Integration by Parts formula for SPDEs with Multiplicative Noise and its Applications*

Xing Huang ${ }^{a}$, Li-Xia Liu ${ }^{b)}$, Shao-Qin Zhang ${ }^{c}$,
a)Center for Applied Mathematics, Tianjin University, Tianjin 300072, China
xinghuang@tju.edu.cn
b)School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China
201321130177@mail.bnu.edu.cn
c)School of Statistics and Mathematics, Central University of Finance and Economics, Beijing 100081, China zhangsq@cufe.edu.cn

December 6, 2018

Abstract

By using the Malliavin calculus, the Driver-type integration by parts formula is established for the semigroup associated to SPDEs with Multiplicative Noise. Moreover, estimates on the logarithmic derivative of the transition probability measure are obtained. A concrete example to describe evolution of spin systems on discrete lattices is give to illustrate our main result.

AMS subject Classification: $60 \mathrm{H} 155,60 \mathrm{~B} 10$.
Keywords: Integration by parts formula, Multiplicative noise, Stochastic partial differential equations, Malliavin calculus.

1 Introduction

A significant application of the Malliavin calculus $([7,8])$ is to describe the density of a Wiener functional using the integration by parts formula. In 1997, Driver [3] established the following integration by parts formula for the heat semigroup P_{t} on a compact Riemannian manifold M :

$$
\begin{equation*}
P_{t}\left(\nabla_{Z} f\right)=\mathbb{E}\left(f\left(X_{t}\right) N_{t}\right), \quad f \in C^{1}(M), Z \in \mathscr{X}, \tag{1.1}
\end{equation*}
$$

[^0]where \mathscr{X} is the set of all smooth vector fields on M, and N_{t} is a random variable depending on Z and the curvature tensor. This formula has many applications. For example, we are able to characterize the derivative w.r.t. the second variable y of the heat kernel $p_{t}(x, y)$, moreover, if N_{t} is exponentially integrable, (1.1) implies the shift Harnack inequality, see [13] for details.

So far, there are many results on the Driver-type integration by parts formula for SDEs or SPDEs. The backward coupling method developed in [13] has been used in [4, 14] for SDEs driven by fractional Brownian motions and SPDEs driven by Wiener processes. Recently, using finite many jumps approximation and Malliavin calculus, [10, 11] obtain integration by parts formulas for SDEs and SPDEs with additive noise driven by subordinated Brownian motion.

However, all the above results are considered in additive noise case. The aim of this paper is to derive the integration by parts formula for SPDEs with multiplicative noise by Malliavin calculus and to derive estimates on the logarithmic derivatives of transition probabilities.

The main difficulty in obtaining the integration by parts formula is to give a representation of N_{t} in (1.1). Unfortunately, in the multiplicative noise case, the derivative process (Jocobi operator) J_{t} associated to the solution solves a linear operator-valued SDE instead of an operator-valued random differential equations in the additive noise case. So we develop a Duhamel's formula for the linear SDEs in Lemma 3.3, which is crucial for the representation for the Malliavin direction derivative process $D_{h_{k}} J_{T}$ (see (3.28)). Then we can give an explicit representation of N_{t}.

Let $(\mathbb{H},\langle\rangle,,|\cdot|)$ be a separable real Hilbert spaces. Consider the following SPDE on \mathbb{H} :

$$
\begin{equation*}
\mathrm{d} X_{t}=A X_{t} \mathrm{~d} t+b_{t}\left(X_{t}\right) \mathrm{d} t+\sigma_{t}\left(X_{t}\right) \mathrm{d} W_{t}, \quad X_{0}=x \in \mathbb{H} \tag{1.2}
\end{equation*}
$$

where $b:[0, \infty) \times \mathbb{H} \rightarrow \mathbb{H}$ and $\sigma:[0, \infty) \times \mathbb{H} \rightarrow \mathscr{L}(\mathbb{H})$ are measurable locally bounded (i.e. bounded on bounded sets), where $\mathscr{L}(\mathbb{H})$ is the space of bounded linear operators on \mathbb{H} equipped with the operator norm $\|\cdot\|$. Moreover,
(i) $(A, \mathscr{D}(A))$ is a linear operator generating a C_{0}-contraction semigroup $\mathrm{e}^{A t}$ such that $\left\|\mathrm{e}^{A t}\right\|_{\mathrm{HS}}<\infty$ for any $t>0$, and

$$
\begin{equation*}
\delta_{T}:=\int_{0}^{T}\left\|\mathrm{e}^{A t}\right\|_{\mathrm{HS}}^{2} \mathrm{~d} t<\infty, \quad T>0 \tag{1.3}
\end{equation*}
$$

where $\|\cdot\|_{\text {HS }}$ is the Hilbert-Schmidt norm. Let non-decreasing positive sequence $\left\{\lambda_{k}\right\}_{k \geq 1}$ with

$$
\lim _{k \rightarrow \infty} \lambda_{k}=\infty
$$

be all the spectrum of $-A$ counting by multiples. The corresponding unit eigenvectors are $\left\{e_{k}\right\}_{k \geq 1}$, i.e. $A e_{k}=-\lambda_{k} e_{k}, k \geq 1$. W is a cylindrical Brownian motion on \mathbb{H} with respect to a complete filtration probability space $\left(\Omega, \mathscr{F},\left\{\mathscr{F}_{t}\right\}_{t \geq 0}, \mathbb{P}\right)$, i.e. $W=$ $\sum_{n=1}^{\infty} w^{n} e_{n}$, where $\left\{w^{n}\right\}_{n \geq 1}$ is a sequence of independent one dimensional Brownian motions with respect to $\left(\Omega, \mathscr{F},\left\{\mathscr{F}_{t}\right\}_{t \geq 0}, \mathbb{P}\right)$.
(ii) For any $k \geq 1$, let $\sigma^{(k)}:=\sigma e_{k}$. There exists a non-negative non-decreasing function K on $[0, \infty)$ such that

$$
\begin{equation*}
\left\|\nabla b_{s}(x)\right\| \vee\left\{\sum_{k=1}^{\infty}\left\|\nabla \sigma_{s}^{(k)}(x)\right\|^{2}\right\}^{\frac{1}{2}} \leq K(s), \quad s \geq 0, x \in \mathbb{H} \tag{1.4}
\end{equation*}
$$

and $\nabla b_{s}: \mathbb{H} \times \mathbb{H} \rightarrow \mathbb{H}$ and $\nabla \sigma_{s}: \mathbb{H} \times \mathbb{H} \rightarrow \mathscr{L}_{H S}(\mathbb{H})$ are uniformly continuous on bounded sets.

For $\nabla b_{t}(x)$ and $\nabla \sigma_{t}^{(k)}(x)$, we shall define

$$
\begin{aligned}
\nabla b_{t}(x) v & =\nabla_{v} b_{t}(x) \\
\nabla \sigma_{t}^{(k)}(x) v & =\nabla_{v} \sigma_{t}^{(k)}(x) .
\end{aligned}
$$

Assume (i) and (ii). Then the equation (1.2) has a unique non-explosive mild solution $X_{t}(x)$, and the associated Markov semigroup P_{t} is defined as follows:

$$
P_{t} f(x):=\mathbb{E} f\left(X_{t}(x)\right), \quad f \in \mathscr{B}_{b}(\mathbb{H}), t \geq 0, x \in \mathbb{H}
$$

Since for any $t \geq 0, \operatorname{Ker}\left(\mathrm{e}^{A t}\right)=\{0\}$, the inverse operator $\mathrm{e}^{-A t}: \operatorname{Im}\left(\mathrm{e}^{A t}\right) \rightarrow \mathbb{H}$ is well defined.
To establish the integration by parts formula, we also need the following assumptions:
(H1) For any $(t, x) \in[0, \infty) \times \mathbb{H}$, there holds $\nabla b_{t}(x): \operatorname{Im}\left(\mathrm{e}^{A t}\right) \rightarrow \operatorname{Im}\left(\mathrm{e}^{A t}\right), \nabla \sigma_{t}^{k}(x):$ $\operatorname{Im}\left(\mathrm{e}^{A t}\right) \rightarrow \operatorname{Im}\left(\mathrm{e}^{A t}\right), k \geq 1$. Let

$$
\begin{align*}
& B_{t}(x)=\mathrm{e}^{-A t} \nabla b_{t}(x) \mathrm{e}^{A t} \\
& \Sigma_{t}^{(k)}(x)=\mathrm{e}^{-A t} \nabla \sigma_{t}^{(k)}(x) \mathrm{e}^{A t}, \quad k \geq 1, t \geq 0, x \in \mathbb{H} . \tag{1.5}
\end{align*}
$$

Assume that $B_{t}(\cdot): \mathbb{H} \rightarrow \mathscr{L}(\mathbb{H})$ is continuously Fréchet differentiable and $\Sigma_{t}^{k}(\cdot): \mathbb{H} \rightarrow$ $\mathscr{L}(\mathbb{H})$ is Gâteaux differentiable, with

$$
\lim _{y \rightarrow x} \sum_{k=1}^{\infty}\left|\left[\nabla_{z_{1}} \Sigma_{t}^{(k)}(y)-\nabla_{z_{1}} \Sigma_{t}^{(k)}(x)\right] z_{2}\right|^{2}=0, t>0, z_{1}, z_{2} \in \mathbb{H},
$$

and there exists a positive function K_{1} in $L_{l o c}^{2}([0, \infty))$ such that for any $t>0, x \in \mathbb{H}$,

$$
\begin{equation*}
\left\|B_{t}(x)\right\| \vee\left\|\nabla B_{t}(x)\right\| \vee\left(\sum_{k=1}^{\infty}\left(\left\|\Sigma_{t}^{(k)}(x)\right\|_{H S}^{2} \vee\left\|\nabla \Sigma_{t}^{(k)}(x)\right\|^{2}\right)\right)^{\frac{1}{2}} \leq K_{1}(t) \tag{1.6}
\end{equation*}
$$

(H2) σ is invertible, and it holds that

$$
\begin{equation*}
\left\|\sigma_{t}^{-1}(x)\right\| \leq \lambda(t), \quad t>0, x \in \mathbb{H} \tag{1.7}
\end{equation*}
$$

for some strictly positive increasing function λ on $[0, \infty)$.

Remark 1.1. (H2) is a standard non-degenerate assumption, while (H1) comes from [11], where Σ^{k} and $\nabla \Sigma^{k}$ vanish for any $k \geq 1$. (1.6) means that $\left|\nabla\left\langle b_{t}, e_{i}\right\rangle\right|,\left\|\nabla^{2}\left\langle b_{t}, e_{i}\right\rangle\right\|$ should be small enough as i is large enough, and $\left|\nabla\left\langle\sigma_{t}^{(k)}(x), e_{i}\right\rangle\right|,\left\|\nabla^{2}\left\langle\sigma_{t}^{(k)}(x), e_{i}\right\rangle\right\|$ should be small enough as i, k are large enough. For example, if there exist nonnegative sequences $\left\{\mu_{k}\right\}_{k \geq 1}$, $\left\{\eta_{k}\right\}_{k \geq 1},\left\{\gamma_{k}\right\}_{k \geq 1}$ with $\sum_{k \geq 1}\left(\eta_{k}^{2}+\mu_{k}^{2}+\gamma_{k}^{2}\right)<\infty$ and non-negative function $C_{1} \in L_{l o c}^{2}([0, \infty))$ and locally bounded function C_{2} on $[0, \infty)$ such that

$$
\begin{aligned}
& \left|\nabla_{e_{j}}\left\langle b_{t}, e_{i}\right\rangle\right|+\left|\nabla \nabla_{e_{j}}\left\langle b_{t}, e_{i}\right\rangle\right| \leq C_{1}(t) \mathrm{e}^{-\left(\lambda_{k}-\lambda_{j}\right)^{+} t} \mu_{i} \\
& \left|\nabla_{e_{j}}\left\langle\sigma_{t}^{k}, e_{i}\right\rangle\right|+\left|\nabla \nabla_{e_{j}}\left\langle\sigma_{t}^{k}, e_{i}\right\rangle\right| \leq C_{2}(t) \mathrm{e}^{-\lambda_{i} t} \eta_{i} \gamma_{k} \quad t>0, i \geq 1, k \geq 1, j \geq 1
\end{aligned}
$$

then (1.6) holds with

$$
K_{1}^{2}(t)=\sum_{k \geq 1}\left(\eta_{k}^{2}+\mu_{k}^{2}+\gamma_{k}^{2}\right)\left(C_{1}(t)+C_{2}^{2}(t)\left\|\mathrm{e}^{t A}\right\|_{H S}^{2}\right) .
$$

