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Abstract

Under integrability conditions on distribution dependent coefficients, existence
and uniqueness are proved for McKean-Vlasov type SDEs with non-degenerate noise.
When the coefficients are Dini continuous in the space variable, gradient estimates
and Harnack type inequalities are derived. These generalize the corresponding re-
sults derived for classical SDEs, and are new in the distribution dependent setting.

AMS subject Classification: 60H1075, 60G44.
Keywords: Distribution dependent SDEs, Krylov’s estimate, Zvonkin’s transform, log-
Harnack inequality.

1 Introduction

In order to characterize nonlinear Fokker-Planck equations using SDEs, distribution de-
pendent SDEs have been intensively investigated, see [10, 12] and references within for
McKean-Vlasov type SDEs, and [2, 5, 6] and references within for Landau type equations.
To ensure the existence and uniqueness of these type SDEs, growth /regularity conditions
are used. On the other hand, however, due to Krylov’s estimate and Zvonkin’s transform
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23], the well-posedness of classical SDEs is proved under an integrability condition, which
allows the drift unbounded on compact sets. Dimension-free Harnack inequality implies a
dimension-free lower bound for logarithmic Sobolev constant on compact manifolds [13].
It also yields strong Feller property, gradient estimate, uniqueness of invariant probabil-
ity, regularity of the heat kernel with respect to invariant probability, see [17, Chapter
1]. Moreover, it is an important tool in the proof of hypercontractivity of non-symmetric
semigroup, [1, 14]. Shift Harnack inequality implies the existence and regularity of density
of P with respect to the Lebesgue measure, see also [17, Chapter 1].

The purpose of this paper is to extend this result to the distribution dependent situ-
ation, and to establish gradient estimates and Harnack type inequalities for the distribu-
tions under Dini continuity of the drift, which is much weaker than the Lipschitz condition
used in [8, 18].

Let 2 be the set of all probability measures on R¢. Consider the following distribution-
dependent SDE on R%:

(11) dXt = bt(Xt7$Xt)dt + Ut(Xt,o?Xt)th,

where W; is the d-dimensional Brownian motion on a complete filtration probability space
(Q,{Z:}i>0,P), L, is the law of X}, and

bR, xRIx Z 3R 0:Ry xR¥x Z - R @R

are measurable. When a different probability measure P is concerned, we use .,?5]@ to
denote the law of a random variable ¢ under the probability P.

By using a priori Krylov’s estimate, a weak solution can be constructed for (1.1) by
using an approximation argument as in the classical setting, see [7] and references within.
To prove the existence of strong solution, we use a fixed distribution u; to replace the
law of solution Zx,, so that the distribution SDE (1.1) reduces to the classical one.
We prove that when the reduced SDE has strong uniqueness, the weak solution of (1.1)
also provides a strong solution. We will then use Zvonkin’s transform to investigate the
uniqueness, for which we first identify the distributions of given two solutions, so that these
solutions solve the common reduced SDE, and thus, the pathwise uniqueness follows from
existing argument developed for the classical SDEs. However, there is essential difficulty
to identify the distributions of two solutions of (1.1). Once we have constructed the
desired Zvonkin’s transform for (1.1) with singular coefficients, gradient estimates and
Harnack type inequalities can be proved as in the regular situation considered in [18].

The remainder of the paper is organized as follows. In Section 2 we summarize the
main results of the paper. To prove these results, some preparations are addressed in Sec-
tion 3, including a new Krylov’s estimate, two lemmas on weak convergence of stochastic
processes, and a result on the existence of strong solutions for distribution dependent
SDEs. Finally, the main results are proved in Sections 4 and 5.



2 Main Results

We first recall Krylov’s estimate in the study of SDEs. We will fix a constant 7" > 0, and

only consider solutions of (1.1) up to time 7. For a measurable function f defined on
0, 7] x R?, let

t z F
||f||Lg<s,t>=< [ ([ intpa) dr)  pa210<s<t<T
s R

When s = 0, we simply denote || f|zs04) = I|fllzs@)- A key step in the study of singular
SDEs is to establish Krylov type estimate (see for instance [9]). For later use we introduce
the following notion of K-estimate. We consider the following class of number pairs (p, q):

H = {(p,q) € (1,00) x (1,00) : ;—f+§<2}.

Definition 2.1 (Krylov’s Estimate). An % -adapted process { Xs}o<s<r is said to satisfy
K-estimate, if for any (p,q) € S, there exist constants 6 € (0,1) and C > 0 such that
for any nonnegative measurable function f on [0,T] x R¢,

ey B [ h00a]s) <ot flgm, 0<ssis<T

We note that (2.1) implies the following Khasminskii type estimate, see for instance
[20, Lemma 3.5] and its proof: there exists a constant ¢ > 0 such that

t n
(2.2) E((/ fr(XT)dr) ‘ﬁs) < enl(t — 3)5n||f||TLLZ(T), 0<s<t<T,
and for any A > 0 there exists a constant A = A(\, d,¢) > 0 such that

(2'3) E(e)\fOT fr(Xr)dr|j-s) < eA(1+Hf||Lg(T)>7 s € [O,T].
Let 6 € [1,00), we will consider the SDE (1.1) with initial distributions in the class
Py={pe 2 u-|’) <oo}.

It is well known that & is a Polish space under the Warsserstein distance

WS AVRY)

1
g
Wo(p,v) := inf (/ \x—y\gﬂ(dx,dy)) . M,V E Py,
R4 xRd

where € (i, v) is the set of all couplings of ;1 and v. Moreover, the topology induced by
Wy on &y coincides with the weak topology.

In the following three subsections, we state our main results on the existence, unique-
ness and Harnack type inequalities respectively for the distribution dependent SDE (1.1).
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2.1 Existence and Uniqueness

Let
Py = {,u € Py : v is absolutely continuous with respect to the Lebesgue measure }

To construct a weak solution of (1.1) by using approximation argument as in [7, 10],
we need the following assumptions for some 6 > 1.

(HY) There exists a sequence (b",0"),>1, where
V" [0,T] x R x Py — R4, o™ :[0,T] x R x &5 — R @ R
are measurable, such that the following conditions hold:
(1) For p € &§ and p™* — pin Py,

Tim {|0} (2, ") = by, )| + o (2, 1) = o, )|} =0, ae. (t,2) €[0,T] x RY.

