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Abstract

Under integrability conditions on distribution dependent coefficients, existence
and uniqueness are proved for McKean-Vlasov type SDEs with non-degenerate noise.
When the coefficients are Dini continuous in the space variable, gradient estimates
and Harnack type inequalities are derived. These generalize the corresponding re-
sults derived for classical SDEs, and are new in the distribution dependent setting.
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1 Introduction

In order to characterize nonlinear Fokker-Planck equations using SDEs, distribution de-
pendent SDEs have been intensively investigated, see [10, 12] and references within for
McKean-Vlasov type SDEs, and [2, 5, 6] and references within for Landau type equations.
To ensure the existence and uniqueness of these type SDEs, growth/regularity conditions
are used. On the other hand, however, due to Krylov’s estimate and Zvonkin’s transform
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[23], the well-posedness of classical SDEs is proved under an integrability condition, which
allows the drift unbounded on compact sets. Dimension-free Harnack inequality implies a
dimension-free lower bound for logarithmic Sobolev constant on compact manifolds [13].
It also yields strong Feller property, gradient estimate, uniqueness of invariant probabil-
ity, regularity of the heat kernel with respect to invariant probability, see [17, Chapter
1]. Moreover, it is an important tool in the proof of hypercontractivity of non-symmetric
semigroup, [1, 14]. Shift Harnack inequality implies the existence and regularity of density
of P with respect to the Lebesgue measure, see also [17, Chapter 1].

The purpose of this paper is to extend this result to the distribution dependent situ-
ation, and to establish gradient estimates and Harnack type inequalities for the distribu-
tions under Dini continuity of the drift, which is much weaker than the Lipschitz condition
used in [8, 18].

Let P be the set of all probability measures on Rd. Consider the following distribution-
dependent SDE on Rd:

(1.1) dXt = bt(Xt,LXt)dt+ σt(Xt,LXt)dWt,

where Wt is the d-dimensional Brownian motion on a complete filtration probability space
(Ω, {Ft}t≥0,P), LXt is the law of Xt, and

b : R+ × Rd ×P → Rd, σ : R+ × Rd ×P → Rd ⊗ Rd

are measurable. When a different probability measure P̃ is concerned, we use Lξ|P̃ to
denote the law of a random variable ξ under the probability P̃.

By using a priori Krylov’s estimate, a weak solution can be constructed for (1.1) by
using an approximation argument as in the classical setting, see [7] and references within.
To prove the existence of strong solution, we use a fixed distribution µt to replace the
law of solution LXt , so that the distribution SDE (1.1) reduces to the classical one.
We prove that when the reduced SDE has strong uniqueness, the weak solution of (1.1)
also provides a strong solution. We will then use Zvonkin’s transform to investigate the
uniqueness, for which we first identify the distributions of given two solutions, so that these
solutions solve the common reduced SDE, and thus, the pathwise uniqueness follows from
existing argument developed for the classical SDEs. However, there is essential difficulty
to identify the distributions of two solutions of (1.1). Once we have constructed the
desired Zvonkin’s transform for (1.1) with singular coefficients, gradient estimates and
Harnack type inequalities can be proved as in the regular situation considered in [18].

The remainder of the paper is organized as follows. In Section 2 we summarize the
main results of the paper. To prove these results, some preparations are addressed in Sec-
tion 3, including a new Krylov’s estimate, two lemmas on weak convergence of stochastic
processes, and a result on the existence of strong solutions for distribution dependent
SDEs. Finally, the main results are proved in Sections 4 and 5.
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2 Main Results

We first recall Krylov’s estimate in the study of SDEs. We will fix a constant T > 0, and
only consider solutions of (1.1) up to time T . For a measurable function f defined on
[0, T ]× Rd, let

‖f‖Lqp(s,t) =

(∫ t

s

(∫
Rd
|fr(x)|pdx

) q
p

dr

) 1
q

, p, q ≥ 1, 0 ≤ s ≤ t ≤ T.

When s = 0, we simply denote ‖f‖Lqp(0,t) = ‖f‖Lqp(t). A key step in the study of singular
SDEs is to establish Krylov type estimate (see for instance [9]). For later use we introduce
the following notion of K-estimate. We consider the following class of number pairs (p, q):

K :=
{

(p, q) ∈ (1,∞)× (1,∞) :
d

p
+

2

q
< 2
}
.

Definition 2.1 (Krylov’s Estimate). An Ft-adapted process {Xs}0≤s≤T is said to satisfy
K-estimate, if for any (p, q) ∈ K , there exist constants δ ∈ (0, 1) and C > 0 such that
for any nonnegative measurable function f on [0, T ]× Rd,

(2.1) E
(∫ t

s

fr(Xr)dr
∣∣∣Fs

)
≤ C(t− s)δ‖f‖Lqp(T ), 0 ≤ s ≤ t ≤ T.

We note that (2.1) implies the following Khasminskii type estimate, see for instance
[20, Lemma 3.5] and its proof: there exists a constant c > 0 such that

(2.2) E
((∫ t

s

fr(Xr)dr

)n∣∣∣Fs

)
≤ cn!(t− s)δn‖f‖nLqp(T ), 0 ≤ s ≤ t ≤ T,

and for any λ > 0 there exists a constant Λ = Λ(λ, δ, c) > 0 such that

(2.3) E
(
eλ
∫ T
0 fr(Xr)dr

∣∣Fs

)
≤ e

Λ
(

1+‖f‖
L
q
p(T )

)
, s ∈ [0, T ].

Let θ ∈ [1,∞), we will consider the SDE (1.1) with initial distributions in the class

Pθ :=
{
µ ∈P : µ(| · |θ) <∞

}
.

It is well known that Pθ is a Polish space under the Warsserstein distance

Wθ(µ, ν) := inf
π∈C (µ,ν)

(∫
Rd×Rd

|x− y|θπ(dx, dy)

) 1
θ

, µ, ν ∈Pθ,

where C (µ, ν) is the set of all couplings of µ and ν. Moreover, the topology induced by
Wθ on Pθ coincides with the weak topology.

In the following three subsections, we state our main results on the existence, unique-
ness and Harnack type inequalities respectively for the distribution dependent SDE (1.1).
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2.1 Existence and Uniqueness

Let

Pa
θ =

{
µ ∈Pθ : µ is absolutely continuous with respect to the Lebesgue measure

}
.

To construct a weak solution of (1.1) by using approximation argument as in [7, 10],
we need the following assumptions for some θ ≥ 1.

(Hθ) There exists a sequence (bn, σn)n≥1, where

bn : [0, T ]× Rd ×Pθ → Rd, σn : [0, T ]× Rd ×Pθ → Rd ⊗ Rd

are measurable, such that the following conditions hold:

(1) For µ ∈Pa
θ and µn → µ in Pθ,

lim
n→∞

{
|bnt (x, µn)− bt(x, µ)|+ ‖σnt (x, µn)− σt(x, µ)‖

}
= 0, a.e. (t, x) ∈ [0, T ]× Rd.

(2) There exist K > 1, (p, q) ∈ K and nonnegative G ∈ Lqp(T ) such that for any n ≥ 1,

|bnt (x, µ)|2 ≤ G(t, x) +K, K−1I ≤ (σnt (σnt )∗)(x, µ) ≤ KI

for all (t, x, µ) ∈ [0, T ]× Rd ×Pθ.

(3) For each n ≥ 1, there exists a constant Kn > 0 such that ‖bn‖∞ ≤ Kn and

|bnt (x, µ)− bnt (y, ν)|+ ‖σnt (x, µ)− σnt (y, ν)‖
≤ Kn

{
|x− y|+ Wθ(µ, ν)

}
, (t, x, y) ∈ [0, T ]× Rd × Rd, µ, ν ∈Pθ.

(2.4)

Recall that a continuous function f on Rd is called weakly differentiable, if there exists
(hence unique) ξ ∈ L1

loc(Rd) such that∫
Rd

(f∆g)(x)dx = −
∫
Rd
〈ξ,∇g〉(x)dx, g ∈ C∞0 (Rd).

In this case, we write ξ = ∇f and call it the weak gradient of f .
The main result in this part is the following.

Theorem 2.1. Assume (Hθ) for some constant θ ≥ 1. Let X0 be an F0-measurable
random variable on Rd with µ0 := LX0 ∈Pθ. Then the following assertions hold.