In fact, for any $y, z \in \mathbb{H}, t>0$

$$
\begin{aligned}
\left\|B_{t}(x) y\right\|^{2} & =\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \mathrm{e}^{2\left(\lambda_{i}-\lambda_{j}\right) t}\left|\nabla_{e_{j}}\left\langle b_{t}, e_{i}\right\rangle\right|^{2}\left|\left\langle y, e_{j}\right\rangle\right|^{2} \\
& \leq C_{1}^{2}(t) \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \mathrm{e}^{2\left(\lambda_{i}-\lambda_{j}\right) t} \mathrm{e}^{-2\left(\lambda_{i}-\lambda_{j}\right)^{+} t} \mu_{i}^{2}\left|\left\langle y, e_{j}\right\rangle\right|^{2} \\
& \leq C_{1}^{2}(t)\left(\sum_{i=1}^{\infty} \mu_{i}^{2}\right)|y|^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{k=1}^{\infty}\left\|\Sigma_{t}^{(k)}(x)\right\|_{H S}^{2} & =\sum_{k=1, i=1, j=1}^{\infty} e^{-2\left(\lambda_{j}-\lambda_{i}\right) t} \nabla_{e_{j}}\left|\left\langle\sigma(x)^{(k)}, e_{i}\right\rangle\right|^{2} \\
& \leq C_{2}^{2}(t) \sum_{k=1, i=1, j=1}^{\infty} e^{-2\left(\lambda_{j}-\lambda_{i}\right) t} \mathrm{e}^{-2 \lambda_{i} t} \eta_{i}^{2} \gamma_{k}^{2} \\
& \leq C_{2}^{2}(t)\left\|\mathrm{e}^{t A}\right\|_{H S}^{2} \sum_{i=1}^{\infty} \eta_{i}^{2} \sum_{k=1}^{\infty} \gamma_{k}^{2} .
\end{aligned}
$$

$\left|\nabla B_{t}(x)\right|$ and $\sum_{k=1}^{\infty}\left\|\nabla \Sigma_{t}^{(k)}(x)\right\|$ can be estimated similarly. To illustrate (H1) and our main result, a concrete example is presented in Section 2.

Finally, we introduce a notation which will be used throughout this paper:

$$
\left[\Sigma_{t}(x) v\right] e_{k}:=\Sigma_{t}^{(k)}(x) v, x, v \in \mathbb{H}
$$

2 Main results

To state our main results, for any $s \geq 0$, we introduce $\mathscr{L}(\mathbb{H})$-valued processes $\left(J_{s, t}\right)_{t \geq s}$ and $\left(J_{s, t}^{A}\right)_{t \geq s}$, which solve the following operator-valued SDEs respectively:

$$
\begin{align*}
& \mathrm{d} J_{s, t}=B_{t}\left(X_{t}\right) J_{s, t} \mathrm{~d} t+\sum_{k=1}^{\infty} \Sigma_{t}^{(k)}\left(X_{t}\right) J_{s, t} \mathrm{~d} w_{t}^{k}, \quad J_{s, s}=I \tag{2.1}\\
& \mathrm{~d} J_{s, t}^{A}=\left(A+\nabla b_{t}\left(X_{t}\right)\right) J_{s, t}^{A} \mathrm{~d} t+\sum_{k=1}^{\infty} \nabla \sigma_{t}^{(k)}\left(X_{t}\right) J_{s, t}^{A} \mathrm{~d} w_{t}^{k}, \quad J_{s, s}^{A}=I . \tag{2.2}
\end{align*}
$$

According to (H1) and Lemma 3.1 below, (2.1) and (2.2) are well defined. Denote $J_{t}=J_{0, t}$ and $J_{t}^{A}=J_{0, t}^{A}$. Since the inverse of J_{t}^{A} is usually an unbounded operator in infinite dimension, we shall use an auxiliary process J_{t}^{-1} and use the relationship between J_{t} and J_{t}^{A} (see (3.16) in Remark 3.1) to construct h such that " $D_{h} X_{t}$ " equals to some vector in \mathbb{H} (see details in the proof of Theorem 2.1). By (H1) and Lemma 3.1 below, J_{t} is invertible with

$$
\begin{equation*}
\mathrm{d} J_{t}^{-1}=-J_{t}^{-1}\left\{B_{t}\left(X_{t}\right)-\sum_{k=1}^{\infty}\left(\Sigma_{t}^{(k)}\left(X_{t}\right)\right)^{2}\right\} \mathrm{d} t-\sum_{k=1}^{\infty} J_{t}^{-1} \Sigma_{t}^{(k)}\left(X_{t}\right) \mathrm{d} w_{t}^{k}, \quad J_{0}^{-1}=I . \tag{2.3}
\end{equation*}
$$

Remark 2.1. Since $\mathscr{L}(\mathbb{H})$ with operator norm is not a UMD Banach space in infinite dimension space, see [9], to ensure the stochastic integration in (2.1) make sense, we assume that $\Sigma_{t}^{k}(x) \in \mathscr{L}_{H S}(\mathbb{H})$ and satisfies (1.6).

The main result is the following.
Theorem 2.1. Assume (H1) and (H2), then the integration formula by parts holds, i.e.

$$
\begin{equation*}
P_{T}\left(\nabla_{\mathrm{e}^{A T} v} f\right)=\frac{1}{T} \mathbb{E}\left\{f\left(X_{T}\right) M_{T}^{v}\right\}, \quad v \in \mathbb{H}, f \in C_{b}^{1}(\mathbb{H}) \tag{2.4}
\end{equation*}
$$

where

$$
\begin{align*}
M_{T}^{v}= & \left\langle\int_{0}^{T}\left[\sigma_{t}^{-1}\left(X_{t}\right) J_{t}^{A}\right]^{*} \mathrm{~d} W_{t}, J_{T}^{-1} v\right\rangle+\int_{0}^{T} t \operatorname{Tr}\left\{\mathrm{e}^{t A}\left[\left(\nabla \cdot B_{t}\right)\left(X_{t}\right) J_{t} J_{T}^{-1} v\right]\right\} \mathrm{d} t \\
& +\left\langle\sum_{j=1}^{\infty} \int_{0}^{T} t \sum_{k=1}^{\infty}\left\{\mathrm{e}^{-t \lambda_{k}} J_{t}^{*}\left(\nabla_{e_{k}} \Sigma_{t}^{(j)}\right)^{*}\left(X_{t}\right) e_{k}\right\} \mathrm{d} w_{t}^{j}, J_{T}^{-1} v\right\rangle \tag{2.5}\\
& +\int_{0}^{T} \operatorname{Tr}\left\{\mathrm{e}^{t A}\left[\Sigma_{t}\left(X_{t}\right) J_{t} J_{T}^{-1} v\right] \sigma_{t}^{-1}\left(X_{t}\right)\right\} \mathrm{d} t \\
& -\int_{0}^{T} t \operatorname{Tr}\left\{\mathrm{e}^{t A} \sum_{j=1}^{\infty} \Sigma_{t}^{(j)}\left(X_{t}\right)\left[\left(\nabla \cdot \Sigma_{t}^{(j)}\right)\left(X_{t}\right) J_{t} J_{T}^{-1} v\right]\right\} \mathrm{d} t .
\end{align*}
$$

Remark 2.2. Every term in (2.5) is well defined by (1.3), (H1), (H2), and Lemma 3.2. This result extends [13, Theorem 5.1] where σ only depends on time, see also [12, Theorem 3.2.4(1)]. Unlike [11], the integrands of stochastic integrations in M_{T}^{v} here is adapted.

To illustrate Theorem 2.1, we give an example on countable systems of stochastic differential equations, which can be used to describe evolution of spin systems on discrete lattices, see for instance $[2,6]$.
Example 2.2. Let \mathbb{Z} be the set of all integers, $d \in \mathbb{N}^{+}, k_{0} \in \mathbb{N}$, $\lambda_{0}>0$ and $\mathbb{H}=l^{2}\left(\mathbb{Z}^{d}\right)$. For $\gamma=\left(\gamma^{1}, \cdots, \gamma^{d}\right) \in \mathbb{Z}^{d}$, set $|\gamma|=\sum_{j=1}^{d}\left|\gamma^{j}\right|$. Let $\left\{\lambda_{\gamma}\right\}_{\gamma \in \mathbb{Z}^{d}}$ be a positive sequence with

$$
\lambda_{\gamma_{1}} \begin{cases}=\lambda_{\gamma_{2}}, & \left|\gamma_{1}\right|=\left|\gamma_{2}\right|, \\ >\lambda_{\gamma_{2}}, & \left|\gamma_{1}\right|>\left|\gamma_{2}\right|,\end{cases}
$$

and $\sum_{\gamma \in \mathbb{Z}^{d}} \lambda_{\gamma}^{-1}<\infty$. Let $(A x)_{\gamma}=-\lambda_{\gamma} x_{\gamma}, \gamma \in \mathbb{Z}^{d}, x \in l^{2}\left(\mathbb{Z}^{d}\right)$. For each $\gamma \in \mathbb{Z}^{d}$, let

$$
\Gamma_{\gamma}=\left\{\eta \in \mathbb{Z}^{d}| | \gamma\left|\leq|\eta| \leq|\gamma|+k_{0}\right\}\right.
$$

and let g_{γ} and f_{γ} be functions defined on $\mathbb{R}^{\Gamma_{\gamma}}$ such that $f_{\gamma} \geq \lambda_{0}$, and there are positive constants β_{γ} and $\bar{\beta}_{\gamma}$ such that $\sum_{\gamma \in \mathbb{Z}^{d}}\left(\beta_{\gamma}^{2}+\bar{\beta}_{\gamma}^{2}\right)<\infty$ and

$$
\begin{aligned}
\sup _{x \in \mathbb{R}^{\Gamma_{\gamma}}}\left(\left|\nabla g_{\gamma}(x)\right|^{2}+\left|\nabla f_{\gamma}(x)\right|^{2}\right) & \leq \beta_{\gamma}^{2}, \\
\sup _{x \in \mathbb{R}^{\Gamma_{\gamma}}}\left(\left\|\nabla \nabla g_{\gamma}(x)\right\|_{H S}^{2}+\left\|\nabla \nabla f_{\gamma}(x)\right\|_{H S}^{2}\right) & \leq \bar{\beta}_{\gamma}^{2} .
\end{aligned}
$$

Define $b: \mathbb{H} \rightarrow \mathbb{R}^{\mathbb{Z}^{d}}$ and $\sigma: \mathbb{H} \rightarrow \mathbb{R}^{\mathbb{Z}^{d} \times \mathbb{Z}^{d}}$ as follows: for any $\gamma, \eta \in \mathbb{Z}^{d}, x \in \mathbb{H}$,

$$
b_{\gamma}(x)=g_{\gamma}\left(\pi_{\Gamma_{\gamma}}(x)\right),
$$

and

$$
\sigma_{\gamma \eta}(x)= \begin{cases}f_{\gamma}\left(\pi_{\Gamma_{\gamma}}(x)\right), & \gamma=\eta \\ 0, & \gamma \neq \eta\end{cases}
$$

where $\pi_{\Gamma_{\gamma}}$ is a natural projection from \mathbb{H} to $\mathbb{R}^{\Gamma_{\gamma}}$ with $\left(\pi_{\Gamma_{\gamma}}(x)\right)_{\eta}=x_{\eta}, \eta \in \Gamma_{\gamma}$. Then the equation (1.2) of $X_{t} \in \mathbb{H}$ satisfies

$$
\mathrm{d} X_{\gamma, t}=-\lambda_{\gamma} X_{\gamma, t} \mathrm{~d} t+b_{\gamma}\left(X_{t}\right) \mathrm{d} t+\sigma_{\gamma \gamma}\left(X_{t}\right) \mathrm{d} W_{t}^{\gamma}, \gamma \in \mathbb{Z}^{d}
$$

It is a routine mechanical task to check the conditions of Theorem 2.1, so we omit it.
The following corollary is a direct consequence of Theorem 2.1.
Corollary 2.3. Assume (H1) and (H2). Then for any $p \in(1, \infty]$, it holds that

$$
\left|P_{T}\left(\nabla_{\mathrm{e}^{A T} v} f\right)\right| \leq\left\{\Gamma_{T, \frac{p}{p-1} \vee 2, A}\right\}^{\frac{p-1}{p} \wedge \frac{1}{2}} \frac{|v|}{T}\left(P_{T}|f|^{p}\right)^{\frac{1}{p}}, f \in C_{b}^{1}(\mathbb{H}), v \in \mathbb{H},
$$

where $p=\infty$ means $\frac{p}{p-1}=1$ and $\left(P_{T}|f|^{p}\right)^{\frac{1}{p}}=\sup _{x \in \mathbb{H}}|f|(x)$, and

$$
\Gamma_{T, q, A}=C\left(q, T, K_{1}, K_{2}\right)\left\{\lambda^{q}(T) \delta_{T}^{\frac{q}{2}}+\left(T^{q}+T^{\frac{q}{2}}+\lambda^{q}(T)\right) \delta_{T}^{q}\right\}
$$

for δ_{T} defined in (1.3) and some constant $C\left(q, T, K_{1}, K_{2}\right) \geq 0$ depending on $q \geq 2, T, K_{1}, K_{2}$.