(2) There exist K > 1, (p,q) € # and nonnegative G € LZ(T) such that for any n > 1,
b} (2, )" < G(t,2) + K, K1 < (0}(0})")(w, 1) < KI
for all (¢,z, ) € [0,T] x RY x 2.
(3) For each n > 1, there exists a constant K,, > 0 such that ||0"||. < K,, and

|b?(x,,u) - b?(y7 V)| + ||0’?(ZL’,/L) - O-;n(ya V)H

(2.4) L
SKn{|$—y|+W9<M,I/)}, (t,x,y) € [OaT] X R xR ) ”7”6329-

Recall that a continuous function f on R? is called weakly differentiable, if there exists
(hence unique) ¢ € L} (RY) such that

loc

[ (a0 = - [ (6 Vaan, g e )
R R
In this case, we write £ = V f and call it the weak gradient of f.

The main result in this part is the following.

Theorem 2.1. Assume (H?) for some constant > 1. Let Xy be an Fy-measurable
random variable on RY with pg := Lx, € Py. Then the following assertions hold.

(1) The SDE (1.1) has a weak solution with initial distribution po satisfying ZLx. €
C([0,T); Z9) and the K -estimate.



(2) If o is uniformly continuous in x € R? uniformly with respect to (t,u) € [0,T] x Py,
and for any p. € C([0,T]; P), b (x) = bz, pu) and o} (x) := oy, pe) satisfy
o[> + [|[Vo#||* € LUT) for some (p,q) € H, where V is the weak gradient in
the space variable x € R®, then the SDE (1.1) has a strong solution satisfying
Zx € C([0,T); Pp) and the K -estimate.

(3) If, in addition to the condition in (2), there exists a constant L > 0 such that
(2.5) o (1) — o, )| + bl 1) — b, )] < L Wy, )
holds for all p,v € Py and (t,z) € [0,T] x R, then the strong solution is unique.

When b and ¢ do not depend on the distribution, Theorem 2.1 reduces back to the
corresponding results derived for classical SDEs with singular coefficients, see for instance
[21] and references within.

To compare Theorem 2.1 with recent results on the existence and uniqueness of
McKean-Vlasov type SDEs derived in [3, 10], we consider a specific class of coefficients
where the dependence on distributions is of integral type. For p € &2 and a (possibly
multidimensional valued) real function f € L'(u), let u(f) = [pa fdu. Let

(2.6) bz, p) = Bz, p(thu(t, @,-)), ou(w, p) == Tz, p(ho(t, 2, -))
for (t,z,p) € [0,T] x RY x P, where for some k € N,
Uy, ¥y 1 [0,T] x RY x RY — R*
are measurable and bounded such that for some constant § > 0,
(2.7) [Wn(t 2, y) — ot 2, 4) + (o (t, 2, y) — Yot 2, y)] < 0ly — o]
holds for all (t,z) € [0,T] x R? and y,y’ € R?, and
B:[0,T] xR xRF 5 RY ¥:[0,7] x RY x R — R? @ R¢

are measurable and continuous in the third variable in R¥. We make the following as-
sumption.

(A) Let (b,0) in (2.6) for (B, X) such that (2.7) holds, B(z, -) and ¥;(x, -) are continuous
for any (t,z) € [0,T] x R% Moreover, there exist constant K > 1, (p,q) € # and
nonnegative I’ € LI(T') such that
(2.8) b (z, ) > < F(t,2) + K, KT < oy(, poe(a, p)* < KT

for all (¢,z,u) € [0,T] x R? x 2.



Corollary 2.2. Assume (A). Then the following assertions hold.
(1) Assertion (1) in Theorem 2.1 holds.

(2) If moreover, o is uniformly continuous in x € R uniformly with respect to (t,u) €
[0, T] x Py, and for any u. € C([0,T); Py), by (x) := by(x, ) and o} (x) = oy (x, pr)
satisfy [)* + || Vo*||* € LI(T) for some (p,q) € A, where V is the weak gradient
in the space variable x € RY, then assertion (2) in Theorem 2.1 hold.

(3) Besides the conditions in (2), if there exists a constant ¢ > 0 such that
|Bt(x7 y)_Bt(xa y/)‘+‘|2t(xa y)_zt(xa y/)H S C|y_y/’7 (t> :E) € [07 T] XRda Y, y, € Rka

then for any Fo-measurable random variable Xy on R with po = Lx, € Py for
some 6 > 1, the SDE (1.1) has a unique strong solution with Lx. continuous in Py.

In the next corollary on the existence of weak solution we do not assume (2.6). This result
will be used in Section 5.

Corollary 2.3. Assume that (2.5), (2.8) hold. Then the SDE (1.1) has a weak solution
with initial distribution po satisfying £Lx. € C([0,T]; Py) and the K-estimate.

We now explain that results in Corollary 2.2 and Corollary 2.3 are new comparing
with existing results on McKean-Vlasov SDEs. We first consider the model in [3] where
1y and 9, are R-valued functions such that

| Bloo + sup 10, By(z,7)| < o0,
(t,z,r)€[0,T]xRIxR

1y is Holder continuous, v, is Lipschitz continuous, and for some constants C' > 1,
g € (0,1},

CTlI <¥¥r <O,
[ r) = Sl ) < Clla— o' + I — 1)),
10,5¢(z,7) — 0,5(’, r)|| < Cla — 2'|°.

Then [3, Theorem 1] says that when Ly, € %, the SDE (1.1) has a unique strong
solution. Obviously, the above conditions imply ||b]|oc + [|[Vo|lw < 00, but this is not
necessary in Corollary 2.2 and Corollary 2.3, since the integrability conditions used in
these two results allow b and Vo unbounded.

Next, [10] considers (1.1) with

laeap) = [ Blepuldn), oo = [ aenut)



for measurable functions
b:0,T] x RYx R - R%, 6:[0,7] x R x RY - R? @ R
satisfying 5
16:(z, y)|| + [be(z,y)| < C(L+|z]), 66" >C'1

for some constant C' > 1. Then [10, Theorem 1| says that when Yy, € &4, (1.1) has
a weak solution. If moreover o does not depend on the distribution and [|Vo |l < oo,
then [10, Theorem 2| shows that when Ee'lXol” < o0 for some r > 0, the SDE (1.1) has
a unique strong solution. Obviously, to apply these results it is necessary that b and Vo
are (locally) bounded, which is however not necessary for the condition in Corollary 2.2
and Corollary 2.3, since, as explained above, the integrability conditions used in these
two results allow b and Vo unbounded.

