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Abstract. Let p(n) denote the number of overpartitions of n. Hirschhorn and Sellers
showed that p(4n + 3) = 0 (mod 8) for n > 0. They also conjectured that p(40n +
35) = 0 (mod 40) for n > 0. Chen and Xia proved this conjecture by using the (p, k)-
parametrization of theta functions given by Alaca, Alaca and Williams. In this paper,
we show that p(5n) = (—1)"p(4 - 5n) (mod 5) for n > 0 and p(n) = (—1)"p(4n) (mod 8)
for n > 0 by using the relation of the generating function of p(5n) modulo 5 found by
Treneer and the 2-adic expansion of the generating function of p(n) due to Mahlburg. As
a consequence, we deduce that p(4%(40n + 35)) = 0 (mod 40) for n, k > 0. Furthermore,
applying the Hecke operator on ¢(q)® and the fact that ¢(q)? is a Hecke eigenform, we
obtain an infinite family of congrences p(4”* - 5¢°n) = 0 (mod 5), where k > 0 and / is a
prime such that £ =3 (mod 5) and (=) = —1. Moreover, we show that p(5%n) = p(5'n)
(mod 5) for n > 0. So we are led to the congruences p(4*5**3(5n £ 1)) = 0 (mod 5) for
n,k,i > 0. In this way, we obtain various Ramanujan-type congruences for p(n) modulo
5 such as p(45(3n+ 1)) =0 (mod 5) and p(125(5n + 1)) =0 (mod 5) for n > 0.
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1 Introduction

The objective of this paper is to use half-integral weight modular forms to derive three
infinite families of congruences for overpartitions modulo 5.

Recall that a partition of a nonnegative integer n is a nonincreasing sequence of positive
integers whose sum is n. An overpartition of n is a partition of n where the first occurrence
of each distinct part may be overlined. We denote the number of overpartitions of n by
p(n). We set p(0) = 1 and p(n) = 0 if n < 0. For example, there are eight overpartitions
of 3

3,3, 24+1,24+1,2+1,2+1, 1 +14+1, T+141.
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Overpartitions arise in combinatorics [6], g-series [5], symmetric functions [2], repre-
sentation theory [11], mathematical physics [7,8] and number theory [15,16]. They are
also called standard MacMahon diagrams, joint partitions, jagged partitions or dotted
partitions.

Corteel and Lovejoy [6] showed that the generating function of p(n) is given by

Zp _ (—¢ @)oo

= (¢; @)oo

Recall that the generating function of p(n) can be expressed as

> Bln)g 1,

n>0 q)

where ¢(¢q) is Ramanujan’s theta function as defined by
TL2

see Berndt [2].
On the other hand, the generating function of p(n) has the following 2-adic expansion

> pn)g" —1+Z2’“Z 1) ey (n)g", (1.2)

n>0 n=1

where ¢x(n) denotes the number of representations of n as a sum of k squares of positive
integers. The above 2-adic expansion (1.2) is useful to derive congruences for p(n) modulo
powers of 2, see, for example [12,13,18].

By employing dissection formulas, Fortin, Jacob and Mathieu [7], Hirschhorn and
Sellers [9] independently derived various Ramanujan-type congruences for p(n), such as

p(4n+3) =0 (mod 8). (1.3)

Hirschhorn and Sellers [9] proposed the following conjectures
p(2Tn+18) =0 (mod 12), (1.4)
p(40n +35) =0 (mod 40). (1.5)

They also conjectured that if £ is prime and r is a quadratic nonresidue modulo ¢ then

(o | 0 (mod8) iff=+1 (mod38), L6
Plfn ) = 0 (mod4) if =43 (mod ). (1.6)



By using the 3-dissection formula for ¢(—g¢), Hirschhorn and Sellers [10] proved (1.4)
and obtained a family of congruences

p(9%(27n + 18)) =0 (mod 12),

where n,a > 0.

Employing the 2-dissection formulas of theta functions due to Ramanujan, Hirschhorn
and Sellers [9], Chen and Xia [4] obtained a generating function of p(40n + 35) modulo 5.
Using the (p, k)-parametrization of theta functions given by Alaca, Alaca and Williams [1],
they showed that

B(40n +35) =0 (mod 5). (1.7)

This proves Hirschhorn and Sellers’ conjecture (1.5) by combining congruence (1.3). Ap-
plying the 2-adic expansion (1.2), Kim [13] proved (1.6) and obtained congruence prop-
erties of p(n) modulo 8.

