). This completes the proof.

In view of Theorem 6.1, it can be seen that Theorem 1.7 follows from Conjecture 1.3.

Proof of Theorem 1.7. Subtracting (6.1) from (6.2) in Theorem 6.1, we obtain

Mk(n)−Nk(n) =
1

2

+∞∑
m=1

(mk − (m− 1)k)(N≤m−1(n)−M≤m−1(n)). (6.9)

From the definitions of the rank and crank, we have for m ≥ n+ 1,

N≤m−1(n) = p(n),

M≤m−1(n) = p(n).

It follows that for m ≥ n+ 1

N≤m−1(n)−M≤m−1(n) = 0. (6.10)

For m = n, from the definitions of the rank and crank, we find that

N≤n−1(n) = p(n),

M≤n−1(n) = p(n)− 2.

Consequently,
N≤n−1(n)−M≤n−1(n) = 2. (6.11)
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Substituting (6.10) and (6.11) into (6.9), we obtain

Mk(n)−Nk(n) =
1

2

n−1∑
m=1

(mk − (m− 1)k)(N≤m−1(n)−M≤m−1(n))

+ nk − (n− 1)k. (6.12)

Since mk − (m − 1)k > 0 for m ≥ 1 and k ≥ 1, by Conjecture 1.3, that is, N≤m−1(n) −
M≤m−1(n) ≥ 0, we reach the assertion that Mk(n) − Nk(n) > 0 for n ≥ 1 and k ≥ 1.
This completes the proof.
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