(1) The SDE (1.1) has a weak solution with initial distribution µ0 satisfying LX· ∈
C([0, T ]; Pθ) and the K-estimate.
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(2) If σ is uniformly continuous in x ∈ Rd uniformly with respect to (t, µ) ∈ [0, T ]×Pθ,
and for any µ· ∈ C([0, T ]; Pθ), bµt (x) := bt(x, µt) and σµt (x) := σt(x, µt) satisfy
|bµ|2 + ‖∇σµ‖2 ∈ Lqp(T ) for some (p, q) ∈ K , where ∇ is the weak gradient in
the space variable x ∈ Rd, then the SDE (1.1) has a strong solution satisfying
LX· ∈ C([0, T ]; Pθ) and the K-estimate.

(3) If, in addition to the condition in (2), there exists a constant L > 0 such that

(2.5) ‖σt(x, µ)− σt(x, ν)‖+ |bt(x, µ)− bt(x, ν)| ≤ LWθ(µ, ν)

holds for all µ, ν ∈Pθ and (t, x) ∈ [0, T ]× Rd, then the strong solution is unique.

When b and σ do not depend on the distribution, Theorem 2.1 reduces back to the
corresponding results derived for classical SDEs with singular coefficients, see for instance
[21] and references within.

To compare Theorem 2.1 with recent results on the existence and uniqueness of
McKean-Vlasov type SDEs derived in [3, 10], we consider a specific class of coefficients
where the dependence on distributions is of integral type. For µ ∈ P and a (possibly
multidimensional valued) real function f ∈ L1(µ), let µ(f) =

∫
Rd fdµ. Let

(2.6) bt(x, µ) := Bt(x, µ(ψb(t, x, ·)), σt(x, µ) := Σt(x, µ(ψσ(t, x, ·))

for (t, x, µ) ∈ [0, T ]× Rd ×Pθ, where for some k ∈ N,

ψb, ψσ : [0, T ]× Rd × Rd → Rk

are measurable and bounded such that for some constant δ > 0,

(2.7) |ψb(t, x, y)− ψb(t, x, y′)|+ |ψσ(t, x, y)− ψσ(t, x, y′)| ≤ δ|y − y′|

holds for all (t, x) ∈ [0, T ]× Rd and y, y′ ∈ Rd, and

B : [0, T ]× Rd × Rk → Rd, Σ : [0, T ]× Rd × Rk → Rd ⊗ Rd

are measurable and continuous in the third variable in Rk. We make the following as-
sumption.

(A) Let (b, σ) in (2.6) for (B,Σ) such that (2.7) holds, Bt(x, ·) and Σt(x, ·) are continuous
for any (t, x) ∈ [0, T ] × Rd. Moreover, there exist constant K > 1, (p, q) ∈ K and
nonnegative F ∈ Lqp(T ) such that

(2.8) |bt(x, µ)|2 ≤ F (t, x) +K, K−1I ≤ σt(x, µ)σt(x, µ)∗ ≤ KI

for all (t, x, µ) ∈ [0, T ]× Rd ×Pθ.
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Corollary 2.2. Assume (A). Then the following assertions hold.

(1) Assertion (1) in Theorem 2.1 holds.

(2) If moreover, σ is uniformly continuous in x ∈ Rd uniformly with respect to (t, µ) ∈
[0, T ]×Pθ, and for any µ· ∈ C([0, T ]; Pθ), bµt (x) := bt(x, µt) and σµt (x) := σt(x, µt)
satisfy |bµ|2 + ‖∇σµ‖2 ∈ Lqp(T ) for some (p, q) ∈ K , where ∇ is the weak gradient
in the space variable x ∈ Rd, then assertion (2) in Theorem 2.1 hold.

(3) Besides the conditions in (2), if there exists a constant c > 0 such that

|Bt(x, y)−Bt(x, y
′)|+‖Σt(x, y)−Σt(x, y

′)‖ ≤ c|y−y′|, (t, x) ∈ [0, T ]×Rd, y, y′ ∈ Rk,

then for any F0-measurable random variable X0 on Rd with µ0 := LX0 ∈ Pθ for
some θ ≥ 1, the SDE (1.1) has a unique strong solution with LX· continuous in Pθ.

In the next corollary on the existence of weak solution we do not assume (2.6). This result
will be used in Section 5.

Corollary 2.3. Assume that (2.5), (2.8) hold. Then the SDE (1.1) has a weak solution
with initial distribution µ0 satisfying LX· ∈ C([0, T ]; Pθ) and the K-estimate.

We now explain that results in Corollary 2.2 and Corollary 2.3 are new comparing
with existing results on McKean-Vlasov SDEs. We first consider the model in [3] where
ψb and ψσ are R-valued functions such that

‖B‖∞ + sup
(t,x,r)∈[0,T ]×Rd×R

|∂rBt(x, r)| <∞,

ψb is Hölder continuous, ψσ is Lipschitz continuous, and for some constants C > 1,
θ ∈ (0, 1],

C−1I ≤ ΣΣ∗ ≤ CI,

‖Σt(x, r)− Σt(x
′, r′)‖ ≤ C(|x− x′|+ |r − r′|),

‖∂rΣt(x, r)− ∂rΣt(x
′, r)‖ ≤ C|x− x′|θ.

Then [3, Theorem 1] says that when LX0 ∈ P2 the SDE (1.1) has a unique strong
solution. Obviously, the above conditions imply ‖b‖∞ + ‖∇σ‖∞ < ∞, but this is not
necessary in Corollary 2.2 and Corollary 2.3, since the integrability conditions used in
these two results allow b and ∇σ unbounded.

Next, [10] considers (1.1) with

bt(x, µ) :=

∫
Rd
b̃t(x, y)µ(dy), σt(x, µ) :=

∫
Rd
σ̃t(x, y)µ(dy)

6



for measurable functions

b̃ : [0, T ]× Rd × Rd → Rd, σ̃ : [0, T ]× Rd × Rd → Rd ⊗ Rd

satisfying
‖σ̃t(x, y)‖+ |b̃t(x, y)| ≤ C(1 + |x|), σ̃σ̃∗ ≥ C−1I

for some constant C > 1. Then [10, Theorem 1] says that when LX0 ∈ P4, (1.1) has
a weak solution. If moreover σ does not depend on the distribution and ‖∇σ‖∞ < ∞,
then [10, Theorem 2] shows that when Eer|X0|2 < ∞ for some r > 0, the SDE (1.1) has
a unique strong solution. Obviously, to apply these results it is necessary that b and ∇σ
are (locally) bounded, which is however not necessary for the condition in Corollary 2.2
and Corollary 2.3, since, as explained above, the integrability conditions used in these
two results allow b and ∇σ unbounded.

2.2 Harnack Inequality

In this subsection, we investigate the dimension-free log-Harnack inequality introduced
in [11] for (1.1), see [17] and references within for general results on these type Harnack
inequalities and applications. We establish Harnack inequalities for Ptf using coupling by
change of measures (see for instance [17, §1.1]). To this end, we need to assume that the
noise part is distribution-free; that is, we consider the following special version of (1.1):

(2.9) dXt = bt(Xt,LXt)dt+ σt(Xt)dWt, t ∈ [0, T ]

As in [18], we define Ptf(µ0) and P ∗t µ0 as follows:

(Ptf)(µ0) =

∫
Rd
fd(P ∗t µ0) = Ef(Xt(µ0)), f ∈ Bb(Rd), t ∈ [0, T ], µ0 ∈P2,

where Xt(µ0) solves (2.9) with LX0 = µ0. Let

D =

{
φ : [0,∞)→ [0,∞) is increasing, φ2 is concave,

∫ 1

0

φ(s)

s
ds <∞

}
.

Remark 2.4. The condition
∫ 1

0
φ(s)
s

ds <∞ is well known as the Dini condition. Obvious-
ly, D contains φ(s) = sα for any α ∈ (0, 1

2
). Moreover, it also contains φ(s) := 1

log1+δ(c+s−1)

for constants δ > 0 and large enough c > 0 such that φ2 is concave.

We will need the following assumption.

(H) ‖b‖∞ < ∞ and there exist a constant K > 1 and φ ∈ D such that for any t ∈
[0, T ], x, y ∈ Rd, and µ, ν ∈P2,

(2.10) K−1I ≤ (σtσ
∗
t )(x) ≤ KI, ‖σt(x)− σt(y)‖2

HS ≤ K|x− y|2,

(2.11) |bt(x, µ)− bt(y, ν)| ≤ φ(|x− y|) +KW2(µ, ν).
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Theorem 2.5. Assume (H). There exists a constant C > 0 such that

(2.12) (Pt log f)(ν0) ≤ log(Ptf)(µ0) +
C

t ∧ 1
W2(µ0, ν0)2

for any t ∈ (0, T ], µ0, ν0 ∈ P2, f ∈ B+
b (Rd) with f ≥ 1. Thus, for any different µ0, ν0 ∈

P2, and any f ∈ Bb(Rd),

|(Ptf)(µ0)− (Ptf)(ν0)|2

W2(µ0, ν0)2
≤ 2C

t ∧ 1
sup

ν∈B(µ0,W2(µ0,ν0))

{
(Ptf

2)(ν)− (Ptf)2(ν)
}
.