2.2 Harnack Inequality

In this subsection, we investigate the dimension-free log-Harnack inequality introduced
n [11] for (1.1), see [17] and references within for general results on these type Harnack
inequalities and applications. We establish Harnack inequalities for P, f using coupling by
change of measures (see for instance [17, §1.1]). To this end, we need to assume that the
noise part is distribution-free; that is, we consider the following special version of (1.1):

(29) dXt = bt(Xtngt)dt + Ut(Xt)th7 t e [O, T]
As in [18], we define P, f(uo) and P}y as follows:

(Pef) (o) = /Rd fA(P o) = Ef(Xi(mo)), f € %'b(Rd)at € [0,T], po € P,

where X; (o) solves (2.9) with £y, = po. Let
" o(s)
9 = {(b :10,00) = [0, 00) is increasing, ¢ is concave,/ Tds < oo}.
0

Remark 2.4. The condition fo @ds < 00 18 well known as the Dint condition. Obvious-

ly, 2 contains ¢(s) = s* for any a € (0,%). Moreover, it also contains ¢(s) := m

for constants § > 0 and large enough ¢ > 0 such that ¢* is concave.
We will need the following assumption.

(H) ||b]|«« < oo and there exist a constant K > 1 and ¢ € 2 such that for any ¢ €
0,7], z,y € RY, and p,v € Ps,

(2.10) K1 < (0007)(x) < K1, |low(w) — ov(y)llfis < Kz =y,

(2.11) [b:(, 1) = by, v)| < d(l = yl) + KW (u, v).



Theorem 2.5. Assume (H). There ezists a constant C > 0 such that
C
(2.12) (P1og )(v0) < ToB(PLf) (1) + 1 Wl o)

for any t € (0,T], po,vo € Pa, f € B (RY) with f > 1. Thus, for any different pig, vy €
Py, and any [ € B(RY),

(P)lo) “(PAWE - 2C oy {(Rp)0) - (R0}

Wa(po, v0)? T AT veB(uo W (o)

Moreover, there exists a constant pg > 1 such that for any p > py,

213) (ASP00) < (Rf)w)exp {0 Walpo, )} Bexp §

C1|X0 — %’2
tA1

1 —ecet

holds for any t € (0,T), po,vo € Po, [ € B (RY), random variables Xo,Yy satisfying
Lxy = o, Ly, = 1o and some constants ¢; = ¢;(p, K, ¢) >0, i =1,2.

2.3 Shift Harnack Inequality

In this section we establish the shift Harnack inequality for P; introduced in [16]. To this
end, we assume that oy(x, ;1) does not depend on z. So SDE (1.1) becomes

(214) dXt = bt(Xt,gXt)dt -+ Ut(gX))th, te [O, T]

Theorem 2.6. Let o : [0, T]x Py — RIQR? and b : [0, 00) x REx Py — R be measurable
such that o is invertible with ||o¢||e + |07 o s bounded in t € [0,T), and b satisfies the
corresponding conditions in (H).

(1) For anyp > 1,t € [0,T], 10 € Pa,v € RY and f € B (RY),
(Bef)! (o) <(Pef*(v + ) (ko)

p Jy o 1P Ivl /t + o(slvl /1) } ds
2(p—1) '

xexp{

Moreover, for any f € B, (RY) with f > 1,

(Plog (o) < og(Pf 0+ o) + 5 [ o e lolft + o(slel/ )} as

3 Preparations

We first present a new result on Krylov’s estimate, then recall two lemmas from [7] for
the construction of weak solution, and finally introduce two lemmas on the existence and
uniqueness of strong solutions.



3.1 Krylov’s Estimate
Consider the following SDE on R¢:

(3.1) dX, = b,(X,)dt + 0,(X,)dAW,, t € [0,T].

Lemma 3.1. Let T > 0, and let p,q € (1,00) with % —l—% < 1. Assume that o4(x)

is uniformly continuous in x € RT uniformly with respect to t € [0,T], and that for a
constant K > 1 and some nonnegative function F' € Li(T) such that

(3.2) K <o/z)o(x)" < KI, (t,z)€[0,T] x RY,

(3.3) b,(2)| < K + F(t,x), (t,x)€[0,T] x R

Then for any (o, B) € A, there exist constants C = C(6, K, a, B, || F|pyr)) > 0 and
§ = 0(a, B) > 0, such that for any sg € [0,T) and any solution (X ¢)iepso,r) of (3.1) from
time s,

t
(3.4) E{/ | f](r, XSO,T)dr‘gfs] < C(t— 3)6Hf“L§(T)> so<s<t<T,feL’T).

Proof. When b is bounded, the assertion is due to [21, Theorem 2.1]. If |b| < K + F for
some constant K > 0and 0 < F € LY(T), then we have a decomposition b = b +b® with
16V ]| < K and |[p®| < F, for instance, b") = WBI/K)
{6:}1ep0.r) on R? which is denoted by {®, };c(0.7) be constructed in [21, Lemma 4.3] for b
replacing b, then Yy, ; = 0:(X§, +) solves

Letting the diffeomorphisms

where b is bounded, and & is uniformly continuous in z € R? uniformly with respect to
t € [0,T]. Moreover, there exists a constant K > 1 depending on K and || F'[| 2.7y such
that

(3.6) K7 <ay(x)a(x) < KI, (t,x) €[0,T] x RY,

and B B
[b]]co + V][00 + VO oo < K.

Again by [21, Theorem 2.1], there exists a constant C = C(6, K,a,8) > 0 and § =
d(a, B) > 0 such that

t
(3.7) E{/ | f|(r, Y;w)dr‘ﬁs} <CO(t— s)5|]f\|L§(T), so<s<t<T,feLT).

9



This together with | V0|, < K implies that

el [ 110Xl 2] <5[ [110.67 000 7]
< Ot sy ( / ) ([ e 0;1<x>>|ada:) ﬂ dr) E
— Ot —s) </ (/ £, )[*|det V6, | (y)d )gdr>5

<Ot =) fll sy t €[5, 70, f € LE(T).
Then the proof is finished. O]

3.2 Convergence of Stochastic Processes

To prove Theorem 2.1(1), we will use the following two lemmas due to [7, Lemma 5.1,
5.2].