Basing on the integration by parts formula, we can study the regularity of transition probability measure of P_{T}. A finite measure μ on \mathbb{H} is called weak Fomin differentiable along a vector $v \in \mathbb{H}$, if there is a finite signed measure $\partial_{v} \mu$ on \mathbb{H} such that

$$
\int_{\mathbb{H}} f(x) \partial_{v} \mu(\mathrm{~d} x)=-\int_{\mathbb{H}} \nabla_{v} f(x) \mu(\mathrm{d} x), f \in C_{b}^{1}(\mathbb{H}) .
$$

When $\mathbb{H}=\mathbb{R}^{d}$, we may take $A=0$ and so that Theorem 2.1 with $J^{A}=J$ covers the result in [13, Theorem 2.1]. In this case, according to [13], the integration by parts formula implies that P_{T} has a density $p_{T}(x, y)$ with respect to the Lebesgue measure, which is differentiable in y with

$$
\begin{equation*}
\nabla_{v} \log p_{T}(x, \cdot)(y)=-\frac{1}{T} \mathbb{E}\left(M_{T}^{v} \mid X_{T}(x)=y\right), \quad x, v \in \mathbb{R}^{d} \tag{2.6}
\end{equation*}
$$

If $\partial_{v} \mu \ll \mu$, then we can define the logarithmic derivative of μ along v by the Radon-Nikodym derivative $\frac{\mathrm{d} \partial_{v} \mu}{\mathrm{~d} \mu}$. Then, we obtain a corollary for the logarithmic derivative of the transition probability measure $p_{T}(x, d y)$ of P_{T} from Theorem 2.1 and Corollary 2.3 directly. Moreover, it is clear that for $\mathbb{H}=\mathbb{R}^{d}$ and $A=0$

$$
\frac{\mathrm{d} \partial_{v} p_{T}(x, \cdot)}{\mathrm{d} p_{T}(x, \cdot)}(y)=\nabla_{v} \log p_{T}(x, \cdot)(y), p_{T}(x, \mathrm{~d} y)-a . s .
$$

Corollary 2.4. Assume (H1) and (H2), $v \in \mathbb{H}, T>0$. Then the transition probability $p_{T}(x, \mathrm{~d} y)$ of P_{T} is weak Fomin differentiable along $e^{T A} v$ with logarithmic derivative

$$
\left(\frac{\mathrm{d} \partial_{e^{T A} v} p_{T}(x, \cdot)}{\mathrm{d} p_{T}(x, \cdot)}\right)(y)=-\frac{1}{T} \mathbb{E}\left(M_{T}^{v} \mid X_{T}(x)=y\right), x, y \in \mathbb{H},
$$

and

$$
\int_{\mathbb{H}}\left|\frac{\mathrm{d} \partial_{e^{T A}} p_{T}(x, \cdot)}{\mathrm{d} p_{T}(x, \cdot)}\right|^{p}(y) p_{T}(x, \mathrm{~d} y) \leq \frac{\left(\Gamma_{T, p \vee 2, A}\right)^{\frac{p}{p \vee 2}}|v|^{p}}{T^{p}}
$$

Particularly, if furthermore, $\mathbb{H}=\mathbb{R}^{d}$ and $A=0$, then for any $p>1, T>0$, it holds that

$$
\int_{\mathbb{R}^{d}}\left|\nabla_{v} \log p_{T}(x, \cdot)\right|^{p}(y) p_{T}(x, y) \mathrm{d} y \leq \frac{|v|^{p}}{T^{p}}\left\{\Gamma_{T, p \vee 2,0}\right\}^{\frac{p}{p \vee 2}}, \quad x \in \mathbb{R}^{d}
$$

Remark 2.3. (2.1) and (2.3) mean that M_{T}^{v} has the form as $\exp (X)$ with a Gaussian random variable X. This implies that $\mathbb{E}\left(\exp \left(\delta\left|M_{T}^{v}\right|\right)\right)=\infty$ for any $\delta>0$. Thus, it can not yield the shift Harnack inequality with power by Young's inequality from (2.4) as in [13].

The remainder of the paper is organized as follows. In Section 3, we give some important lemmas and prove them. The proofs of Theorem 2.1 and corollaries are put in Section 4.

3 Proof of Lemmas

To get the existence and uniqueness of (2.1) and (2.2), we consider the following slightly general operator-valued SDEs:

$$
\begin{align*}
& \mathrm{d} G_{t}=A G_{t}+F_{t} G_{t} \mathrm{~d} t+\sum_{k=1}^{\infty} R_{t}^{k} G_{t} \mathrm{~d} w_{t}^{k} \tag{3.1}\\
& \mathrm{~d} g_{t}=f_{t} g_{t} \mathrm{~d} t+\sum_{k=1}^{\infty} r_{t}^{k} g_{t} \mathrm{~d} w_{t}^{k} \tag{3.2}
\end{align*}
$$

with A defined as above, $F, f,\left\{R^{k}\right\}_{k \geq 1},\left\{r^{k}\right\}_{k \geq 1}$ are $\mathscr{L}(\mathbb{H})$-valued progressive strong measurable processes, G_{0} and g_{0} are strong measurable $\mathscr{L}(\mathbb{H})$-valued random variables and $\mathbb{E}\left|\mid G_{0}\left\|^{2}+\mathbb{E}\right\| g_{0} \|^{2}<\infty\right.$. Then

Lemma 3.1. (1) If there exists a positive function K_{3} on $(0, \infty)$ with

$$
\begin{equation*}
\int_{0}^{t} K_{3}^{2}(s) \mathrm{d} s<\infty, t>0 \tag{3.3}
\end{equation*}
$$

such that

$$
\begin{equation*}
\left\|\mathrm{e}^{r A} F_{t}\right\|+\left(\sum_{k=1}^{\infty}\left\|\mathrm{e}^{r A} R_{t}^{k}\right\|_{H S}^{2}\right)^{1 / 2} \leq K_{3}(r), \quad r>0, t \geq 0 \tag{3.4}
\end{equation*}
$$

then (3.1) has a unique solution $\left\{G_{t}\right\}_{t \geq 0}$ in $\mathscr{L}(\mathbb{H})$. If furthermore,

$$
\begin{equation*}
\left\|\mathrm{e}^{r A} F_{t}\right\|_{H S} \leq K_{3}(r), \quad r>0, t \geq 0 \tag{3.5}
\end{equation*}
$$

then for $t>0, G_{t} \in \mathscr{L}_{H S}(\mathbb{H})$ and $\mathbb{E}\left\|G_{t}\right\|_{H S}^{2}<\infty$.
(2) If there exists a positive function K_{4} on $(0, \infty)$ with

$$
\begin{equation*}
\int_{0}^{t} K_{4}^{2}(s) \mathrm{d} s<\infty, t>0 \tag{3.6}
\end{equation*}
$$

such that

$$
\begin{equation*}
\left\|f_{t}\right\|+\left(\sum_{k=1}^{\infty}\left\|r_{t}^{k}\right\|_{H S}^{2}\right)^{1 / 2} \leq K_{4}(t), t>0 \tag{3.7}
\end{equation*}
$$

then (3.2) has a unique solution $\left\{g_{t}\right\}_{t \geq 0}$ in $\mathscr{L}(\mathbb{H})$ which is invertible, and its inverse g_{t}^{-1} satisfies

$$
\begin{equation*}
\mathrm{d} g_{t}^{-1}=-g_{t}^{-1}\left(f_{t}-\sum_{k=1}^{\infty}\left(r_{t}^{k}\right)^{2}\right) \mathrm{d} t-g_{t}^{-1} \sum_{k=1}^{\infty} r_{t}^{k} \mathrm{~d} w_{t}^{k}, \quad g_{0}^{-1}=I \tag{3.8}
\end{equation*}
$$

Proof. (1) We shall consider the following form of (3.1):

$$
\begin{equation*}
G_{t}=\mathrm{e}^{t A} G_{0}+\int_{0}^{t} \mathrm{e}^{(t-s) A} F_{s} G_{s} \mathrm{~d} s+\sum_{k=1}^{\infty} \int_{0}^{t} \mathrm{e}^{(t-s) A} R_{s}^{k} G_{s} \mathrm{~d} w_{s}^{k}, t>0 \tag{3.9}
\end{equation*}
$$

Since for $\mathscr{L}(\mathbb{H})$-valued progressive strong measurable process $\left\{G_{s}\right\}_{s \geq 0}$ with for all $t \geq 0$, $\sup _{s \in[0, t]} \mathbb{E}\left\|G_{s}\right\|^{2}<\infty$ and

$$
\mathbb{P}\left(\int_{0}^{t}\left\|G_{s}\right\|^{2} \mathrm{~d} s<\infty, t \geq 0\right)=1
$$

(3.3) and (3.4) imply that \mathbb{P}-a.s.

$$
\begin{aligned}
& \int_{0}^{t}\left|e^{(t-s) A} F_{s} G_{s} x\right|^{2} \mathrm{~d} s<\infty, t \geq 0, x \in \mathbb{H}, \mathbb{P} \text {-a.s., } \\
& \mathbb{E} \int_{0}^{t} \sum_{k=1}^{\infty}\left\|\mathrm{e}^{(s-r) A} R_{r}^{k} G_{r}\right\|_{H S}^{2} \mathrm{~d} s<\infty
\end{aligned}
$$

So $\int_{0}^{t} \mathrm{e}^{(t-s) A} F_{s} G_{s} \mathrm{~d} s$ defines a strong measurable adapted process and the stochastic integral can be defined in the Hilbert space $\mathscr{L}_{H S}(\mathbb{H})$. Hence the right hand side of (3.9) defines a $\mathscr{L}(\mathbb{H})$-valued strong measurable process.

By Minkowski inequality and Hölder inequality,

$$
\begin{align*}
\sup _{s \in[0, t]} \mathbb{E}\left\|\int_{0}^{s} \mathrm{e}^{(s-r) A} F_{r} G_{r} \mathrm{~d} r\right\|^{2} & \leq \sup _{s \in[0, t]}\left\{\int_{0}^{s}\left[\mathbb{E}\left\|\mathrm{e}^{(s-r) A} F_{r} G_{r}\right\|^{2}\right]^{\frac{1}{2}} \mathrm{~d} r\right)^{2} \\
& \leq\left(\int_{0}^{t} K_{3}(r) \mathrm{d} r\right)^{2}\left(\sup _{r \in[0, t]} \mathbb{E}\left\|G_{r}\right\|^{2}\right) \tag{3.10}\\
& =t \int_{0}^{t} K_{3}^{2}(r) \mathrm{d} r\left(\sup _{r \in[0, t]} \mathbb{E}\left\|G_{r}\right\|^{2}\right)
\end{align*}
$$

Itô's isometric formula yields that

$$
\begin{align*}
\sup _{s \in[0, t]} \mathbb{E}\left\|\sum_{k=1}^{\infty} \int_{0}^{s} \mathrm{e}^{(s-r) A} R_{r}^{k} G_{r} \mathrm{~d} w_{r}^{k}\right\|^{2} & \leq \sup _{s \in[0, t]} \mathbb{E}\left\|\sum_{k=1}^{\infty} \int_{0}^{s} \mathrm{e}^{(s-r) A} R_{r}^{k} G_{r} \mathrm{~d} w_{r}^{k}\right\|^{2} \\
& =\sup _{s \in[0, t]} \int_{0}^{s} \mathbb{E} \sum_{k=1}^{\infty}\left\|\mathrm{e}^{(s-r) A} R_{r}^{k} G_{r}\right\|_{H S}^{2} \mathrm{~d} r \tag{3.11}\\
& \leq \int_{0}^{t} K_{3}^{2}(r) \mathrm{d} r\left(\sup _{r \in[0, t]} \mathbb{E}\left\|G_{r}\right\|^{2}\right)
\end{align*}
$$

Combining (3.10) and (3.11) with the fixed point theorem, we obtain existence and uniqueness of solutions to (3.1) satisfying $\sup _{s \in[0, t]} \mathbb{E}\left\|G_{s}\right\|^{2}<\infty, t \geq 0$ and

$$
\mathbb{P}\left(\int_{0}^{t}\left\|G_{s}\right\|^{2} \mathrm{~d} s<\infty, t \geq 0\right)=1
$$