Moreover, there exists a constant p0 > 1 such that for any p > p0,

(2.13) (Ptf)p(ν0) ≤ (Ptf
p)(µ0) exp

{ c1

t ∧ 1
W2(µ0, ν0)2

}
E exp

{
c1|X0 − Y0|2

1− e−c2t

}
holds for any t ∈ (0, T ], µ0, ν0 ∈ P2, f ∈ B+

b (Rd), random variables X0, Y0 satisfying
LX0 = µ0, LY0 = ν0 and some constants ci = ci(p,K, φ) > 0, i = 1, 2.

2.3 Shift Harnack Inequality

In this section we establish the shift Harnack inequality for Pt introduced in [16]. To this
end, we assume that σt(x, µ) does not depend on x. So SDE (1.1) becomes

(2.14) dXt = bt(Xt,LXt)dt+ σt(LXt)dWt, t ∈ [0, T ].

Theorem 2.6. Let σ : [0, T ]×P2 → Rd⊗Rd and b : [0,∞)×Rd×P2 → Rd be measurable
such that σ is invertible with ‖σt‖∞ + ‖σ−1

t ‖∞ is bounded in t ∈ [0, T ], and b satisfies the
corresponding conditions in (H).

(1) For any p > 1, t ∈ [0, T ], µ0 ∈P2, v ∈ Rd and f ∈ B+
b (Rd),

(Ptf)p(µ0) ≤(Ptf
p(v + ·))(µ0)

× exp

[
p
∫ t

0
‖σ−1

s ‖2
∞
{
|v|/t+ φ(s|v|/t)

}2
ds

2(p− 1)

]
.

Moreover, for any f ∈ B+
b (Rd) with f ≥ 1,

(Pt log f)(µ0) ≤ log(Ptf(v + ·))(µ0) +
1

2

∫ t

0

‖σ−1
s ‖2

∞
{
|v|/t+ φ(s|v|/t)

}2
ds.

3 Preparations

We first present a new result on Krylov’s estimate, then recall two lemmas from [7] for
the construction of weak solution, and finally introduce two lemmas on the existence and
uniqueness of strong solutions.
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3.1 Krylov’s Estimate

Consider the following SDE on Rd:

(3.1) dXt = bt(Xt)dt+ σt(Xt)dWt, t ∈ [0, T ].

Lemma 3.1. Let T > 0, and let p, q ∈ (1,∞) with d
p

+ 2
q
< 1. Assume that σt(x)

is uniformly continuous in x ∈ Rd uniformly with respect to t ∈ [0, T ], and that for a
constant K > 1 and some nonnegative function F ∈ Lqp(T ) such that

(3.2) K−1I ≤ σt(x)σt(x)∗ ≤ KI, (t, x) ∈ [0, T ]× Rd,

(3.3) |bt(x)| ≤ K + F (t, x), (t, x) ∈ [0, T ]× Rd.

Then for any (α, β) ∈ K , there exist constants C = C(δ,K, α, β, ‖F‖Lqp(T )) > 0 and
δ = δ(α, β) > 0, such that for any s0 ∈ [0, T ) and any solution (Xs0,t)t∈[s0,T ] of (3.1) from
time s,

(3.4) E
[ ∫ t

s

|f |(r,Xs0,r)dr
∣∣∣Fs

]
≤ C(t− s)δ‖f‖Lβα(T ), s0 ≤ s < t ≤ T, f ∈ Lβα(T ).

Proof. When b is bounded, the assertion is due to [21, Theorem 2.1]. If |b| ≤ K + F for
some constant K > 0 and 0 ≤ F ∈ Lqp(T ), then we have a decomposition b = b(1)+b(2) with

‖b(1)‖∞ ≤ K and |b(2)| ≤ F , for instance, b(1) = b
1∨(|b|/K)

. Letting the diffeomorphisms

{θt}t∈[0,T ] on Rd which is denoted by {Φt}t∈[0,T ] be constructed in [21, Lemma 4.3] for b(2)

replacing b, then Ys0,t = θt(Xs0,t) solves

(3.5) dYt = b̄t(Yt)dt+ σ̄t(Yt)dWt, t ∈ [s, T ],

where b̄ is bounded, and σ̄ is uniformly continuous in x ∈ Rd uniformly with respect to
t ∈ [0, T ]. Moreover, there exists a constant K̄ > 1 depending on K and ‖F‖Lqp(T ) such
that

(3.6) K̄−1I ≤ σ̄t(x)σ̄t(x)∗ ≤ K̄I, (t, x) ∈ [0, T ]× Rd,

and
‖b̄‖∞ + ‖∇θ‖∞ + ‖∇θ−1‖∞ ≤ K̄.

Again by [21, Theorem 2.1], there exists a constant C = C(δ, K̄, α, β) > 0 and δ =
δ(α, β) > 0 such that

(3.7) E
[ ∫ t

s

|f |(r, Ys0,r)dr
∣∣∣Fs

]
≤ C(t− s)δ‖f‖Lβα(T ), s0 ≤ s < t ≤ T, f ∈ Lβα(T ).
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This together with ‖∇θ‖∞ < K̄ implies that

E
[ ∫ t

s

|f |(r,Xs0,r)dr
∣∣∣Fs

]
= E

[ ∫ t

s

|f |(r, θ−1
r (Ys0,r))dr

∣∣∣Fs

]

≤ C(t− s)δ
(∫ T

0

(∫
Rd
|f(r, θ−1

r (x))|αdx

) β
α

dr

) 1
β

= C(t− s)δ
(∫ T

0

(∫
Rd
|f(r, y)|α|det∇θr|(y)dy

) β
α

dr

) 1
β

≤ C(t− s)δ‖f‖Lβα(T ), t ∈ [s, T ], f ∈ Lβα(T ).

Then the proof is finished.

3.2 Convergence of Stochastic Processes

To prove Theorem 2.1(1), we will use the following two lemmas due to [7, Lemma 5.1,
5.2].

Lemma 3.2. Let {ψn}n≥1 be a sequence of d-dimensional processes defined on some
probability space. Assume that

lim
R→∞

sup
n≥1

sup
t∈[0,T ]

P(|ψnt | > R) = 0,(3.8)

and for any ε > 0,

lim
θ→0

sup
n≥1

sup
s,t∈[0,T ],|t−s|≤θ

{P(|ψnt − ψns | > ε)} = 0.(3.9)

Then there exist a sequence {nk}k≥1, a probability space (Ω̃, F̃ , P̃) and stochastic processes
{Xt, X

k
t }t∈[0,T ](k ≥ 1), such that for every t ∈ [0, T ], Lψ

nk
t
|P = LXk

t
|P̃, and Xk

t converges

to Xt in probability P̃ as k →∞.

Lemma 3.3. Let {ηn}n≥1 and η be uniformly bounded Rd⊗Rk-valued stochastic processes,
and let W n

t and Wt for t ∈ [0, T ] be Wiener processes such that the stochastic Itô integrals

Int :=

∫ t

0

ηns dW n
s , It :=

∫ t

0

ηsdWs, t ∈ [0, T ]

are well-defined. Assume that ηnt → ηt and W n
t → Wt in probability for every t ∈ [0, T ].

Then

lim
n→∞

P

(
sup
t∈[0,T ]

|Int − It| ≥ ε

)
= 0, ε > 0.
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3.3 Existence and Uniqueness on Strong Solutions

We first present a result on the existence of strong solutions deduced from weak solu-
tions, then introduce a result on the existence and uniqueness of strong solutions under
a Lipschitz type condition.

Lemma 3.4. Let (Ω̄, F̄t, W̄t, P̄) and X̄t be a weak solution to (1.1) with µt := LX̄t|P̄. If
the SDE

dXt = bt(Xt, µt) dt+ σt(Xt, µt) dWt, 0 ≤ t ≤ T(3.10)

has a unique strong solution Xt up to life time with LX0 = µ0, then (1.1) has a strong
solution.

Proof. Since µt = LX̄t |P̄, X̄t is a weak solution to (3.10). By Yamada-Watanabe principle,
the strong uniqueness of (3.10) implies the weak uniqueness, so that Xt is nonexplosive
with LXt = µt, t ≥ 0. Therefore, Xt is a strong solution to (1.1).