Lemma 3.2. Let {¢"},>1 be a sequence of d-dimensional processes defined on some
probability space. Assume that

(3.8) lim sup sup P(|¢}'| > R) =0,

R—00 n>1 ¢[0,7]

and for any € > 0,

(3.9) limsup — sup  {P([¢f —¢f[>e)} =

0=0 n>1 5,t€[0,T7],|t—s|<0

Then there exist a sequence {ny }x>1, a probability space (Q, .7, P) and stochastic processes
{Xy, X[ e (k > 1), such that for every t € [0,T], fw:k P = $X5|]P’, and XF converges
to X, in probability P as k — co.

Lemma 3.3. Let {n"},>1 and n be uniformly bounded R?@RF-valued stochastic processes,
and let W[ and Wy fort € [0, T] be Wiener processes such that the stochastic Ito integrals

t t
I ::/ AW, I, ;:/ nedW,, t€0,T]
0 0

are well-defined. Assume that n} — n, and W}* — W, in probability for every t € [0,T].
Then
limIP’<sup I} — L] 25) =0, ¢>0.

n—00 te[0,7)

10



3.3 Existence and Uniqueness on Strong Solutions

We first present a result on the existence of strong solutions deduced from weak solu-
tions, then introduce a result on the existence and uniqueness of strong solutions under
a Lipschitz type condition.

Lemma 3.4. Let (Q, %, Wy, P) and X, be a weak solution to (1.1) with u, == Lx,|P. If
the SDE

(310) dXt = bt(Xt, /Jt) dt + O't(Xt, /Jvt) th, 0 S t S T

has a unique strong solution X; up to life time with £x, = po, then (1.1) has a strong
solution.

Proof. Since p, = Z%,|P, X, is a weak solution to (3.10). By Yamada-Watanabe principle,
the strong uniqueness of (3.10) implies the weak uniqueness, so that X; is nonexplosive
with ZLx, = g, t > 0. Therefore, X, is a strong solution to (1.1). O

Lemma 3.5. Let 0 > 1 and &y be the Dirac measure at point 0. If b,(0, o) is bounded in
t € [0,T], and there exists a constant L > 0 such that

||O't(l’,[t) - O-t(y7 V)“ + |bt(l‘7 :u) - bt(yv V)|

(3.11) 4
< L{lx_yl +W9(PJ>V)}7 v,y € R pve Pyt e [O’T]v

then for any X, with E|X,|® < oo, (1.1) has a unique strong solution (Xy)ep.r-

Proof. When 6 > 2 the assertion follows from [18, Theorem 2.1]. So we only consider
0 < 2. As explained in [18, Proof of Theorem 2.1 (1)] it suffices to find a constant
to € (0,7) independent of X, such that (1.1) has a unique strong solution up to time ¢,
and Supye(g 4] E|X;|? < oo.

Let Xt(o) = Xy and ,ugo) = o for t € [0,T]. For any n > 1, consider the SDE
dX™ =0, (X, Yt 4 o(XY, ) AW, XS = X,

where ui”‘” =2 n-1,0 <t <T. By [18, Lemma 2.3(1)], for any n > 1 this SDE has a
unique solution and

(3.12) sup E|X™|? <00, n>1.
s€[0,T7]

Moreover, letting

n n+1 n n n+1 n n n—1
i XD XA = (X ) — o, ),

11



[18, (2.11)] implies
d (n)2 <9 A(n)dW (n) K, (n)2 W (n) | (n—=1)\2 dt > 1.t 0.7
’&-t ‘ — < t tagt >+ 0{‘575 ’ + 9(:ut s Mt ) } y =L E[ ’ ]

for some constant Ky > 0. Since fon) = 0, it follows that

t
E‘ftn)|2 S/ KOeKo(tfs)W‘g(Iu(n)’,ugnfl))ZdS
0

s

2
< tKope®T sup (E["V|)?, te€[0,T],n> 1.
s€[0,t]

Since 6 < 2, by Jensen’s inequality we may find out a constant K; > 0 such that

sup E|¢M)? < Kit% sup E|¢D1? n>1,t€0,T].
s€[0.4] s€[0,1]

2
So, taking to € (0,7 A K, ?), we may find a constant € € (0, 1) such that

sup E|¢M)? <™ sup E|IXY — Xo|? <00, n>1,t€[0,t)].
5€[0,¢] 5€[0,t0]

Therefore, for any ¢ € [0,%o] there exists an .#-measurable random variable X; on R¢
such that
lim sup Wy(", 1)’ < lim sup E|X" — X,|° =0,

=30 4e[0,t0] =00 ¢e[0,t0]

where p; :== Zx,. Combining this with (3.11) and letting n — oo in the equation
t t

x™ = / by(X™, V) ds +/ oo (XM u=NdW,, n > 1.t € [0, 1),
0 0

we derive for every t € [0, to],

t t
Xt = / bs(X37 Ms)ds + / US(XS7 Ns)dWs-
0 0

Thus, (X)sejo,,) has a continuous version which is a strong solution of (1.1) up to time
to. The uniqueness is trivial by using condition (3.11) and Itd’s formula. O

4 Proofs of Theorem 2.1 and Corollary 2.2

4.1 Proof of Theorem 2.1(1)-(2)

According to [21, Theorem 1.1], the condition in Theorem 2.1(2) implies that the SDE
(3.10) has a unique strong solution. So, by Lemma 3.4, Theorem 2.1(2) follows from
Theorem 2.1(1). Below we only prove the existence of weak solution.

12



By Lemma 3.5, condition (3) in (H?) implies that the SDE

has a unique strong solution (X7")tep,r]. So, Lemma 3.1, (2.4) and condition (2) in (H?)
imply that for any (p,q) € A,

(1.2) s [ Fr XP)dr < Ot — )| f sy, 0 < f € L(T)n > 1

holds for some constants C' > 0 and ¢ € (0, 1).

We first show that Lemma 3.2 applies to v, := (X™, W), for which it suffices to verify
conditions (3.8) and (3.9) for 4, := X”. By condition (2) in (H?) and (2.2) implied by
(3.4), there exist constants ¢, ca > 0 such that

T 0
IE|X[L|9 < cl{E|X0|9 +]E(/ |b?(X[L,$X;L)y dt>
0

6
4.3 o 2
9 v ([ oo zgpa) |
0
< ¢ (E|X0|9 + T+ |Gl + T%> <oo, n>1,te[0,T].
Thus, (3.8) holds for 1, := X" by Markov inequality.

Next, by the same reason, there exists a constant c3 > 0 such that for any 0 < s <
t<T,

=

t t 2
Bjx; - X7 <E [ |b:<Xﬁ,$Xp>|dr+E( / ||0?(Xl‘,i”xp)|l2dr>
1
< 03(t — s+ (t— s)6||G||Lg(T) + (t — 3)2).