Moreover, from (3.9), Gronwall's lemma implies that there exist nonnegative constants c_{1}, c_{2} such that

$$
\begin{equation*}
\sup _{s \in[0, t]} \mathbb{E}\left\|G_{s}\right\|^{2} \leq c_{1} \mathrm{e}^{c_{2} t} \tag{3.12}
\end{equation*}
$$

Next, if furthermore, (3.5) holds, then by (3.4), we get

$$
\mathbb{E}\left\|\int_{0}^{s} \mathrm{e}^{(s-r) A} F_{r} G_{r} \mathrm{~d} r\right\|_{H S}^{2} \leq\left(\sup _{r \in[0, s]} \mathbb{E}\left\|G_{r}\right\|^{2}\right) s \int_{0}^{s} K_{3}^{2}(r) \mathrm{d} r
$$

Thus from (3.9), (3.11) and (3.12), it holds that

$$
\begin{align*}
\mathbb{E}\left\|G_{t}\right\|_{H S}^{2} & \leq 3\left\|\mathrm{e}^{t A}\right\|_{H S}^{2}+3\left(\sup _{s \in[0, t]} \mathbb{E}\left\|G_{s}\right\|^{2}\right) t \int_{0}^{t} K_{3}^{2}(s) \mathrm{d} s \tag{3.13}\\
& \leq 3\left\|\mathrm{e}^{t A}\right\|_{H S}^{2}+3 c_{1} \mathrm{e}^{c_{2} t} t \int_{0}^{t} K_{3}^{2}(s) \mathrm{d} s, t>0
\end{align*}
$$

(2) Similarly, from (3.6), (3.7), applying Minkowski inequality and the fixed point theorem, it is easy to derive the existence and uniqueness of solutions to (3.2). Denote the solution by g_{t}.
\mathbb{H} is separable, so $\left(\sum_{k=1}^{\infty}\left(r_{t}^{k}\right)^{2}\right)^{*}$ is also a strong measurable process. Note that

$$
\left\|\left[\sum_{k=1}^{\infty}\left(r_{t}^{k}\right)^{2}\right]^{*}\right\| \leq \sum_{k=1}^{\infty}\left\|r_{t}^{k}\right\|^{2} \leq K_{4}^{2}(t)
$$

Then, as (3.10), we have

$$
\sup _{s \in[0, t]} \mathbb{E}\left\|\int_{0}^{s}\left(\sum_{k=1}^{\infty}\left(r_{t}^{k}\right)^{2}\right)^{*} U_{r} \mathrm{~d} r\right\|^{2} \leq\left(\int_{0}^{t} K_{4}^{2}(r) \mathrm{d} r\right)^{2}\left(\sup _{r \in[0, t]} \mathbb{E}\left\|U_{r}\right\|^{2}\right)
$$

Thus, repeating the above argument again, the operator-valued SDE

$$
\begin{equation*}
\mathrm{d} U_{t}=-\left(f_{t}-\sum_{k=1}^{\infty}\left(r_{t}^{k}\right)^{2}\right)^{*} U_{t} \mathrm{~d} t-\sum_{k=1}^{\infty}\left(r_{t}^{k}\right)^{*} U_{t} \mathrm{~d} w_{t}^{k}, \quad U_{0}=I \tag{3.14}
\end{equation*}
$$

has a unique solution $U_{t} \in \mathscr{L}(\mathbb{H})$. For all $u, v \in \mathbb{H}$, by Itô's formula, it is easy to see that

$$
\mathrm{d}\left\langle g_{t} u, U_{t} v\right\rangle=0
$$

Thus $U_{t}^{*} g_{t}=U_{0}^{*} J_{0}=I$. That means g_{t} is invertible with $g_{t}^{-1}=U_{t}^{*}$, and g_{t}^{-1} satisfies the left action equation (3.8).

Remark 3.1. According to (H1), (2.1), (2.2) and Lemma 3.1, $\left\{J_{t}\right\}_{t \geq 0}$ and $\left\{J_{t}^{A}\right\}_{t \geq 0}$ are strong measurable $\mathscr{L}(\mathbb{H})$-value processes, and $J_{t}^{A} \in \mathscr{L}_{H S}(\mathbb{H}), t>0$, \mathbb{P}-a.s. Moreover, fixing $s \geq 0$, (2.1) implies that for any $t \geq s$,

$$
J_{s, t} J_{s}=J_{s}+\int_{s}^{t} B_{r}\left(X_{r}\right)\left(J_{s, r} J_{s}\right) \mathrm{d} r+\int_{s}^{t} \sum_{k=1}^{\infty} \Sigma_{r}^{(k)}\left(X_{r}\right)\left(J_{s, r} J_{s}\right) \mathrm{d} w_{r}^{k}
$$

which means $\left\{J_{s, t} J_{s}\right\}_{t \geq s}$ is a solution to the equation:

$$
\begin{equation*}
\mathrm{d} \Gamma_{t}=B_{t}\left(X_{t}\right) \Gamma_{t} \mathrm{~d} t+\sum_{k=1}^{\infty} \Sigma_{t}^{(k)}\left(X_{t}\right) \Gamma_{t} \mathrm{~d} w_{t}^{k}, \quad \Gamma_{s}=J_{s}, t \geq s \tag{3.15}
\end{equation*}
$$

Combining the definition of J_{t} and (2.1),

$$
\begin{aligned}
J_{t} & =J_{0}+\int_{0}^{t} B_{r}\left(X_{r}\right) J_{r} \mathrm{~d} r+\int_{0}^{t} \sum_{k=1}^{\infty} \Sigma_{r}^{(k)}\left(X_{r}\right) J_{r} \mathrm{~d} w_{r}^{k} \\
& =J_{s}+\int_{s}^{t} B_{r}\left(X_{r}\right) J_{r} \mathrm{~d} r+\int_{s}^{t} \sum_{k=1}^{\infty} \Sigma_{r}^{(k)}\left(X_{r}\right) J_{r} \mathrm{~d} w_{r}^{k},
\end{aligned}
$$

thus, $\left\{J_{t}\right\}_{t \geq s}$ is also a solution to (3.15). By Lemma 3.1, we have \mathbb{P}-a.s. $J_{t}=J_{s, t} J_{s}$ due to the uniqueness of (3.15). Similarly, \mathbb{P}-a.s. $J_{t}^{A}=J_{s, t}^{A} J_{s}^{A}$. On the other hand, (2.1) yields that

$$
\begin{aligned}
e^{t A} J_{t} & =e^{A t}+\int_{0}^{t} e^{t A} B_{s}\left(X_{s}\right) J_{s} \mathrm{~d} s+\int_{0}^{t} e^{t A} \sum_{k=1}^{\infty} \Sigma_{s}^{(k)}\left(X_{s}\right) J_{s} \mathrm{~d} w_{s}^{k} \\
& =e^{A t}+\int_{0}^{t} e^{(t-s) A} \nabla b_{s}\left(X_{s}\right)\left(e^{s A} J_{s}\right) \mathrm{d} s+\int_{0}^{t} \sum_{k=1}^{\infty} e^{(t-s) A} \nabla \sigma_{s}^{(k)}\left(X_{s}\right)\left(e^{s A} J_{s}^{A}\right) \mathrm{d} w_{s}^{k} .
\end{aligned}
$$

Again, by the uniqueness of (2.2), for any $t \geq 0, \mathbb{P}$-a.s. $J_{t}^{A}=e^{t A} J_{t}$. As a consequence, for any $t \geq s \geq 0$, \mathbb{P}-a.s.

$$
\begin{equation*}
J_{t}=J_{s, t} J_{s}, \quad J_{t}^{A}=J_{s, t}^{A} J_{s}^{A}, \quad J_{t}^{A}=e^{t A} J_{t} . \tag{3.16}
\end{equation*}
$$

Next, we shall give some estimate of the norm of operator J_{t} and J_{t}^{-1}.
Lemma 3.2. Assume (H1). Then for any $x \in \mathbb{H}, t \geq 0, p \geq 2$, it holds that

$$
\begin{align*}
\sup _{s \in[0, t]} \mathbb{E}\left\|J_{s}\right\|^{p} \leq 3^{p-1} \exp \left\{3^{p-1}\left(t^{\frac{p}{2}}+1\right)\left(\int_{0}^{t} K_{1}^{2}(s) \mathrm{d} s\right)^{\frac{p}{2}}\right\} \tag{3.17}\\
\sup _{s \in[0, t]} \mathbb{E}\left\|J_{s}^{-1}\right\|^{p} \leq 4^{p-1} \exp \left\{4^{p-1}\left[\left(t^{\frac{p}{2}}+1\right)\left(\int_{0}^{t} K_{1}^{2}(s) \mathrm{d} s\right)^{\frac{p}{2}}+\left(\int_{0}^{t} K_{1}^{2}(s) \mathrm{d} s\right)^{p}\right]\right\} . \tag{3.18}
\end{align*}
$$

Proof. By Burkerholder-Davis-Gundy inequality and Hölder inequality, it follows from (1.6) that

$$
\begin{aligned}
\mathbb{E}\left\|J_{t}\right\|^{p} \leq & 3^{p-1}+3^{p-1} \mathbb{E}\left\|\int_{0}^{t} B_{s}\left(X_{s}\right) J_{s} \mathrm{~d} s\right\|^{p}+3^{p-1} \mathbb{E}\left\|\int_{0}^{t} \sum_{k=1}^{\infty} \Sigma_{s}^{(k)}\left(X_{s}\right) J_{s} \mathrm{~d} w_{s}^{k}\right\|_{H S}^{p} \\
\leq & 3^{p-1}+3^{p-1} t^{\frac{p-2}{2}}\left(\int_{0}^{t} K_{1}^{2}(s) \mathrm{d} s\right)^{\frac{p}{2}} \int_{0}^{t} \mathbb{E}\left\|J_{s}\right\|^{p} \mathrm{~d} s \\
& +3^{p-1} \mathbb{E}\left(\int_{0}^{t} \sum_{k=1}^{\infty}\left\|\Sigma_{s}^{(k)}\left(X_{s}\right)\right\|_{H S}^{2}\left\|J_{s}\right\|^{2} \mathrm{~d} s\right)^{\frac{p}{2}} \\
\leq & 3^{p-1}+3^{p-1} t^{\frac{p-2}{2}}\left(\int_{0}^{t} K_{1}^{2}(s) \mathrm{d} s\right)^{\frac{p}{2}} \int_{0}^{t} \mathbb{E}\left\|J_{s}\right\|^{p} \mathrm{~d} s \\
& +3^{p-1}\left(\int_{0}^{t} K_{1}^{2}(s) \mathrm{d} s\right)^{\frac{p-2}{2}} \int_{0}^{t} K_{1}^{2}(s) \mathbb{E}\left\|J_{s}\right\|^{p} \mathrm{~d} s
\end{aligned}
$$

Applying Gronwall inequality, we obtain (3.17).
Noting that

$$
\left\|\sum_{k=1}^{\infty}\left(\Sigma_{t}^{(k)}(x)\right)^{2}\right\| \leq \sum_{k=1}^{\infty}\left\|\Sigma_{t}^{(k)}(x)\right\|^{2} \leq K_{1}^{2}(t), \quad t>0, x \in \mathbb{H},
$$

we have

$$
\mathbb{E}\left\|\int_{0}^{t} \sum_{k=1}^{\infty}\left(\Sigma_{t}^{(k)}(x)\right)^{2} J_{s} \mathrm{~d} s\right\|^{p} \leq\left(\int_{0}^{t} K_{1}^{2}(s) \mathrm{d} s\right)^{p-1} \int_{0}^{t} K_{1}^{2}(s) \mathbb{E}\left\|J_{s}\right\|^{p} \mathrm{~d} s
$$

So, we obtain (3.18) similarly to (3.17).
Next, we introduce a Duhamel's formula for the solution of a class of semi-linear $\mathscr{L}(\mathbb{H})$ valued SDEs.