For powers of 2, Mahlburg [18] showed that p(n) = 0 (mod 64) holds for a set of
integers of arithmetic density 1. Kim [12] showed that p(n) = 0 (mod 128) holds for a
set of integers of arithmetic density 1. For the modulus 3, by using the fact that ¢(q)°
is a Hecke eigenform in the half-integral weight modular form space M 5 (To(4)), Lovejoy

and Osburn [17] proved that
p(36°n) =0 (mod 3),

where ¢ = 2 (mod 3) is an odd prime and ¢ t n. Moreover, by utilizing half-integral
weight modular forms, Treneer [21] showed that for a prime ¢ such that £ = —1 (mod 5),

p(5¢°n) =0 (mod 5),

for all n coprime to /.

In this paper, we establish the following two congruence relations for overpartitions
modulo 5 and modulo 8 by using a relation of the generating function of p(5n) modulo 5
and applying the 2-adic expansion (1.2).

Theorem 1.1. For n > 0, we have
p(bn) = (=1)"p(4 - 5n) (mod 5). (1.8)
Theorem 1.2. Forn > 0, we have

B(n) = (—1)"p(4n) (mod 8). (1.9)

Combining the above two congruence relations with congruences (1.3) and (1.7), we
arrive at a family of congruences modulo 40.



Corollary 1.3. Forn,k > 0, we have

p(4%(40n +35)) =0 (mod 40). (1.10)

Based on the Hecke operator on #(q)® and the fact that ¢(q)? is a Hecke eigenform in
Ms (F'p(4)), we obtain a family of congruences for overpartitions modulo 5.

Theorem 1.4. Let (72) denote the Legendre symbol. Assume that k is a nmonnegative
integer and € is a prime with { =3 (mod 5). Then we have

p(4*-50*n) =0 (mod 5),
where n is a nonnegative integer such that (_Tf‘) =—1.
Using the properties of the Hecke operator Tg 716(€2) and the Hecke eigenform ¢(q)3,
we are led to another congruence relation for overpartitions modulo 5.

Theorem 1.5. For n > 0, we have

p(5*n) = p(5'n) (mod 5). (1.11)

Combining (1.8) and (1.11), we find the following family of congruences modulo 5.

Corollary 1.6. Forn,k,1 > 0, we have

p(4"5* 3 (5n £ 1)) =0 (mod 5). (1.12)

2 Preliminaries

To make this paper self-contained, we recall some definitions and notation on half-integral
weight modular forms. For more details, see [3,14,19-21].

Let k be an odd positive integer and N be a positive integer with 4[N. We use
M (To(IV)) to denote the space of holomorphic modular forms on T'o(NN) of weight %.

Definition 2.1. Let

n>0
be a modular form in Mg(f’o(N)). For any odd prime ¢ { N, the action of the Hecke
operator T%N(KQ) on f(z) € Mg(fO(N)) is given by

k-1

IO GEDS (a(€2n) + (—(_1)5 2 n)e’“zSa<n) +€k2a<%)> o (20)

n>0

where a(7) = 0 if n is not divisible by (*.



The following proposition says that the Hecke operator T% 7 ~(£%) maps the modular
form space Mg(f‘o(N)) into itself.

Proposition 2.2. Let ¢ be an odd prime and f(z) € M (To(N)), then

F(2) | T () € My (Fo(N)).

A Hecke eigenform associated with the Hecke operator T% 7 ~ (%) is defined as follows.

Definition 2.3. A half-integral weight modular form f(z) € Mg(f‘o(élN)) is called a
Hecke eigenform for the Hecke operator Tg’N(W), if for every prime €t 4N there ezists a

complex number \(¢) for which
FE) | Ta () = MOS(2).

For the space of half-integral weight modular forms on I'y(4), we have the following
dimension formula.

Proposition 2.4. We have

dim My (Fo(4)) = 1+ EJ

By the above dimension formula, we see that dim M3 (To(4)) = 1. From the fact that
B(q)® € M%(fo(ll)), it is easy to deduce that

#(a)* | Tz 4(C%) = (€ + 1)e(a)’, (2.2)

see, for example [21, P. 18].