Hence, (3.9) holds for ¢, := X" again by Markov inequality. According to Lemma
3.2, there exists a subsequence of (X", W),>;, denoted again by (X", W),>1, stochas-
tic processes (X", W"),>; and (X, W) on a complete probability space (€,.% ]P’) such
that Lxnw)|P = £ 5n Wn)|]P> for any n > 1, and for any ¢ € [0, T, limy, .. (X7, W) =
(Xt, Wt) in the probability P. As in (7], let 55 "' be the completion of the o-algebra gener-
ated by the {X” W : s < t}. Then as shown in [7], X} is .%*-adapted and continuous
(since X™ is continuous and Lxn |P = ZLs.|P), W™ is a d-dimensional Brownian motion
on (Q, {Z b P), and (X]', W) iefor) solves the SDE

(@) AP = L Bt + o] (X7, L, [P WY, 2y [P = i P

13



Simply denote .,2”~tn\ﬁ” = .,?th and XXJIP’ = Z%,. Then (X’t, Wt)te[O,T] is a weak solution
to (1.1) provided for any € > 0,

(45) lim B ( sup [ L) — b ) e > ) 0,
n—00 se0,1] Jo ¢
and
(4.6) lim P ( sup / oM (XT, Len)dW —/ Ut(Xt,fxt)th > 5) = 0.
n—o0 s€[0,7] t 0

In the following we prove these two limits respectively.

Proof of (4.5). For any n > m > 1, we have
/ (K7, L) — bu(Ke Z3,)| At < L (5) + Do(s) + L (),
0

where

h(s) = [ ) - 0 (7 2l
0
B(s) = [ PR 25) =0 (e ).
I3(s) := / b7 (Xe, ZLx,) — bi(Xe, L) dt.
0
Below we estimate these I;(s) respectively.
Firstly, by Chebyshev’s inequality, (H?)(2) and (4.2), we arrive at
- €
P( sup Ii(s) > =
s€[0,T

9 r TL ~M m
) < E/O 1{\X“|<R}|b( mﬂt) by <Xtu“t)|2dt

w

9 n n ~n m
+_21}3/0 1{|X?|>R}|bt(XtvUt) by ( t?“t)yzdt

1
90 T V23 ~M m ~ q/p !
S </ (/ b (@, 1) — by (xa,ut)‘Zpdx) dt)
€ 0 |z|<R

36K 36C
+— P(| X7 > R)dt + — 16 em g

0

Since X't" converges to X; in probability, (4.3) implies
lim Wg(ﬂ?, :ut) =0,
n—ro0

14



and
hm ]P’(|X”| > R) <P(|X;| > R).

Then it follows from (HY) (1) and (3) that

lim b} (@, i) — b(z, fi;)| = 0, a.e. t€[0,T],z € R%
n—oo
So, by condition (2) in (H?), we may apply the dominated convergence theorem to derive

)

limsup P( sup I1(s) >
n—00 s€[0,T]

9C T ) - q/p ‘
€ 0 |z|<R

36K [T. - 36C
+ i P(|X:| > R)dt + ?!|G1{\~|>R}|\Lgm

Wl M

Since b™ is bounded and continuous, it follows that

T
limsupIF’( sup Ip(s) > g) Slimsupi / (X", Ls ) - b (X, Zz,)|dt =0

n—>00 s€[0,T n—>00

Finally, since th — X, in probability, estimate (4.2) also holds for X replacing X,
Therefore, inequality (4.7) holds for I3 replacing I;. In conclusion, we arrive at

limsupIP sup / oM X, & tr) —bt(f(t,.,?)gtﬂdtzg)

n—00 se[o T]

< lim sup ]f”( sup I;(s) >

)
n—oo T s€[0,T7 3

-

18C T ~ ) q/p a
S (/ (/ |be(, fir) — b?"”(x7#t)|2pdx) dt)
< 0 le|<R

72K [T 72C
+ 0 P(|X;| > R)dt + — 16 em ey

for any m > 0 and R > 0. Then letting first m — oo and then R — oo, due to (1) and
(2) in (H?), we obtain from the dominated convergence theorem that

limsupIP’ sup / (XT, .2 S —bt(f(t,f;(tﬂdtze) =0.

n—00 s€[0,T7

15



Proof of (4.6). For any n > m > 1 we have

| oz amy - [ o2 i,
0 0

< /0 Jf(Xf,XX?)th"—/O afl(f(f,f)@)dﬁ/t"
+ / U?(XZL,ZX{”)(]_W[‘_/ a:n()?t,gjqn)dwt
0 0
T / al”(f(t,,i”x?)dﬁ/t—/ o ( X, Ly,) AW,
0 0

= Jl(S) + JQ(S) + Jg(S).
By Chebyshev’s inequality, BDG inequality and (4.2), we have

€ 9 g n({yn m(yYn
B sup /i(5) 2 5) < 5B | Vserem o (5, ) = o (52, s
se€|0,

9 ’ n(wyn m(yn
+ 6_2E/0 1{|X{L|>R}||‘7t (Xi >$th) — " (X, 7$x;n)||§zs dt

9C g n ~n m ~m\ ||2p % ’
<= o3 (z, fiy') — 0" (2, ") [ Fsdz | dt
€ 0 |z|<R
18K [T~
+—— [ P(X{| > R)dt.
€ 0
By condition (1) in (HY), and g — fi; in & as observed above, we have

Tim (|07 (z, i) — ou(, fir) || = 0,

and o o
lim P(|X]'| > R) < P(|X;| > R).
n—oo

So, the dominated convergence theorem gives

hmsupﬁ”( sup Ji(s) > E)

n—00 s€[0,T7] 3

oc [ [T i . v
(4.8) §—2< / ( / Hw(x,ut)—aw,ut>Hi?5das) dt)
€ 0 |z|<R

18dK [T . -
-+ 6—2/ P(|Xt| > R)dt
0

1
q
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Similarly,

90 T ~ m ~m 2p % !
<= low(z, fu) — 07" (@, ;") [ sdz | dt
€ 0 |z|<R
18dK [T~
+ 7/ P(|X,| > R)dt.
0

To deal with J5(s), applying Lemma 3.3 to

Ma(t) i= o (X7, i), n(t) = o™ (Xy, i),

we conclude that when n — oo,
/ o' (X[, Lim)AW]" — / o ( Xy, L) AW,
0 ‘ 0 ‘

in probability P, uniformly in s € [0,7]. Hence,

lim P ( sup / o (X]', Lgp )W) — / Ut(XtagXt) AWy| > e
n—00 s€[0,T] 1Jo t 0
18C ( [T ) o 4\
S </ (/ o, fir) — of"(, i )||§§de> dt)
¢ 0 \Jz<r
36dK [T . -

0

Letting first m — oo and then R — oo, we prove that when n — oo,
/ o (X7, L) AW = / 0K, Z5) AW,
0 0
in probability P, uniformly in s € [0, T7].