Lemma 3.5. Let θ ≥ 1 and δ0 be the Dirac measure at point 0. If bt(0, δ0) is bounded in
t ∈ [0, T ], and there exists a constant L > 0 such that

‖σt(x, µ)− σt(y, ν)‖+ |bt(x, µ)− bt(y, ν)|
≤ L

{
|x− y|+ Wθ(µ, ν)

}
, x, y ∈ Rd, µ, ν ∈Pθ, t ∈ [0, T ],

(3.11)

then for any X0 with E|X0|θ <∞, (1.1) has a unique strong solution (Xt)t∈[0,T ].

Proof. When θ ≥ 2 the assertion follows from [18, Theorem 2.1]. So we only consider
θ < 2. As explained in [18, Proof of Theorem 2.1 (1)] it suffices to find a constant
t0 ∈ (0, T ) independent of X0 such that (1.1) has a unique strong solution up to time t0
and supt∈[0,t0] E|Xt|θ <∞.

Let X
(0)
t = X0 and µ

(0)
t = µ0 for t ∈ [0, T ]. For any n ≥ 1, consider the SDE

dX
(n)
t = bt(X

(n)
t , µ

(n−1)
t )dt+ σt(X

(n)
t , µ

(n−1)
t )dWt, X

(n)
0 = X0,

where µ
(n−1)
t = L

X
(n−1)
t

, 0 ≤ t ≤ T. By [18, Lemma 2.3(1)], for any n ≥ 1 this SDE has a

unique solution and

(3.12) sup
s∈[0,T ]

E|X(n)
s |θ <∞, n ≥ 1.

Moreover, letting

ξ
(n)
t := X

(n+1)
t −X(n)

t , Λ
(n)
t := σt(X

(n+1)
t , µ

(n)
t )− σt(X(n)

t , µ
(n−1)
t ),

11



[18, (2.11)] implies

d|ξ(n)
t |2 ≤ 2〈Λ(n)

t dWt, ξ
(n)
t 〉+K0

{
|ξ(n)
t |2 + Wθ(µ

(n)
t , µ

(n−1)
t )2

}
dt, n ≥ 1, t ∈ [0, T ]

for some constant K0 > 0. Since ξ
(n)
0 = 0, it follows that

E|ξ(n)
t |2 ≤

∫ t

0

K0eK0(t−s)Wθ(µ
(n)
s , µ(n−1)

s )2ds

≤ tK0eK0T sup
s∈[0,t]

(
E|ξ(n−1)

s |θ
) 2
θ , t ∈ [0, T ], n ≥ 1.

Since θ < 2, by Jensen’s inequality we may find out a constant K1 > 0 such that

sup
s∈[0,t]

E|ξ(n)
s |θ ≤ K1t

θ
2 sup
s∈[0,t]

E|ξ(n−1)
s |θ, n ≥ 1, t ∈ [0, T ].

So, taking t0 ∈ (0, T ∧K−
2
θ

1 ), we may find a constant ε ∈ (0, 1) such that

sup
s∈[0,t]

E|ξ(n)
s |θ ≤ εn sup

s∈[0,t0]

E|X(1)
s −X0|θ <∞, n ≥ 1, t ∈ [0, t0].

Therefore, for any t ∈ [0, t0] there exists an Ft-measurable random variable Xt on Rd

such that
lim
n→∞

sup
t∈[0,t0]

Wθ(µ
(n)
t , µt)

θ ≤ lim
n→∞

sup
t∈[0,t0]

E|X(n)
t −Xt|θ = 0,

where µt := LXt . Combining this with (3.11) and letting n→∞ in the equation

X
(n)
t =

∫ t

0

bs(X
(n)
s , µ(n−1)

s )ds+

∫ t

0

σs(X
(n)
s , µ(n−1)

s )dWs, n ≥ 1, t ∈ [0, t0],

we derive for every t ∈ [0, t0],

Xt =

∫ t

0

bs(Xs, µs)ds+

∫ t

0

σs(Xs, µs)dWs.

Thus, (Xs)s∈[0,t0] has a continuous version which is a strong solution of (1.1) up to time
t0. The uniqueness is trivial by using condition (3.11) and Itô’s formula.

4 Proofs of Theorem 2.1 and Corollary 2.2

4.1 Proof of Theorem 2.1(1)-(2)

According to [21, Theorem 1.1], the condition in Theorem 2.1(2) implies that the SDE
(3.10) has a unique strong solution. So, by Lemma 3.4, Theorem 2.1(2) follows from
Theorem 2.1(1). Below we only prove the existence of weak solution.
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By Lemma 3.5, condition (3) in (Hθ) implies that the SDE

(4.1) dXn
t = bnt (Xn

t ,LXn
t
)dt+ σnt (Xn

t ,LXn
t
)dWt, Xn

0 = X0

has a unique strong solution (Xn
t )t∈[0,T ]. So, Lemma 3.1, (2.4) and condition (2) in (Hθ)

imply that for any (p, q) ∈ K ,

(4.2) E
∫ t

s

f(r,Xn
r )dr ≤ C(t− s)δ‖f‖Lqp(T ), 0 ≤ f ∈ Lqp(T ), n ≥ 1

holds for some constants C > 0 and δ ∈ (0, 1).
We first show that Lemma 3.2 applies to ψn := (Xn,W ), for which it suffices to verify

conditions (3.8) and (3.9) for ψ̃n := Xn. By condition (2) in (Hθ) and (2.2) implied by
(3.4), there exist constants c1, c2 > 0 such that

E|Xn
t |θ ≤ c1

{
E|X0|θ + E

(∫ T

0

|bnt (Xn
t ,LXn

t
)| dt

)θ
+ E

(∫ T

0

‖σnt (Xn
t ,LXn

t
)‖2 dt

) θ
2
}

≤ c2

(
E|X0|θ + T θ + ‖G‖θLqp(T ) + T

θ
2

)
<∞, n ≥ 1, t ∈ [0, T ].

(4.3)

Thus, (3.8) holds for ψ̃n := Xn by Markov inequality.
Next, by the same reason, there exists a constant c3 > 0 such that for any 0 ≤ s ≤

t ≤ T ,

E|Xn
t −Xn

s | ≤ E
∫ t

s

|bnr (Xn
r ,LXn

r
)| dr + E

(∫ t

s

‖σnr (Xn
r ,LXn

r
)‖2 dr

) 1
2

≤ c3

(
t− s+ (t− s)δ‖G‖Lqp(T ) + (t− s)

1
2

)
.

Hence, (3.9) holds for ψ̃n := Xn again by Markov inequality. According to Lemma
3.2, there exists a subsequence of (Xn,W )n≥1, denoted again by (Xn,W )n≥1, stochas-
tic processes (X̃n, W̃ n)n≥1 and (X̃, W̃ ) on a complete probability space (Ω̃, F̃ , P̃) such
that L(Xn,W )|P = L(X̃n,W̃n)|P̃ for any n ≥ 1, and for any t ∈ [0, T ], limn→∞(X̃n

t , W̃
n
t ) =

(X̃t, W̃t) in the probability P̃. As in [7], let F̃ n
t be the completion of the σ-algebra gener-

ated by the {X̃n
s , W̃

n
s : s ≤ t}. Then as shown in [7], X̃n

t is F̃ n
t -adapted and continuous

(since Xn is continuous and LXn|P = LX̃n|P̃), W̃ n is a d-dimensional Brownian motion
on (Ω̃, {F̃ n

t }t∈[0,T ], P̃), and (X̃n
t , W̃

n
t )t∈[0,T ] solves the SDE

(4.4) dX̃n
t = bnt (X̃n

t ,LX̃n
t
|P̃) dt+ σnt (X̃n

t ,LX̃n
t
|P̃) dW̃ n

t , LX̃n
0
|P̃ = LX0|P.
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Simply denote LX̃n
t
|P̃ = LX̃n

t
and LX̃t

|P̃ = LX̃t
. Then (X̃t, W̃t)t∈[0,T ] is a weak solution

to (1.1) provided for any ε > 0,

(4.5) lim
n→∞

P̃

(
sup
s∈[0,T ]

∫ s

0

|bnt (X̃n
t ,LX̃n

t
)− bt(X̃t,LX̃t

)| dt ≥ ε

)
= 0,

and

(4.6) lim
n→∞

P̃

(
sup
s∈[0,T ]

∣∣∣∣∫ s

0

σnt (X̃n
t ,LX̃n

t
)dW̃ n

t −
∫ s

0

σt(X̃t,LX̃t
) dW̃t

∣∣∣∣ ≥ ε

)
= 0.