Lemma 3.3. Let $f_{t},\left\{r_{t}^{k}\right\}_{k \geq 1}$ satisfy the condition of Lemma 3.1 (2), and let a_{t}, $\left\{l_{t}^{k}\right\}_{k \geq 1}$ be $\mathscr{L}(\mathbb{H})$-valued progressive strong measurable processes with

$$
\begin{equation*}
\int_{0}^{t} \mathbb{E}\left(\left\|a_{s}\right\|^{2}+\sum_{k=1}^{\infty}\left\|l_{s}^{k}\right\|_{H S}^{2}\right) \mathrm{d} s<\infty, \quad t \geq 0 \tag{3.19}
\end{equation*}
$$

Then $\mathscr{L}(\mathbb{H})$-valued $S D E$

$$
\begin{equation*}
\mathrm{d} Y_{t}=a_{t} \mathrm{~d} t+f_{t} Y_{t} \mathrm{~d} t+\sum_{k=1}^{\infty} r_{t}^{k} Y_{t} \mathrm{~d} w_{t}^{k}+\sum_{k=1}^{\infty} l_{t}^{k} \mathrm{~d} w_{t}^{k} \tag{3.20}
\end{equation*}
$$

starting from a \mathscr{F}_{0}-measurable $\mathscr{L}(\mathbb{H})$-valued random variable Y_{0} with $\mathbb{E}\left\|Y_{0}\right\|^{2}<\infty$, has a unique solution Y_{t}, and

$$
\begin{equation*}
Y_{t}=g_{t}\left\{Y_{0}+\int_{0}^{t} g_{s}^{-1} a_{s} \mathrm{~d} s+\int_{0}^{t} g_{s}^{-1} \sum_{k=1}^{\infty} l_{s}^{k} \mathrm{~d} w_{s}^{k}-\int_{0}^{t} g_{s}^{-1} \sum_{k=1}^{\infty} f_{s}^{k} l_{s}^{k} \mathrm{~d} s\right\}, \quad t \geq 0 \tag{3.21}
\end{equation*}
$$

where g_{t} and g_{t}^{-1} are the solutions of (3.2) and (3.8) respectively.
Proof. The existence and uniqueness of the solution of (3.20) are easy to obtain by (3.6), (3.7), (3.19) and fixed point theorem. Since the proof is similar to the that of Lemma 3.1 (2), we omit here. Let $\left\{g_{t}^{-1}\right\}_{t \geq 0}$ be the solution of (3.8). Then (3.8) and Itô's formula yield

$$
\begin{aligned}
\mathrm{d}\left(g_{t}^{-1} Y_{t}\right)= & g_{t}^{-1}\left[-f_{t} \mathrm{~d} t-\sum_{k=1}^{\infty} r_{t}^{k} \mathrm{~d} w_{t}^{k}+\sum_{k=1}^{\infty}\left(r_{t}^{k}\right)^{2} \mathrm{~d} t\right] Y_{t} \\
& +g_{t}^{-1}\left[a_{t} \mathrm{~d} t+f_{t} Y_{t} \mathrm{~d} t+\sum_{k=1}^{\infty} r_{t}^{k} Y_{t} \mathrm{~d} w_{t}^{k}+\sum_{k=1}^{\infty} l_{t}^{k} \mathrm{~d} w_{t}^{k}\right] \\
& \quad-g_{t}^{-1} \sum_{k=1}^{\infty}\left(r_{t}^{k}\right)^{2} Y_{t} \mathrm{~d} t-g_{t}^{-1} \sum_{k=1}^{\infty} r_{t}^{k} l_{t}^{k} \mathrm{~d} t \\
= & g_{t}^{-1} a_{t} \mathrm{~d} t+g_{t}^{-1} \sum_{k=1}^{\infty} l_{t}^{k} \mathrm{~d} w_{t}^{k}-g_{t}^{-1} \sum_{k=1}^{\infty} r_{t}^{k} l_{t}^{k} \mathrm{~d} t
\end{aligned}
$$

Thus (3.21) holds.

3.1 Proof of Theorem 2.1 and Corollary 2.3

To make the procedure more clear, we shall start with some explanations on the key ideas of the proof. The proof basises on the integration by parts formula of the Malliavin gradient operator, see for instance $[8,10,13]$. Let $(D, \mathscr{D}(D))$ be the Malliavin gradient operator, and $\left(D^{*}, \mathscr{D}\left(D^{*}\right)\right)$ be its adjoint operator (i.e. the Malliavin divergence operator). Fix $T>0$. Let \bar{h} be a function from $[0, T] \times \Omega$ to \mathbb{H}, and let $D_{\bar{h}} X_{T}$ be the Malliavin derivative of X_{T} along \bar{h}. If $D_{\bar{h}} X_{T}=e^{T A} v$, then

$$
P_{T} \nabla_{e^{T A} v} f(x)=\mathbb{E} \nabla_{e^{T A} v} f\left(X_{T}\right)=\mathbb{E} \nabla_{D_{\bar{h}} X_{T}} f\left(X_{T}\right)=\mathbb{E} D_{\bar{h}}\left(f\left(X_{T}\right)\right)=\mathbb{E} f\left(X_{T}\right) D^{*}(\bar{h})
$$

If \bar{h} is adapted, then $D^{*}(\bar{h})$ is an Itô integral and the integration by parts formula follows. However, in the situation of stochastic equations with multiplicative noise, \bar{h} is usually not an adapted process. Formally, we construct \bar{h} as follows. $D_{\bar{h}} X_{T}$ satisfies the following equation

$$
\begin{aligned}
\mathrm{d} D_{\bar{h}} X_{t} & =\left(A+\nabla b_{t}\left(X_{t}\right)\right) D_{\bar{h}} X_{t} \mathrm{~d} t \\
& +\sum_{j=1}^{\infty} \nabla \sigma_{t}^{(j)}\left(X_{t}\right) D_{\bar{h}} X_{t} \mathrm{~d} w_{t}^{j}+\sigma_{t}\left(X_{t}\right) \mathrm{d} \bar{h}(t), \quad D_{\bar{h}} X_{0}=0
\end{aligned}
$$

and then we can write it in the integral form

$$
D_{\bar{h}} X_{T}=J_{T}^{A} \int_{0}^{T}\left(J_{s}^{A}\right)^{-1} \sigma_{t}\left(X_{t}\right) \bar{h}^{\prime}(t) \mathrm{d} t .
$$

Letting $\bar{h}^{\prime}(t)=\frac{1}{T} \sigma_{t}^{-1}\left(X_{t}\right) J_{t}^{A} J_{T}^{-1} v$, formally, we have

$$
D_{\bar{h}} X_{T}=\frac{1}{T} J_{T}^{A} \int_{0}^{T}\left(J_{s}^{A}\right)^{-1} J_{s}^{A} J_{T}^{-1} v \mathrm{~d} t=e^{T A} v
$$

where we use $J_{T}^{A}=e^{A T} J_{T}$ (see (3.16) in Remark 3.1). To avoid the trouble caused by the non-adaptedness of \bar{h}, we shall rewrite \bar{h} :

$$
\bar{h}^{\prime}(t)=\frac{1}{T} \sigma_{t}^{-1}\left(X_{t}\right) J_{t}^{A} J_{T}^{-1} v=\frac{1}{T} \sum_{k=1}^{\infty}\left\langle J_{T}^{-1} v, e_{k}\right\rangle \sigma_{t}^{-1}\left(X_{t}\right) J_{t}^{A} e_{k} \equiv \frac{1}{T} \sum_{k=1}^{\infty} F_{k} h_{k}^{\prime}(t)
$$

Then h_{k} is adapted, $D_{\bar{h}} X_{T}=\frac{1}{T} \sum_{k=1}^{\infty} F_{k} D_{h_{k}} X_{T}$, and by the chain rule

$$
\begin{align*}
\mathbb{E} \nabla_{e^{T A} v} f\left(X_{T}\right) & =\frac{1}{T} \sum_{k=1}^{\infty} \mathbb{E} F_{k} \nabla_{D_{h_{k}} X_{T}} f\left(X_{T}\right) \\
& =\frac{1}{T} \sum_{k=1}^{\infty} \mathbb{E}\left[D_{h_{k}}\left(F_{k} f\left(X_{T}\right)\right)-f\left(X_{T}\right) D_{h_{k}}\left(F_{k}\right)\right] \tag{3.22}
\end{align*}
$$

What we shall do is to make these all rigorous, and prove that

$$
\sum_{k=1}^{\infty} \mathbb{E}\left[D_{h_{k}}\left(F_{k} f\left(X_{T}\right)\right)-f\left(X_{T}\right) D_{h_{k}}\left(F_{k}\right)\right]=\mathbb{E} f\left(X_{T}\right) \sum_{k}\left(F_{k} D^{*}\left(h_{k}\right)-D_{h_{k}}\left(F_{k}\right)\right),
$$

and give a representation to the right hand side of the equality above.

Proof of Theorem 2.1

From now on, we fix $T>0$.
(1) We shall give a rigorous proof of (3.22). Let

$$
\begin{equation*}
h_{k}(t)=\int_{0}^{t} \sigma_{s}^{-1}\left(X_{s}\right) J_{s}^{A} e_{k} \mathrm{~d} s, \quad F_{k}=\left\langle J_{T}^{-1} v, e_{k}\right\rangle, \quad k \geq 1, t \in[0, T] . \tag{3.23}
\end{equation*}
$$

Then according to [1, Theorem A.2], from (1.2) and (ii), we have

$$
\begin{align*}
\mathrm{d} D_{h_{k}} X_{t} & =\left(A+\nabla b_{t}\left(X_{t}\right)\right) D_{h_{k}} X_{t} \mathrm{~d} t \\
& +\sum_{j=1}^{\infty} \nabla \sigma_{t}^{(j)}\left(X_{t}\right) D_{h_{k}} X_{t} \mathrm{~d} w_{t}^{j}+\sigma_{t}\left(X_{t}\right) \mathrm{d} h_{k}(t), \quad D_{h} X_{0}=0 \tag{3.24}
\end{align*}
$$

and $J_{t}^{A} e_{k}$ satisfies the following equation

$$
\mathrm{d} J_{t}^{A} e_{k}=\left(A+\nabla b_{t}\left(X_{t}\right)\right) J_{t}^{A} e_{k} \mathrm{~d} t+\sum_{j=1}^{\infty} \nabla \sigma_{t}^{(j)}\left(X_{t}\right) J_{t}^{A} e_{k} \mathrm{~d} w_{t}^{j} .
$$

Let $v \in \mathbb{H}$. Then

$$
\begin{aligned}
& \int_{0}^{t}\left\langle e^{(t-s) A} \nabla b_{s}\left(X_{s}\right)\left(s J_{s}^{A} e_{k}\right), v\right\rangle \mathrm{d} s+\sum_{j} \int_{0}^{t} s\left\langle e^{(t-s) A}\left(\nabla \sigma_{s}^{j}\left(X_{s}\right)\right)\left(J_{s}^{A} e_{k}\right), v\right\rangle \mathrm{d} W_{s}^{j} \\
& =t \int_{0}^{t}\left\langle e^{(t-s) A} \nabla b_{s}\left(X_{s}\right) J_{s}^{A} e_{k}, v\right\rangle \mathrm{d} s-\int_{0}^{t} \int_{0}^{r}\left\langle e^{(t-s) A} \nabla b_{s}\left(X_{s}\right)\left(s J_{s}^{A} e_{k}\right), v\right\rangle \mathrm{d} s \mathrm{~d} r \\
& \quad+t \sum_{j} \int_{0}^{t} s\left\langle e^{(t-s) A}\left(\nabla \sigma_{s}^{j}\left(X_{s}\right)\right)\left(J_{s}^{A} e_{k}\right), v\right\rangle \mathrm{d} W_{s}^{j} \\
& \quad-\sum_{j} \int_{0}^{t} \int_{0}^{r}\left\langle e^{(t-s) A}\left(\nabla \sigma_{s}^{j}\left(X_{s}\right)\right)\left(J_{s}^{A} e_{k}\right), v\right\rangle \mathrm{d} W_{s}^{j} \mathrm{~d} r \\
& = \\
& \quad t\left\langle J_{t}^{A}, v\right\rangle-\int_{0}^{t}\left\langle e^{(t-r) A} J_{r}^{A}, v\right\rangle \mathrm{d} r .
\end{aligned}
$$

Thus $t J_{t}^{A} e_{k}$ is a mild solution of (3.24). By pathwise uniqueness of (3.24),

$$
\begin{equation*}
D_{h_{k}} X_{t}=t J_{t}^{A} e_{k}, t \in[0, T] \tag{3.25}
\end{equation*}
$$

Hölder inequality and (3.17), (3.18) yield that

$$
\begin{aligned}
\mathbb{E} \sum_{k=1}^{\infty}\left|F_{k} D_{h_{k}} X_{T}\right| & \leq T\left\{\mathbb{E} \sum_{k=1}^{\infty}\left|\left\langle J_{T}^{-1} v, e_{k}\right\rangle\right|^{2}\right\}^{\frac{1}{2}}\left\{\mathbb{E} \sum_{k=1}^{\infty}\left|J_{T}^{A} e_{k}\right|^{2}\right\}^{\frac{1}{2}} \\
& \leq T v\left\{\mathbb{E}\left\|J_{T}^{-1}\right\|^{2}\right\}^{\frac{1}{2}}\left\{\mathbb{E}\left\|J_{T}^{A}\right\|_{H S}^{2}\right\}^{\frac{1}{2}}<\infty
\end{aligned}
$$