4.2 Proof of Theorem 2.1(3)

We will use the following result for the maximal operator:

(4.9) A h(x) = sup ! h(y)dy, he€ L,

— R,z € R,
r>0 ‘B(Z‘,T)’ B(z,r) ( )

loc
where B(z,r) :={y : |z — y| < r}, see [4, Appendix A].
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Lemma 4.1. There exists a constant C' > 0 such that for any continuous and weak
differentiable function f,

(4.10) f(x) = (W)l < Cle —yl(A|V fl(z) + AV f|(y)), ae a,yeR
Moreover, for any p > 1, there exists a constant C, > 0 such that
(4.11) 14 fller < Coll fllew, f € LP(RY).

Let X and Y be two solutions to (1.1) with Xy = Yy, and let p, = %x,, vy = %, t €
[0, T]. Then po = vy. Let

bg(l’) = bt(myﬂt>7 O'f(l’) = Ut(xvut>a (ta :L‘) € [OaT] X Rd?
and define 07, oy in the same way using v; replacing p;. Then

dXt = bg(Xt) dt + O'#(Xt) th,

4.12
(4.12) 4Y; = b/ (V;)dt + 0% (V,)dW,,
For any A\ > 0, consider the following PDE for u : [0, 7] x R? — R%:

0 1
(413) % + §Tr(af(af)*v2ut) + beut —+ bé‘ = /\ut, ur = 0.

By [21, Theorem 5.1], when \ is large enough (4.13) has a unique solution u™* satisfying

1
(4.14) IVl < 2,
and
A7
(4.15) IVAa ]| 20 ) < 00

Let 6" (z) = z +u}*(x). By (4.12), (4.13), It6 formula and an approximation technique
(see [21, Lemma 4.3] for more details), we have

(4.16) Ao (X,) = Au*(X,)dt + (VO ol) (X,) AW,
and

AOM (V) = A (Yy)dt + (VO oy ) (V) AW, + [V (bY — bf)](Yy)dt
(4.17)

1
+ 5 Tel(of (o) ~ of (o)) VP ] (Yy)dt.

18



Let & = 0,°"(X,) — 6;"*(Y;). By (4.16), (4.17) and It6 formula, we obtain
dlg[? =22 (&, w}"(X) — w}(¥;) ) dt
+2(& (V0 ol (X,) - (V0o ><m>]dwt>
+ |[(varat) (X0) - (V8 Hay)(¥)
= 2(&, [VOM (b — b)) (V2) ) dt
— (&0} (07)" = ot (of)) T2 #)(¥y) ) dt

dt
HS

So, for any m > 1,

dlg | = 2mAlg <§ (X)) = () )
o+ 2mlg ) (6, [(V8)"ol) (X)) — (V6o ><n>1dm>

+ ml& XM=Y

(VOXat)(X) = (V0 *a}) (Vi)

dt
(4.18) as )
+2m(m — 1)[&[*"?) \[(W?’“af)(Xt) — (VO*ol) (V)& dt

= 2mlg 27V (&, [VOM (b — 0] (V2) ) dit
—mle P (&, Te{(o7 (07" — ol (o)) T () .
By (4.14), it is easy to see that

(4.19) &PV [0 (X)) — (V)] < el

for some constant ¢; > 0.

According to (2.5), (4.14), the boundedness of o from (H%)(1) — (2), Lemma 4.1, and
noting that the distributions of X; and Y; are absolutely continuous with respect to the
Lebesgue measure, we may find out a constant ¢; > 0 such that

6l |98t (%) — (Vo) e

2
S |§t|2(m_1)

(VO)o1)(X,) — (V6 "a})(V;)

HS

(a20) Sl {Clala (1920 + |9t (X))

2
+ Clel-a (IV262 | + V) (Y0) + Wo(jue, ) }

< el { o (V207 + Vol []) (Xe) + . (|V20]] + Vol ]) (V) }
+ 01|§t|2m + c1Wo (1, Vt)Qm,
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&P NG] - (VO () — ) (YY)
< L||v0>\7u||T,oo|§t|2(m_1)|€t|W0(,uta Vt) < 01(|5t|2m + WG(,Uta Vt)2m)7

and for some constants ¢y, c; > 0

&P mI1E] - | Tel(o7 (o)) — of (o)) VPu (V)]
(4.22) < col& ™ Wo e, 1) | V20 || (V)

< &P VP | 2 (V) + o Wi (pe, )"

(4.21)

Combining (4.19)-(4.22) with (4.18), and noting that ;2™ < 2, we arrive at

(4.23) A[&)P™ < eol& P dA; + oWy (g, v)*™dt + d M,
for some constant ¢y > 0, a local martingale M;, and
t
A= [ (P 4 (e (19202 + Vo) ()
0
£ (|20 + [Vt ) (v2))* Jds.

By the stochastic Gronwall lemma due to [20, Lemma 3.8], when 2m > 6 this implies

(4.24)  Woy(pe, )™ < E(E|&)° ) T < CQ(Eezm Gz

vy)*™ds, te[0,T).

Since by Lemma 3.1, (4.11), (4.15) and the Khasminskii type estimate, see for instance
20, Lemma 3.5], we have

Ee%AT < 00,
so that by Gronwall’s lemma we prove Wy(u, 1) = 0 for all ¢ € [0,7]. Then by (4.12)
both X; and Y; solve the same SDE with coefficients b’ and o', and due to [21, Theorem
1.3], the condition 1p(|b}'|* + |Voi'|*) € LL(T) for compact D C R implies the pathwise
uniqueness of this SDE, so we conclude that X; =Y; for all t € [0, 7).

Remark 4.2. We replace the PDE in [21, Theorem 5.1], i.e.