In the following we prove these two limits respectively.

Proof of (4.5). For any n ≥ m ≥ 1, we have∫ s

0

|bnt (X̃n
t ,LX̃n

t
)− bt(X̃t,LX̃t

)| dt ≤ I1(s) + I2(s) + I3(s),

where

I1(s) :=

∫ s

0

|bnt (X̃n
t ,LX̃n

t
)− bmt (X̃n

t ,LX̃t
)| dt,

I2(s) :=

∫ s

0

|bmt (X̃n
t ,LX̃t

)− bmt (X̃t,LX̃t
)| dt,

I3(s) :=

∫ s

0

|bmt (X̃t,LX̃t
)− bt(X̃t,LX̃t

)| dt.

Below we estimate these Ii(s) respectively.
Firstly, by Chebyshev’s inequality, (Hθ)(2) and (4.2), we arrive at

P̃( sup
s∈[0,T ]

I1(s) ≥ ε

3
) ≤ 9

ε2
E
∫ T

0

1{|X̃n
t |≤R}

|bnt (X̃n
t , µ̃

n
t )− bmt (X̃n

t , µ̃t)|2 dt

+
9

ε2
E
∫ T

0

1{|X̃n
t |>R}

|bnt (X̃n
t , µ̃

n
t )− bmt (X̃n

t , µ̃t)|2 dt

≤ 9C

ε2

(∫ T

0

(∫
|x|≤R

|bnt (x, µ̃nt )− bmt (x, µ̃t)|2pdx
)q/p

dt

) 1
q

+
36K

ε2

∫ T

0

P̃(|X̃n
t | > R)dt+

36C

ε2
‖G1{|·|>R}‖Lqp(T ).

Since X̃n
t converges to X̃t in probability, (4.3) implies

lim
n→∞

Wθ(µ̃
n
t , µt) = 0,
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and
lim
n→∞

P̃(|X̃n
t | > R) ≤ P̃(|X̃t| ≥ R).

Then it follows from (Hθ) (1) and (3) that

lim
n→∞

|bnt (x, µ̃nt )− bt(x, µ̃t)| = 0, a.e. t ∈ [0, T ], x ∈ Rd.

So, by condition (2) in (Hθ), we may apply the dominated convergence theorem to derive

lim sup
n→∞

P̃( sup
s∈[0,T ]

I1(s) ≥ ε

3
)

≤ 9C

ε2

(∫ T

0

(∫
|x|≤R

|bt(x, µ̃t)− bmt (x, µ̃t)|2pdx
)q/p

dt

) 1
q

+
36K

ε2

∫ T

0

P̃(|X̃t| ≥ R)dt+
36C

ε2
‖G1{|·|>R}‖Lqp(T ).

(4.7)

Since bm is bounded and continuous, it follows that

lim sup
n→∞

P̃
(

sup
s∈[0,T ]

I2(s) ≥ ε

3

)
≤ lim sup

n→∞

3

ε
E
∫ T

0

|bmt (X̃n
t ,LX̃t

)− bmt (X̃t,LX̃t
)| dt = 0.

Finally, since X̃n
t → X̃t in probability, estimate (4.2) also holds for X̃ replacing X̃n.

Therefore, inequality (4.7) holds for I3 replacing I1. In conclusion, we arrive at

lim sup
n→∞

P̃
(

sup
s∈[0,T ]

∫ s

0

|bnt (X̃n
t ,LX̃n

t
)− bt(X̃t,LX̃t

)| dt ≥ ε
)

≤ lim sup
n→∞

3∑
i=1

P̃
(

sup
s∈[0,T ]

Ii(s) ≥
ε

3

)

≤ 18C

ε2

(∫ T

0

(∫
|x|≤R

|bt(x, µ̃t)− bmt (x, µ̃t)|2pdx
)q/p

dt

) 1
q

+
72K

ε2

∫ T

0

P̃(|X̃t| ≥ R)dt+
72C

ε2
‖G1{|·|>R}‖Lqp(T ).

for any m > 0 and R > 0. Then letting first m → ∞ and then R → ∞, due to (1) and
(2) in (Hθ), we obtain from the dominated convergence theorem that

lim sup
n→∞

P̃
(

sup
s∈[0,T ]

∫ s

0

|bnt (X̃n
t ,LX̃n

t
)− bt(X̃t,LX̃t

)| dt ≥ ε
)

= 0.
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Proof of (4.6). For any n ≥ m ≥ 1 we have∣∣∣∣∫ s

0

σnt (X̃n
t ,LX̃n

t
)dW̃ n

t −
∫ s

0

σt(X̃t,LX̃t
) dW̃t

∣∣∣∣
≤
∣∣∣∣∫ s

0

σnt (X̃n
t ,LX̃n

t
)dW̃ n

t −
∫ s

0

σmt (X̃n
t ,LX̃m

t
) dW̃ n

t

∣∣∣∣
+

∣∣∣∣∫ s

0

σmt (X̃n
t ,LX̃m

t
)dW̃ n

t −
∫ s

0

σmt (X̃t,LX̃m
t

) dW̃t

∣∣∣∣
+

∣∣∣∣∫ s

0

σmt (X̃t,LX̃m
t

)dW̃t −
∫ s

0

σt(X̃t,LX̃t
) dW̃t

∣∣∣∣
=: J1(s) + J2(s) + J3(s).

By Chebyshev’s inequality, BDG inequality and (4.2), we have

P̃
(

sup
s∈[0,T ]

J1(s) ≥ ε

3

)
≤ 9

ε2
E
∫ T

0

1{|X̃n
t |≤R}

‖σnt (X̃n
t ,LX̃n

t
)− σmt (X̃n

t ,LX̃m
t

)‖2
HS dt

+
9

ε2
E
∫ T

0

1{|X̃n
t |>R}

‖σnt (X̃n
t ,LX̃n

t
)− σmt (X̃n

t ,LX̃m
t

)‖2
HS dt

≤ 9C

ε2

(∫ T

0

(∫
|x|≤R

‖σnt (x, µ̃nt )− σmt (x, µ̃mt )‖2p
HSdx

) q
p

dt

) 1
q

+
18dK

ε2

∫ T

0

P̃(|X̃n
t | > R)dt.

By condition (1) in (Hθ), and µ̃nt → µ̃t in Pθ as observed above, we have

lim
n→∞

‖σnt (x, µ̃nt )− σt(x, µ̃t)‖ = 0,

and
lim
n→∞

P̃(|X̃n
t | > R) ≤ P̃(|X̃t| ≥ R).

So, the dominated convergence theorem gives

lim sup
n→∞

P̃
(

sup
s∈[0,T ]

J1(s) ≥ ε

3

)
≤ 9C

ε2

(∫ T

0

(∫
|x|≤R

‖σt(x, µ̃t)− σmt (x, µ̃mt )‖2p
HSdx

) q
p

dt

) 1
q

+
18dK

ε2

∫ T

0

P̃(|X̃t| > R)dt.

(4.8)
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Similarly,

P̃
(

sup
s∈[0,T ]

J3(s) ≥ ε

3

)
≤ 9C

ε2

(∫ T

0

(∫
|x|≤R

‖σt(x, µ̃t)− σmt (x, µ̃mt )‖2p
HSdx

) q
p

dt

) 1
q

+
18dK

ε2

∫ T

0

P̃(|X̃t| > R)dt.

To deal with J2(s), applying Lemma 3.3 to

ηn(t) := σmt (X̃n
t , µ̃

m
t ), η(t) := σmt (X̃t, µ̃

m
t ),

we conclude that when n→∞,∫ s

0

σmt (X̃n
t ,LX̃m

t
)dW̃ n

t →
∫ s

0

σmt (X̃t,LX̃m
t

) dW̃t

in probability P̃, uniformly in s ∈ [0, T ]. Hence,

lim
n→∞

P̃

(
sup
s∈[0,T ]

∣∣∣∣∫ s

0

σnt (X̃n
t ,LX̃n

t
)dW̃ n

t −
∫ s

0

σt(X̃t,LX̃t
) dW̃t

∣∣∣∣ ≥ ε

)

≤ 18C

ε2

(∫ T

0

(∫
|x|≤R

‖σt(x, µ̃t)− σmt (x, µ̃mt )‖2p
HSdx

) q
p

dt

) 1
q

+
36dK

ε2

∫ T

0

P̃(|X̃t| > R)dt.

Letting first m→∞ and then R→∞, we prove that when n→∞,∫ s

0

σnt (X̃n
t ,LX̃n

t
)dW̃ n

t →
∫ s

0

σt(X̃t,LX̃t
) dW̃t

in probability P̃, uniformly in s ∈ [0, T ].