Hence $\sum_{k=1}^{\infty} F_{k} D_{h_{k}} X_{T}$ converges in $\mathbb{H} \mathbb{P}$-a.s. Moreover, (3.16) implies that

$$
\sum_{k=1}^{\infty} F_{k} D_{h_{k}} X_{T}=T \sum_{k=1}^{\infty}\left\langle J_{T}^{-1} v, e_{k}\right\rangle J_{T}^{A} e_{k}=T J_{T}^{A} J_{T}^{-1} v=T e^{A T} v
$$

And Fubini theorem implies that

$$
\begin{align*}
\mathbb{E}\left(\nabla_{\mathrm{e}^{A T} v} f\right)\left(X_{T}\right) & =\frac{1}{T} \sum_{k=1}^{\infty} \mathbb{E} F_{k} D_{h_{k}}\left(f\left(X_{T}\right)\right) \\
& =\frac{1}{T} \sum_{k=1}^{\infty} \mathbb{E} f\left(X_{T}\right)\left(F_{k} D^{*} h_{k}-D_{h_{k}} F_{k}\right) \tag{3.26}
\end{align*}
$$

(2) We shall give a representation of the last term of (3.26). Noting that h_{k} is adapted with $\mathbb{E} \int_{0}^{T}\left|h_{k}^{\prime}(t)\right|^{2} \mathrm{~d} t<\infty$, we obtain

$$
\begin{aligned}
D^{*}\left(h_{k}\right) & =\int_{0}^{T}\left\langle h_{k}^{\prime}(s), \mathrm{d} W_{s}\right\rangle \\
& =\int_{0}^{T}\left\langle\sigma_{s}^{-1}\left(X_{s}\right) J_{s}^{A} e_{k}, \mathrm{~d} W_{s}\right\rangle \\
& =\left\langle e_{k}, \int_{0}^{T}\left[\sigma_{s}^{-1}\left(X_{s}\right) J_{s}^{A}\right]^{*} \mathrm{~d} W_{s}\right\rangle, \quad k \geq 1 .
\end{aligned}
$$

Since (3.13) and $J_{T}^{-1} v \in \mathbb{H}$ a.s. hold, we have

$$
\begin{align*}
\sum_{k=1}^{\infty} F_{k} D^{*}\left(h_{k}\right) & =\sum_{k=1}^{\infty}\left\langle J_{T}^{-1} v, e_{k}\right\rangle\left\langle e_{k}, \int_{0}^{T}\left[\sigma_{s}^{-1}\left(X_{s}\right) J_{s}^{A}\right]^{*} \mathrm{~d} W_{s}\right\rangle \tag{3.27}\\
& =\left\langle\int_{0}^{T}\left[\sigma_{s}^{-1}\left(X_{s}\right) J_{s}^{A}\right]^{*} \mathrm{~d} W_{s}, J_{T}^{-1} v\right\rangle
\end{align*}
$$

From (2.1) and (H1), for all $u \in \mathbb{H}$

$$
\begin{aligned}
\mathrm{d} D_{h_{k}} J_{t} u= & B_{t}\left(X_{t}\right) D_{h_{k}} J_{t} u \mathrm{~d} t+\sum_{j=1}^{\infty} \Sigma_{t}^{(j)}\left(X_{t}\right) D_{h_{k}} J_{t} u \mathrm{~d} w_{t}^{j} \\
& +\left(\nabla_{D_{h_{k}} X_{t}} B_{t}\right)\left(X_{t}\right) J_{t} u \mathrm{~d} t+\sum_{j=1}^{\infty}\left(\nabla_{D_{h_{k}} X_{t}} \Sigma_{t}^{(j)}\right)\left(X_{t}\right) J_{t} u \mathrm{~d} w_{t}^{j} \\
& +\sum_{j=1}^{\infty} \Sigma_{t}^{(j)}\left(X_{t}\right) J_{t} u \mathrm{~d} h_{k}^{j}(t), \quad D_{h_{k}} J_{0} u=0
\end{aligned}
$$

where $h_{k}^{j}:=\left\langle h_{k}, e_{j}\right\rangle, j \geq 1$. By Lemma 3.3, we obtain

$$
\begin{align*}
D_{h_{k}} J_{T} u=J_{T} & \int_{0}^{T} J_{t}^{-1}\left(\nabla_{D_{h_{k}} X_{t}} B_{t}\right)\left(X_{t}\right) J_{t} u \mathrm{~d} t \\
& +J_{T} \int_{0}^{T} J_{t}^{-1} \sum_{j=1}^{\infty}\left(\nabla_{D_{h_{k}} X_{t}} \Sigma_{t}^{(j)}\right)\left(X_{t}\right) J_{t} u \mathrm{~d} w_{t}^{j} \tag{3.28}\\
& +J_{T} \int_{0}^{T} J_{t}^{-1} \sum_{j=1}^{\infty}\left\langle\sigma_{t}^{-1}\left(X_{t}\right) J_{t}^{A} e_{k}, e_{j}\right\rangle \Sigma_{t}^{(j)}\left(X_{t}\right) J_{t} u \mathrm{~d} t \\
& -J_{T} \int_{0}^{T} J_{t}^{-1} \sum_{j=1}^{\infty} \Sigma_{t}^{(j)}\left(X_{t}\right)\left(\nabla_{D_{h_{k} X_{t}}} \Sigma_{t}^{(j)}\right)\left(X_{t}\right) J_{t} u \mathrm{~d} t
\end{align*}
$$

Since

$$
\left\langle D_{h_{k}}\left(J_{T}^{-1} v\right), e_{k}\right\rangle=-\left\langle D_{h_{k}}\left(\left(J_{T}^{-1}\right)^{*} e_{k}\right), v\right\rangle=-\left\langle J_{T}^{*} D_{h_{k}}\left(\left(J_{T}^{-1}\right)^{*} e_{k}\right), J_{T}^{-1} v\right\rangle
$$

$$
\begin{aligned}
& =-\sum_{j=1}^{\infty}\left\langle D_{h_{k}}\left(\left(J_{T}^{-1}\right)^{*} e_{k}\right), J_{T} e_{j}\right\rangle\left\langle J_{T}^{-1} v, e_{j}\right\rangle \\
& =\sum_{j=1}^{\infty}\left\langle e_{k}, J_{T}^{-1} D_{h_{k}}\left(J_{T} e_{j}\right)\right\rangle\left\langle J_{T}^{-1} v, e_{j}\right\rangle
\end{aligned}
$$

combining this with (3.25) and (3.28), we get

$$
\begin{align*}
\sum_{k=1}^{\infty} D_{h_{k}} F_{k}= & -\sum_{k=1}^{\infty} \int_{0}^{T}\left\langle J_{t}^{-1}\left(\nabla_{t J_{t}^{A} e_{k}} B_{t}\right)\left(X_{t}\right) J_{t} J_{T}^{-1} v, e_{k}\right\rangle \mathrm{d} t \\
& -\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left\langle\left[\int_{0}^{T} J_{t}^{-1} \sum_{j=1}^{\infty}\left(\nabla_{t J_{t}^{A} e_{k}} \Sigma_{t}^{(j)}\right)\left(X_{t}\right) J_{t} \mathrm{~d} w_{t}^{j}\right] J_{T}^{-1} v, e_{k}\right\rangle \\
& -\sum_{k=1}^{\infty} \int_{0}^{T} \sum_{j=1}^{\infty}\left\langle\sigma_{t}^{-1}\left(X_{t}\right) J_{t}^{A} e_{k}, e_{j}\right\rangle\left\langle J_{t}^{-1} \Sigma_{t}^{(j)}\left(X_{t}\right) J_{t} J_{T}^{-1} v, e_{k}\right\rangle \mathrm{d} t \tag{3.29}\\
& +\sum_{k=1}^{\infty} \int_{0}^{T}\left\langle J_{t}^{-1} \sum_{j=1}^{\infty} \Sigma_{t}^{(j)}\left(X_{t}\right)\left(\nabla_{t J_{t}^{A} e_{k}} \Sigma_{t}^{(j)}\right)\left(X_{t}\right) J_{t} J_{T}^{-1} v, e_{k}\right\rangle \mathrm{d} t .
\end{align*}
$$

For the second term. Let π_{n} be the orthogonal projection from \mathbb{H} to $\operatorname{span}\left\{e_{1}, \cdots, e_{n}\right\}$. Then

$$
\begin{aligned}
& \sum_{k=1}^{n} \sum_{j=1}^{\infty}\left\langle\left[\int_{0}^{T} J_{t}^{-1}\left(\nabla_{t J_{t}^{A} e_{k}} \Sigma_{t}^{(j)}\right)\left(X_{t}\right) J_{t} \mathrm{~d} w_{t}^{j}\right] J_{T}^{-1} v, e_{k}\right\rangle \\
& =\sum_{k=1}^{n} \sum_{j=1}^{\infty} \sum_{l=1}^{\infty}\left\langle\left[\int_{0}^{T} \pi_{n} J_{t}^{-1}\left(\nabla_{t J_{t}^{A} e_{k}} \Sigma_{t}^{(j)}\right)\left(X_{t}\right) J_{t} \mathrm{~d} w_{t}^{j}\right] e_{l}, e_{k}\right\rangle\left\langle J_{T}^{-1} v, e_{l}\right\rangle \\
& =\sum_{j=1}^{\infty} \sum_{l=1}^{\infty} \int_{0}^{T} t \sum_{k=1}^{n}\left\langle\pi_{n} J_{t}^{-1}\left(\nabla_{J_{t}^{A} e_{k}} \Sigma_{t}^{(j)}\right)\left(X_{t}\right) J_{t} e_{l}, e_{k}\right\rangle \mathrm{d} w_{t}^{j}\left\langle J_{T}^{-1} v, e_{l}\right\rangle \\
& =\sum_{j=1}^{\infty} \sum_{l=1}^{\infty} \int_{0}^{T} t \sum_{k=1}^{\infty}\left\langle\pi_{n} J_{t}^{-1}\left(\nabla_{J_{t}^{A} e_{k}} \Sigma_{t}^{(j)}\right)\left(X_{t}\right) J_{t} e_{l}, e_{k}\right\rangle \mathrm{d} w_{t}^{j}\left\langle J_{T}^{-1} v, e_{l}\right\rangle \\
& =\sum_{j=1}^{\infty} \sum_{l=1}^{\infty} \int_{0}^{T} t \operatorname{Tr}\left\{\pi_{n} J_{t}^{-1}\left(\nabla_{J_{t}^{A}} \Sigma_{t}^{(j)}\right)\left(X_{t}\right) J_{t} e_{l}\right\} \mathrm{d} w_{t}^{j}\left\langle J_{T}^{-1} v, e_{l}\right\rangle \\
& =\sum_{j=1}^{\infty} \sum_{l=1}^{\infty} \int_{0}^{T} t \operatorname{Tr}\left\{J_{t}^{A} \pi_{n} J_{t}^{-1}\left[\left(\nabla_{t} \Sigma_{t}^{(j)}\right)\left(X_{t}\right) J_{t} e_{l}\right]\right\} \mathrm{d} w_{t}^{j}\left\langle J_{T}^{-1} v, e_{l}\right\rangle \\
& =\sum_{j=1}^{\infty} \sum_{l=1}^{\infty} \int_{0}^{T} t \sum_{k=1}^{\infty}\left\{e^{-t \lambda_{k}}\left\langle J_{t} \pi_{n} J_{t}^{-1}\left[\left(\nabla_{e_{k}} \Sigma_{t}^{(j)}\right)\left(X_{t}\right) J_{t} e_{l}\right], e_{k}\right\rangle\right\} \mathrm{d} w_{t}^{j}\left\langle J_{T}^{-1} v, e_{l}\right\rangle \\
& = \\
& \sum_{j=1}^{\infty}\left\langle\int_{0}^{T} t \sum_{k=1}^{\infty}\left\{e^{-t \lambda_{k}}\left[\left(\nabla_{e_{k}} \Sigma_{t}^{(j)}\right)\left(X_{t}\right) J_{t}\right]^{*}\left(J_{t}^{-1}\right)^{*} \pi_{n} J_{t}^{*} e_{k}\right\} \mathrm{d} w_{t}^{j}, J_{T}^{-1} v\right\rangle .
\end{aligned}
$$