3 Proofs of Theorem 1.1 and Theorem 1.2

In this section, we give proofs of Theorem 1.1 and Theorem 1.2 by using a relation of the
generating function of p(5n) modulo 5 and the 2-adic expansion (1.2) of p(n).

Proof of Theorem 1.1. Recall the following 2-dissection formula for ¢(q),

o(q) = ¢(q") + 2qv(¢°), (3.1)

where

bla) =3 ",
n=0
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see, for example, Hirschhorn and Sellers [9]. Replacing ¢ by —g, (3.1) becomes

d(—q) = o(q") — 2q9(¢%). (32)

We now consider the generating function of p(5n) modulo 5. The following relation is due
to Treneer [21, p. 18],

> p(n)g" = ¢(—¢)* (mod 5). (33)
Plugging (3.2) into (3.3) yields that

> pn)g" = 6(q")’ — q0(q")* () + 20°6(¢")¥(q*)* — 3¢*(¢°)®  (mod 5).  (3.4)

n>0

Extracting the terms of ¢ for i = 0,1,2,3 on both sides of (3.4) and setting ¢* to g,
we obtain

;ﬁ(%n)q” = ¢(¢)* (mod 5), (3.5)
éﬁ(%n +5)¢" = —¢(q)*d(¢*) (mod 5), (3.6)
nzmﬁ(?(m +10)¢" = 26(q)¥(¢*)*  (mod 5), (3.7)
25(20” +15)¢" = =3¢(¢")*  (mod 5). (3.8)

n>0

Substituting the 2-dissection formula (3.1) into (3.5), we find that

> p20n)g" = ¢(q*)? + qd(q*) ¥ (¢®) + 2¢°¢(q* ) (¢%)” + 3¢°(¢®)?  (mod 5).  (3.9)

n>0

Extracting the terms of ¢ for i = 0,1,2,3 on both sides of (3.9) and setting ¢* to g,
we obtain

2?(4 -20n) = ¢(g)°  (mod 5), (3.10)
;P (20n +5)) = ¢(q)*d(¢*) (mod 5), (3.11)
;P (20n +10)) = 26(q)¥(¢*)*  (mod 5), (3.12)
ZP (20n + 15)) = 3¢(¢*)*  (mod 5). (3.13)



Comparing the equations (3.5)—(3.8) with (3.10)—(3.13), we deduce that

p(5-(4n)) =p(4-5-4n) (mod 5),
p(5-(4n+1))=-p4-5-(4n+1)) (mod 5),
p(5-(4n+2))=p(4-5-(4n+2)) (mod 5),
p(5-(4n+3))=-p(4-5-(4n+3)) (mod 5).

So we conclude that
p(bn) = (=1)"p(4 - 5n) (mod 5).
This completes the proof. 1

We note that extracting the terms of odd powers of ¢ on both sides of (3.8) leads to
the congruence p(40n + 35) = 0 (mod 5) due to Chen and Xia [4].

Next, we prove Theorem 1.2 by using the 2-adic expansion (1.2). Recall that cx(n) in
(1.2) denotes the number of representations of n as a sum of k squares of positive integers.
In particular, ¢;(n) = 1 if n is a square; otherwise, ¢;(n) = 0.

Proof of Theorem 1.2. 1t follows from (1.2) that

p(n) = (=1)" (=2¢1(n) + 4c2(n))  (mod 8), (3.14)
where n > 1. Replacing n by 4n in (3.14), we get
p(4n) = —2c¢1(4n) + 4ey(4n)  (mod 8). (3.15)

Since ¢;1(n) = ¢1(4n) and co(n) = co(4n), (3.15) can be rewritten as
p(4n) = —2¢1(n) + 4cz(n)  (mod 8). (3.16)
Substituting (3.16) into (3.14), we arrive at
p(n) = (=1)"p(4n) (mod 8),

as claimed. ]

It is easy to see that Corollary 1.3 can be obtained by iteratively applying Theorem
1.1 and Theorem 1.2 to the congruences p(40n + 35) = 0 (mod 5) and p(40n + 35) =0
(mod 8) that can be deduced from congruence (1.3) by replacing n with 10n + 8.