4.2 Proof of Theorem 2.1(3)

We will use the following result for the maximal operator:

Mh(x) := sup
r>0

1

|B(x, r)|

∫
B(x,r)

h(y)dy, h ∈ L1
loc(Rd), x ∈ Rd,(4.9)

where B(x, r) := {y : |x− y| < r}, see [4, Appendix A].
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Lemma 4.1. There exists a constant C > 0 such that for any continuous and weak
differentiable function f ,

(4.10) |f(x)− f(y)| ≤ C|x− y|(M |∇f |(x) + M |∇f |(y)), a.e. x, y ∈ Rd.

Moreover, for any p > 1, there exists a constant Cp > 0 such that

(4.11) ‖M f‖Lp ≤ Cp‖f‖Lp , f ∈ Lp(Rd).

Let X and Y be two solutions to (1.1) with X0 = Y0, and let µt = LXt , νt = LYt , t ∈
[0, T ]. Then µ0 = ν0. Let

bµt (x) = bt(x, µt), σµt (x) = σt(x, µt), (t, x) ∈ [0, T ]× Rd,

and define bνt , σ
ν
t in the same way using νt replacing µt. Then

dXt = bµt (Xt) dt+ σµt (Xt) dWt,

dYt = bνt (Yt)dt+ σνt (Yt)dWt.
(4.12)

For any λ > 0, consider the following PDE for u : [0, T ]× Rd → Rd:

(4.13)
∂ut
∂t

+
1

2
Tr(σµt (σµt )∗∇2ut) +∇bµt

ut + bµt = λut, uT = 0.

By [21, Theorem 5.1], when λ is large enough (4.13) has a unique solution uλ,µ satisfying

‖∇uλ,µ‖∞ ≤
1

5
,(4.14)

and

(4.15) ‖∇2uλ,µ‖L2q
2p(T ) <∞.

Let θλ,µt (x) = x+ uλ,µt (x). By (4.12), (4.13), Itô formula and an approximation technique
(see [21, Lemma 4.3] for more details), we have

(4.16) dθλ,µt (Xt) = λuλ,µt (Xt)dt+ (∇θλ,µt σµt )(Xt) dWt,

and

dθλ,µt (Yt) = λuλ,µt (Yt)dt+ (∇θλ,µt σνt )(Yt) dWt + [∇θλ,µt (bνt − b
µ
t )](Yt)dt

+
1

2
Tr[(σνt (σνt )∗ − σµt (σµt )∗)∇2uλ,µt ](Yt)dt.

(4.17)
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Let ξt = θλ,µt (Xt)− θλ,µt (Yt). By (4.16), (4.17) and Itô formula, we obtain

d|ξt|2 =2λ
〈
ξt,u

λ,µ
t (Xt)− uλ,µt (Yt)

〉
dt

+ 2
〈
ξt, [(∇θλ,µt σµt )(Xt)− (∇θλ,µt σνt )(Yt)]dWt

〉
+
∥∥∥(∇θλ,µt σµt )(Xt)− (∇θλ,µt σνt )(Yt)

∥∥∥2

HS
dt

− 2
〈
ξt, [∇θλ,µt (bνt − b

µ
t )](Yt)

〉
dt

−
〈
ξt,Tr[(σνt (σνt )∗ − σµt (σµt )∗)∇2uλ,µt ](Yt)

〉
dt.

So, for any m ≥ 1,

d|ξt|2m = 2mλ|ξt|2(m−1)
〈
ξt,u

λ,µ
t (Xt)− uλ,µt (Yt)

〉
dt

+ 2m|ξt|2(m−1)
〈
ξt, [(∇θλ,µt σµt )(Xt)− (∇θλ,µt σνt )(Yt)]dWt

〉
+m|ξt|2(m−1)

∥∥∥(∇θλ,µt σµt )(Xt)− (∇θλ,µt σνt )(Yt)
∥∥∥2

HS
dt

+ 2m(m− 1)|ξt|2(m−2)
∣∣∣[(∇θλ,µt σµt )(Xt)− (∇θλ,µt σνt )(Yt)]

∗ξt

∣∣∣2 dt

− 2m|ξt|2(m−1)
〈
ξt, [∇θλ,µt (bνt − b

µ
t )](Yt)

〉
dt

−m|ξt|2(m−1)
〈
ξt,Tr[(σνt (σνt )∗ − σµt (σµt )∗)∇2uλ,µt ](Yt)

〉
dt.

(4.18)

By (4.14), it is easy to see that

(4.19) |ξt|2(m−1)|ξt| · |uλ,µt (Xt)− uλ,µt (Yt)| ≤ c1|ξt|2m

for some constant c1 > 0.
According to (2.5), (4.14), the boundedness of σ from (Hθ)(1)− (2), Lemma 4.1, and

noting that the distributions of Xt and Yt are absolutely continuous with respect to the
Lebesgue measure, we may find out a constant c1 > 0 such that

|ξt|2(m−2)
∣∣∣[(∇θλ,µt σµt )(Xt)− (∇θλ,µt σνt )(Yt)]

∗ξt

∣∣∣2
≤ |ξt|2(m−1)

∥∥∥(∇θλ,µt σµt )(Xt)− (∇θλ,µt σνt )(Yt)
∥∥∥2

HS

≤ |ξt|2(m−1)
{
C|ξt|M

(
‖∇2θλ,µt ‖+ ‖∇σµt ‖

)
(Xt)

+ C|ξt|M
(
‖∇2θλ,µt ‖+ ‖∇σµt ‖

)
(Yt) + Wθ(µt, νt)

}2

≤ c1|ξt|2m
{
M
(
‖∇2θλ,µt ‖+ ‖∇σµt ‖

)
(Xt) + M

(
‖∇2θλ,µt ‖+ ‖∇σµt ‖

)
(Yt)

}2

+ c1|ξt|2m + c1Wθ(µt, νt)
2m,

(4.20)
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|ξt|2(m−1)|ξt| · |{∇θλ,µt (bνt − b
µ
t )}(Yt)|

≤ L‖∇θλ,µ‖T,∞|ξt|2(m−1)|ξt|Wθ(µt, νt) ≤ c1

(
|ξt|2m + Wθ(µt, νt)

2m
)
,

(4.21)

and for some constants c0, c1 > 0

|ξt|2(m−1)|ξt| ·
∣∣Tr[(σνt (σνt )∗ − σµt (σµt )∗)∇2uλ,µt ](Yt)

∣∣
≤ c0|ξt|2m−1Wθ(µt, νt)‖∇2uλ,µt ‖(Yt)

≤ c1|ξt|2m|‖∇2uλ,µt ‖
2m

2m−1 (Yt) + c1Wθ(µt, νt)
2m.

(4.22)

Combining (4.19)-(4.22) with (4.18), and noting that 2m
2m−1

≤ 2, we arrive at

(4.23) d|ξt|2m ≤ c2|ξt|2mdAt + c2Wθ(µt, νt)
2mdt+ dMt

for some constant c2 > 0, a local martingale Mt, and

At :=

∫ t

0

{
1 + |∇2uλ,µs (Ys)|2 +

(
M
(
‖∇2θλ,µs ‖+ ‖∇σµs ‖

)
(Xs)

+ M
(
‖∇2θλ,µs ‖+ ‖∇σµs ‖

)
(Ys)

)2
}

ds.

By the stochastic Grönwall lemma due to [20, Lemma 3.8], when 2m > θ this implies

(4.24) Wθ(µt, νt)
2m ≤ c̃(E|ξt|θ)

2m
θ ≤ c2

(
Ee

c2θ
2m−θAt

) 2m−θ
θ

∫ t

0

Wθ(µs, νs)
2mds, t ∈ [0, T ].

Since by Lemma 3.1, (4.11), (4.15) and the Khasminskii type estimate, see for instance
[20, Lemma 3.5], we have

Ee
c2θ

2m−θAT <∞,

so that by Grönwall’s lemma we prove Wθ(µt, νt) = 0 for all t ∈ [0, T ]. Then by (4.12)
both Xt and Yt solve the same SDE with coefficients bµt and σµt , and due to [21, Theorem
1.3], the condition 1D(|bµt |2 + |∇σµt |2) ∈ Lqp(T ) for compact D ⊂ Rd implies the pathwise
uniqueness of this SDE, so we conclude that Xt = Yt for all t ∈ [0, T ].

Remark 4.2. We replace the PDE in [21, Theorem 5.1], i.e.