Since

$$
\begin{aligned}
& \mathbb{E}\left|\sum_{j=m}^{m+p} \int_{0}^{T} t \sum_{k=1}^{\infty}\left\{e^{-t \lambda_{k}}\left[\left(\nabla_{e_{k}} \Sigma_{t}^{(j)}\right)\left(X_{t}\right) J_{t}\right]^{*}\left(J_{t}^{-1}\right)^{*} \pi_{n} J_{t}^{*} e_{k}\right\} \mathrm{d} w_{t}^{j}\right|^{2} \\
& =\sum_{j=m}^{m+p} \mathbb{E} \int_{0}^{T} t^{2}\left|\sum_{k=1}^{\infty}\left\{e^{-t \lambda_{k}}\left[\left(\nabla_{e_{k}} \Sigma_{t}^{(j)}\right)\left(X_{t}\right) J_{t}\right]^{*}\left(J_{t}^{-1}\right)^{*} \pi_{n} J_{t}^{*} e_{k}\right\}\right|^{2} \mathrm{~d} t \\
& \leq \int_{0}^{T} t^{2}\left(\sum_{k=1}^{\infty} e^{-t \lambda_{k}}\right)^{2} \mathbb{E}\left(\sum_{j=m}^{\infty}\left\|\left(\nabla \Sigma_{t}^{(j)}\right)\left(X_{t}\right)\right\|^{2}\left\|J_{t}\right\|^{4}\left\|J_{t}^{-1}\right\|^{2}\right) \mathrm{d} t
\end{aligned}
$$

by Lemma 3.2 and dominated convergence theorem, we have

$$
\lim _{m \rightarrow \infty} \sup _{p \geq 0} \mathbb{E}\left|\sum_{j=m}^{m+p} \int_{0}^{T} t \sum_{k=1}^{\infty}\left\{e^{-t \lambda_{k}}\left[\left(\nabla_{e_{k}} \Sigma_{t}^{(j)}\right)\left(X_{t}\right) J_{t}\right]^{*}\left(J_{t}^{-1}\right)^{*} \pi_{n} J_{t}^{*} e_{k}\right\} \mathrm{d} w_{t}^{j}\right|^{2}=0,
$$

thus

$$
\begin{aligned}
& \sum_{j=1}^{\infty} \int_{0}^{T} t \sum_{k=1}^{\infty}\left\{e^{-t \lambda_{k}}\left[\left(\nabla_{e_{k}} \Sigma_{t}^{(j)}\right)\left(X_{t}\right) J_{t}\right]^{*}\left(J_{t}^{-1}\right)^{*} \pi_{n} J_{t}^{*} e_{k}\right\} \mathrm{d} w_{t}^{j} \\
& =\lim _{m \rightarrow \infty} \sum_{j=1}^{m} \int_{0}^{T} t \sum_{k=1}^{\infty}\left\{e^{-t \lambda_{k}}\left[\left(\nabla_{e_{k}} \Sigma_{t}^{(j)}\right)\left(X_{t}\right) J_{t}\right]^{*}\left(J_{t}^{-1}\right)^{*} \pi_{n} J_{t}^{*} e_{k}\right\} \mathrm{d} w_{t}^{j}
\end{aligned}
$$

holds in $L^{2}(\mathbb{P})$.
Since

$$
\begin{aligned}
& \mathbb{E}\left|\sum_{j=1}^{\infty} \int_{0}^{T} t \sum_{k=1}^{\infty}\left\{e^{-t \lambda_{k}}\left[\left(\nabla_{e_{k}} \Sigma_{t}^{(j)}\right)\left(X_{t}\right) J_{t}\right]^{*}\left(J_{t}^{-1}\right)^{*}\left(I-\pi_{n}\right) J_{t}^{*} e_{k}\right\} \mathrm{d} w_{t}^{j}\right|^{2} \\
& =\mathbb{E} \int_{0}^{T} t^{2} \sum_{j=1}^{\infty}\left|\sum_{k=1}^{\infty}\left\{e^{-t \lambda_{k}}\left[\left(\nabla_{e_{k}} \Sigma_{t}^{(j)}\right)\left(X_{t}\right) J_{t}\right]^{*}\left(J_{t}^{-1}\right)^{*}\left(I-\pi_{n}\right) J_{t}^{*} e_{k}\right\}\right|^{2} \mathrm{~d} t \\
& \leq \mathbb{E} \int_{0}^{T} t^{2}\left(\sum_{k=1}^{\infty} e^{-t \lambda_{k}}\left|\left(I-\pi_{n}\right) J_{t}^{*} e_{k}\right|\right)^{2} \sum_{j=1}^{\infty}\left\|\left[\left(\nabla \Sigma_{t}^{(j)}\right)\left(X_{t}\right) J_{t}\right]^{*}\left(J_{t}^{-1}\right)^{*}\right\|^{2} \mathrm{~d} t
\end{aligned}
$$

by (1.6), Lemma 3.2 and dominated convergence theorem, it holds in $L^{2}(\mathbb{P})$ that

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \sum_{j=1}^{\infty} \int_{0}^{T} t \sum_{k=1}^{\infty}\left\{e^{-t \lambda_{k}}\left[\left(\nabla_{e_{k}} \Sigma_{t}^{(j)}\right)\left(X_{t}\right) J_{t}\right]^{*}\left(J_{t}^{-1}\right)^{*} \pi_{n} J_{t}^{*} e_{k}\right\} \mathrm{d} w_{t}^{j} \\
& =\sum_{j=1}^{\infty} \int_{0}^{T} t \sum_{k=1}^{\infty}\left\{e^{-t \lambda_{k}} J_{t}^{*}\left(\nabla_{e_{k}} \Sigma_{t}^{(j)}\right)^{*}\left(X_{t}\right) e_{k}\right\} \mathrm{d} w_{t}^{j} \tag{3.30}
\end{align*}
$$

Next, by (3.16),

$$
t J_{t}^{A} e_{k}=t e^{t A} J_{t} e_{k}=t e^{\frac{t}{2} A}\left(e^{\frac{t}{2} A} J_{t}\right) e_{k}
$$

Then by (3.34) and Lemma 3.2, it is clear that

$$
\begin{aligned}
& \sum_{k=1}^{\infty} \mathbb{E} \int_{0}^{T}\left|\left\langle J_{t}^{-1}\left(\nabla_{t J_{t}^{A} e_{k}} B_{t}\right)\left(X_{t}\right) J_{t} J_{T}^{-1} v, e_{k}\right\rangle\right| \mathrm{d} t \\
& \leq\left(\mathbb{E} \int_{0}^{T} t\left\|e^{\frac{t}{2} A} J_{t}\right\|_{H S}^{2} \mathrm{~d} t\right)^{\frac{1}{2}}\left(\mathbb{E} \int_{0}^{T} t\left\|J_{t}^{-1}\left(\nabla_{e^{\frac{t}{2} A}} B_{t}\right)\left(X_{t}\right) J_{t} J_{T}^{-1} v\right\|_{H S}^{2} \mathrm{~d} t\right)^{\frac{1}{2}} \\
& \leq \sup _{t \in(0, T]} t\left\|e^{\frac{t}{2} A}\right\|_{H S}^{2}\left(\mathbb{E} \int_{0}^{T}\left\|J_{t}\right\|^{2} \mathrm{~d} t\right)^{\frac{1}{2}} \mathbb{E} \int_{0}^{T} K_{1}^{2}(t)\left\|J_{t}^{-1}\right\|^{2}\left\|J_{t} J_{T}^{-1} v\right\|^{2} \mathrm{~d} t<\infty
\end{aligned}
$$

So, by Fubini theorem and (3.16), it holds that

$$
\begin{align*}
& \sum_{k=1}^{\infty} \mathbb{E} f\left(X_{T}\right) \int_{0}^{T}\left\langle J_{t}^{-1}\left(\nabla_{t J_{t}^{A} e_{k}} B_{t}\right)\left(X_{t}\right) J_{t} J_{T}^{-1} v, e_{k}\right\rangle \mathrm{d} t \\
& =\mathbb{E} f\left(X_{T}\right) \int_{0}^{T} \sum_{k=1}^{\infty}\left\langle J_{t}^{-1}\left(\nabla_{t J_{t}^{A} e_{k}} B_{t}\right)\left(X_{t}\right) J_{t} J_{T}^{-1} v, e_{k}\right\rangle \mathrm{d} t \tag{3.31}\\
& =\mathbb{E} f\left(X_{T}\right) \int_{0}^{T} t \operatorname{Tr}\left\{\mathrm{e}^{t A}\left[\left(\nabla \cdot B_{t}\right)\left(X_{t}\right) J_{t} J_{T}^{-1} v\right]\right\} \mathrm{d} t
\end{align*}
$$

Similarly, we have that

$$
\begin{align*}
& \sum_{k=1}^{\infty} \mathbb{E} f\left(X_{T}\right)\left\{-\sum_{j=1}^{\infty}\left\langle\sigma_{t}^{-1}\left(X_{t}\right) J_{t}^{A} e_{k}, e_{j}\right\rangle\left\langle J_{t}^{-1} \Sigma_{t}^{(j)}\left(X_{t}\right) J_{t} J_{T}^{-1} v, e_{k}\right\rangle \mathrm{d} t\right. \\
& \left.\quad+\int_{0}^{T}\left\langle J_{t}^{-1} \sum_{j=1}^{\infty} \Sigma_{t}^{(j)}\left(X_{t}\right)\left(\nabla_{t J_{t}^{A} e_{k}} \Sigma_{t}^{(j)}\right)\left(X_{t}\right) J_{t} J_{T}^{-1} v, e_{k}\right\rangle \mathrm{d} t\right\} \\
& =\mathbb{E} f\left(X_{T}\right)\left\{-\int_{0}^{T} \sum_{j=1}^{\infty} \sum_{k=1}^{\infty}\left\langle\sigma_{t}^{-1}\left(X_{t}\right) J_{t}^{A} e_{k}, e_{j}\right\rangle\left\langle J_{t}^{-1} \Sigma_{t}^{(j)}\left(X_{t}\right) J_{t} J_{T}^{-1} v, e_{k}\right\rangle \mathrm{d} t\right. \\
& \left.\quad+\int_{0}^{T} \sum_{k=1}^{\infty}\left\langle J_{t}^{-1} \sum_{j=1}^{\infty} \Sigma_{t}^{(j)}\left(X_{t}\right)\left(\nabla_{t J_{t}^{A} e_{k}} \Sigma_{t}^{(j)}\right)\left(X_{t}\right) J_{t} J_{T}^{-1} v, e_{k}\right\rangle \mathrm{d} t\right\} \\
& =\mathbb{E} f\left(X_{T}\right)\left\{-\int_{0}^{T} \operatorname{Tr}\left\{\mathrm{e}^{t A}\left[\Sigma_{t}\left(X_{t}\right) J_{t} J_{T}^{-1} v\right] \sigma_{t}^{-1}\left(X_{t}\right)\right\} \mathrm{d} t\right. \tag{3.32}\\
& \left.\quad+\int_{0}^{T} t \operatorname{Tr}\left(\mathrm{e}^{t A} \sum_{j=1}^{\infty} \Sigma_{t}^{(j)}\left(X_{t}\right)\left[\left(\nabla \Sigma_{t}^{(j)}\right)\left(X_{t}\right) J_{t} J_{T}^{-1} v\right]\right) \mathrm{d} t\right\}
\end{align*}
$$

Thus (3.26), (3.27), (3.30)-(3.32) and dominated convergence theorem imply that

$$
\mathbb{E}\left(\nabla_{\mathrm{e}^{A T} v} f\right)\left(X_{T}\right)=\frac{1}{T} \mathbb{E} f\left(X_{T}\right)\left(\sum_{k=1}^{\infty} F_{k} D^{*} h_{k}-\sum_{k=1}^{\infty} D_{h_{k}} F_{k}\right)
$$

and (2.4) holds.