4 Proof of Theorem 1.4

In this section, we prove Theorem 1.4 by using the Hecke operator on #(q)® along with
the fact that ¢(q)” is a Hecke eigenform in M3 (I'g(4)).

In view of Theorem 1.1, to prove Theorem 1.4, it suffices to consider the special case
k = 0 that takes the following form.



Theorem 4.1. Let { be a prime with { =3 (mod 5). Then
p(5¢*’n) =0 (mod 5) (4.1)

holds for any nonnegative integer n with (_Tf‘) = —1.
Proof. Recall that ¢(—q)? is a modular form in M%(f0(16)). Suppose that

¢(—q)* =Y a(n)q" (4.2)

is the Fourier expansion of ¢(—q)3.

Applying the Hecke operator T%716(€2) to ¢(—q)? and using (2.1), we find that

o= | Ty, = 3 (atn) + (Fatw+tal ) ) (9

n=

where £ is an odd prime. Replacing ¢ by —¢q in (2.2), we see that #(—q)? is a Hecke
eigenform in the space M3 (F'o(16)), and hence

O(—0)° | Ts 16() = (€ + 1)p(—q)" (4.4)

Comparing the coefficients of ¢ in (4.3) and (4.4), we deduce that

a(fn) + (%)a(n) + m(%) — (£ + Da(n). (4.5)
Revoking the congruence (3.3), that is,
¢(—q)* = p(5n)¢"  (mod 5), (4.6)
and comparing (4.2) with (4.6), we get
a(n) =p(5n) (mod 5). (4.7)
Plugging (4.7) into (4.5), we deduce that
p(50*n) + (%ﬁ) p(bn) + (p (Z—Z) =+ 1)p(5n) (mod 5). (4.8)

Since ¢ = 3 (mod 5) and (=2) = —1, we see that £ {5 and ¢ { n, so that ¢*> { 5n and
p(2) = 0. Moreover, we have (=2) = ({+ 1) = —1 (mod 5). Hence congruence (4.8)
becomes

p(5¢°n) =0 (mod 5).

This completes the proof. 1



We now give some special cases of Theorem 1.4. Setting ¢ = 3 and k = 0, 1 in Theorem
1.4, respectively, we obtain the following congruences for n > 0,

p(45(3n+1)) =0 (mod 5),

7(180(3n +1)) =0 (mod 5).
Setting ¢ = 13, k = 0 in Theorem 1.4, we obtain the following congruences for n > 0,
p(845(13n +2)) =
p(845(13n +5)
p(845(13n + 6)
p(845(13n +7)
p(845(13n + 8)
p(845(

5 Proof of Theorem 1.5

In this section, we complete the proof of Theorem 1.5 by using the Hecke operator T% 716(62)
and the Hecke eigenform ¢(—q)3.

Proof of Theorem 1.5. Setting ¢ = 5 in the congruence relation (4.8), we find that
B(5n) = p(5°n) + (g) 5(5n) (mod 5). (5.1)

By the definition of the Legendre symbol, we see that if n = 0 (mod 5), then (%) = 0.
Hence, by replacing n with 5n in congruence (5.1), we obtain that

p(5*n) =p(5*n) (mod 5), (5.2)
as claimed. 1

Furthermore, we note that if n = £1 (mod 5), then (%) = 1. Hence by setting n to
bn £+ 11in (5.1), we deduce that

p(5°(5n+1)) =0 (mod 5). (5.3)

By iteratively applying the congruence p(5n) = (—1)"p(4-5n) (mod 5) given in Theorem
1.1 and congruence (5.2) to (5.3), we obtain that

p(4*5% 3 (5n+1)) =0 (mod 5), (5.4)



where n, k,72 > 0. This proves Corollary 1.6.

For n > 0, setting ¢ = 0 and £ = 0,1 in (5.4), we obtain the following special cases
p(125(5n £1)) =0 (mod 5),
p(500(5n£1)) =0 (mod 5).

By replacing n by 5n £ 2 in (5.1) and iteratively using the congruence relation (5.2),

we obtain the following relation.

Corollary 5.1. Forn,i > 0, we have

5(5(5n £2)) = 35(5% (50 £2)) (mod 5).
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