(4.25)
∂ut
∂t

+
1

2
Tr(σtσ

∗
t∇2ut) +∇btut + bt = 0, uT = 0.

by (4.13). In [21, Theorem 5.1], we need to take a small enough T0 to ensure that
supt∈[0,T0],x∈Rd ‖∇ut(x)‖ < 1. Equivalently, we take large enough λ such that (4.14) in
our paper. See also [22, Theorem 3.2] for the degenerate PDE.
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4.3 Proof of Corollary 2.2 and Corollary 2.3

Proof of Corollary 2.2. We set at(x, µ) := (σσ∗)t(x, µ) for t ∈ [0, T ], and bt(x, µ) := 0,
at(x, µ) := I for t ∈ R\ [0, T ]. Let 0 ≤ ρ ∈ C∞0 (R×Rd) with support contained in {(r, x) :
|(r, x)| ≤ 1} such that

∫
R×Rd ρ(r, x)drdx = 1. For any n ≥ 1, let ρn(r, x) = nd+1ρ(nr, nx)

and define

ant (x, µ) =

∫
R×Rd

σsσ
∗
s(x
′, µ)ρn(t− s, x− x′)dsdx′,

bnt (x, µ) =

∫
R×Rd

bs(x
′, µ)ρn(t− s, x− x′)dsdx′, (t, x, µ) ∈ R× Rd ×P.

(4.26)

Let σ̂nt =
√
ant and σ̂t =

√
at. Consider the following SDE:

(4.27) dXt = bt(Xt,LXt)dt+ σ̂t(Xt,LXt)dWt.

We first show that (b, σ̂) satisfies assumption (Hθ). Firstly, (2.6)-(2.7) and the continuity
in the third variable of B and Σ imply that b and σ are continuous in the third variable
µ ∈Pθ. Thus, (1) in (Hθ) holds. As to (Hθ) (2), since by [21], it holds that

lim
n→∞

‖F − F ∗ ρn‖Lqp(T ) = 0,

there exists a subsequence nk such that

‖F − F ∗ ρnk‖Lqp(T ) < 2−k.

Letting

G =
∞∑
k=1

|F − F ∗ ρnk |+ F,

then ‖G‖Lqp(T ) ≤ 1 + ‖F‖Lqp(T ) and noting |bnk |2 ≤ K + F ∗ ρnk , we have |bnk |2 ≤ K + G.

So, using the subsequence bnk replacing bn, we verify condition (2) in (Hθ). Finally, by
(2.6), for any n ≥ 1 there exists a constant cn > 0 such that

|bnt (x, µ)− bns (x′, ν)|+ ‖σ̂nt (x, µ)− σ̂ns (x′, ν)‖ ≤ cn
(
|t− s|+ |x− x′|+ W1(µ, ν)

)
holds for all s, t ∈ R, x, x′ ∈ Rd and µ, ν ∈ P1. So, for any θ ≥ 1, condition (3) in (Hθ)
holds. By Theorem 2.1 (1), SDE (4.27) has a weak solution. Noting that σσ∗ = σ̂σ̂∗, the
SDE (1.1) also has a weak solution. Finally, the strong existence and uniqueness follow
from Theorem 2.1 (2) and (3).

Proof of Corollary 2.3. Let bnt and ant be in (4.26), and let σ̂nt =
√
ant and σ̂t =

√
at. Then

(2.5) and (4.26) imply (b, σ̂) satisfy Hθ. Then we may complete the proof as in the proof
of Corollary 2.2 (1).
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5 Proofs of Theorems 2.5-2.6

5.1 Proof of Theorem 2.5

According to [19, Theorem 1.2 (2)] for d1 = 0, we know that (3.10) has a unique strong
solution Xt up to life time. Combining this with Corollary 2.3, Lemma 3.4 and (H) imply
the existence and uniqueness of solution to (1.1). For any µ ∈P2 we let µt = P ∗t µ be the
distribution of Xt which solves (2.9) with LX0 = µ.

We first figure out the outline of proof using coupling by change of measure as in
[15, 17]. From now on, we fix t0 ∈ (0, T ] and µ0, ν0 ∈ P2, and take F0-measurable
variables X0 and Y0 in Rd such that LX0 = µ0,LY0 = ν0 and

(5.1) E|X0 − Y0|2 = W2(µ0, ν0)2.

Let Xt with LX0 = µ0 solve (2.9), we have

(5.2) dXt = bt(Xt, µt)dt+ σt(Xt)dWt.

To establish the log-Harnack inequality, We construct a process Yt such that for a weighted
probability measure Q := RP

(5.3) Xt0 = Yt0 Q-a.s., and LYt0
|Q = P ∗t0ν0 =: νt0 .

Then
(Pt0f)(ν0) = EQ[f(Yt0)] = E[Rt0f(Xt0)], f ∈ Bb(Rd).

So, by Young’s inequality we obtain the log-Harnack inequality:

(Pt0 log f)(ν0) ≤ E[Rt0 logRt0 ] + logE[f(Xt0)]

= log(Pt0f)(µ0) + E[Rt0 logRt0 ], f ∈ B+
b (Rd), f ≥ 1.

(5.4)

Hölder inequality implies that

(Pt0f)p(ν0) = {E[Rt0f(Xt0)]}p

≤ (Pt0f
p)(µ0)× {E[R

p
p−1

t0 ]}p−1, f ∈ B+
b (Rd).

(5.5)

To construct the desired Yt, we follow the line of [19] using Zvonkin’s transform. As shown
in [19, Theorem 3.10] for d1 = 0 that Assumption (H) implies that for large enough λ > 0,
the PDE (4.13) has a unique solution uλ,µ satisfying

‖uλ,µ‖∞ + ‖∇uλ,µ‖∞ + ‖∇2uλ,µ‖∞ ≤
1

5
.(5.6)

‖∇2uλ,µ‖∞ <∞ together with the Lipschitzian continuity of σ and (4.9) implies that the
increasing process At in (4.23) satisfies

dAt ≤ cdt
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for some constant c > 0. Moreover, E|ξt|2 ≥ c′W2(µt, νt)
2 holds for some constant c′ > 0.

So, with m = 1, θ = 2,LX0 = µ0 and LY0 = ν0, the inequality (4.23) gives

(5.7) W2(µt, νt) ≤ κW2(µ0, ν0), t ∈ [0, T ]

for some constant κ > 0.
As in [15, §2], let γ = 72

25
K + 2d

25δ
+ 12λ

25
and take

(5.8) ζt =
12

25γ

(
1− e

25γ
16

(t−t0)
)
, t ∈ [0, t0],

and let Yt solve the modified SDE

(5.9) dYt =
{
bt(Yt, νt) +

1

ζt
σt(Yt)σt(Xt)

−1(Xt − Yt)
}

dt+ σt(Yt)dWt, t ∈ [0, t0).

Since supt∈[0,T ] νt(| · |2) <∞, this SDE has a unique solution (Yt)t∈[0,t0). Let

τn := t0 ∧ inf{t ∈ [0, t0) : |Xt|+ |Yt| ≥ n}, n ≥ 1,

where inf ∅ := ∞ by convention. We have τn ↑ t0 as n ↑ ∞. To see that the process Y
meets the above requirement, we first prove that

(5.10) Rs := exp

[ ∫ s

0

1

ζt

〈
σt(Xt)

−1(Yt −Xt), dWt

〉
− 1

2

∫ s

0

|σt(Xt)
−1(Yt −Xt)|2

ζ2
t

dt

]
for s ∈ [0, t0) is a uniformly integrable martingale, and hence extends also to time t0.

Lemma 5.1. Assume (H) and let X0, Y0 be two F0-measurable random variables such
that LX0 = µ0,LY0 = ν0, and

(5.11) E|X0 − Y0|2 = W2(µ0, ν0)2.

Then there exists a constant c > 0 uniformly in t0 ∈ (0, T ) such that

(5.12) sup
t∈[0,t0)

E[Rt logRt] ≤
c

t0
W2(µ0, ν0)2.

Consequently, Rt extends to t = t0, Q := Rt0P is a probability measure under which (5.9)
has a unique solution (Yt)t∈[0,t0] satisfying

(5.13) Q(Xt0 = Yt0) = 1.
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Proof. By (A1), for any n ≥ 1 and t ∈ (0, t0), the process (Rs∧τn)s∈[0,t] is a uniformly
integrable continuous martingale. So, for the first assertion it suffices to find out a constant
c > 0 uniformly in t0 ∈ (0, T ) such that

(5.14) sup
n≥1

E[Rt∧τn logRt∧τn ] ≤ c

t0
W2(µ0, ν0)2, t ∈ [0, t0).