0 1
(425) % + TI'(O'tO':VZ’LLt) + Vbtut -+ bt = 0, Ur = 0.
by (4.13). In [21, Theorem 5.1], we need to take a small enough Ty to ensure that
SUDye(o 1] werd | Vue(z)|| < 1. Equivalently, we take large enough A such that (4.14) in
our paper. See also [22, Theorem 3.2] for the degenerate PDE.
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4.3 Proof of Corollary 2.2 and Corollary 2.3

Proof of Corollary 2.2. We set a(x, ) := (00*)i(z,p) for t € [0,T], and by(z, p) := 0,
ar(x,p) =1 for t € R\[0,7]. Let 0 < p € Cg°(R x R?) with support contained in {(r, ) :
|(r,2)| < 1} such that [, p.p(r,2)drde = 1. For any n > 1, let p,(r,z) = n® p(nr,nx)
and define

ap(z, p) = / oo (2, ) pn(t — s, 0 — 2')dsda’,

(4.26) B

) = [ bt - 5.0 = o)dsde’s (tp) € RX R x 2.
RxR4

Let 67 = \/a} and 6, = /a;. Consider the following SDE:
(427) dXt == bt(Xt, gXt)dt + &t(Xt7 gXt)th

We first show that (b, &) satisfies assumption (H?). Firstly, (2.6)-(2.7) and the continuity
in the third variable of B and ¥ imply that b and ¢ are continuous in the third variable
e Py. Thus, (1) in (H?) holds. As to (HY) (2), since by [21], it holds that

Jim | F" = F % pull gy = 0,
there exists a subsequence n; such that
IF = F % pullgery < 27

Letting
G=> |F—Fxp,|+F
k=1
then |G|y < 14 ||Fllzer) and noting [b" > < K + F * py,, we have [0"]* < K + G.

So, using the subsequence b™ replacing b", we verify condition (2) in (H?). Finally, by
(2.6), for any n > 1 there exists a constant ¢, > 0 such that

b (2, 1) = b3 (2, V)| + (|67 (2, 1) — 632" )| < en(lt — 5| + o — 2| + Wi(p,v))

holds for all s,t € R, 2,2’ € R? and u,v € &,. So, for any § > 1, condition (3) in (H?)
holds. By Theorem 2.1 (1), SDE (4.27) has a weak solution. Noting that co* = 66*, the

SDE (1.1) also has a weak solution. Finally, the strong existence and uniqueness follow
from Theorem 2.1 (2) and (3). O

Proof of Corollary 2.5. Let b} and aj be in (4.26), and let 67" = /a}’ and 6; = /a;. Then
(2.5) and (4.26) imply (b, &) satisfy H?. Then we may complete the proof as in the proof
of Corollary 2.2 (1). O
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5 Proofs of Theorems 2.5-2.6

5.1 Proof of Theorem 2.5

According to [19, Theorem 1.2 (2)] for d; = 0, we know that (3.10) has a unique strong
solution X; up to life time. Combining this with Corollary 2.3, Lemma 3.4 and (H) imply
the existence and uniqueness of solution to (1.1). For any u € &5 we let u, = P p be the
distribution of X; which solves (2.9) with Zx, = u

We first figure out the outline of proof using coupling by change of measure as in
[15, 17]. From now on, we fix to € (0,7] and ug, vy € P, and take Fy-measurable
variables X and Yy in R such that Zx, = po, L, = 1o and

(51) E’XO —%’2 :Wz(uo,yo)z.
Let X; with Zx, = o solve (2.9), we have
(52) dXt = bt<Xt, ,ut)dt + O't(Xt>th.

To establish the log-Harnack inequality, We construct a process Y; such that for a weighted
probability measure Q := RP

(5.3) Xy, =Y, Qas., and %, |Q = Py =: v
Then
(P f) (o) = Eolf (V)] = E[Ru f(Xe,)], | € Bu(RY).
So, by Young’s inequality we obtain the log-Harnack inequality:
(]Dto log f)<1/0) < E[Rto log Rto] + logE[f<Xto>]

(5.4) — log(Pf) (o) + ElRiylog Ry), f € B (RY), [ > 1.

Holder inequality implies that

(Pro f)7(v0) = {E[ Ry f (X3}

(5.5) p
< (P f?)(no) x {E[R P, f € B (RY).

To construct the desired Y;, we follow the line of [19] using Zvonkin’s transform. As shown
in [19, Theorem 3.10] for d; = 0 that Assumption (H) implies that for large enough A > 0,
the PDE (4.13) has a unique solution u™* satisfying

1
(5.6) [0 oo + [IVUH oo + [ VP oo < 2.

|V2uMH|| 5 < oo together with the Lipschitzian continuity of o and (4.9) implies that the
increasing process A; in (4.23) satisfies

dAt S cdt
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for some constant ¢ > 0. Moreover, E|&[* > ¢/W,(uy, v4)? holds for some constant ¢’ > 0.
So, with m = 1,0 = 2, %Xx, = uo and %y, = 1, the inequality (4.23) gives

(5.7) Wo (e, i) < kWa(po,10), t€[0,T]

for some constant k > 0.
As in [15, §2], let v = ZK + 2% + 122 and take

12

(5.8) G =55

(1 €50, te [0,t)
and let Y; solve the modified SDE

(9 Y= {bVwn)+ Ciat(yt)o—t(xtw(xt ¥ bt + (Y)W, 1€ [0,10).

t
Since sup,cp.r (| - |*) < oo, this SDE has a unique solution (V;)sc(o,s)- Let
Tn = to ANnf{t € [0,t) : | X¢| + |Yi| > n}, n>1,

where inf () := oo by convention. We have 7, 1ty as n T co. To see that the process Y
meets the above requirement, we first prove that

Y- X))
¢

for s € [0,tp) is a uniformly integrable martingale, and hence extends also to time .

dt

(510) R, :=exp Uosé@(Xt)_l(Y% _ X)) — %/0 (X))~

Lemma 5.1. Assume (H) and let Xo, Yy be two Fo-measurable random variables such
that Lx, = o, Ly, = o, and

(511) E’XO - %'2 = WQ(ILL(), 1/0)2.
Then there ezists a constant ¢ > 0 uniformly in ty € (0,T) such that

c
(5.12) sup E[R;log Ry] < %WQ(MO,VO)Q.

te[0,t0)

Consequently, R, extends to t = ty, Q := Ry, P is a probability measure under which (5.9)
has a unique solution (Y;)ico,] satisfying