Proof of Corollary 2.3

(1) For simplicity, letting

$$
\begin{aligned}
& \Theta_{1}=\left\langle\int_{0}^{T}\left[\sigma_{t}^{-1}\left(X_{t}\right) J_{t}^{A}\right]^{*} \mathrm{~d} W_{t}, J_{T}^{-1} v\right\rangle \\
& \Theta_{2}=\int_{0}^{T} t \operatorname{Tr}\left\{e^{t A}\left[\left(\nabla \cdot B_{t}\right)\left(X_{t}\right) J_{t} J_{T}^{-1} v\right]\right\} \mathrm{d} t \\
& \Theta_{3}=\left\langle\sum_{j=1}^{\infty} \int_{0}^{T} t \sum_{k=1}^{\infty}\left\{e^{-t \lambda_{k}} J_{t}^{*}\left(\nabla_{e_{k}} \Sigma_{t}^{(j)}\right)^{*}\left(X_{t}\right) e_{k}\right\} \mathrm{d} w_{t}^{j}, J_{T}^{-1} v\right\rangle ; \\
& \Theta_{4}=\int_{0}^{T} \operatorname{Tr}\left\{e^{t A}\left[\Sigma_{t}\left(X_{t}\right) J_{t} J_{T}^{-1} v\right] \sigma_{t}^{-1}\left(X_{t}\right)\right\} \mathrm{d} t \\
& \Theta_{5}=-\int_{0}^{T} t \operatorname{Tr}\left\{e^{t A} \sum_{j=1}^{\infty} \Sigma_{t}^{(j)}\left(X_{t}\right)\left[\left(\nabla . \Sigma_{t}^{(j)}\right)\left(X_{t}\right) J_{t} J_{T}^{-1} v\right]\right\} \mathrm{d} t
\end{aligned}
$$

we have $M_{T}^{v}=\sum_{i=1}^{5} \Theta_{i}$. For any $q \geq 2$, by Burkerholder-Davis-Gundy inequality, Minkowski inequality, (H2) and Lemma 3.2, we have

$$
\begin{equation*}
\mathbb{E}\left|\Theta_{1}\right|^{q} \leq C(q) \lambda^{q}(T)|v|^{q}\left[\int_{0}^{T}\left\|\mathrm{e}^{A t}\right\|_{\mathrm{HS}}^{2} \mathrm{~d} t\right]^{\frac{q}{2}}\left[\sup _{t \in[0, T]} \mathbb{E}\left\|J_{t}\right\|^{2 q}\right]^{\frac{1}{2}}\left\{\mathbb{E}\left|J_{T}^{-1}\right|^{2 q}\right\}^{\frac{1}{2}} \tag{3.33}
\end{equation*}
$$

Noticing that A is a negative definite self-adjoint operator, it is easy to see that

$$
\begin{equation*}
\sup _{s \in(0, T]} s\left\|\mathrm{e}^{s A}\right\|_{H S}^{2} \leq \sup _{s \in(0, T]} \int_{0}^{s}\left\|\mathrm{e}^{r A}\right\|_{H S}^{2} \mathrm{~d} r=\int_{0}^{T}\left\|\mathrm{e}^{r A}\right\|_{H S}^{2} \mathrm{~d} r=\delta_{T}<\infty . \tag{3.34}
\end{equation*}
$$

Then Minkowski inequality, (H1) and Lemma 3.2 yield that

$$
\begin{align*}
\mathbb{E}\left|\Theta_{2}\right|^{q} & \leq|v|^{q}\left(\sup _{s \in(0, T]} s\left\|e^{\frac{s}{2} A}\right\|_{H S}^{2}\right)^{q}\left(\int_{0}^{T} K_{1}(s)^{2} \mathrm{~d} s\right)^{q} \mathbb{E}\left(\int_{0}^{T}\left\|J_{s}\right\|^{2} \mathrm{~d} s\right)^{\frac{q}{2}}\left\|J_{T}^{-1}\right\|^{q} \\
& \leq 2^{q} T^{\frac{1}{2}} \delta_{T / 2}^{q}|v|^{q}\left(\int_{0}^{T} K_{1}(s)^{2} \mathrm{~d} s\right)^{q}\left(\sup _{t \in[0, T]} \mathbb{E}\left\|J_{t}\right\|^{2 q}\right)^{1 / 2}\left(\mathbb{E}\left\|J_{T}^{-1}\right\|^{2 q}\right)^{1 / 2} . \tag{3.35}
\end{align*}
$$

Again by Burkerholder-Davis-Gundy inequality, Minkowski inequality, (H1) and Lemma 3.2, it holds that

$$
\mathbb{E}\left|\Theta_{3}\right|^{q} \leq\left(\mathbb{E}\left|\sum_{j=1}^{\infty} \int_{0}^{T} t \sum_{k=1}^{\infty}\left\{J_{t}^{*}\left(\nabla_{e_{k}} \Sigma_{t}^{(j)}\right)^{*}\left(X_{t}\right) e^{t A} e_{k}\right\} \mathrm{d} w_{t}^{j}\right|^{2 q}\right)^{\frac{1}{2}}\left(\mathbb{E}\left|J_{T}^{-1} v\right|^{2 q}\right)^{\frac{1}{2}}
$$

$$
\begin{align*}
& \leq C(q)\left(\mathbb{E}\left(\sum_{j=1}^{\infty} \int_{0}^{T} t^{2}\left(\sum_{k=1}^{\infty} e^{-\lambda_{k} t}\right)^{2}\left\|J_{t}^{*} \nabla \Sigma_{t}^{(j)}\left(X_{t}\right)\right\|^{2} \mathrm{~d} t\right)^{q}\right)^{\frac{1}{2}}\left(\mathbb{E}\left|J_{T}^{-1} v\right|^{2 q}\right)^{\frac{1}{2}} \\
& \leq C(q) \delta_{T / 2}^{q}\left(\mathbb{E}\left(\int_{0}^{T} K_{1}^{2}(t)\left\|J_{t}\right\|^{2} \mathrm{~d} t\right)^{q}\right)^{\frac{1}{2}}\left(\mathbb{E}\left|J_{T}^{-1} v\right|^{2 q}\right)^{\frac{1}{2}} \tag{3.36}\\
& \leq C(q) \delta_{T / 2}^{q}\left(\int_{0}^{T} K_{1}^{2}(t) \mathrm{d} t\right)^{q}\left(\sup _{t \in[0, T]} \mathbb{E}\left\|J_{t}\right\|^{2 q}\right)^{\frac{1}{2}}\left(\mathbb{E}\left|J_{T}^{-1} v\right|^{2 q}\right)^{\frac{1}{2}}
\end{align*}
$$

Since

$$
\left\|\Sigma_{t}\left(X_{t}\right) J_{t} J_{T}^{-1} v\right\|_{H S}^{2}=\sum_{j=1}^{\infty}\left|\Sigma_{t}^{(j)}\left(X_{t}\right) J_{t} J_{T}^{-1} v\right|^{2} \leq K_{1}^{2}(t)\left|J_{t} J_{T}^{-1} v\right|^{2}
$$

it is easy to see that

$$
\begin{align*}
\mathbb{E}\left|\Theta_{4}\right|^{q} & \leq \mathbb{E}\left(\int_{0}^{T}\left\|e^{t A}\right\|_{H S}\left\|\Sigma_{t}\left(X_{t}\right) J_{t} J_{T}^{-1} v\right\|_{H S} \mathrm{~d} t\right)^{q} \\
& \leq\left(\int_{0}^{T}\left\|e^{t A}\right\|_{H S}^{2} \mathrm{~d} t\right)^{\frac{q}{2}}\left(\mathbb{E}\left(\int_{0}^{T} K_{1}^{2}(t)\left\|J_{t}\right\|^{2} \mathrm{~d} t\right)^{q}\right)^{\frac{1}{2}}\left(\mathbb{E}\left|J_{T}^{-1} v\right|^{2 q}\right)^{\frac{1}{2}} \tag{3.37}\\
& \leq \delta_{T}^{\frac{q}{2}}\left(\int_{0}^{T} K_{1}^{2}(t) \mathrm{d} t\right)^{\frac{q}{2}}\left(\sup _{t \in[0, T]}\left\|J_{t}\right\|^{2 q}\right)^{\frac{1}{2}}\left(\mathbb{E}\left|J_{T}^{-1} v\right|^{2 q}\right)^{\frac{1}{2}}
\end{align*}
$$

and

$$
\begin{align*}
\mathbb{E}\left|\Theta_{5}\right|^{q} & \leq \mathbb{E}\left(\int_{0}^{T} t\left\|e^{t A}\right\|_{H S} \sum_{j=1}^{\infty}\left\|\Sigma_{t}^{(j)}\left(X_{t}\right)\right\|_{H S}\left\|\nabla \Sigma_{t}^{(j)}\left(X_{t}\right) J_{t} J_{T}^{-1} v\right\| \mathrm{d} t\right)^{q} \\
& \leq\left(T \delta_{T}\right)^{\frac{q}{2}} \mathbb{E}\left(\int_{0}^{T} K_{1}^{2}(t)\left\|J_{t}\right\| \mathrm{d} t\right)^{q}\left|J_{T}^{-1} v\right|^{q} \tag{3.38}\\
& \leq\left(T \delta_{T}\right)^{\frac{q}{2}}\left(\int_{0}^{T} K_{1}^{2}(t) \mathrm{d} t\right)^{\frac{q}{2}}\left(\mathbb{E} \sup _{t \in[0, T]}\left\|J_{t}\right\|^{2 q}\right)^{\frac{1}{2}}\left(\mathbb{E}\left|J_{T}^{-1} v\right|^{2 q}\right)
\end{align*}
$$

Let $\Gamma_{T, q, A}$ be in Corollary 2.3 for $T>0, q \geq 2$. Combining (3.17), (3.18), (3.33)-(3.38), for any $q \geq 2$, it holds that

$$
\begin{equation*}
\left(\mathbb{E}\left|M_{T}^{v}\right|^{q}\right)^{\frac{1}{q}} \leq\left\{5^{q-1} \sum_{i=1}^{5} \mathbb{E}\left|\Theta_{i}\right|^{q}\right\}^{\frac{1}{q}}|v| \leq\left\{\Gamma_{T, q, A}\right\}^{\frac{1}{q}}|v| . \tag{3.39}
\end{equation*}
$$

On the other hand, Jensen inequality yields that

$$
\begin{equation*}
\left(\mathbb{E}\left|M_{T}^{v}\right|^{q}\right)^{\frac{1}{q}} \leq\left(\mathbb{E}\left|M_{T}^{v}\right|^{2}\right)^{\frac{1}{2}} \tag{3.40}
\end{equation*}
$$

for any $1<q<2$. Combining (3.39) and (3.40), it follows from (2.4) and Hölder inequality that for any $p>1$,

$$
\begin{aligned}
\left|P_{T}\left(\nabla_{e^{A T_{v}}} f\right)\right| & \leq \frac{1}{T}\left(P_{T}|f|^{p}\right)^{\frac{1}{p}}\left(\mathbb{E}\left|M_{T}^{v}\right|^{\frac{p}{p-1}}\right)^{\frac{p-1}{p}} \\
& \leq\left\{\Gamma_{T,\left[\frac{p}{p-1}\right] \vee 2, A}\right\}^{\left[\frac{p-1}{p}\right] \wedge \frac{1}{2}} \frac{|v|}{T}\left(P_{T}|f|^{p}\right)^{\frac{1}{p}}, \quad f \in C_{b}^{1}(\mathbb{H}) .
\end{aligned}
$$

Acknowledgement. The authors would like to thank Profeesor Feng-Yu Wang and referees for their corrections and helpful comments.

References

[1] J. Bao, F.-Y. Wang and C. Yuan, Bismut formulae and applications for functional SPDEs, Bull. Sci. Math. 137(2013), 509-522.
[2] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Second Edition, Cambridge University Press, 2014.
[3] B. Driver, Integration by parts for heat kernel measures revisited, J. Math. Pures Appl. 76(1997), 703-737.
[4] X.-L. Fan, Integration by parts formula, derivative formula, and transportation inequalities for SDEs driven by fractional Brownian motion, Stoch. Anal. Appl. 33(2015), 199-212.
[5] N. Jacob, Pseudo Differential Operators and Markov Processes (Volume I), Imperial College Press, London, 2001.
[6] G. Leha and G. Ritter, On Diffusion Processes and Their Semigroups in Hilbert Spaces with an Application to Interacting Stochastic Systems, Ann. Probab. 12(1984): 10111026.
[7] P. Malliavin, Stochastic analysis, Springer-Verlag, Berlin, 1997.
[8] D. Nualart, The Malliavin calculus and related topics, Second Edition, Springer-Verlag, Berlin, 2005.
[9] J.M.A.M. van Neerven, M. C. Veraar and L. Weis,Stochastic integration in UMD Banach spaces, Ann. Probab. 35(2007), 1438-1478.
[10] F.-Y. Wang, Integration by parts formula and applications for SDEs with Lévy noise (in Chinese), Sci. Sin. Math. 45(2015), 461-470.
[11] F.-Y. Wang, Integration by Parts Formula and Applications for SPDEs with Jumps, Stochastics. 88(2016), 737-750.
[12] F.-Y. Wang, Harnack Inequality and Applications for Stochastic Partial Differential Equations, Springer, New York, 2013.
[13] F.-Y. Wang, Integration by parts formula and shift Harnack inequality for stochastic equations, Ann. Probab. 42(2014), 994-1019.
[14] S.-Q. Zhang, Shift Harnack inequality and integration by parts formula for semilinear stochastic partial differential equations, Front. Math. China. 11(2016),461-496.

[^0]: *Supported in part by NNSFC 11626237.