To this end, for fixed t ∈ (0, T ) and n ≥ 1, we consider the weighted probability Qt,n :=
Rt∧τnP. By Girsanov’s theorem (W̃s)s∈[0,t∧τn] is a d-dimensional Brownian motion under
Qt,n. Reformulating (5.2) and (5.9) as

dXs = bs(Xs, µs)−
Xs − Ys
ζs

ds+ σs(Xs)dW̃s,

dYs = bs(Ys, νs) + σs(Ys)dW̃s, s ∈ [0, t ∧ τn],

where

W̃t = Wt +

∫ t

0

1

ζs
σs(Xs)

−1(Xs − Ys)dWs.

Next, we fix λ = λ0. Letting θλ,µt (x) = x + uλ,µt (x), combining (4.13) and Itô’s formula,
we arrive at

(5.15) dθλ,µt (Xt) = λuλ,µt (Xt)dt+ (∇θλ,µt σt)(Xt) dW̃t −∇θλ,µt (Xt)
Xt − Yt
ζt

dt,

and

dθλ,µt (Yt) = λuλ,µt (Yt)dt+ (∇θλ,µt σt)(Yt) dW̃t + [∇θλ,µt (bνt − b
µ
t )](Yt)dt(5.16)

By Itô formula under probability Qt,n, we obtain

d|θλ,µt (Yt)− θλ,µt (Xt)|2

= 2〈θλ,µt (Xt)− θλ,µt (Yt), λuλ,µt (Xt)− λuλ,µt (Yt)〉dt
+ 2〈θλ,µt (Xt)− θλ,µt (Yt), (∇θλ,µt σt)(Xt)dW̃t − (∇θλ,µt σt)(Yt)dW̃t〉
+ ‖∇θλ,µt σt)(Xt)−∇θλ,µt σt)(Yt)‖2

HSdt

− 2〈θλ,µt (Xt)− θλ,µt (Yt), [∇θλ,µt (bνt − b
µ
t )](Yt)dt〉

− 2
〈
θλ,µt (Xt)− θλ,µt (Yt),∇θλ,µt (Xt)

Xt − Yt
ζt

dt
〉
.

(5.17)

By (5.6) we have

−
〈
θλ,µt (Xt)− θλ,µt (Yt),∇θλ,µt (Xt)

Xt − Yt
ζt

〉
24



= −
〈
Xt − Yt + uλ,µt (Xt)− uλ,µt (Yt),

Xt − Yt
ζt

+∇uλ,µt (Xt)
Xt − Yt
ζt

〉
= −

〈
Xt − Yt,

Xt − Yt
ζt

〉
−
〈
uλ,µt (Xt)− uλ,µt (Yt),

Xt − Yt
ζt

〉
−
〈
Xt − Yt,∇uλ,µt (Xt)

Xt − Yt
ζt

〉
−
〈
uλ,µt (Xt)− uλ,µt (Yt),∇uλ,µt (Xt)

Xt − Yt
ζt

〉
≤ −14

25

|Xt − Yt|2

ζt
.

So,

d|θλ,µs (Ys)− θλ,µs (Xs)|2 ≤
{
γ|Xs − Ys|2 +

72

25
κ2(T )|Xs − Ys|W2(µs, νs)−

4

5

|Xs − Ys|2

ζs

}
ds

+ dMs, s ∈ [0, t ∧ τn]

for some Qt,n-martingale

Ms = 2

∫ s

0

〈θλ,µt (Xt)− θλ,µt (Yt), (∇θλ,µt σt)(Xt)dW̃t − (∇θλ,µt σt)(Yt)dW̃t〉.

By (5.8) we have
4

5
− γζs +

16

25
ζ ′s =

8

25
,

By Itô formula, there exists a constant c2 > 0 such that

d
|θλ,µs (Ys)− θλ,µs (Xs)|2

ζs

≤ dMs

ζs
+ c2W2(µs, νs)

2ds− |Xs − Ys|2

ζ2
s

{4

5
− γζs +

16

25
ζ ′s −

1

25

}
ds

≤ dMs

ζs
+ c2W2(µs, νs)

2ds− 7|Xs − Ys|2

25ζ2
s

, s ∈ [0, t ∧ τn].

(5.18)

Combining this with (5.7) and (5.1), we arrive at

(5.19) EQt,n

∫ t∧τn

0

|Xs − Ys|2

ζ2
s

ds ≤ c1

t0
W2(µ0, ν0)2, t ∈ [0, t0)

for some constant c1 > 0. Therefore, there exists a constant C > 0 such that

E[Rt∧τn logRt∧τn ] =
1

2
EQt,n

∫ t∧τn

0

|σs(Xs)
−1(Ys −Xs)|2

ζ2
s

ds

≤ C

t0
W2(µ0, ν0)2, t ∈ (0, t0).
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Thus, (5.12) holds.
By (5.12) and the martingale convergence theorem, (Rt)t∈[0,t0] is a uniformly inte-

grable martingale, so Q := Rt0P is a probability measure. By Girsanov theorem, we can
reformulate (5.9) as

(5.20) dYt = bt(Yt, νt)dt+ σt(Yt)dW̃t,

which has a unique solution (Yt)t∈[0,t0]. By (5.12),

EQ

∫ t0

0

|Xt − Yt|2

ζ2
t

dt <∞.

Since Xt − Yt is continuous and
∫ t0

0
1
ζt

dt =∞, this implies Q(Xt0 = Yt0) = 1.

Proof of Theorem 2.5. Consider the distribution dependent SDE

dX̃t = bt(X̃t,LX̃t
|P̃)dt+ σt(X̃t)dW̃t, X̃0 = Y0.

By the weak uniqueness we have LX̃t
|P̃ = P ∗t ν0 = νt for t ∈ [0, t0]. Combining this with

(5.20) and the strong uniqueness, we conclude that X̃t = Yt for t ∈ [0, T ]. Therefore, (5.4)
and Lemma 5.1 lead to

(Pt0 log f)(ν0) ≤ log(Pt0f)(µ0) +
C

t0
W2(µ0, ν0)2, t0 ∈ (0, T ].

Finally, with (5.7) and (5.18) in hand, repeating the proof of [17, Lemma 3.4.3] and [17,
Proof of Theorem 3.4.1(2)], we conclude that there exists a constant p0 > 1 such that for
any p > p0,

(5.21) {ER
p
p−1

t0 }
p−1 ≤ exp

{
c1

t0 ∧ 1
W2(µ0, ν0)2

}
× E exp

{
c2|X0 − Y0|2

1− e−c2t0

}
holds for any f ∈ B+

b (Rd) and some constants ci = ci(p,K, φ) > 0, i = 1, 2. This and
(5.5) imply the Harnack inequality with power (2.13).

5.2 Proof of Theorem 2.6

Proof. Fix t0 > 0. Denote µt = P ∗t µ0 = LXt , t ∈ [0, t0]. Then (2.14) becomes

(5.22) dXt = bt(Xt, µt)dt+ σt(µt)dWt, LX0 = µ0.

Let Yt = Xt + tv
t0
, t ∈ [0, t0]. Then

dYt = bt(Yt, µt)dt+ σt(µt)dW̃t, LY0 = µ0, t ∈ [0, t0],
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where

W̃t := Wt +

∫ t

0

ηsds,

ηt := σ−1
t

{ v
t0

+ bt(Xt, µt)− bt
(
Xt +

tv

t0
, µt

)}
.

Let Rt0 = exp[−
∫ t0

0
〈ηt, dWt〉 − 1

2

∫ t0
0
|ηs|2ds]. By the Girsanov theorem we obtain

(Pt0f)(µ0) = E[Rt0f(Yt0)] = E[Rt0f(Xt0 + v)] ≤ (Pt0f
p(v + ·))

1
p (µ0)

(
ER

p
p−1

t0

) p−1
p ,

and by Young’s inequality, we obtain

(Pt0 log f)(µ0) = E[Rt0 log f(Yt0)]

= E[Rt0 log f(Xt0 + v)] ≤ logPt0f(v + ·)(µ0) + ERt0 logRt0 .

Then we have

ER
p
p−1

t0 ≤ sup
Ω

e
p

2(p−1)2

∫ t0
0 |ηs|2ds

≤ exp

[
p
∫ t0

0
‖σ−1

t ‖2
∞
{
|v|/t0 + φ(t|v|/t0)

}2
dt

2(p− 1)2

]
.

and

ERt0 logRt0 = EQ logRt0 ≤
1

2
EQ

∫ t0

0

|ηs|2ds

≤ 1

2

∫ t0

0

‖σ−1
t ‖2

∞
{
|v|/t0 + φ(t|v|/t0)

}2
dt.
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