(5.13) QXy, =Y;,) = 1.
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Proof. By (A1), for any n > 1 and t € (0,t), the process (Rsnr,)sco,q is a uniformly
integrable continuous martingale. So, for the first assertion it suffices to find out a constant
¢ > 0 uniformly in ¢y € (0,7") such that

c
(5.14) sup E[Rir, log Rips, ] < t—Wg(Mo,l/0>2, t €[0,t).
0

n>1

To this end, for fixed ¢ € (0,7) and n > 1, we consider the weighted probability Q;,, :=
Ripr, P. By Girsanov’s theorem (WS)SG[O,t/\Tn] is a d-dimensional Brownian motion under
Q¢.n- Reformulating (5.2) and (5.9) as

XS_YS

dX, = by(X,, j1s) — ds + o,(X,)dW,,

s

AY, = by (Y, vs) + 05(Y)dW,, s € [0,t AT,
where

t
. 1
W, =W, +/ C—JS(XS)_I(XS —Y,)dW,.
0 S

Next, we fix A = Ag. Letting 6;"*(z) = z + u}"*(z), combining (4.13) and Itd’s formula,
we arrive at

Xi — Y,

(5.15) Ao (X)) = At (X,)dt + (VO 0,)(X,) AW, — VO (X)) : dt,
t

and

(5.16) A0 (YV;) = M (V) dt + (V0" 01) (Yy) AW, + [V (bY — b)) (Yr)dt

By Ito formula under probability Q;,, we obtain

Alg* (v,) — 6 (X)|?

= 2(6)(X,) — 67 (Vo) A (Xy) — Aw(Yy))dt

+ 2<9?’H(Xt) - 9?’“(3@): (VQ?’”Ut)(Xt)th - (VQ?’“Ut)(E)dWQ
(5:17) + [V 00)(X0) — V00 (V)| 5lt

— 20N () — O (V). [VOM (B — b)) (Y:)dlt)

X, Y,
=201 (0X) = 62 (V), VO (X))

t

By (5.6) we have

X =Y,
= (M (X0) = (%), VO (X)) T =)

t
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X — Y,

X — Y,
= = (X0 = Vi wt () - uH (v, V(X))

Gt G
X =Y X: - Y
= —(X =¥, ) = () — u (), )
Ct Ct
X =Y X, -,
= (XY V) T ) = () — i (00, T () S )
t t

PGk (1 _Y;/'z.

- 25 ¢
So,

72 41X, — Y2

AO#(¥) = P CX)P < (31X = Vi + D)X = YalWiale) — 3

+dM,, s€0,t AT

for some Q;,-martingale
M = 2/ (O(X0) = 0,7 (V2), (V0" 00) (X)W, — (V8 0,) (V)W)
0

By (5.8) we have

4 16 ., 8
5_7<S+2_5C5_ %7
By Ito6 formula, there exists a constant co > 0 such that

|03+ (V) — O3 (X2

‘ G
(5.18) < dé\:js + oWy (s, v)?ds — %{g — (s + %C; — 2—15}d5
< dé\js + oWy (g, v5)?ds — 7|X§5—E§Y;|2, s €[0,t ATyl
Combining this with (5.7) and (5.1), we arrive at
(5.19) Eg,.. /Otw |ng_2Ys!2dS < i—;wg(uo, v)?, t€[0,t)

for some constant ¢; > 0. Therefore, there exists a constant C' > 0 such that

1 T o (X)) 7N Y — X2
g, [P0 KR,

2 7" o ¢

C
< t_WZ(M[)aVO)Q? t € (0,%).
0

E [RtATn log Rt/\Tn]




Thus, (5.12) holds.

By (5.12) and the martingale convergence theorem, (R;)cjoz, is a uniformly inte-
grable martingale, so Q := R; [P is a probability measure. By Girsanov theorem, we can
reformulate (5.9) as

(5.20) AY; = by(Yy, v)dt + o, (V) dW,,

which has a unique solution (Y;):cjo,4)- By (5.12),

to |Xt _Yt’2
0 t

Since X, — Y, is continuous and [;° &dt = oo, this implies Q(X,, = Y;,) = 1. O
Proof of Theorem 2.5. Consider the distribution dependent SDE
dXt = bt(Xt,gX—JP)dt + O't(Xt)th, XO = }/E)

By the weak uniqueness we have .i”xtﬂﬁ) = Py =1y for t € [0,tp]. Combining this with
(5.20) and the strong uniqueness, we conclude that X; = Y, for t € [0,7]. Therefore, (5.4)
and Lemma 5.1 lead to

(P, log f)(v0) < log(Pi f)(110) + %WM, W), to € (0,7].

Finally, with (5.7) and (5.18) in hand, repeating the proof of [17, Lemma 3.4.3] and [17,
Proof of Theorem 3.4.1(2)], we conclude that there exists a constant py > 1 such that for

any p > po,

&
to A1

P X, — Yo|?
(5.21) m%ﬂﬂgm{ @J—i}

1 — et

Wa(ko, Vo)z} x Eexp {

holds for any f € %, (RY) and some constants ¢; = c;(p, K,¢) > 0, i = 1,2. This and
(5.5) imply the Harnack inequality with power (2.13). O

5.2 Proof of Theorem 2.6

Proof. Fix ty > 0. Denote p; = Pfug = Zx,,t € [0,to]. Then (2.14) becomes
(522) dXt = bt(Xt, Mt)dt + Ut(ﬂt)tha gxo = M-

Let Y, = X; + i—g, t €[0,tp]. Then

AY; = by(Yy, p)dt + oy (u)dAW,, Ly, = pio, t € [0, 1),
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where

t
Wt = Wt+/ T]SdS,
0

(%

o)
toaﬂt :

Let Ry, = exp[— [°(n, dW;) — L [ |n,|*ds]. By the Girsanov theorem we obtain

v
N = Utl{% + b (X, p1e) — by (Xt +

p—1
p

(Pro f)(10) = E[Rey f(Ye,)] = E[Ryo [ (X¢y +0)] < (P fP(v + '))%(Mo)(ER&%) )

and by Young’s inequality, we obtain

(Pto log f)(/“LO) = E[Rto 1Og f(Y;to)]
= E[Ry, log f (X, + v)] < log Py f(v +-)(10) + ERy, log Ry,
Then we have

P e
ER;™ < supe2r-1? 150 Ins|?ds

Q
_ 2
< oxn | I o 2 { vl /to + o(tlv] /to) } dt
=P 2(p — 1) '
and
1 to
ER;, log Ry, = Eglog Ry, < §E@/ Ins|2ds
0
Lo 2
<3 o 12 { vl /to + o (t|v]/to) }"dt.
0
Il
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